The Hubble tension and new physics at the eV scale: The path to New Early Dark Energy Martin S. Sloth (CP3-Origins, SDU, Denmark) arXiv: 2112.00759, 2112.00770, 2009.00006, 2006.06686,1910.10739 w. Florian Niedermann $$H_0 = 73.04 \pm 1.04 \frac{\text{km}}{\text{s Mpc}}$$ [Riess et al. 2021] Planck w. $$\Lambda$$ CDM: $H_0 = 67.4 \pm 0.5 \frac{\mathrm{km}}{\mathrm{s~Mpc}}$ [Planck 2018] ### Tension is model dependent Redshift dependence of Hubble rate depends on the assumptions $$\frac{H(z)}{H_0} = \sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3 + \Omega_r (1+z)^4}$$ # What is it telling us? # Is it systematics? ### Maybe yes! - But SH₀ES recently revisited all previously proposed sources of systematics and found their results to be robust. - Yet, no fully independent measurement/method has confirmed the results to the same precision. - →Independent measurement is needed to settle disputes in the community... ### Could it be the end of \CDM? ### Maybe yes! - All local measurements of H₀ are consistently higher than Planck's value! - Small anomalies within CMB and a small tension between CMB and BAO (although all individually insignificant) - The universe is likely to be more complicated than allowed for in the 6-parameter ΛCDM model! ### Model-dependent statement: Planck and SH₀ES incompatible ### Model-independent statement: • BAO+SN: $H_0 r_s \approx const$ #### Where $$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)} dz$$ depends on early time physics [Knox, Miller; 2019] ### Model-dependent statement: Planck and SH₀ES incompatible ### Model-independent statement: • BAO+SN: $H_0 r_s \approx const$ #### Where $$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)} dz$$ depends on early time physics Modification of ΛCDM raising H_0 while lowering r_s ### Model-dependent statement: Planck and SH₀ES incompatible ### Model-independent statement: • BAO+SN: $H_0 r_s \approx const$ #### Where $$r_s = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)} dz$$ depends on early time physics Modification of ΛCDM raising H_0 while lowering r_s Modification of *ACDM* just before recombination ### Late-time modifications - Even if late-time modifications ruled out by combination of CMB, BAO and SN people still try. - → Almost every week a new paper to explain Hubble tension with late time effect/systematics (modified gravity, voids, phantoms...), but those "solutions" ignores one of the three; CMB, BAO, SN. - Those who does not, does indeed find late-time solutions to be excluded: 1607.05297, 1607.05617, 1908.03663, 1811.00537, 1905.12000, 2103.08723, 2202.01202 and more... ### NEDE is a fast triggered phase transition in the dark sector #### Simple effective cosmological model: Instant decay of New Early Dark Energy component just before recombination arXiv: 1910.10739, 2006.06686 w. Florian Niedermann #### Some microphysical examples are: Cold NEDE: 1st order PT triggered by a second "trigger" scalar field arXiv: 1910.10739, 2006.06686 w. Florian Niedermann See Florian's talk - Hot NEDE: 1st order PT triggered by a non-vanishing temperature of the dark sector - arXiv:2112.00759, 2112.00770 w. Florian Niedermann Focus this talk Hybrid NEDE: 2nd order PT triggered by a second "trigger" scalar field Scalar field model w. first order phase transition [Niedermann, MSS; 2019, 2020] $$w = -1 \qquad \rightarrow \qquad 1/3 < w < 1$$ - Vacuum energy decays - Free energy converted to anisotropic stress - Anisotropic stress partially sources gravitational radiation - · Remaining anisotropic stress decays like a stiff fluid # Cosmological perturbations - The phase transition affects perturbations in different ways: - Perturbations feel the change in the effective e.o.s. relevant for CMB - Transition is triggered at different places at different times due to fluctuations in trigger dynamics relevant for CMB - We use Israel junction conditions to match fluctuations across transition [Deruelle, Mukhanov, 1995] space like transition surface $$\Sigma$$ synchronous gauge: $$ds^2 = -dt^2 + a(t)^2 \left(\delta_{ij} + h_{ij}\right) dx^i dx^j \,, \qquad t_* \qquad \qquad \Sigma$$ where $h_{ij} = \frac{k_i k_j}{k^2} h + \left(\frac{k_i k_j}{k^2} - \frac{1}{3} \delta_{ij}\right) \eta \,,$ has two metric perturbations This allows us to implement our model in a Boltzmann code "Trigger-CLASS". # Cosmological perturbations - →The initial condition for perturbations after the phasetransition depends on the choice of the trigger - The perturbations depend on the microphysical realization of NEDE - CMB anisotropies and LSS depends on initial perturbations - → We can discriminate both between different EDE and between different NEDE microphysical models using CMB and LSS! $EDE \neq Cold NEDE \neq Hot NEDE$ #### The H_0 Olympics: A fair ranking of proposed models Nils Schöneberg^{a,*}, Guillermo Franco Abellán^b, Andrea Pérez Sánchez^a, Samuel J. Witte^c, Vivian Poulin^b, Julien Lesgourgues^a | Model | $\Delta N_{ m param}$ | M_B | Gaussian
Tension | $Q_{ m DMAP}$
Tension | | $\Delta\chi^2$ | $\Delta { m AIC}$ | | Finali | st | | |---|-----------------------|-----------------------------|---------------------|--------------------------|--|----------------|-------------------|------------------|--------------|----|---| | $\Lambda \mathrm{CDM}$ | 0 | -19.416 ± 0.012 | 4.4σ | 4.5σ | X | 0.00 | 0.00 | X | X | | _ | | $\Delta N_{ m ur}$ | 1 | -19.395 ± 0.019 | 3.6σ | 3.8σ | \boldsymbol{X} | -6.10 | -4.10 | \boldsymbol{X} | X | | | | SIDR | 1 | -19.385 ± 0.024 | 3.2σ | 3.3σ | \boldsymbol{X} | -9.57 | -7.57 | \checkmark | ✓ | 3 | | | mixed DR | 2 | -19.413 ± 0.036 | 3.3σ | 3.4σ | \boldsymbol{X} | -8.83 | -4.83 | \boldsymbol{X} | X | | | | DR-DM | 2 | -19.388 ± 0.026 | 3.2σ | 3.1σ | \boldsymbol{X} | -8.92 | -4.92 | \boldsymbol{X} | X | | | | $\mathrm{SI}\nu\mathrm{+DR}$ | 3 | $-19.440^{+0.037}_{-0.039}$ | 3.8σ | 3.9σ | X | -4.98 | 1.02 | X | X | | | | ${f Majoron}$ | 3 | $-19.380^{+0.027}_{-0.021}$ | 3.0σ | 2.9σ | \checkmark | -15.49 | -9.49 | ✓ | √ | 2 | | | primordingB | 1 | $-19.390^{+0.018}_{-0.024}$ | 3.5σ | 3.5σ | X | -11.42 | -9.42 | \checkmark | ✓ | 3 | | | varying m_e | HOL NE | -19.391 ± 0.034 | 2.9σ | 2.9σ | A STATE OF THE STA | -12.27 | -10.27 | | √ | | | | varying $m_e \!\!+\!\! \Omega_k$ | TOC 2VL | -19.368 ± 0.048 | 2.0σ | 1.9σ | 5 | -17.26 | -13.26 | | → | | | | EDE 🥌 | 3 | $-19.390^{+0.016}_{-0.035}$ | 3.6σ | 1.6σ | \checkmark | -21.98 | -15.98 | \checkmark | ✓ | 2 | | | NEDE | 3 | $-19.380^{+0.023}_{-0.040}$ | 3.1σ | 1.9σ | \checkmark | -18.93 | -12.93 | \checkmark | \checkmark | 2 | | | EMG | 3 | $-19.397^{+0.017}_{-0.023}$ | 3.7σ | 2.3σ | √ | -18.56 | -12.56 | \checkmark | ✓ | 2 | | | CPL | 2 | -19.400 ± 0.020 | 3.7σ | 4.1σ | \boldsymbol{X} | -4.94 | -0.94 | \boldsymbol{X} | X | | | | PEDE | 0 | -19.349 ± 0.013 | 2.7σ | 2.8σ | \checkmark | 2.24 | 2.24 | \boldsymbol{X} | X | | | | GPEDE | 1 | -19.400 ± 0.022 | 3.6σ | 4.6σ | \boldsymbol{X} | -0.45 | 1.55 | \boldsymbol{X} | X | | | | $\mathrm{DM} \to \mathrm{DR} + \mathrm{WD}$ | M 2 | -19.420 ± 0.012 | 4.5σ | 4.5σ | \boldsymbol{X} | -0.19 | 3.81 | \boldsymbol{X} | X | | | | $\mathrm{DM} \to \mathrm{DR}$ | 2 | -19.410 ± 0.011 | 4.3σ | 4.5σ | X | -0.53 | 3.47 | \boldsymbol{X} | X | | | Table 1: Test of the models based on dataset $\mathcal{D}_{\text{baseline}}$ (Planck 2018 + BAO + Pantheon), using the direct measurement of M_b by SH0ES for the quantification of the tension (3rd column) or the computation of the AIC (5th column). Eight models pass at least one of these three tests at the 3σ level. Scalar field model w. first order phase transition [Niedermann, MSS; 2019, 2020] $$w = -1 \qquad \rightarrow \qquad 1/3 < w < 1$$ - Vacuum energy decays - Free energy converted to anisotropic stress - Anisotropic stress partially sources gravitational radiation - · Remaining anisotropic stress decays like a stiff fluid → Introduce a trigger field for the decay Ψ (i) for $$H\gg m:\ \phipprox\phi_{ini}$$ (ii) for $$H \approx m$$: ϕ starts evolving (iv) orange dot: $$\Gamma=0,\ \Gamma>0$$ (v) red dot: $$\Gamma = \Gamma_{max}$$ ### Cold NEDE: Cosmological perturbations - The phase transition affects perturbations in different ways: - Perturbations feel the change in the effective e.o.s. relevant for CMB - Transition is triggered at different places at different times due to fluctuations in trigger field phi. relevant for CMB - The bubbles generate perturbations on scales comparable to their size. - irrelevant for CMB We use Israel junction conditions to match fluctuations across transition [Deruelle, Mukhanov, 1995] space like transition surface $$\Sigma$$: $\phi(t_*,\mathbf{x})|_{\Sigma} = const$. $$ds^2 = -dt^2 + a(t)^2 \left(\delta_{ij} + h_{ij}\right) dx^i dx^j , \qquad t_*$$ where $h_{ij} = \frac{k_i k_j}{k^2} h + \left(\frac{k_i k_j}{k^2} - \frac{1}{3} \delta_{ij}\right) \eta$, $$w_{EDE} = -1$$ $\times x$ ▶ Two metric perturbations: h(t,k) & $\eta(t,k)$ - Known cosmological phase transitions (apart from end of inflation) are triggered by redshift of temperature. - → Let us consider a thermal trigger of the NEDE phase transition. Hot NEDE: Thermal trigger Examples of thermal PTs: Electroweak phase transitions QCD phase transition Recombination Cold NEDE: Scalar field trigger Example of cold PT: End of inflation - The thermal trigger removes the need for an extra trigger mass scale. - \rightarrow Only mass scale is $\mathcal{O}(eV)$ i.e. the neutrino mass scale Is the Hubble tension a signature of how neutrinos got their mass? Again scalar field model w. first order phase transition - Vacuum energy decays - Free energy converted to anisotropic stress - Anisotropic stress partially sources gravitational radiation - Remaining anisotropic stress decays like a stiff fluid - But the trigger is now given by the thermal corrections to the potential - The NEDE scalar field is charged under a dark sector gauge group - ightharpoonupPotential will receive thermal corrections given by the dark sector temperature T_d - The typical form of the effective finite temperature potential, as known also from studies of electroweak phase transition is $$V(\psi; T_d) = D(T_d^2 - T_o^2)\psi^2 - ET_d\psi^3 + \frac{\lambda}{4}\psi^4 + V_0(T_d)$$ • In case of a dark U(1) gauge theory with gauge coupling g_{NEDE} $$E \simeq g_{\rm NEDE}^3/(4\pi), \, D \simeq g_{\rm NEDE}^2/8$$ The usual simple form of the finite temperature potential $$V(\psi; T_d) = D(T_d^2 - T_o^2)\psi^2 - ET_d\psi^3 + \frac{\lambda}{4}\psi^4 + V_0(T_d)$$ is only valid for $$\gamma \equiv \frac{\lambda}{(4\pi E^4)^{1/3}} >> 1$$ - However, if the dark sector is dominated by vacuum energy and not radiation (low-temperature regime), this condition is not satisfied - → We need the more general form $$V(\psi; T_d) = -DT_o^2 \psi^2 + \frac{\lambda}{4} \psi^4 + 3T_d^4 K \left(\sqrt{8D} \psi / T_d \right) e^{-\sqrt{8D} \psi / T_d} + V_0(T_d)$$ #### Phenomenological d.o.f. Microscopic d.o.f. Fraction of NEDE: $f_{\rm NEDE}$ Parameter of dim. less potential: Critical temp.: T_0 Decay time: z_* Number of eff. rel. d.o.f.: $\Delta N_{ m eff}$ Dark sector temp.: pling: M $\xi = T_d/T_{\rm vis}$ Dark Matter drag force: $\Gamma^{ m DM-DR}$ # of dark gauge bosons and coupling: $\,N_d\,\,\, lpha_d\,$ **New in Hot NEDE** $$f_{\mathrm{NEDE}} = \frac{\pi}{16\gamma} \left(1 - \frac{\delta_{\mathrm{eff}}^*}{\pi \gamma} \right)^2 \frac{T_d^{*4}}{\rho_{\mathrm{tot}}(t_*)} \,. \quad \text{with} \quad \delta_{\mathrm{eff}}(T_d) = \pi \gamma \left(1 - \frac{T_{\circ}^2}{T_d^2} \right)$$ Gives potential to also solve LSS tension $$T_d^{*4} \simeq (0.7 \text{eV})^4 \gamma \left[\frac{f_{\text{NEDE}}/(1 - f_{\text{NEDE}})}{0.1} \right] \left[\frac{1 + z_*}{5000} \right]^4$$ $$\Delta N_{\text{eff}} = N_d \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \xi^4 \simeq 0.06 N_d$$ arXiv:2112.00759, 2112.00770 w. Florian Niedermann [Buen-Abad, G. Marques-Tavares, and M. Schmaltz; 2015] [J. Lesgourgues, G. Marques-Tavares, and M. Schmaltz; 2015] - The NEDE scalar field, ψ , acquires a v.e.v. ~ $\mathcal{O}(eV)$ in the P.T. - → May give mass to neutrinos - Inverse seesaw can explain the observed neutrino mass and oscillation patterns and involves two new scales; a TeV and an eV scales [A. Abada and M. Lucente; 2014] $$\mathcal{L}_{ u} = - rac{1}{2}N^TCMN + ext{h.c.}$$ $$N \equiv (u_L, u_R^c, u_s)^T$$ active left-handed right-handed sterile $$M = egin{pmatrix} 0 & d & 0 \ d & 0 & n \ 0 & n & m_s \end{pmatrix}$$ We assume dark symmetry group of form: GD X GNEDE $$d = \mathcal{O}(100 \, \text{GeV})$$ $$n > \mathcal{O}(\text{TeV})$$ $$eV < m_s < GeV$$ **EW** scale **New UV scale** **New IR scale** - We assume the dark symmetry group of the form: GD x GNEDE - 1. G_D is broken at new UV scale $n \ge 1$ TeV by new dark Higgs field $$n = g_{\Phi} v_{\Phi} / \sqrt{2}$$ as $\Phi \to v_{\Phi} / \sqrt{2}$. 2. Subsequently, we have the EW breaking leading to $$d = g_H v_H / \sqrt{2}$$ $v_H = 246 \text{GeV}$ 3. Finally G_{NEDE} is broken at the new IR scale ~ eV by NEDE P.T. $$\Psi \to v_{\Psi}/\sqrt{2}$$ $m_s = g_s v_{\Psi}$ →Assume charge assignments to allow for the Yukawa couplings $$\mathcal{L}_{\mathrm{Y}} = -g_{\Phi} \Phi \overline{\nu_R} \nu_s - \frac{g_s}{\sqrt{2}} \Psi \overline{\nu_s^c} \nu_s + g_H \overline{\nu_R} L^T \epsilon H + \text{h.c.}$$ We can also relate sterile mass to effective NEDE parameters $$m_s \simeq (1.0 \,\text{eV}) \times \frac{1}{\gamma^{1/4}} \frac{g_s}{g_{\text{NEDE}}} \left[1 - \frac{\delta_{\text{eff}}^*}{\pi \gamma} \right]^{1/2} \left[\frac{f_{\text{NEDE}}/(1 - f_{\text{NEDE}})}{0.1} \right]^{1/4} \left[\frac{1 + z_*}{5000} \right]$$ #### Minimal example: As a concrete example, we take the Dark Electroweak (DEW) group broken to Dark Electromagnetism (DEM) $$G_D = SU(2)_D \times U(1)_{Y_D} \rightarrow U(1)_{DEM}$$ The NEDE P.T. is the breaking of lepton number $$G_{\rm NEDE} = U(1)_{\rm L}$$ → We can write down the Lagrangian Secret interaction to make eV sterile compatible $\frac{g_s}{\sqrt{2}} \Psi \overline{\nu_s^c} \nu_s + g_H \overline{\nu_R} L^T \epsilon H + \text{h.c.} \\ \text{gives mass - see next...}$ with cosmology [Hannestad, Hansen, Tram; '13] $$\Phi = (\Phi_+, \Phi_0)^T$$ with cosmology $$\Phi=(\Phi_+,\Phi_0)^T \qquad \Psi=\begin{pmatrix} \frac{1}{\sqrt{2}}\left(\Psi_0+\Psi_{++}\right)\\ -\frac{\mathrm{i}}{\sqrt{2}}\left(\Psi_0-\Psi_{++}\right)\\ \Psi_- \end{pmatrix}$$ $$S = (\nu_s, S_-)^T$$ $$\Delta = \Psi \cdot \tau$$ $$\begin{split} V(\Psi,\Phi) &= a\Phi^{\dagger}\Phi + c\left(\Phi^{\dagger}\Phi\right)^2 - \frac{\mu^2}{2}\operatorname{Tr}\left(\Delta^{\dagger}\Delta\right) + \frac{\lambda}{4}\left[\operatorname{Tr}\left(\Delta^{\dagger}\Delta\right)\right]^2 \\ &+ \frac{e-h}{2}\Phi^{\dagger}\Phi\operatorname{Tr}\left(\Delta^{\dagger}\Delta\right) + h\Phi^{\dagger}\Delta^{\dagger}\Delta\Phi + \frac{f}{4}\operatorname{Tr}\left(\Delta^{\dagger}\Delta^{\dagger}\right)\operatorname{Tr}\left(\Delta\Delta\right) - \left(\bar{\epsilon}\left(\Phi^{\dagger}\Delta\epsilon\Phi^*\right) + \mathrm{h.c.}\right) \end{split}$$ #### Vacuum condition: $$a + cv_{\Phi}^{2} + \frac{1}{2} (e - h) v_{\Psi}^{2} = 0$$ $$-\mu^{2} + \lambda v_{\Psi}^{2} + \frac{1}{2} (e - h) v_{\Phi}^{2} = 0$$ $$v_{\Psi} \ll v_{\Phi} \implies e, h \lesssim \lambda v_{\Psi}^2 / v_{\Phi}^2 \ll 1$$ Technically natural if $g_d^2 \lesssim \mu/v_\Phi$ and $g_d^4 \lesssim \lambda$ Thermal correction driven by f \Rightarrow Identify g_{NEDE} with f - DEW contains 17 boson d.o.f. - If they are all relativistic and in thermal equilibrium at T_{d} , this implies $$\Delta N_{\text{eff}} = \frac{4}{7} (\frac{11}{4})^{\bar{4}/3} 17 \xi^4$$ Known constraints gives $$\Delta N_{\rm eff} < 0.1 \implies \xi \lesssim 0.2$$ and $$f_{ m NEDE} = 10\% \quad \Rightarrow \qquad \gamma \lesssim 5 imes 10^{-3}$$ Strong supercooled regime - → We expect the phenomenology to close to Cold NEDE - The heaviest active neutrino mass is related to sterile mass by $$m_3 = \mathcal{O}(m_s)\kappa^2$$ $\kappa = \mathcal{O}(d)/\mathcal{O}(n) \lesssim 10^{-2}$ ⇒ a sterile neutrino with super-eV mass is compatible with an eV temperature phase transition ### Conclusions - Hubble tension could be explained by a fast triggered phase transition in the dark sector. - Hubble tension could be a signature of how neutrinos got their mass. - Cold and Hot NEDE looks theoretically and phenomenologically promising with the potential of connecting many issues! - Verification of cold NEDE trigger mech. - Prediction of gravitational waves. - Many things to do simulate Hot NEDE, more detailed modeling of the percolation phase, generalizations, etc... # The Hubble tension and new physics at the eV scale: The path to New Early Dark Energy Martin S. Sloth (CP3-Origins, SDU, Denmark) arXiv: 2112.00759, 2112.00770, 2009.00006, 2006.06686,1910.10739 w. Florian Niedermann ### Gravitational waves First order phase transitions (PT) act as source of gravitational waves. 1/f regime: $$h^2\Omega_{GW}\sim 10^{-12}H \Bar{\beta}^{-1}\left(\frac{10^{-9}{\rm Hz}}{f}\right)$$ single dial Best prospects of detection with pulsar timing arrays. Square Kilometer Array, sensitivity: $h^2\Omega_{GW}\sim 10^{-15}$ window for detection: $10^{-3} < H \Bar{\beta}^{-1} \lesssim 1$