Probing fundamental physics and cosmology using Gamma-ray observations

Hassan Abdalla & Markus Böttcher

CSR, NWU, Potchefstroom

November 28, 2019

Outline

Introduction:

- **2** The spectral hardening
- **3 EBL inhomogeneity**
- 4 Lorentz-Invariance Violation
- LIV: Cosmic opacityLIV and Void
- **6** LIV: Compton scattering
 - 7 Summary and Conclusions

Gamma-ray sources (e.g., AGNs)

The Detection of Gamma-Rays

The atmosphere is opaque to gamma-rays!

H. Abdalla & M. Böttcher (CSR, NWU) Fundamental p

Artist's view: Fermi LAT satellite detector

H. Abdalla & M. Böttcher (CSR, NWU)

Fundamental physics and cosmology

Schematic drawing: Imaging Atmospheric Cherenkov Technique

Fundamental physics and cosmology

High Energy Stereoscopic System (H.E.S.S.)

H. Abdalla & M. Böttcher (CSR, NWU) Fundamental physics and cosmology

High Altitude Water Cherenkov Observatory

H. Abdalla & M. Böttcher (CSR, NWU) Fundamental

Fundamental physics and cosmology

Very High Energy gamma-rays (VHE; more than 100 GeV) from cosmological gamma-ray Sources such as Blazars can be absorbed by the Extragalactic Background Light (EBL), which leads to a high-energy cut-off at the VHE end of Blazar spectra.

- The **probability of absorption** depends on the **photon energy** and **redshift**.
- This process has been intensively studied during the last few decades (e.g., Stecker 1969 Domínguez 2011).

Acciari et al. 2010

The spectral hardening

The spectral hardening

What is the problem?

• From recent observation, the universe is more transparent to the VHE gamma-rays than was expected!

Archambault et al. 2014

• These VHE signatures in the spectra of distant blazars are currently the subject of intensive research.

Finke et al. 2010

The spectral hardening

What is the solution ?!

- To explain this VHE gamma-ray imprint there are many suggestions:
 - The existence of exotic Axion Like Particles (ALPs) Domínguez et al. 2011
 - Interactions of extragalactic Ultrahigh Energy Cosmic Rays (UHECR) Essey et al. 2010
 - The existence of cosmic voids between such Blazar and the observer on the earth Furniss et al. 2013
- We did detailed calculations about the possibility of a cosmic void along the line of sight to such distant Blazar.
- We considered the possibility of Lorentz invariance violation and its astrophysical implications.

EBL inhomogeneity

Void:

- The void radius represented by *R*
- The void center represented by z_v
- The source located at *z_s*
- We set local star formation rate zero inside the void

Abdalla & Böttcher 2017

EBL inhomogeneity

Opacity deficit due to the presence of the voids

NWU®

Lorentz-Invariance Violation

Lorentz-Invariance Violation

At quantum gravity scale, VHE photons could be sensitive to the microscopic structure of space-time. Higher energy photons are expected to propagate more slowly than their lower-energy counterparts. Image credits: Colin Gillespie, MGM; timeone.ca

H. Abdalla & M. Böttcher (CSR, NWU) Fundamental physics and cosmology

Lorentz-Invariance Violation

Lorentz-Invariance Violation

- Quantum-gravity theories predict in general the breakdown of familiar physics when approaching the Planck energy scale, $E_P \sim 1.2 \times 10^{19} \text{GeV}$
- Currently such extreme energies are unreachable by experiments on Earth, but for photons traveling over cosmological distances the accumulated quantum gravity effect can be measured
- Studies of time delays in the arrival times of γ- rays of different energies due to LIV can be used to probe fundamental physics (Lorentz & Brun 2016; H.E.S.S. 2019).

H. Abdalla & M. Böttcher (CSR, NWU) Fundamental physics and cosmology

Lorentz-Invariance Violation

Lorentz-Invariance Violation

 At Planck energy scale Lorentz symmetry will breakdown, the deviation from Lorentz symmetry can be described by modification of the dispersion relation as follows:

$$\Xi^2 = \mathbf{p}^2 \mathbf{c}^2 + \mathbf{m}^2 \mathbf{c}^4 + \mathbf{S} \mathbf{E}^2 \left(\frac{\mathbf{E}}{\mathbf{E}_{LIV}}\right)^n \tag{1}$$

where S = -1 for a subluminal case, S = +1 for a superluminal case, and n is the order of the leading correction.

• The modified pair-production threshold for n = 1, can be written as:

$$\epsilon_{\min} = \frac{\mathsf{m}^2 \mathsf{c}^4}{\mathsf{E}_{\gamma}} - \mathsf{S}\left(\frac{\mathsf{E}^2}{\mathsf{4}\mathsf{E}_{\mathsf{LIV}}}\right) \tag{2}$$

where $E_{LIV} = E_P / \xi_1$, ξ_1 is dimensionless parameter.

LIV: Cosmic opacity

LIV: Cosmic opacity

The standard relation for optical depth $\tau_{\gamma\gamma}(E_{\gamma}, z_s)$ at the energy E_{γ} and for a source at redshift z_s is modified as (Fairbairn et al. 2014)

$$\tau_{\gamma\gamma}(\mathsf{E}_{\gamma},\mathsf{z}_{\mathsf{s}}) = \frac{\mathsf{c}}{8\mathsf{E}_{\gamma}^{2}} \int_{0}^{\mathsf{z}_{\mathsf{s}}} \frac{\mathsf{d}z}{\mathsf{H}(\mathsf{z})(1+\mathsf{z})^{3}} \int_{\epsilon_{\min}}^{\infty} \frac{\mathsf{n}(\epsilon,\mathsf{z})}{\epsilon^{2}} \int_{\mathsf{smin}(\mathsf{z})}^{\mathsf{smax}(\mathsf{z})} [\mathsf{s}-\mathsf{m}_{\gamma}^{2}\mathsf{c}^{4}] \sigma_{\gamma\gamma}(\mathsf{s}) \mathsf{d}\mathsf{s}$$
where smin = $4\mathsf{m}_{\mathsf{e}}^{2}\mathsf{c}^{4}$, smax = $4\epsilon\mathsf{E}_{\gamma}(1+\mathsf{z}) + \mathsf{m}_{\gamma}^{2}\mathsf{c}^{4}$ and $\mathsf{m}_{\gamma}^{2}\mathsf{c}^{4} \equiv \mathsf{S}_{\mathsf{E}_{\gamma}}^{\mathsf{E}^{3}}$.
$$(3)$$

LIV: Cosmic opacity LIV and Void

LIV and Void: Cosmic opacity

• Comparison between the impact of 10 typical voids size R = 100h⁻¹Mpc and the effect of Lorentz Invariance Violation

H. Abdalla & M. Böttcher (CSR, NWU)

Fundamental physics and cosmology

NWU

18 / 23

- One of the most important fundamental high-energy radiation mechanisms is Compton scattering.
- In the leptonic Blazar models, the high-energy component is produced by Compton scattering.

• The question that could arise is, could the influence of the LIV effect on the Compton scattering process explain the spectral hardening of the VHE end of spectra of several Blazars?

• Compton scattering is the process whereby photons gain or lose energy from collisions with electrons

$$\left(E_{\gamma i}/c, \overrightarrow{P}_{\gamma i}\right) + \left(E_{ei}/c, \overrightarrow{P}_{ei}\right) = \left(E_{\gamma f}/c, \overrightarrow{P}_{\gamma f}\right) + \left(E_{ef}/c, \overrightarrow{P}_{ef}\right),\tag{4}$$

• Using energy-momentum conservation with the LIV-modified dispersion relation (1) we derive the scattered photon energy E_f as a function of incoming photon energy E_i and scattering angles θ

$$2E_{\gamma i}E_{\gamma f} + 2(E_{\gamma f} - E_{\gamma i})m_ec^2 = S\left(\frac{E_{\gamma i}^3}{E_{LIV}} + \frac{E_{\gamma f}^3}{E_{LIV}}\right) + 2\mu E_{\gamma i}E_{\gamma f}\left(1 - S\frac{E_{\gamma i}}{2E_{LIV}} - S\frac{E_{\gamma f}}{2E_{LIV}}\right).$$
(5)

LIV: Compton scattering

21 / 23

1WU °

LIV: Compton scattering

• To modify the Klein-Nishina cross-section considering the LIV effect, we used the modified photon energy E_f in the Klein-Nishina formula:

$$\sigma_{\rm KN} = \int \frac{d\sigma_{\rm KN}}{d\Omega} d\Omega = \int \frac{3}{16\pi} \frac{{\sf E}_{\sf f}}{{\sf E}_{\sf i}} \left(\frac{{\sf E}_{\sf i}}{{\sf E}_{\sf f}} + \frac{{\sf E}_{\sf f}}{{\sf E}_{\sf i}} - \sin^2\theta \right) d\Omega, \tag{6}$$

and integrate numerically!

Summary and Conclusions:

- EBL absorption at E > 10 TeV could be suppressed by LIV effects, opening up the possibility of detecting extragalactic sources at those extreme energies (e.g., with the CTA). This could be important to probe fundamental physics
- The LIV Signatures in Compton scattering processes could be important for very large incoming photon energies of > 1PeV.
- The spectral hardening of several observed VHE gamma-ray sources (e.g. blazars) with energy from 100 GeV up to few TeVs (e.g. PKS 1424+240) still remains puzzling.
- The EBL energy density along the line of sight depends on the expansion of the universe and is therefore cosmology dependent. So, gamma-ray observation could be important to constrain cosmological models (see, e.g., Domínguez 2013).
- For more details, see, Abdalla, H. Böttcher, M., 2017, ApJ, 835, 23, arXiv:1701.00956 and Abdalla, H. & Böttcher, M., 2018, ApJ, 865, 159, arXiv: 1809.00477.

Thank You !!!