FORMALISMES LAGRANGIEN ET HAMILTONIEN MÉCANIQUE DU SOLIDE FICHE DE TD N°4

- 1) Soit une particule, de charge q=-e et de masse m, plongée dans un champ électrique constant $\vec{E}=-E\vec{e}_z$ et soumise à la force de gravitation $\vec{F}=-mg\vec{e}_z$.
- Calculer le potentiel scalaire $\phi(x, y, z)$ associé au champ électrique et le potentiel V(x, y, z) associé à la force de gravitation.
- Calculer l'hamiltonien et établir les équations du mouvement à partir des équations de Hamilton.
- Résoudre ces équations dans le cas où la position initiale de la particule est $\vec{r}(t=0) = \vec{0}$ avec une vitesse initiale nulle.
- La particule va-t-elle "monter" ou "descendre"? Autrement dit : quelle force va l'emporter entre la force de Coulomb associée au champ électrique et la force de gravitation? AN : $e \approx 1, 6 \cdot 10^{-19}$ C, $m \approx 9, 1 \cdot 10^{-31}$ kg, $g \approx 9, 81$ m.s⁻² et $E \approx 10^{-2}$ V.m⁻¹.
- 2) Un enfant de masse m glisse sans frottement sur la rampe d'un escalier en colimaçon d'équation :

$$x(t) = R\cos\theta$$
, $y(t) = R\sin\theta$, $z(t) = a\theta$

où R et a sont des constantes positives et θ une variable.

- Calculer l'énergie cinétique T.
- Calculer le potentiel V associé à la force de gravitation agissant sur la masse m.
- En déduire le lagrangien \mathcal{L} . Combien de degrés de liberté ce système possède-t-il?
- Déterminer l'expression de l'impulsion p_{θ} en fonction de θ et des constantes du problème.
- Calculer l'hamiltonien H, montrer qu'il est égal à T+V et qu'il correspond alors à l'énergie E du système.
- Déterminer l'intervalle de variation de la variable θ en fonction de E, m, g et a.
- Représenter l'allure des trajectoires dans l'espace des phases : représenter graphiquement l'impulsion p_{θ} en fonction de θ pour différentes valeurs de la constante E.
- Indiquer sur votre graphique la trajectoire correspondant aux conditions initiales suivantes : $\theta(t=0) = 0$ et $\dot{\theta}(t=0) = 0$.
- 3) Soit un pendule plan de longueur ℓ et de masse m, dont le point de suspension de masse M peut se déplacer sur une droite horizontale. Les forces de frottements seront négligées.
- Calculer le lagrangien $\mathcal{L}(X, \theta, X, \theta)$ où X est la coordonnée du point M et θ l'angle que fait le pendule avec la verticale.
- Déterminer les impulsions p_{θ} et p_X .
- Calculer l'hamiltonien H associé à ce système et identifier les constantes du mouvement.
- Déterminer les trajectoires des deux masses pour $p_X=0$ et dans la limite où l'angle θ reste faible.

- 4) Considérons deux masses m_1 et m_2 fixées entre elles par un fil inextensible de longueur ℓ , se déplaçant sur des plans inclinés d'angles α_1 et α_2 . Ces masses sont soumises à la pesanteur. Les frottements sont négligés. Soient $\{x_1, z_1\}$ et $\{x_2, z_2\}$ les coordonnées des masses m_1 et m_2 , que l'on supposera ponctuelles. Soient $\{x_A, z_A\}$ les coordonnées du point A, et ℓ_1 , ℓ_2 les distances entre le point A et les masses m_1 , m_2 respectivement. Le point A est fixe mais les longueurs ℓ_1 et ℓ_2 peuvent varier au cours du temps.
- Exprimer x_1 , z_1 , x_2 et z_2 en fonction des coordonnées du point A, des longueurs ℓ_1 , ℓ_2 , et des angles α_1 , α_2 . Éliminer les variables ℓ_1 et ℓ_2 des expressions de z_1 , z_2 et z_2 .
- Trouver les relations entre les coordonnées des vitesses $\dot{z}_1, \dot{x}_2, \dot{z}_2$ et \dot{x}_1 .
- Exprimer l'énergie cinétique T en fonction de m_1, m_2, \dot{x}_1 et α_1 .
- Calculer l'énergie potentielle V, puis le lagrangien $\mathcal{L}(x_1, \dot{x}_1)$. Faites en sorte que seules les variables x_1 et \dot{x}_1 et les constantes $m_1, m_2, g, \ell, \alpha_1, \alpha_2, x_A$ et z_A apparaissent.
- Exprimer l'impulsion p_1 associé à la variable x_1 en fonction de m_1 , m_2 , \dot{x}_1 et α_1 .
- Calculer l'hamiltonien $H(p_1, x_1)$ et montrer qu'il est égal à la somme T + V.
- Écrire les équations de Hamilton et établir l'équation différentielle vérifiée par x_1 .
- En déduire les expressions des normes des accélérations $\sqrt{\ddot{x}_1^2 + \ddot{z}_1^2}$ et $\sqrt{\ddot{x}_2^2 + \ddot{z}_2^2}$.
- 5) Soit un pendule sphérique de masse m, relié au point 0 par une tige rigide de longueur ℓ . Le pendule est soumis à la force de gravitation de constante g>0. Les forces de frottement seront négligées. La position de la masse m est repérée à chaque instant par les deux angles θ et φ .
- Calculer l'énergie cinétique T et l'énergie potentielle V associée à la force de gravitation.
- En déduire l'expression du lagrangien $\mathcal{L}(\dot{\theta}, \dot{\varphi}, \theta, \varphi)$.
- Calculer les impulsions p_{θ} et p_{φ} associées aux angles θ et φ .
- En déduire l'expression de l'hamiltonien $H(p_{\theta}, p_{\varphi}, \theta, \varphi)$.
- Écrire les équations de Hamilton et identifier les constantes du mouvement.
- Établir les équations du mouvement du pendule.
- Nous souhaitons déterminer pour quel angle θ le pendule présentera un mouvement de précession à vitesse constante autour de l'axe $z:\theta$ et $\dot{\varphi}$ ont alors des valeurs constantes. Trouver l'expression de $\dot{\varphi}$ en fonction de θ , g et ℓ .
 - Quelle est la condition sur l'angle θ ? Faites un schéma pour vous aider.
- 6) L'énergie cinétique associée à un cylindre, dont les moments principaux d'inertie sont $\{I_1, I_1, I_3\}$, s'écrit :

$$T = \frac{I_1}{2}(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{I_3}{2}(\dot{\psi} + \dot{\phi} \cos \theta)^2$$

où θ , ϕ et ψ sont des variables appelées angles d'Euler.

- Écrire le lagrangien $\mathcal{L}(\theta, \phi, \psi, \theta, \phi, \psi)$ dans le cas où aucune force n'agit sur le cylindre.
- Calculer les impulsions p_{θ} , p_{ϕ} et p_{ψ} .
- En déduire les expressions de $\dot{\theta}$, $\dot{\phi}$ et $\dot{\psi}$ en fonction des impulsions et de l'angle θ .
- Calculer l'hamiltonien $H(p_{\theta}, p_{\phi}, p_{\psi}, \theta, \phi, \psi)$.
- Écrire les équations de Hamilton. Montrer que p_{ϕ} et p_{ψ} sont des constantes du mouvement
- Montrer que l'équation différentielle vérifiée par la variable θ dans les limites $\theta \approx 0$ et $p_{\psi} = p_{\phi}$, est de la forme :

$$\ddot{\theta} + \omega^2 \theta = 0$$

- Donner l'expression de ω en fonction de I_1 et p_{ψ} (ou p_{ϕ}) et calculer la solution $\theta(t)$.
- Déterminer $\phi(t)$ et $\psi(t)$ dans les limites $\theta \approx 0$ et $p_{\psi} = p_{\phi}$.

- 7) Soit un système de N objets de masses m_i avec $i \in [1, N]$ dont les positions sont repérées par les vecteurs $\vec{r_i}$. On note $\vec{p_i}$ l'impulsion et $\vec{L_i}$ le moment cinétique de l'objet i.
- Calculer les crochets de Poisson entre les composantes des \vec{L}_i , des \vec{r}_i ou des \vec{p}_i .
- En déduire les crochets entre r_j^2 ou p_j^2 et les composantes de \vec{L}_i . En déduire $\{L_i^2, r_j^2\}$ et $\{L_i^2, p_j^2\}$.
- Montrer que $\{L_{xi}, L_{yi}\} = L_{zi}$ (et permutation circulaire) et que tout autre crochet de Poisson entre les composantes de \vec{L}_i ou entre composantes de \vec{L}_i et de \vec{L}_j ($j \neq i$) est nul.
- Montrer que les crochets de Poisson entre le carré du module de \vec{L}_i et l'une quelconque des composante des \vec{L}_j (i et j égaux ou non) sont nuls.
- 8) L'hamiltonien d'une particule de masse m et de charge électrique q se déplaçant dans un espace de dimension 2 est donné par l'expression :

$$H(p_x, p_y, x, y) = \frac{1}{2m} \left[\left(p_x + \frac{qB}{2}y \right)^2 + \left(p_y - \frac{qB}{2}x \right)^2 \right]$$

où B correspond à la norme du champ magnétique appliqué supposé constant.

- Écrire les équations de Hamilton.
- En déduire l'expression de la force \vec{F} agissant sur la particule en fonction de la vitesse $\dot{\vec{r}}$ de celle-ci et des constantes q et B.
- Montrer que la fonction $L = xp_y yp_x$ est une constante du mouvement.
- On définit les composantes du moment linéaire $\vec{\pi}$ de la particule de la façon suivante :

$$\pi_x = p_x - \frac{qB}{2}y$$

$$\pi_y = p_y + \frac{qB}{2}x$$

Calculer les crochets de Poisson $\{H, \pi_x\}$ et $\{H, \pi_y\}$. Conclusion?

- Calculer les crochets de Poisson mutuels des fonctions L, π_x et π_y .