

Detection of high-energy particles from the Universe: basic concepts, methods, and challenges

INFN

Istituto Nazionale di Fisica Nucleare

6th CNRS thematic School of Astroparticle Physics 26/11/2019 – OHP Saint Michel l'Observatorie, France

Francesco Nozzoli INFN-TIFPA

GALACTIC SOURCES

Direct measurement of cosmic rays with a detector in space are feasible above this line (m² acceptance x year)

EXTRA-GALACTIC

Indirect measurements (next lectures ...)

Cosmic Ray composition:

NUCLEI composition: particle charge

- particle "Energy"

Energy vs Energy/nucleon vs Rigidity: Measurement + Physics

RIGIDITY: GV (Giga-Volt)

MEASUREMENT: P/Z is the quantity related to the trajectory in magnetic field (easily converted to Momentum knowing the particle charge Z)

PHYSICS:

Different particles with same rigidity follow the same trajectory in magnetic fields (in the Galaxy, in the Heliosphere, in the Earth magnetic field, in the detector field) **Main effects of propagation in the magnetic field (and the main time dependent solar modulation effects) would cancel out in <Flux Ratio> vs <Rigidity>**

Energy/nucleon: GeV/n (usually average isotopic composition is assumed) MEASUREMENT: is a quantity related to velocity (ToF, RICH, TRD) (they measure GeV/M and cannot be converted to Energy if mass is unknown)

PHYSICS:

Fragmentation of nuclei roughly conserve E/n in spallation processes (when a relativistic CR nuclei during propagation interacts on a proton of ISM) $A + p => A_1 + A_2 + p$ $E/A \sim E_1/A_1 \sim E_2/A_2$

high energy CNO

Flux ratio vs Rigidity: solar modulation

Particle identification - a summary:

AMS02: 7.5 Tons – 5x4x3m Side B=0.15T in space since 2011 able to identify few antinuclei **TRD** over 150G events (0.5m² sr) is shown for PID examples **ToF U** MAGNET 3-4 - Absolute value of charge: VERY SIMPLE 5-6 - Particle Mass: easy for E<M, very difficult for E>>M (typically evaluated by "velocity" vs Energy) 7-8 - Particle Velocity: "easy" at few % (but saturation to β =1) (TRD measuring y = E/M to avoid saturation for E >> M)

- Particle direction: VERY SIMPLE
- Particle Momentum: hard to do better than few %, very difficult for P>TV
- Charge sign: (up to now) impossible for R>TV
- Particle Energy: feasible down to few %, but large systematics for E>>TeV

FCAI

Trk

ToF L

RICH

The "easy" measurement: particle CHARGE

Ζ

Vertices of electromagnetic interactions are proportional to particle charge z

=> detection processes are typically based on EM interaction, thus prop to z²

() ()

Energy loss: Bohr classical evaluation

Momentum transferred to an electron:

Energy loss in dV = $2\pi b \, db \, dx$: $n_e = \rho N_A Z/A$

$$-dE = \frac{(\Delta P)^2}{2m_e} n_e dV = \frac{1}{(4\pi\epsilon_0)^2} \frac{4\pi z^2 e^4}{m_e v^2} n_e \frac{db}{b} dx$$

b_{min}: head on collision (v_e = 2 v) $\Delta E_{max} = 2\gamma^2 m_e v^2$ $b_{min} = \frac{1}{4\pi\epsilon_0} \frac{ze^2}{\gamma m_e v^2}$

 b_{max} : This approach assumes electrons "at rest" that is Tcollision << Trevolution Tcollision \approx b/(yv) and Trevolution \approx 1/v => $b_{max} \approx yv/v$ (then integrate over b)

Z/A quite similar in all materials main material effect from density

Energy loss: Bethe Block – in different materials

The main effect of target material (due to the density) can be factorized out.

Energy loss: Bethe Block – in different materials

The main effect of target material (due to the density) can be factorized out.

MIPs (Minimum Ionizing Particles) are "calibration sources" for detectors.

Energy loss: Bethe Block - the Charge measurement

to measure dE/dx also some tracking to measure dx is necessary... (and to get a good charge measurement also some value for velocity is needed)

Energy loss: Bethe Block - the Velocity measurement

If charge is known, the energy loss allows a reasonable velocity measurement for $\gamma < 1$ (possible but hard to exploit the relativistic rise for γ measurement) On the other hand correction for this effect is required for precise charge measurements.

18

Simple spectrometers $\Delta E/E$ (mass for sub-MIPs particles):

mass above MIPs? (directly measured) Velocity vs Momentum

ISOMAX: Balloon (1998)

top Time of Flight

DETECTOR COMPLEXITY INCREASES

Velocity direct measurement: Time of Flight Cherenkov Detector

Momentum measurement: (R = P/z)

Magnet + tracker

Velocity measurement using Time Of Flight

H=1m => $\Delta\beta/\beta \approx 3\%$ Energy up to \in GeV/n

Position resolution (along the bar) from time difference \approx few cm

 $t_4 - t_3 = (L_{B4} - L_{B3})n/c = \Delta L_B n/c$

 $(\Delta x)^2 = H^2 + (\Delta L_{A} - \Delta L_{B})^2/4$

Example: AMS02 - Deuteron flux

Velocity measurement using Cherenkov Ring Imaging

Momentum measurement: magnetic spectrometers

Momentum measurement: charge sign identification

Tracker MDR = 2 TV for Z=1 particles

Charge confusion = probability of wrong charge sign measurement

<1% up to 300 GeV <10% up to TeV

Reduction/identification by MC based multivariate analysis.

Measurement of E/M - TRD detector

TRD based Mass measurement at high energy:

Antiprotons in cosmic rays

the Mass "of the detector": Calorimetry

AMS02-ECAL: redundancy matters

DAMPE: 31 X_0 (1.6 Λ_1) size matters

NUCLEON: size does not matter ... if you have a clever idea (and a good MC)

P & He spectrum

Cosmic Rays & DARK MATTER

e and p are produced and accelerated from SNR Collision of "ordinary" Cosmic Rays produce secondary e⁺, e⁻, p Among many possible mechanisms: Collisions of Dark Matter will produce additional e⁺, e⁻, p

 $p+p \rightarrow \overline{p}, p, \pi^{\pm} \rightarrow u^{\pm} -$

p,e

Dark Matter => antimatter exotic source

AMS02 Positrons

AMS02 Electrons & Positron fraction

Electrons + Positrons

Some excess in Antiprotons?

AMS: primary & secondary break

AMS: NITROGEN

AMS: secondary/primary

AMS: secondary/primary & distance

Probing Non-Homogeneous Diffusion: • B/C is a probe for only "local" propagation 50 kpc • p,D and p come from much further • light secondary like D, ³He investigate better the p secondary production Pb, TeV e (b) ³He/⁴He 0.2 **B/O** Spectral Index B/C 0.2 -0.4**R** [GV] 10^{3} 10^{2} 10

Spectral index for ³He/⁴He is the same obtained for B/C and B/O at high R. May indicate the effect of a different diffusion coefficient in non local regions

AMS: Be/B clock

Current - future experiments

Current - future experiments

... and ... anti-nuclei?

anti-D coalescence production

-Coalescence is a very rare process.

-Low energy, secondary (bkg) anti-D suppressed by: threshold (16 GeV) + boost. -Jet structure (correlation of $\overline{p},\overline{n}$) enhance anti-D production at low energy (i.e. from DM annihilation).

Anti Deuterons in Cosmic rays Anti Deuterons have been proposed as an almost background free channel for Dark Matter indirect detection

The Anti Deuterons Flux is < 10⁻⁴ of the Antiproton Flux. Additional background rejection needed

BESS-Polar II : we are still waiting for an "official" limit

a coming-soon improvement in sensitivity: AMS-02

Status of AMS02 anti-D search: **already exceed the sensitivity of BESS**

Atomic-transitions:

additional signatures for low energy anti-D

planned: GAPS (General Anti Particle Spectrometer)

2004/2005 KEK Beam Test 2012 pGAPS flight (6h)

2021 GAPS planned for a long flight (35d) 36 km -- 5g/cm² 1700 kg 1.4 kW Acceptance ~1.8 m²sr Ek: 0.1-0.25 GeV/n

Combination of time- of- flight + depth- sensing, X- ray, and π detection yield rejection > 10⁶

a "new" signature: He metastable states

1) the Auger decay is suppressed as well due to large level spacing of the remaining electron (~25 eV) compared to the small (~2 eV) n \rightarrow n-1 level spacing of \overline{p} => metastability is unexpected and excluded for Z>3 atoms (metastability for Li⁺ target? \rightarrow still not confirmed by expt.)

2) the remaining electron in \overline{p} He suppresses the collisional Stark effect (the main de-excitation channel for $p\overline{p}$ system)

 $(p \,\overline{p})_{nl} + H \Rightarrow (p \,\overline{p})_{nl'} + H$

-In matter lifetime of stopped \overline{p} is ~ps -In liquid/gas He delayed annihilation: few µs (~3% of the \overline{p})(discovered @ KEK in 1991) The electron is on 1s ground state, while the \overline{p} (or also $\pi^{-}, k^{-}, \overline{d}$) occupies a **large n** level (~38 for \overline{p}) (~same bounding energy of the ejected e-) **Theory: Phys. Lett. 9 (1964) 65 PRL 23 (1969) 63**

Not really new: similar effect already proven, and used, by the ASACUSA experiment

Anti Deuteron He Detector (ADHD)

Concept: HeCalorimeter (scintillator) 3xTime of Flight (compact) layers

Status: preliminary Geant4 simulation Detector size: External ToF L = 1.5m; Vessel R=45cm Thick=3cm "thermoplastic" He pressure 400bar (typ. He bottle 130bar) ("commercially" feasible space qualified) Detector mass: He = 20 kg Vessel = 100kg ToF = 110 kg (4mm scintillator thickness) Kinetic energy range: 0.06-0.15 GeV/n (threshold due to energy loss in vessel/ToF) **... a small & light detector ...**

Particle identification by:
1) timing of tracks
2) dE/dx on ToF
3) Beta ToF
4) Prompt HeCal Energy
5) Delayed HeCal Energy
6) event topology

planned sensitivity

anti-He?

Bibliography – some useful links

-Cosmic ray database:

https://lpsc.in2p3.fr/cosmic-rays-db/ (France, user friendly) https://tools.ssdc.asi.it/CosmicRays/ (Italy, only published data tables)

-Particle Data Book (a lot of review on particle, cosmology, ecc... very very useful): https://journals.aps.org/prd/pdf/10.1103/PhysRevD.98.030001

-Link to homepages of many Cosmic rays experiments: https://www.mpi-hd.mpg.de/hfm/CosmicRay/CosmicRaySites.html

-AMS02 webpage: https://ams02.space/

-ADHD webpage: https://www.tifpa.infn.it/projects/adhd/

-Aladino proposal:

https://www.cosmos.esa.int/documents/1866264/3219248/ BattistonR_ALADINO_PROPOSAL_20190805_v1.pdf

-AMS100 proposal:

https://www.cosmos.esa.int/documents/1866264/3219248/ SchaelS_AMS100_Voyage2050.pdf arXiv:1907.04168v1