

Figure 10. Two GW detections of inspiralling BH binaries were used to set bounds on possible deviations from their GR values of various PN coefficients that appear in the expression for the GW phase. Figure from Ref. [3].

Figure 9. Contributions to the two-body Hamiltonian in the PN spin expansion, for arbitrary-mass-ratio binaries with spin induced multipole moments. Contributions in red are yet to be calculated. LO stands for "leading order", NLO for "next-to-leading order", and so on. SO stands for "spin-orbit". Figure from Ref. [996].

High Energy Physics - Theory

.

[Submitted on 5 Aug 2019 (v1), last revised 14 Feb 2020 (this version, v2)]

Black Hole Binary Dynamics from the Double Copy and Effective Theory

Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mikhail P. Solon, Mao Zeng

We describe a systematic framework for computing the conservative potential of a compact binary system using modern tools from scattering amplitudes and effective field theory. Our approach combines methods for integration and matching adapted from effective field theory, generalized unitarity, and the double-copy construction, which relates gravity integrands to simpler gauge-theory expressions. With these methods we derive the third post-Minkowskian correction to the conservative two-body Hamiltonian for spinless black holes. We describe in some detail various checks of our integration methods and the resulting Hamiltonian.

Comments:	134 pages, 32 figures
Subjects:	High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics -
	Phenomenology (hep-ph)
Journal reference:	JHEP 10 (2019) 206
DOI:	10.1007/JHEP10(2019)206
Report number:	CERN-TH-2019-128, CALT-TH 2019-026, UCLA/TEP/2019/103
Cite as:	arXiv:1908.01493 [hep-th]
	(or arXiv:1908.01493v2 [hep-th] for this version)

Submission history

From: Mao Zeng [view email]

[v1] Mon, 5 Aug 2019 07:12:56 UTC (5,273 KB)
 [v2] Fri, 14 Feb 2020 08:27:12 UTC (5,295 KB)

· · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · ·	
 · · · · · · · · · · · · · · · · · · · 	We will be addressing this problem from a different angle:
 	Is relativity necessarily complicated? Is relativity of tuning relativistic effects Possibility of tuning relativistic effects to regain simplicity?
	Requires: more general relativity - nclusion of charges and scalar hair.
· · · · · ·	

Mechanics

Newtonian dynamics and gravity results in closed, elliptical orbits.

$$L_0 = \frac{1}{2}m_1 \mathbf{v_1}^2 + \frac{1}{2}m_2 \mathbf{v_2}^2 + G\frac{m_1 m_2}{r}$$

SO(3) to hidden {	$L_i, L_j \} = \epsilon_{ijk} L_k ,$ $A_i, L_j \} = \epsilon_{ijk} A_k ,$ $A_i, A_j \} = -p_0^2 \epsilon_{ijk} L_k$	· · · · · · · · · · · · · · · · · · ·
Five independent constan of motion: maximally superintegrable		
Free motion on a three- sphere in phase space		
[Moser, 1979, see also Nab	4 , P) ₂ et, Kol - 2014]	

Field theo	ries
Back to solar system: Merc	cury & SR
Solved by <mark>General Relativi</mark> metric theory of gravity	$S = \int \mathrm{d}^4 x \sqrt{-g} R .$
Particle Lagrangian fixed by equiv principle	$L_{pp} = \mathfrak{m} \sqrt{-g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}} .$
 Gravitational interaction: 1/r^2 + corrections Attractive Couples to full energy-m 	

Probe particle along geodesics of Schwarzschild geometry

For BH binaries: two-body problem

Post-Newtonian expansion:

$$\mathcal{L} = L_0 + \frac{1}{c^2} L_{1PN} \; ,$$

$$L_0 = \frac{1}{2}m_1 \mathbf{v_1}^2 + \frac{1}{2}m_2 \mathbf{v_2}^2 + G\frac{m_1 m_2}{r} ,$$

$$L_{1PN} = \frac{1}{8}m_1 \mathbf{v_1}^4 + \frac{1}{8}m_2 \mathbf{v_2}^4 + G \frac{m_1 m_2}{2r} \left[3\mathbf{v_1}^2 + 3\mathbf{v_2}^2 - 8\mathbf{v_1} \cdot \mathbf{v_2} \right] \\ + (\mathbf{v_1} \cdot \mathbf{v_2} - (\hat{\mathbf{r}} \cdot \mathbf{v_1})(\hat{\mathbf{r}} \cdot \mathbf{v_2})) - G^2 \frac{m_1 m_2 (m_1 + m_2)}{2r^2} \right].$$

Einstein-Infeld-Hoffman terms

[Kol, Smolkin 2007]

Hamiltonian in com frame:

$$H = H_0 + \frac{1}{c^2} H_{1PN}$$

= $\left[\frac{\mathbf{p}^2}{2} - \frac{\alpha}{r}\right] + \frac{1}{c^2} \left[\frac{(3\nu - 1)}{8}\mathbf{p}^4 - \frac{\alpha(3 + \nu)}{2}\frac{\mathbf{p}^2}{r} - \frac{\alpha\nu}{2}\frac{(\mathbf{p}\cdot\hat{\mathbf{r}})^2}{r} + \frac{\alpha^2}{2r^2}\right]$

with $\nu = \frac{\mu}{m} = \frac{m_1 m_2}{(m_1 + m_2)^2}$ and $\alpha = Gm = G(m_1 + m_2)$.

Break conservation of Runge-Lenz vector (and Kepler orbits and integrability...)

Note: symmetric mass ratio...

D acad an galloa	
Based on gauge Symmetry: $S = \int c$	$\mathrm{d}^4 x \left(-F^2\right) .$
Particle Dynamics: $L_{pp} = \mathfrak{m}\sqrt{-\eta}$	$\overline{\mu_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}} + qA_{\mu}\dot{x}^{\mu}.$
Electromagnetic interaction:	· · · · · · · · · · · · · · ·
Liccu vinagiicue interactivii.	
\mathbf{C}	
• spin-1	
\mathbf{C}	

Finally: also possible with spin-0 theory

$S=\int\mathrm{d}^4x\left(-(\partial\phi)^2 ight).$	$L_{pp} = \mathfrak{m} e^{\phi} \sqrt{-\eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}} .$
Dilaton interaction:	
 Spin-0 1/r^2 corrections & attr 	
 "Scalar version" of grav trace of energy-mom te Equivalence principle. 	
• Spontaneous breaking symmetry.	of conformal
Introduced by Nordstro	om in 1913.
Solution of Sundrum 2003, Deruelle 2011]	

• • • •			
			· · ·
	Preprint PDF Available		
	Einstein's field theory is wrong and		
	Nordstrom's correct	Download file PDF	
	January 2019		
	Project: <u>Theoretical physics 1983-2021</u>	Read file	
	Authors:	Addresses	
	Jorma Jormakka		
	Aalto University		
	Preprints and early-stage research may not have been peer reviewed yet.		
• • • •			
	➡ Download citation S Copy link		
			• •
	References (6)		
• • • •	Abstract	ResearchGate	
	Gunnar Nordstr\"om published his second gravitation theory in 1913. This	Discover the world's	
	theory is today considered to be inconsistent with observations. At this time		• • •
	Einstein was working on his field theory, the General Relativity Theory. Einstein's theory has been accepted as the only theory of gravitation consistent	• 20+ million members	
	with measurements. The article reconsiders Nordstr\"om's theory and proves the following claims. 1) If gravitation is caused by a scalar field, then the theory	135+ million publications	
• • • •		 700k+ research projects 	
	is Nordstr\"om's second gravitation, which in a vacuum outside a point mass		

Two-body system with mass m and charge e:

$$\delta_{RN} = \pi \frac{M^2 \mu^2}{L^2} \left(6(1 - e_1 e_2) + e_1^2 e_2^2 - \frac{(m_1 e_1^2 + m_2 e_2^2)}{M} \right), \text{ symmetric}$$

$$mass ratio$$

· · · · · · · ·	Distinguish between
	• subextremal Q < M
	• extremal Q = M
· · · · · · · ·	
	Latter are QM stable with
	Zero Hawking temperature
· · · · · · · ·	Often extra symmetry
	Vafa-Strominger entropy counting
	No force condition between extremal
· · · · · · · ·	Consider extremal + anti-extremal
	· · · · · · · · · · · · · · · · · · ·

Final ingredient: coupling to scalar.

No additional mass/charge parameter but coupling strength in bulk action:

$$S = \int d^4x \sqrt{-g} \left(R - 2(\partial \phi)^2 - e^{-2a\phi} F^2 \right)$$

Particle action fully fixed in terms of mass and charge:

$$L_{pp} = \mathfrak{m}(\phi)\sqrt{-g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}} + qA_{\mu}\dot{x}^{\mu}$$

$$\mathfrak{m}(\phi) = \sqrt{\mu^2 + \frac{1}{2}q^2 e^{2\phi}}, \qquad \mu^2 = m^2 - \frac{q^2}{2},$$

[Julie 2017 & Khalil, Sennett, Steinhoff, Vines, Buonnano - 2018]

(Anti-)extremal BHs with dilaton hair:

 $\delta\phi = 4\pi (1+a^2)(3-a^2) \frac{M^2 \mu^2}{L^2}.$ Now we're

Structure of one-center system

$$\begin{aligned} \mathcal{H} = & \frac{\mathbf{p}^2}{2} - 2E^2 \frac{M}{r} + \\ &+ \varepsilon \left[-\frac{E^2 M}{2r} + \frac{\mathbf{p}^2}{8} \log \left[1 + \frac{4M}{r} \right] \right] + \\ &+ \mathcal{O}(\varepsilon^2), \end{aligned}$$

where we expanded in the deviation $\varepsilon = 3 - a^2$ from the Kepler case.

Deviation away from a² = 3 introduces curved metric for kinetic term - all extremal one-center systems are curved Kepler Four constants of motion, super integrable. Free motion on deformed three-sphere?

Hidden symmetry?

Remarkably: the a² = 3 case follows from a 5D Lagrangian...

· · · · · · · ·	Hidden symmetry?
· · · · · · · · ·	Similar phenomenon in much more complicated setting: N=8 supergravity (4D limit of string theory). Also vanishing perihelion shift for (anti-)extremal
	Underlying symmetry Underlying symmetry from higher-dim origin?
· · · · · ·	
· · · · · ·	[Caron-Huot, Zahraee - 2018]

Consider multiple l	BH (no-force condition)
Fwo-center case: al Kepler case when a	lows for mapping onto $^2 = 3$.
nteresting relation black hole shadows chaotic and regular behavior	

· · · · · · · ·	Summary
	elativistic corrections to Kepler
• Sp	oecial case: extremal BH with dilaton
-	air and $a^2 = 3$
• Ма	aps onto Kepler at 1PN of two-body
	d at all PN of one-center
	hat about higher orders?
	rigin of hidden symmetry?
	hat happens to phase space
	ructure away from special case?
• Tv	vo-center case maps onto Newtonian
· · · · · · · ·	Many thanks to all of you!