The Hawking Energy in Linearly Perturbed FLRW

Spontaneous Cosmology Workshop XIV Cargèse

Dennis Stock

FACULTY OF SCIENCE Department of Theoretical Physics

12.05.2022

Motivation	Hawking Energy	Cosmological Set-Up	Lightcone Energy	Summary
Outline				

- Motivation & context
- Hawking energy E_H & properties
- Cosmological set-up
- E_H on lightcones
- Linearly perturbed FLRW & relation to observations
- Summary & outlook

→ DS Class.Quant.Grav.(2021) arXiv 2003.13583 → DS Class.Quant.Grav.(2021), arXiv 2010.07896

 \rightarrow Durrer & Stock in prep.

Motivation & Context

Motivation

- Challenge of defining energy in GR:
 - Equivalence Principle: can locally set the gravitational field to zero \rightarrow standard (**local**) definition of gravitational energy momentum via $T_{\mu\nu} = \frac{2}{\sqrt{|g|}} \frac{\delta S}{\delta g^{\mu\nu}}$ not working
 - Go quasi-local: assign energy to finitely-sized spacetime domains, connecting to asymptotic mass/energy definitions

Question: definition in a restricted, yet relevant set-up possible?

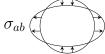
- Set-up \rightarrow **lightcone:** cosmological data collected on that hypersurface, unique geometrical structure
- E_H defined in terms of expansion scalars of null congruences \Rightarrow intuitive choice when applied to lightcone generating null congruence

"Study E_H as tentative measure of the observable universe for a given observer to address cosmological questions"

Governing Equations

- $C^{-}(p)$ is a null hypersurface generated by the past null geodesic congruence issued at p with tangent vectors l^{a}
- The shape of cross sections of null congruence described by expansion θ and shear tensor σ_{ab}
- Their change along l^a is given by the optical equations:

$$\dot{\theta} = -\frac{1}{2}\theta^2 - \sigma_{ab}\sigma^{ab} - R_{ab}l^a l^b$$
$$\dot{\sigma}_{ab} = -\theta\sigma_{ab} - C_{acbd}l^c l^d$$



The Hawking Energy in Linearly Perturbed FLRW

(1)

(2)

Definition of the Hawking Energy

- Given a spacetime (M,g), take a spacelike (topol.) 2-sphere S with area $A(S)=\int_S dS.$
- \exists past-directed outgoing and ingoing null geodesic congruences $\perp S$ with expansion scalars $\theta_+ \& \theta_-$.
- <u>Idea:</u> energy in 3-volume surrounded by S affects the light bending on S.

Def. Hawking Energy *E* (Hawking 1968)

Given a spacelike 2-sphere $S\!\!$, the Hawking energy E is defined as

$$E_H(S) := \frac{\sqrt{A(S)}}{(4\pi)^{3/2}} \left[2\pi + \frac{1}{4} \int_S \theta_+ \theta_- \, dS \right]$$
(3)

 Many useful properties & connections to energy definitions in special cases were established

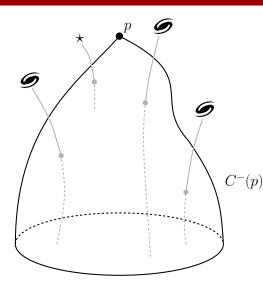
Dennis Stock

- In the limit of S degenerating to a point, $E(S) \rightarrow 0$.
- Positivity for small sphere of radius r around $p \in M$ in the limit $r \to 0$ (Horowitz & Schmidt 1982):
 - non-vacuum: $E \sim r^3 T_{ab} t^a t^b \ge 0$ if DEC holds
 - vacuum: $E \sim B_{abcd} t^a t^b t^c t^d \ge 0$

 $T_{ab}:$ energy-momentum tensor, $B_{abcd}:$ Bel-Robinson tensor, t^a unit timelike vector

- For a section of the Kerr-Newman horizon: $E = M_{irr}$.
- For large spheres near \mathcal{I}^+ : $E \to E_{\mathsf{Bondi-Sachs}}$ (Hawking 1968).
- For large spheres near i^0 : $E \rightarrow E_{ADM}$ (Eardley 1979).
- In spherical symmetry: $E = E_{\text{Misner-Sharp}}$ (Hayward 1996).

Observable Universe & Cosmological Set-up



- Observable Universe at p (observer) given by the past lightcone $C^-(p)$
- $C^-(p)$ unique geometric object
- Approximate observations to happen instantaneously at p, because t_{obs} ≪ t_{cosm}
- Weak gravitational lensing regime: C⁻(p) deformed, but no multiple imaging ⇒ C⁻(p) ≃ ℝ × S²

(Cosmological Set-Up)

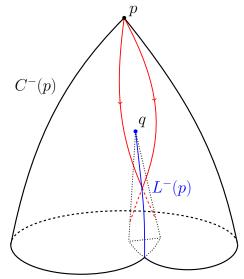
Summary

Strong Gravitational Lensing

• Multiple imaging of the same source

- Self-intersections of $C^-(p)$
- Topology of $C^-(p)$ changes

Mathematically rigorous description in terms of **conjugate & cut points**



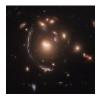
The Hawking Energy in Linearly Perturbed FLRW

(Cosmological Set-Up)

Summary

Strong Gravitational Lensing

• Multiple imaging of the same source



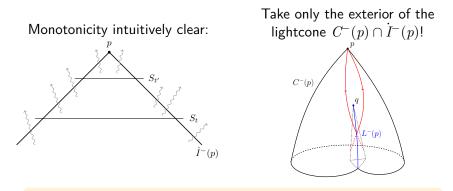
- Self-intersections of $C^-(p)$
- Topology of $C^-(p)$ changes

Mathematically rigorous description in terms of **conjugate & cut points**

The Hawking Energy in Linearly Perturbed FLRW

The Hawking Energy on the Lightcone (I)

Goal: to study behaviour of the Hawking energy down the past lightcone for a given affine parameter slicing S_{λ} .



 $\Rightarrow \mathsf{Study}\ E(S_\lambda) \text{ with } S_\lambda \simeq S^2 \text{ and } C^-(p) \cap \dot{I}^-(p) = \cup_\lambda S_\lambda \ .$

Dennis Stock

The Hawking Energy on the Lightcone (II)

• Weak Lensing regime: monotonicity intuitively clear, can be shown rigorously (Eardley 1978)

Hawking Energy

• Strong Lensing regime: *E* well-defined for (isolated) stable strong lenses; in general not monotonic anymore

$$\dot{E}(S) = \frac{E(S)}{2A(S)} \int_{S} \theta_{+} \,\mathrm{d}S + \frac{\sqrt{A(S)}}{(4\pi)^{3/2}} \int_{S} \left\{ -\left(\theta_{-}\sigma_{ab}^{+}\sigma_{+}^{ab} + \theta_{+}\sigma_{ab}^{-}\sigma_{+}^{ab}\right) - 8\pi \left(\theta_{-}T_{ll} + \theta_{+}\left[T_{ln} + \frac{1}{6}T\right]\right) + \theta_{+}D_{a}\Omega^{a} \right\} \mathrm{d}S$$

 \rightarrow DS, Class.Quant.Grav. 2021, arXiv:2003.13583

Dennis Stock

 Motivation
 Hawking Energy
 Cosmological Set-Up
 Lightcone Energy
 Summary

 Energy in Spatially Flat FLRW Spacetimes

- Matter: perfect fluid with density $\rho(z) = \rho_0 \exp\left[3\int_0^z \frac{1+w(\tilde{z})}{1+\tilde{z}}d\tilde{z}\right]$, EOS $P(z) = w(z)\rho(z)$, satisfying DEC $|w| \leq 1$,
- E_H for const. redshift lightcone slices:

$$E(z) = \frac{4\pi}{3}\rho(z)D^3(z) \quad ,$$

with a rea/angular diameter distance $D(z)=\frac{1}{1+z}~\int_{0}^{z}\frac{\mathrm{d}z'}{H(z')}$

Montonicity for $z \to \infty$:

$$E'(z) = \underbrace{\frac{4\pi\rho(z)}{(1+z)^3} \left(\int_0^z \frac{dz'}{H(z')}\right)^2}_{=:\alpha \ge 0} \cdot \left[\frac{w(z)}{1+z} \underbrace{\int_0^z \frac{dz'}{H(z')}}_{\ge \frac{z}{H(z)}} + \frac{1}{H(z)}\right]$$
$$\ge \frac{\alpha}{H(z)} \left(1 - \frac{z}{z+1}\right) \ge 0$$

The Hawking Energy in Linearly Perturbed FLRW

Moti	vation	Hawking Energy	Cosmological Set-Up	Lightcone Energy	Summary			
Linearly Perturbed FLRW								
 Standard framework to analyse & interpret cosmological observations & data 								
	\Rightarrow Can E	E be linked to obser	vables?					

• Here: scalar perturbations in longitudinal gauge for simplicity:

$$ds^{2} = a^{2}(t) \left[-(1+2\Psi)dt^{2} + (1-2\Phi) \left(dr^{2} + r^{2} d\Omega \right) \right] \quad ,$$

with Bardeen potentials Ψ and Φ Energy-momentum tensor:

$$\begin{split} T_0^0 &= -\bar{\rho}(1+\delta) \quad , \quad T_j^i = \bar{P}\left[(1+\pi_L)\delta_j^i + \Pi_j^i\right] \\ T_0^j &= -(\bar{\rho}+\bar{P})v^j \quad , \quad T_j^0 = (\bar{\rho}+\bar{P})v_j \end{split}$$

with density perturbation δ_i , isotropic stress perturbation π_L , anisotropic stress \prod_i^i , velocity perturbation v^j

E in linearly perturbed **FLRW**

(R. Durrer et D. Stock in prep.)

$$E(z) = \bar{E}\left(1 + \frac{1}{2\pi}\int_{S_z} \left[3\frac{\delta D}{\bar{D}} + \frac{3}{4}(\Psi + \Phi) + \frac{1}{2}\delta - \frac{3}{4}\bar{w}\Pi_r^r\right] d\bar{\Omega}\right)$$

Terms appearing:

- $\bar{E}=\frac{4\pi}{3}\rho D^3$: energy of the FLRW background
- $\frac{\delta D}{D}$: (rel.) area distance fluctuations
- $\Psi + \Phi$: Sachs-Wolfe effect
- δ : matter density fluct.
- Π_r : (radial) anisotropic stress
- \Rightarrow E is a gauge-invariant quantity based on observables!

Dennis Stock

How to measure the contributions?

- For perfect fluids: $\Pi^r_r=0$.
- Area distance fluctuation: $\frac{\delta D}{D} = \frac{\delta D_L}{D_L}$, D_L : luminosity distance
- δ related to galaxy number count fluctuations Δ and volume perturbation δV (Bonvin, Durrer):

$$\Delta(\theta, \phi, z) = b \,\delta(\theta, \phi, z) + \frac{\delta \,V(\theta, \phi, z)}{\bar{V}(z)}$$

b: bias factor

Given two tracer populations "1" and "2", we find:

$$\Delta_1 - \Delta_2 = (b_1 - b_2)\,\delta$$

• $\Psi + \Phi$: standard lensing term in LSS analysis

- Found that: $E(z)=\bar{E}(1+\int\epsilon\,d\bar{\Omega})$; write $E(z)=\bar{E}(z)+\delta E(z)$
- Cannot measure background quantities, only expectation values $\langle\,.\,\rangle$ in the statistical ensemble
- Assuming that $\langle E \rangle = \overline{E}$:

$$\langle \delta E \rangle = 0 \quad {\rm but} \quad \langle \delta E^2 \rangle \neq 0$$

- $\int \epsilon d \bar{\Omega}$ just contains a monopole
- Can study the angular decomposition of the "energy surface density" $\epsilon(z,\theta,\varphi)$

- Hawking energy E_H interesting & well-behaved physical quantity on the lightcone
- Monotonicity & positivity can be established in the weak lensing regime (no caustics); also for flat FLRW spacetimes with matter obeying the DEC
- *E_H* is a gauge invariant quantity and within linear perturbation theory can be directly related to standard cosmological observables
- \Rightarrow Next step: study magnitude of the different contributions

Thank you for your attention!

Extensions & Generalisations of E_H

- For a metric 2-sphere in Minkowski: E = 0; not the case for general 2-sphere.
- Hayward (1993) generalised the Hawking energy to achieve a vanishing energy for any sphere in Minkowski space by including shear & twist terms; however, E < 0 for small spheres in vacuum
- Hawking energy can also be defined for higher genus surfaces (S, g):

$$E(S) = \frac{\pi^{3/2}}{32} \sqrt{A(S)} \left(8\pi(1-g) + \int_{S} \theta_{+} \theta_{-} \right)$$

• Domain additivity: Assume two disconnected pieces $S = S_1 \cup S_2$ with $S_1 \cap S_2 = \emptyset$, then $\frac{E(S)}{\sqrt{A(S)}} = \frac{E(S_1)}{\sqrt{A(S_1)}} + \frac{E(S_2)}{\sqrt{A(S_2)}} \Rightarrow E(S) > E(S_1) + E(S_2)$ $\Rightarrow \text{Superadditivity!}$

Dennis Stock

Appendix A: Comparing (In)homogeneous Domains

- Consider a spacetime filled with an ideal fluid, and S a non-trapped sphere with area radius D.
- The Hawking energy of S with $A(S) =: 4\pi D^2$ can also be written as

$$E(S) = D^3 \left(\frac{4\pi}{3} \left\langle \rho \right\rangle_S + \frac{1}{2} \left\langle \sigma^+_{ab} \sigma^{ab}_{-} \right\rangle_S \right)$$

- Comparing the energies of a general and a shear-free domain of equal size D and average density $\langle \rho \rangle_S \Rightarrow \delta E = \frac{D^3}{2} \langle \sigma_{ab}^+ \sigma_{-}^{ab} \rangle_S$
 - Integrating the Gauss equation yields a bound on the shear term:

$$\left\langle \sigma^{+}_{ab}\sigma^{ab}_{-}\right\rangle_{S} \leq \frac{4\pi}{A} - \frac{8\pi}{3}\left\langle \rho \right\rangle_{S}$$

If $\langle\rho\rangle_S>\frac{3}{2A}$, a shear-free domain maximises the energy for given size A and $\langle\rho\rangle_S$.

The Hawking Energy in Linearly Perturbed FLRW

Appendix B: Towards Addressing the Fitting Problem

RW reference slices can be constructed based on E and A for e.g. given affine parameter λ :

- From $E(S_{\lambda}) = E(\bar{S}_{\lambda}) \implies \bar{\rho}(\lambda) = \langle \rho \rangle_{S_{\lambda}} + \frac{3}{8\pi} \langle \sigma_{ab}^{+} \sigma_{-}^{ab} \rangle_{S_{\lambda}}$
- From $A(S_{\lambda}) = A(\bar{S}_{\lambda})$ and equality of first and second derivative \Rightarrow

$$\bar{\rho}\left(1+\bar{w}\right)\left(1+\bar{z}\right)^{2} = \underbrace{\langle\rho(1+w)(1+z)^{2}\rangle_{S_{\lambda}}}_{\geq 0} + \frac{1}{4\pi}\underbrace{\langle\sigma_{ab}^{+}\sigma_{+}^{ab}\rangle_{S_{\lambda}}}_{\geq 0} + \frac{1}{8\pi}\underbrace{\left(\langle\theta_{+}\rangle_{S_{\lambda}}^{2} - \langle\theta_{+}^{2}\rangle_{S_{\lambda}}\right)}_{\leq 0}$$

- Slicewise procedure is a step towards fitting problem based on geometric quantities
- Construction of FLRW reference lightcone possible, if either A or E are fixed \Rightarrow full fitting problem

The Hawking Energy in Linearly Perturbed FLRW

A whole FLRW-reference lightcone can in principle be constructed by fixing either energy **or** area by solving

$$H[(1+z)^2 HD']' = -4\pi\rho(1+w)D$$
(4)

recalling that $H=\sqrt{rac{8\pi}{3}
ho-K(1+z)^2}$ and $1+w=rac{1}{3}(1+z)rac{
ho'}{
ho}$

For given area distance $D: \Rightarrow$ solve for $\rho(z)$

For given energy *E*, use $\rho = \frac{3}{4\pi} \frac{E}{D^3}$ \Rightarrow solve for D(z)

Fitting problem based on lightcones can be addressed geometrically

The Hawking Energy in Linearly Perturbed FLRW