Beyond Perturbation
Theory in Inflation

Giovanni Tambalo
AEl Potsdam

With M. Celoria, P. Creminelli and V. Yingcharoenrat
Also with S. Renaux-Petel
[arXiv:2103.09244 + |

IESC Cargese, 2022

2 MAX PLANCK INSTITUTE ”
..’;1’: 52\ FOR GRAVITATIONAL PHYSICS
) (Albert Einstein Institute) &




Perturbation theory (PT) in Inflation

Why going beyond PT

Example in Quantum Mechanics

Beyond PT Inflation

e Conclusions & future directions



Slow-roll Inflation

* Inflation: period of early acceleration

* Inflaton ¢ rolls down its potential.
Approximate de Sitter expansion:

ds? — —dn? + da” Inflation

n> b5

Y
ASS

« Curvature perturbations ¢ freeze outside of the horizon for A #£ 0
P
hij = a® [e*6i5 + i)+ (GCp) = 73
« At CMB scales the typical fluctuations are

Pr= H?/(2eM3) ~ 10719 ( ~107°

Power spectrum



Perturbation theory

Statistics of ¢ is almost perfectly Gaussian,
with corrections characterized by (¢%), (¢*)

« Corrections to Gaussianity for ¢ ~ PS/Q
(typical fluctuations)

<1€—2>C ~ fNLC ~ fNLPgl/2 <1
¢

4
%CQ ~ gNL¢? ~ gnLPe < 1

(Planck and LLS bounds) <1073
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« Inflationary correlators are thus reliably computed in perturbation theory:
(in-in formalism)

> SO O “H (n))dn' A i [mn B N Ar
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Why going beyond PT

« PT computes corrections close to the

peak of the probability distribution P(¢) -
It breaks down on the tails: /nx.¢ ~ 1 Gaussian
Non-Gaussian
2 (C) 3, () 4
P(C)Nexp _ﬁ‘i‘P—g( +P—é< + ...
s (€. Y
~ exp E<1+P<2C+ P3C2+... I ,
B ~—1/fnL ~1/fny ¢

Corrections depénd on the size of ¢

« This regime can be relevant for the abundance of rare

objects: Primordial Black Holes, CMB spots ecc.. .
Relevant for models with large

NGs, such as k-inflation.
In slow-roll instead

fnp ~ O(e,n) < 1

BH mass

fractionat e 500 = [T PQOIC, G

formation .



How to go beyond PT

The tail of the distribution is amenable to a semiclassical calculation

« For h — 0 fluctuations go to zero: intuitively this limit describes unlikely events

Co(X)
Go()] = / DA S[ s

Wavefunction of the Universe [¥[¢]]?= P(¢)

 This is the semiclassical regime

U [Co(Z)] ~ etS1Cal/h

« We can see this explicitly in an example in QM: tails of the wavefunction cannot
be described in PT



Semiclassical wavefunction in QM

Consider a particle with position z(t) in a potential well with potential V ()
We are interested in the ground state wavefunction ¥y (z )

After rotating to Euclidean time ¢+ — —ir, the ground state can be written as a path
integral (T =74 —7; )

z(T)=xf
\IIO (ﬁUf) \IIE; (xz) e_EOT = lim Dx(T)e_SE[x(T)]/h

x(T)=x;
Selects the trajectory with E =0

For large xf we are on a tail of the wavefunction. The action is large:
semiclassical limit holds

Tf 1
W (x7) U (2;) e BT ~ e~ Smlzalm)l/h SE = / [§mx'2 + V(w)] dr
Wavefunction can be obtained from a “classical” trajectory connecting the initial
and final point in an inverted potential
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Wavefunction for an anharmonic oscillator

Small parameter

Example: V(z) = fiw F (£>2 + )\ (%)4] , d=+/h/mw

2 \d
~V(z)
The semiclassical parameter z* = 2\z}/d? I i
can become large, so PT breaks down when \

72 ~ O(1)

(g3 7r)

Because of energy conservation (E = 0) the
action is easy to find

Sglz(T L[ 1 -
E[h( ) = ﬁ/ mi? dr = X {(1 +$2)3/2 - 1} Non-perturbative result in A
The wavefunction has the form One-loop correction
_ 1 _9 3/2 _ _
Uo(z) = N exp ~6x [(l—l—x ) —1} —l—f(x)—l—)\g(a:)—k

« Two loops



Wavefunction for Inflation

For Inflation, we consider a model where nonlinearities are dominated by a
single term

S = /d3:13d77{ ! [CQ — (8&)2} + /\</4 } [Cheung+ '08]

212 P; 4!P<2 [Senatore, Zaldarriaga, ‘11]

Standard perturbation theory: expansionin A < 1

The (classical) nonlinear parameter is (, = >\1/2C0/P£/2 Value of € at late times

(analogous to z = 2Az%/d* in QM)

Semiclassical expansion; expansion in A with o arbitrary.
The on-shell action thus scales as



Wavefunction for Inflation

N 2

The EoM in Euclidean (n — —i7) is A _ Ao/ Fe
2 A — )\7(1)(}()

C// L _C/ i v2<~ i _7_24-/24-// —0 o Jos
T 2PC — A =500

10.6

¢/

We solve the EOM numerically for |
different BCs

(11, %) =0, (71, %) = Go(Z)

10.2

Large value

We also need to fix the late-time
configuration as a function of =

We choose a gaussian profile at late
times

Co(&) = Coe ¥
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Wavefunction for Inflation

After obtaining the solution, we can evaluate the Euclidean action
The free action contains divergences at late times that we need to subtract:

(1 — kt)ekm

Ccl(lgv T) - CO(E) (1 - ka) ek

1 Pk 1 - -
So=— 557 | Gy tal-FmoCalk.)

2P

—=Tf

Bk 1 [k YA
N / L (T_f Iy ) Co(—R)Col)

Divergent for = — 0 .Corresponds to a phase in Lorentzian (irrelevant for the

probability distribution) [Maldacena, ‘03]

In the nonlinear case, after subtracting the 1510
divergent part, we can numerically
evaluate the action and get

L »3/2

¥ [Go] ~ exp [

1 23/2

)\O

10t

ASg/h
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— simulation

] Co = N20/PY?
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Application: Resonant NGs

Work in progress with P. Creminelli, S. Renaux-Petel, Y. Yingcharoenrat

Slow-roll models with oscillatory features can V(f”
give large NGs: resonance between
background and fluctuations

[Flauger+, '09; Flauger, Pajer, '10; Leblond, Pajer, ‘11]

Vo =uto+ateos (2) o= gon) +d0(a. )

The N-point functions of d¢ are known in this
limit: hope to get the full action

For small A* but large 6¢/f the oscillations
give small contribution to the action, but
cannot be expanded in powers of §¢

dnd3x
AS[¢] o A4/ - AV (¢o + ) Solution in free theory:

no need to solve non-
linear PDEs >




Conclusions and future directions

Conclusions:
« We studied the tails of the probability distribution for ¢ at late times

* In this regime usual PT breaks down. However, a semiclassical approach
IS possible

« We studied numerically this problem in a simple model by first rotating
to Euclidean time

Future directions:

» This method can be applied to different models with large NGs
(k-inflation, DBI, resonant NGs ecc..)

« Wavefunction for tensor modes (numerical GR equations in dS)
« More systematic study of PBH formation in these models
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Conclusions and future directions

Conclusions:
« We studied the tails of the probability distribution for ¢ at late times

* In this regime usual PT breaks down. However, a semiclassical approach
IS possible

« We studied numerically this problem in a simple model by first rotating
to Euclidean time

Future directions:

» This method can be applied to different models with large NGs
(k-inflation, DBI, resonant NGs ecc..)

« Wavefunction for tensor modes (numerical GR equations in dS)
« More systematic study of PBH formation in these models

Thank you for listening
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Connection with PT diagrams

» The leading-order semiclassical method re-sums all tree-level Witten
diagrams.

« More external legs for the same power of X « 1

o ¢ @& o o
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