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Motivation & Context
• Challenge of defining energy in GR:

- Equivalence Principle: can locally set the gravitational field to zero
→ standard (local) definition of gravitational energy momentum via
Tµν = 2√

|g|
δS

δgµν not working
- Go quasi-local: assign energy to finitely-sized spacetime domains,

connecting to asymptotic mass/energy definitions
Question: definition in a restricted, yet relevant set-up possible?

• Set-up → lightcone: cosmological data collected on that
hypersurface, unique geometrical structure

• EH defined in terms of expansion scalars of null congruences
⇒ intuitive choice when applied to lightcone generating null
congruence

”Study EH as tentative measure of the observable universe for a
given observer to address cosmological questions”
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Governing Equations

• C−(p) is a null hypersurface generated by the
past null geodesic congruence issued at p with
tangent vectors la

• The shape of cross sections of null congruence
described by expansion θ and shear tensor σab

• Their change along la is given by the optical
equations:

θ̇ = −1
2θ

2 − σabσ
ab − Rablalb (1)

σ̇ab = −θσab − Cacbdlcld (2)

θ

σab
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Definition of the Hawking Energy
• Given a spacetime (M, g), take a spacelike (topol.) 2-sphere S with

area A(S) =
∫

S dS.
• ∃ past-directed outgoing and ingoing null geodesic congruences ⊥ S

with expansion scalars θ+ & θ−.
• Idea: energy in 3-volume surrounded by S affects the light bending

on S.

Def. Hawking Energy E (Hawking 1968)

Given a spacelike 2-sphere S, the Hawking energy E is defined as

EH(S) :=
√

A(S)
(4π)3/2

[
2π +

1
4

∫
S
θ+θ− dS

]
(3)

• Many useful properties & connections to energy definitions in
special cases were established
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Properties of EH

• In the limit of S degenerating to a point, E(S) → 0.
• Positivity for small sphere of radius r around p ∈ M in the limit

r → 0 (Horowitz & Schmidt 1982):
• non-vacuum: E ∼ r3Tabtatb ≥ 0 if DEC holds
• vacuum: E ∼ Babcdtatbtctd ≥ 0

Tab: energy-momentum tensor, Babcd: Bel-Robinson tensor, ta unit
timelike vector

• For a section of the Kerr-Newman horizon: E = Mirr.
• For large spheres near I+: E → EBondi-Sachs (Hawking 1968).
• For large spheres near i0: E → EADM (Eardley 1979).
• In spherical symmetry: E = EMisner-Sharp (Hayward 1996).
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Observable Universe & Cosmological Set-up
p

C−(p)

? • Observable Universe at p
(observer) given by the past
lightcone C−(p)

• C−(p) unique geometric
object

• Approximate observations
to happen instantaneously
at p, because tobs ≪ tcosm

• Weak gravitational
lensing regime: C−(p)
deformed, but no multiple
imaging
⇒ C−(p) ≃ R× S2
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Strong Gravitational Lensing

• Multiple imaging of the
same source

• Self-intersections of C−(p)
• Topology of C−(p) changes

Mathematically rigorous
description in terms of

conjugate & cut points

p

C−(p)

q

L−(p)
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The Hawking Energy on the Lightcone (I)
Goal: to study behaviour of the Hawking energy down the past
lightcone for a given affine parameter slicing Sλ.

Monotonicity intuitively clear:
p

St′

St

İ−(p)

Take only the exterior of the
lightcone C−(p) ∩ İ−(p)!

p

C−(p)

q

L−(p)

⇒ Study E(Sλ) with Sλ ≃ S2 and C−(p) ∩ İ−(p) = ∪λSλ .
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The Hawking Energy on the Lightcone (II)

• Weak Lensing regime:
monotonicity intuitively clear,
can be shown rigorously
(Eardley 1978)

• Strong Lensing regime:
E well-defined for (isolated)
stable strong lenses; in general
not monotonic anymore

Ė(S) = E(S)
2A(S)

∫
S
θ+ dS +

√
A(S)

(4π)3/2

∫
S

{
−
(
θ−σ

+
abσ

ab
+ + θ+σ

−
abσ

ab
+

)
− 8π

(
θ−Tll + θ+

[
Tln +

1
6T

])
+ θ+DaΩ

a
}

dS

→ DS, Class.Quant.Grav. 2021, arXiv:2003.13583
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Energy in Spatially Flat FLRW Spacetimes
• Matter: perfect fluid with density ρ(z) = ρ0 exp

[
3
∫ z

0
1+w(z̃)

1+z̃ dz̃
]
,

EOS P(z) = w(z)ρ(z), satisfying DEC |w| ≤ 1,
• EH for const. redshift lightcone slices:

E(z) = 4π
3 ρ(z)D3(z) ,

with area/angular diameter distance D(z) = 1
1+z

∫ z
0

dz′
H(z′)

Montonicity for z → ∞:

E′(z) = 4πρ(z)
(1 + z)3

(∫ z

0

dz′
H(z′)

)2

︸ ︷︷ ︸
=:α≥0

·

 w(z)
1 + z

∫ z

0

dz′
H(z′)︸ ︷︷ ︸

≥ z
H(z)

+
1

H(z)



≥ α

H(z)

(
1 − z

z + 1

)
≥ 0
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Linearly Perturbed FLRW

• Standard framework to analyse & interpret cosmological
observations & data

⇒ Can E be linked to observables?

• Here: scalar perturbations in longitudinal gauge for simplicity:

ds2 = a2(t)
[
−(1 + 2Ψ)dt2 + (1 − 2Φ)

(
dr2 + r2dΩ

)]
,

with Bardeen potentials Ψ and Φ Energy-momentum tensor:

T0
0 = −ρ̄(1 + δ) , Ti

j = P̄
[
(1 + πL)δ

i
j +Πi

j
]

Tj
0 = −(ρ̄+ P̄)vj , T0

j = (ρ̄+ P̄)vj

with density perturbation δ, isotropic stress perturbation πL,
anisotropic stress Πi

j, velocity perturbation vj
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E in linearly perturbed FLRW
(R. Durrer et D. Stock in prep.)

E(z) = Ē
(

1 +
1

2π

∫
Sz

[
3δD

D̄
+

3
4(Ψ + Φ) +

1
2δ −

3
4 w̄Πr

r

]
dΩ̄

)
Terms appearing:

• Ē = 4π
3 ρD3 : energy of the FLRW background

• δD
D̄ : (rel.) area distance fluctuations

• Ψ+Φ : Sachs-Wolfe effect
• δ : matter density fluct.
• Πr : (radial) anisotropic stress

⇒ E is a gauge-invariant quantity based on observables!
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How to measure the contributions?

• For perfect fluids: Πr
r = 0 .

• Area distance fluctuation: δD
D̄ = δDL

D̄L
, DL: luminosity distance

• δ related to galaxy number count fluctuations ∆ and volume
perturbation δV (Bonvin, Durrer):

∆(θ, ϕ, z) = b δ(θ, ϕ, z) + δV(θ, ϕ, z)
V̄(z)

b: bias factor
Given two tracer populations ”1” and ”2”, we find:

∆1 −∆2 = (b1 − b2) δ

• Ψ+Φ : standard lensing term in LSS analysis
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In Practice: Variance of EH

• Found that: E(z) = Ē(1 +
∫
ϵdΩ̄) ; write E(z) = Ē(z) + δE(z)

• Cannot measure background quantities, only expectation values ⟨ . ⟩
in the statistical ensemble

• Assuming that ⟨E⟩ = Ē:

⟨δE⟩ = 0 but ⟨δE2⟩ ̸= 0

• ∫
ϵdΩ̄ just contains a monopole

• Can study the angular decomposition of the ”energy surface
density” ϵ(z, θ, φ)
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Summary & Outlook

• Hawking energy EH interesting & well-behaved physical quantity on
the lightcone

• Monotonicity & positivity can be established in the weak lensing
regime (no caustics); also for flat FLRW spacetimes with matter
obeying the DEC

• EH is a gauge invariant quantity and within linear perturbation
theory can be directly related to standard cosmological observables

⇒ Next step: study magnitude of the different contributions
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Thank you for your attention!
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Extensions & Generalisations of EH

• For a metric 2-sphere in Minkowski: E = 0; not the case for general
2-sphere.

• Hayward (1993) generalised the Hawking energy to achieve a
vanishing energy for any sphere in Minkowski space by including
shear & twist terms; however, E < 0 for small spheres in vacuum

• Hawking energy can also be defined for higher genus surfaces (S, g):

E(S) = π3/2

32
√

A(S)
(

8π(1 − g) +
∫

S
θ+θ−

)
• Domain additivity:

Assume two disconnected pieces S = S1 ∪ S2 with S1 ∩ S2 = ∅, then
E(S)√
A(S)

=
E(S1)√
A(S1)

+
E(S2)√
A(S2)

⇒ E(S) > E(S1) + E(S2)

⇒ Superadditivity!
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Appendix A: Comparing (In)homogeneous Domains
• Consider a spacetime filled with an ideal fluid, and S a non-trapped

sphere with area radius D.
• The Hawking energy of S with A(S) =: 4πD2 can also be written as

E(S) = D3
(

4π
3 ⟨ρ⟩S +

1
2 ⟨σ+

abσ
ab
− ⟩S

)
.

• Comparing the energies of a general and a shear-free domain of
equal size D and average density ⟨ρ⟩S ⇒ δE = D3

2 ⟨σ+
abσ

ab
− ⟩S

• Integrating the Gauss equation yields a bound on the shear term:

⟨σ+
abσ

ab
− ⟩S ≤ 4π

A − 8π
3 ⟨ρ⟩S

If ⟨ρ⟩S > 3
2A , a shear-free domain maximises the energy for given size A

and ⟨ρ⟩S .
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Appendix B: Towards Addressing the Fitting
Problem

RW reference slices can be constructed based on E and A for e.g.
given affine parameter λ:

• From E(Sλ) = E(S̄λ) ⇒ ρ̄(λ) = ⟨ρ⟩Sλ
+ 3

8π ⟨σ+
abσ

ab
− ⟩Sλ

• From A(Sλ) = A(S̄λ) and equality of first and second derivative ⇒

ρ̄ (1 + w̄) (1+z̄)2 = ⟨ρ(1 + w)(1 + z)2⟩Sλ︸ ︷︷ ︸
≥0

+
1

4π ⟨σ+
abσ

ab
+ ⟩Sλ︸ ︷︷ ︸

≥0

+
1

8π

(
⟨θ+⟩2

Sλ
− ⟨θ2

+⟩Sλ

)
︸ ︷︷ ︸

≤0

• Slicewise procedure is a step towards fitting problem based on
geometric quantities

• Construction of FLRW reference lightcone possible, if either A or E
are fixed ⇒ full fitting problem
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Appendix C: Fitting Problem Based on A or EH

A whole FLRW-reference lightcone can in principle be constructed
by fixing either energy or area by solving

H
[
(1 + z)2HD′]′ = −4πρ(1 + w)D (4)

recalling that H =
√

8π
3 ρ− K(1 + z)2 and 1 + w = 1

3(1 + z)ρ
′

ρ

• For given area distance D: ⇒ solve for ρ(z)
• For given energy E, use ρ = 3

4π
E

D3

⇒ solve for D(z)

Fitting problem based on lightcones can be addressed geometrically
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