

cherenkov telescope array

Simulation and analysis of Cherenkov Telescope Array data using ctools

Luigi Tibaldo, IRAP (Toulouse)

luigi.tibaldo@irap.omp.eu http://userpages.irap.omp.eu/~ltibaldo

Outline

1. Scientific motivations of very-high-energy gamma-ray astronomy

- 2. Imaging Atmospheric Cherenkov Telescopes
- 3. The Cherenkov Telescope Array
- 4. ctools
- 5. Demo: simulation and analysis of CTA observations of a gamma-ray source
- 6. Hands-on sessions

Inception of gamma-ray astronomy: a quest for the sources of cosmic rays

gamma rays from CR nuclei interactions with interstellar matter

- through production of unstable particles that decay in gamma rays (lightest π⁰)
- only electromagnetic tracer of highly relativistic nuclei

How a VHE gamma-ray is made

energy source

particle acceleration

tion particle interaction/ gamma-ray production

gamma-ray propagation

A probe of nonthermal phenomena

energy source

particle acceleration

C

particle interaction/

gamma-ray production

gamma-ray propagation

- cannot be produced by thermal processes: 100 MeV → 2 x 10¹¹ K (Wien's law)
- no nuclear gamma-ray lines beyond few tens of MeV
- only production mechanism: particle acceleration + radiative process

1 - Origin and role of relativistic cosmic particles

energy source

particle acceleration

gamma-ray propagation

• the original one: what are the sites and mechanisms of cosmicray acceleration? what is the feedback of cosmic rays on starformation and galaxy evolution?

2 - Probing extreme environments

energy source

particle acceleration

C

particle interaction/

gamma-ray production

gamma-ray propagation

- what physical processes are at work close to neutron stars and black holes?
- what are the characteristics of relativistic jets, winds and explosions?
- what is the nature of gamma-ray bursts, the Fermi bubbles ... ?
- what are the electromagnetic counterparts to gravitational wave and neutrino sources?

how intense are radiation/ magnetic fields in extragalactic space and how do they evolve over cosmic time?

3- Exploring frontiers in Physics

energy source

particle acceleration

particle interaction/

gamma-ray production

gamma-ray propagation

 what is the nature of dark matter and how is it distributed?

- are there quantum gravitational affects on photon propagation?
- do axion-like particles exist?

Outline

1. Scientific motivations of very-high-energy gamma-ray astronomy

2. Imaging Atmospheric Cherenkov Telescopes

- 3. The Cherenkov Telescope Array
- 4. ctools
- 5. Demo: simulation and analysis of CTA observations of a gamma-ray source
- 6. Hands-on sessions

Detecting celestial gamma rays

- the Earth's atmosphere stops gamma rays
- satellite detectors are limited by their size to energies < 1 TeV

Atmospheric showers

- gamma rays produce
 electromagnetic showers
 - 1 e/gamma generates 2 with 1/2 energy over scale of radiation length
 - shower growth: 2^N e/gamma with 1/2^N energy after N r.I.
 - process stops when approaching electron critical energy O(100 MeV), ionisation prevails over Bremsstrahlung
- cosmic-ray nuclei also produce showers
 - hadronic interactions can transfer higher transversal momentum → wider/patchier profile

Aharonian+ 2008 R.P.Phys 71 096901

Atmospheric showers development

- the atmosphere has approximately an exponential density profile exp(-z/z_0) with $z_0 \sim 8 \ \text{km}$
- the radiation length in air is ~ 37 g cm⁻², the total depth at sea level is ~ 30 r.l.
- the shower maximum occurs at heights of 5 to 15 km (depending on energy)
- fluctuations in the em shower development are mainly due to fluctuations of first interaction depth
- shower opening
 - multiple Coulomb scattering causes a lateral opening of ~5°
 - Earth's magnetic field broadens the shower in the East-West direction

13/46

Cherenkov radiation

- ultrarelativistic electrons emit Cherenkov light at characteristic angle
- the Cherenkov light yield is approximately proportional to primary energy
- refraction index depends on density, exponential variation with altitude → angle varies from 0.2° at 30 km to 1.5° at sea level
 - rough focussing on 120-150 m light pool
 - multiple Coulomb scattering creates exponential distribution of angles within O(5°)
- since electrons are superluminal, duration of Cherenkov photon flash is short O(5 ns) on axis
- Cherenkov light is absorbed in the atmosphere
 - Rayleigh scattering (small particles), absorption length $\rightarrow \lambda^4$
 - Mie scattering (large particles = aerosols), absorption length $\rightarrow \lambda$
 - Ozone photodissociation, absorbs UV
 - scattering by water vapour

deNaurois&Mazin 2015 C.R. Phys. 16 610

The imaging Cherenkov technique

- with increasing impact parameter
 - image more elongated
 - centroid farther from parallax
- with increasing energy
 - light amount increases
 - image length increases
- with increasing zenith angle
 - shower max distance increases as I_{max} = z_{max}/ cosθ
 - image width/length smaller by a factor cosθ
 - radius of light pool larger by 1/cosθ, thus light intensity smaller by cos²θ
 - consequences: effective area and energy threshold increase approximately as 1/cos²θ
- increasing altitude reduces the distance to the shower max, so opposite effects

Imaging Cherenkov telescopes

- basic constituents
 - wide-field optical telescope (shower width 5°) with resolution O(0.1°) (internal structure of shower)
 - fast camera with 100 to > 1000 pixels that records images on timescales O(5 ns) to discriminate showers from fluctuations of night-sky background
 - altitude-azimuth mount to track sources during long exposures
- arrays of imaging Cherenkov telescopes
 - multiple telescopes spaced by 50-100 m (at least 2 to 4 see same shower light pool)
 - stereoscopic reconstruction of shower arrival direction and impact position
 - better gamma/hadron separation
- working principle
 - trigger when multiple pixels (or sum of multiple pixels) exceed some threshold within time coincidence window
 - array coincidence trigger helps with background rejection
- observing modes:
 - pointing known/putative sources
 - surveys (still limited because small field of view)
- require dark and clear-sky conditions

deNaurois&Mazin 2015 C.R. Phys. 16 610

IACT history in a nutshell

- 1953: Galbraith measures Cherenkov light from atmospheric showers
- 1960s-1980s: several experiments try to measure gamma rays using shower Cherenkov light, no solid detection of gammaray sources
- 1990s: IACT astronomy begins
 - 1989: the Whipple collaboration detects gamma rays from the Crab Nebula with single IACT, few more sources follow
 - from 1993: the HEGRA collaboration performs the first stereoscopic observations with an array of 5 IACTs
 - from 1997: the CAT collaboration demonstrates the advantage of finely pixelated cameras
- 2000s-2010s: current generation IACTs, the coming of age of VHE astronomy

Whipple Telescope 1968

Current generation IACTs

H.E.S.S. Namibia 4 + 1 telescopes 12 m + 28 m

VERITAS Arizona 4 telescopes 10 m

MAGIC Canary Islands 2 telescopes 17 m

Astronomy with IACTs

- shows a different facet of the Universe than optical/low-energy astronomy
- images and maps with resolution close to human eye
- dynamic range of 3 orders of magnitude in energy
- time-domain astronomy on scales from minutes to years

The coming of age of VHE astronomy

0 * TeVCat sources AGN binary ٥ SNR star-forming region ∇ 0 other PWN 0 PSR unassociated

astounding variety of VHE emitters, attests to ubiquitous phenomena of extreme objects accelerating particles in the Universe

Sources detected by ground-based gamma-ray telescopes (TeVCat)

Outline

- 1. Scientific motivations of very-high-energy gamma-ray astronomy
- 2. Imaging Atmospheric Cherenkov Telescopes

3. The Cherenkov Telescope Array

- 4. ctools
- 5. Demo: simulation and analysis of CTA observations of a gamma-ray source
- 6. Hands-on sessions

CTA: the concept

Design drivers

A size for every energy

- at low energies Cherenkov yield is lower → require larger telescope reflector size
- at high energies gamma-ray fluxes are lower → require to cover larger ground area with telescopes
- need to find a cost-effective compromise to cover large energy range!

1	0	Ge	V

100 TeV

25 x 12 m Ø Medium Size Telescopes (MST) (North: 15)

1 TeV

10 GeV	100 GeV	1 TeV	10 TeV	100 TeV			
		70 x 4 (Sout	I m ∅ Small Siz h)	e Telescopes (SST)			
		•					
		•					
Credit: W. Hofmann				1 W W.			

Sites and layout

 two sites for full sky coverage
 SSTs only in Southern hemisphere owing to easier access to Milky Way (extragalactic VHE gamma rays absorbed by EBL)

Type: 23-M LST • 12-M MST • 4-M SST •

• exact layout chosen to optimise Science performance within environmental contraints (CTAC, 2019 Astropart. Phys 111, p. 35-53) 27/46

LST-1 in La Palma

CTA: the first VHE observatory

- ~40% of observing time over first 10 years for Consortium Key Science Projects (KSPs)
- rest of the time open to general observers (GO)
- ultimately all data public
 (candidate photon lists with measured properties) +
 software tools to perform
 scientific analysis

CTA Key Science Projects

https://www.worldscientific.com/worldscibooks/10.1142/10986

Multiwavelength/messenger synergies

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2125
	CTA	Prototypes	\Rightarrow			Science V	Verification =	⇒ User Oper	ration		
Low Freq	uency Ra	dio									
LOFAF	ł		<u> </u>								
MWA	NZK KONDO	****	(MWA	(upgrade)	BO)					
	VLITE on J		>	(~2018? LO	(BO)						{
Mid-Hi Fr	equency F	Radio	·	TASI					:		
JVLA,	VLBA, eMer	lin, ATCA, EV	'N, JVN, KV	'N, VERA, L	.BA, GBT(many other si	naller facilitie	s)	,	,	
Kat7	- > MeerKAT	> SKA Phase	21			\neg					
	1	<u> </u>				SKA	1&2 (Lo/Mid)			
(sub)Milli	metre Rac	oit					:	:	:	:	
JCMT,	LLAMA, LI	MT, IRAM, NO	DEMA, SMA	A, SMT, SPT	, Nanten2, M	opra, Nobeya	ma (many	other smaller	facilities)		{
	EHT	(prototy	ne -> full o	ons)							
		(protot)			:	:	:				
Uptical T	ransient F	actories/Tr	ansient F	Inders		<u> </u>					
Palom PanST	ar Transient	Factory PanSTAPRS2	-> (~2017) Zwicky TF			ST (buildup to	full survey r	node)		
		(Blac	kGEM (Mee	rlicht single	dish prototy	pe in 2016)					
Optical/IF	l arge Fa	cilities					1				
VLT. K	eck. GTC. G	emini, Magella	an(many o	ther smaller	· facilities)	·				· ·	
HST	,, .	,			IWST			YY	:	(WFIRST
					UNDI	:			(* 2024)		GMT
X-ray							e	ELT (full ope	ration 2024)	& IMI (time	line less clear)?
Swift (i	incl. UV/option	cal)									
NuSTA	R						IXPE				
		ASTROSAT)	ATHENA (202
	_		HXM	<u>1T</u>)	
				ER) STTA			RM			
Gamma-r	av			CRO	-SITA	÷	SVOM (nel soft gam	ma_ray + ont	ical ground of	ements)
INTE	GRAL	:	:	:	:	:		nei, son gam	ma-ray + opt	ical ground ci	(inclus)
Fermi											;
	HAWC)		:	Gamma400
		DAMPE		:		0					(2025+)
Grav. Wa	ves				LHAA	:					
	Advand	ced LIGO + A	dvanced VII	RGO (2017)	(YZ + C	(-upgrade	to include LIC	GO India—)			unstein Tel.
Neutrinos	S					KA					
		IceCub	e (SINCE 2	011)]	ceCube-Gen2?)
ANTARE	S		KM3NE	Γ1		KM3NE	T-2 (ARCA)				KNISNEI-3
UHE Cos	mic Ravs										
		Telescope A	rray ⇒	upgrade	to TAx4						
	Pierre Auger Observatory \Rightarrow upgrade to Auger Prime										

32/46

Outline

- 1. Scientific motivations of very-high-energy gamma-ray astronomy
- 2. Imaging Atmospheric Cherenkov Telescopes
- 3. The Cherenkov Telescope Array

4. ctools

- 5. Demo: simulation and analysis of CTA observations of a gamma-ray source
- 6. Hands-on sessions

ctools in a nutshell

- Open-source community-developed software package for the scientific analysis of data from imaging atmospheric Cherenkov telescopes (IACTs), developed in the framework of CTA
- Based on GammaLib, a toolbox for scientific analysis of astronomical gamma-ray data (support for IACTs/CTA, *Fermi* LAT, COMPTEL)
- Validated on simulated data and real data from H.E.S.S. and *Fermi* (<u>https://doi.org/10.1051/0004-6361/201936010</u>)
- Find all the information on the website

http://cta.irap.omp.eu/ctools/

- how to get them
- how to use them (manual, tutorials, description of tools)
- how to contribute to development
- Latest release 1.6.3

Data

16

16

6.627765172120E+08

-1.701564E+02

-6.290953E+01

3.643885E-02

1.061056E+00

Data

</observation>

38/46

Models

The likelihood method

- compute likelihood of given model
- determine best-fit values and uncertainties of model parameters (e.g., source fluxes) via maximum likelihood

Classical IACT analyses

- principle: constrain background in dedicated background (Off) regions
- method: identify dedicated source (On) and background (Off) regions
- similar to X-rays
- separate image (2D) and spectral (1D) analysis
- fewer assumptions on background, but sacrifices information

Multiple observations:

- joint analysis → each observation treated independently
- stacked analysis

3D analyses

- model background and sources together over the entire region of interest in 3D space: sky direction + energy
- similar to satellite gamma-ray detectors
- full data information exploited, can handle multiple overlapping sources, but requires adequate background model

binned

bin events in sky direction and energy

Multiple observations:

- joint analysis → each observation treated independently
- stacked analysis

full information exploited for each event

unbinned

Using ctools

executables (command line, shell scripts ...)

```
[$ ctobssim edisp=yes
[RA of pointing (degrees) (0-360) [83.63] 83.5
[Dec of pointing (degrees) (-90-90) [22.51] 22.8
[Radius of FOV (degrees) (0-180) [5.0]
[Start time (UTC string, JD, MJD or MET in seconds) [2020-01-01T00:00:00]
[Stop time (UTC string, JD, MJD or MET in seconds) [2020-01-01T00:30:00] 2020-01-01T01:00:00
[Lower energy limit (TeV) [0.1] 0.03
[Upper energy limit (TeV) [100.0] 150.
[Calibration database [prod2] prod3b-v2
[Instrument response function [South_0.5h] South_z40_0.5h
[Input model definition XML file [$CTOOLS/share/models/crab.xml]
[Output event data file or observation definition XML file [events.fits]
$
```

Python API (terminal, Python scripts, Jupyter notebooks)

```
sim = ctools.ctobssim()
sim['inmodel'] = '${CTOOLS}/share/models/crab.xml'
sim['outevents'] = 'events.fits'
sim['caldb'] = 'prod3b-v2'
sim['irf'] = 'South_z40_0.5h'
sim['ra'] = 83.5
sim['dec'] = 22.8
sim['dec'] = 22.8
sim['rad'] = 5.0
sim['tmin'] = '2020-01-01T00:00:00'
sim['tmin'] = '2020-01-01T01:00:00'
sim['tmax'] = '2020-01-01T01:00:00'
sim['emin'] = 0.03 # energies as user parameters are always in TeV
sim['emax'] = 150.0
sim['edisp'] = True
sim.execute()
```

Using ctools

executables (command line, shell scripts ...)

```
[$ ctobssim edisp=yes hidden parameter, not inquired automatically
[RA of pointing (degrees) (0-360) [83.63] 83.5 automatic parameter
[Dec of pointing (degrees) (-90-90) [22.51] 22.8 default/latest used value
[Radius of FOV (degrees) (0-180) [5.0]
[Start time (UTC string, JD, MJD or MET in seconds) [2020-01-01T00:00:00]
[Stop time (UTC string, JD, MJD or MET in seconds) [2020-01-01T00:30:00] 2020-01-01T01:00:00
[Lower energy limit (TeV) [0.1] 0.03 user-specified value
[Upper energy limit (TeV) [100.0] 150.
[Calibration database [prod2] prod3b-v2
[Instrument response function [South_0.5h] South_z40_0.5h
[Input model definition XML file [$CTOOLS/share/models/crab.xml]
[Output event data file or observation definition XML file [events.fits]
```

Python API (terminal, Python scripts, Jupyter notebooks)

```
sim = ctools.ctobssim()
sim['inmodel'] = '${CTOOLS}/share/models/crab.xml'
sim['outevents'] = 'events.fits'
sim['caldb'] = 'prod3b-v2'
sim['irf'] = 'South_z40_0.5h'
sim['ra'] = 83.5
sim['dec'] = 22.8
sim['dec'] = 22.8
sim['rad'] = 5.0
sim['tmin'] = '2020-01-01T00:00:00'
sim['tmin'] = '2020-01-01T01:00:00'
sim['tmax'] = '2020-01-01T01:00:00'
sim['emin'] = 0.03 # energies as user parameters are always in TeV
sim['emax'] = 150.0
sim['edisp'] = True
sim.execute()
```

Planning

- Now: first step with ctools (demo) → simulation/analysis of CTA observations of the Crab Nebula
- Next sessions: hands-on tutorials[♀]
 - 1. revisit the Crab Nebula tutorial by playing with different analysis configuration/parameters
 - 2. background modelling*
 - 3. analysis of a variable source*
 - 4. analysis of an extended source*
 - 5. advanced model manipulation and fitting
 - 6. explore your own Science case!

 $[\]stackrel{\circ}{\rightarrow}$ provided as Jupyter notebooks, if you prefer scripts or running from the command line just use the notebooks as guide

^{*} makes use of H.E.S.S. public data

Practical info

- install ctools: <u>http://cta.irap.omp.eu/ctools/admin/</u> index.html (recommended option: Installing via Anaconda)
- get Jupyter: <u>https://jupyter.org/install</u>
- get public H.E.S.S. data: <u>http://cta.irap.omp.eu/ctools/users/</u> <u>tutorials/hess_dr1/data.html</u>
- get the latest CTA IRFs: <u>http://cta.irap.omp.eu/ctools/users/user_manual/irf_cta.html#getting-cta-irfs</u> (you can get prod3b-v2 IRFs from: <u>https://www.cta-observatory.org/wp-content/uploads/</u>2019/04/CTA-Performance-prod3b-v2-FITS.tar.gz)

You can find these slide and all the notebooks on my webpage