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A mesoscopic device in the simple tunnel junction or quantum point contact geometry emits microwaves with
remarkable quantum properties, when subjected to a sinusoidal drive in the GHz range. In particular, single
and two-photon squeezing as well as entanglement in the frequency domain have been reported. By revising

the photoassisted noise analysis developed in the framework of electron quantum optics, we present a detailed
comparison between the cosine drive case and other experimentally relevant periodic voltages such as rectangular
and Lorentzian pulses. We show that the latter drive is the best candidate in order to enhance quantum features and
purity of the outgoing single and two-photon states, a noteworthy result in a quantum information perspective.
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I. INTRODUCTION

The rise of electron quantum optics (EQO) [1,2] as a
prominent topic in the condensed matter agenda has been
possible thanks to a remarkable synergy between experimental
observations and theoretical investigations. In particular, the
realization of on-demand electron sources based on periodi-
cally driven quantum dots [3] or trains of levitons, i.e., properly
designed Lorentzian voltage pulses in time [4,5], represented
the actual starting point of this new field of research. They
allow the on-demand injection of individual excitations into
mesoscopic devices mimicking the conventional photonic
quantum optics with quantum Hall edge channels behaving
as waveguides and quantum point contacts (QPCs) playing the
role of half-silvered mirrors.

A milestone of this branch of mesoscopic physics has been
the electronic translation of few-excitation interferometers like
the Hanbury-Brown-Twiss [6], able to access the granular
nature of the particles through partitioning at a QPC, and the
Hong-Ou-Mandel [7], where the statistical properties of the
excitations are investigated by means of controlled two-particle
collisions. Measurements clearly showed antibunching effects
related to the fermionic nature of the electrons [8] as well as
dephasing and decoherence induced by the electron-electron
interaction [9—11], remarkable phenomena without parallel in
the photonic domain.

New experimental investigations carried out in tunnel junc-
tions [12—14] and Josephson junctions [15] have shown the
deep connection between the finite frequency photoassisted
noise generated by a periodic drive applied to a mesoscopic de-
vice and the fluctuations of the corresponding emitted radiation
in the microwave regime [16—19]. In particular, measurements
show unequivocally that the outgoing radiation is strongly non-
classical presenting quantum features such as single-photon
squeezing [12], two-photon squeezing, and entanglement in
the frequency domain [13]. These results naturally opened
interesting perspectives in the quantum information domain
[20]. However, this phenomenology has been experimentally
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investigated so far only for the cases of harmonic and bihar-
monic drives [21] notwithstanding the possibility to further
improve the squeezing by means of signals composed of a
greater number of harmonics has been theoretically discussed
[22].

In this paper, taking advantage of the results achieved
[4] and the tools [23-26] elaborated in the framework of
EQO, we compare the photoassisted finite frequency noise
associated with the current outgoing from a noninteracting
tunnel junction after applying an experimentally realizable
drive like cosine, rectangular, and Lorentzian signals, showing
that the latter voltage represents the optimal compromise
between the maximization of the squeezing and of the purity
of the emitted single and two-photon states.

This provides the proper theoretical framework to realize
new experiments devoted to controlling and improving the
quantum behavior of the associated emitted electromagnetic
radiation. Our analysis also contributes to start a new phase
of EQO. Indeed, until now, the main motivation behind this
branch of physics has been to properly revise conventional
optics experiments for excitations propagating ballistically
in condensed matter systems (see Ref. [27] and references
therein). With this work, we shed light on the consequences
of optimal injection of individual electron wave packets on the
quantum properties of the emitted photons.

The paper is organized as follows. In Sec. II we discuss the
connections between the current fluctuations and the quadra-
tures of the emitted electromagnetic field. A possible measure-
ment setup able to access these fluctuations is shown in Sec. I11.
Section IV is devoted to the quantum mechanical calculation
of the photoassisted noise at finite frequency associated with
various possible voltage drives. The characterization of the
single-photon squeezing as well as the purity of the states
generated by the different drives are discussed in Sec. V. In
Sec. VI we investigate the features associated with two-photon
states and characterize their entanglement. Finally, Sec. VII is
devoted to the conclusions.

©2018 American Physical Society
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II. QUADRATURES OF THE EMITTED
ELECTROMAGNETIC FIELD

According to Ref. [18], the current operator / describing the
charge flowing through a mesoscopic device can be connected
to the outgoing electromagnetic field annihilation operator a
through the relation

. (o)

a(w) = —i Ne¥ ok ey
with A(w) = GFhw a function which depends linearly on
the linear conductance G of the tunnel junction (assumed
here energy independent), the Fano factor F, and the fixed
measurement frequency w of the detection setup (see below).

Notice that the above equation exactly holds only in the case
of ideal matching at low impedance between the sample and
the measurement setup [18].

The quadratures of the electromagnetic field are then de-
fined as [12]

Alw) = %[l(w) + I(~w)]
=i/ A)a(w) — a'(w)], 2
B(w) = %mw) — I(~w)]

= —VAla() +a'@). 3)
Using the Robertson formulation of the Heisenberg principle

AAAB > 1|([A,B])], “4)

with AA = /(A2) — (A)2 (and an analogous expression for
the operator B) and [A, B] the usual definition of the commu-
tator, as well as the conventional bosonic commutation relation

la().a"(@)] = 1, )
one directly obtains
AAAB > A, (6)

which naturally connects the quantum fluctuations of the
electromagnetic field quadrature at a given frequency w with
the current fluctuations, namely the finite frequency noise.
An experimental scheme to detect these fluctuations will be
presented in the following section.

III. EXPERIMENTAL SETUP

When a mesoscopic device is subjected to an external
nonadiabatic ac drive at frequency wy (in the GHz range)
a two-filter measurement (see Fig. 1) allows us to access
both the stationary photoassisted noise at finite frequency
[28-31] (zeroth order harmonic) and a more general dynamical
response of the current fluctuations [32,33], corresponding to
the higher order harmonics at a frequency kwg (k € N*).

After filtering at a given frequency €2, the physical current
i(t) outgoing from the sample becomes

i(t) = iq(t) ~ i(Q)e'Y + i(—Q)e ¥, (7)

V(t) - i(t) ®
]XH(

cos kwot |

»
>

)

FIG. 1. Schematic view of a two-filters setup designed to measure
the dynamical response of the noise X®. A tunnel junction (yellow
box) is driven by a time dependent voltage V (¢) and emits a current
i(¢) which is split into two. The resulting contributions are filtered at
frequency w and |kwy — w|, respectively (blue boxes). They are then
multiplied among themselves and with a cosine signal (® symbols).
The final output is then averaged over time.

providing an operative definition for the kth harmonics of the
dynamical response of the noise measured at a frequency w
(again in the GHz range),

X®O(wp,w) = lim
Ton—>+00

LorE

-/ o 0o costkonn)],

®)
according to the functioning of the setup described in Fig. 1
[33]. Notice that the filtering procedure consists of extracting
the dc part by time averaging over a given measurement time
T typically longer with respect to all the other time scales in
the system. Therefore, keeping only the nonzero terms in the

average, the expression in Eq. (8) reduces to

X O (wo,0) = 3li(@)ikwy — ®) +i(—w)i(—kwy + )].
©)

IV. QUANTUM MECHANICAL CALCULATION

In order to theoretically investigate the above quantity, we need
to link the definition in Eq. (9) with a quantum mechanical one
by introducing symmetrized correlators of current operators,
namely [33,34]

i(@)i(w2) = 5[ (@)I(@))c + (@) (@))c].  (10)

We want to remark here that, for sake of clarity, we dis-
tinguished the notation for the physical current (i) and the
associated quantum mechanical operator (/). Moreover, we
introduced the notation (O 0;). = (01 0,) — (01){0,) for a
quantum mechanical correlator (at zero or finite temperature 7')
between two arbitrary operators O and O,. According to this,
and taking into account the reality condition / H(w) = [(—w)
for the current operator, one can write

X0 (wy,w) = L[Re{ X (o, )} + Re{ X (w9, — w)}],
(11)
with
XP(w,0) = (I(@)I (ko — w)). (12)

and Re{: - - } indicating the real part.
We can consider now the experimentally relevant case of
a noninteracting tunnel junction (or QPC geometry) subjected
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to a periodic drive V (¢) with period 7 = 27 /w, which can be
naturally decomposed into dc and ac part as

V(1) = Ve + Vie(1), (13)

with

1 [+%

— =0. 14

7./_2 dtVae(t) =0 (14)
In this case one obtains the explicit form for the dynamical

response of the noise at frequency kwo,

+00

> P@pp@DSolg + 1+ ni0)

n=—0o0

x® = lRe!
2

+o00
+ Z Pn(2) P, (2)So(q —1+n,\,9)}_

n=—00

as)

Notice that, in the above expression, we introduced the short

notations g = eVy./hw, A = wy/w, 0 = kpT /liw, and z =

eV /hwy (V is the amplitude of the ac voltage) and we have

omitted the functional dependence for notational convenience.
The function

So(€,0) = AE coth <5> (16)

26

represents the rescaled variables version of the thermal/shot
noise crossover formula

%
So(Vae,T) = G FeViy. coth ( ¢ e ) (17)

2kpT

evaluated for a tunnel junction geometry in a normal metal
[28,29].
In the zero temperature limit it reduces to

So(6.0 — 0) = AJ§]. (18)

Moreover, according to the general definition of the photoas-
sisted amplitudes [23,35], one has

T/2 o .
pn(Z) — ?62171"?6—217!2(,0(!)’ (19)
-T2
with
t dt/ _ ,
o= [ v 20)
—00

where V,(t) is the ac part of V() with unitary and dimension-
less amplitude.
It is worth to note that for k = 0 the expression in Eq. (11)
reduces to
© . 1 +00
X0 =8=7 > P@ISo(g + 1 +ni.0)

n=—0oQ

+So(g — 1+ na,0)], 2D

with P,(z) = | pa(2)|?, and represents the photoassisted noise
S measured at finite frequency w, as expected.

In order to proceed with our analysis, we need to specify
the functional form of the photoassisted amplitudes p,(z) for
experimentally relevant voltage drives. In the following we will

focus on three different signals: a cosine, a rectangular periodic
drive, and a train of Lorentzian pulses [23]. We separate the
purely ac part of the drive V. (), satistying Eq. (14), from
the dc contribution. This allows us to consider the parameters
q (corresponding to the number of electrons injected in the
junction by the drive [23,24]) and z in Eq. (15) as totally
independent. Moreover, we will consider ac drives in phase
with respect to the sinusoidal signal cos(kwot) used to extract
the kth harmonic of the dynamical response X (wy,w) [see
Eq. (8)].

A. Cosine drive
The simple sinusoidal drive we are considering is
Vae(t) = =V cos (wot) (22)
leading to photoassisted amplitudes in Eq. (19) of the form
Pn(2) = Ju(=2). (23)

Notice that here we introduced nth Bessel’s function of the first
kind J,(x). They satisfy the relation

an(-x) = (_l)n']n(x),

which allows us to further manipulate Eq. (15) in such a way
to recover the expression reported in Refs. [12,33].

24

B. Rectangular drive

The ac voltage profile in this case is given by

-V for—%§t<—n%,
Ve =17(=1) for-nf<i<nf, @9
-V for n% <t < %

with n the width of the pulse in units of the period. The
associated photoassisted probability amplitudes read

@)= * sin {7[(n — Dz + nn]}
P = @l — Dz + il
Notice that this particular drive reduces to the conventional

square wave for n = 1/2 and that for n — 0 (and z = 1/2)
one has

(26)

Ly 2 7
r(e=3)=z@mrm o7

in agreement with what was reported in Ref. [22] for the case
of a Dirac comb in time. Moreover, for = 1 the photoassisted
amplitudes are zero, as expected for a purely dc bias.

C. Lorentzian voltage pulses
A periodic train of Lorentzian pulses has an ac contribution

7 100

4 n
Vel = — Y ————
T l=—00 772 + (7L' - l)2

characterized by the photoassisted amplitudes [23,36]

. 4 (28)

+00 s ,—2mn(2s+n)
IF'z+n+s)(—1)e "
pn(2) =2 E

'z4+1-—s) ((@m4+s)!s!

, (29)
s=0
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FIG. 2. Quadratures of the emitted electromagnetic field in units
of A, as a function of ¢ (number of injected electrons) and at zero
temperature (9 = 0). Curves represent (B2, ), for the Lorentzian drive
atz = 0.856 and n = 0.1 (full black curve), (Alzor)c for the Lorentzian
drive at z = 0.856 and n = 0.1 (red full curve), (Azos)f at z = 0.706
for the cosine drive case (gray dashed curve), and (B2 ), atz = 0.706
for the cosine drive case (orange dashed curve). Thin black horizontal
line indicates the vacuum fluctuations (in units of A). The choice
of the parameter z in each curve has been achieved by numerical

minimization of the noise.

with I'(x) the Euler’s Gamma function. Notice that, in this
case, 1 parametrizes the width at half-height of the pulse and
in the limit  — 0 and for z = % we recover the Dirac comb
case [see Eq. (27)].

V. SINGLE-PHOTON SQUEEZING

Due to the previous considerations about the current corre-
lators one can write the quadratures fluctuations of the emitted
radiation as [12]

(A%). = (AA? =S+ XD, (30)

(B*). = (AB? =8 — xW, 31

where, as stated above, the squeezing of the emitted electro-
magnetic field is achieved for (A%)./A < 1 or (B?)./A < 1.
We consider now the behavior of the quadratures for different
drives measured at w = wp/2 (k = 1) and zero temperature
(0 =0), which has been already shown to be the more
favorable configuration in order to enhance squeezing in the
sinusoidal drive case [18]. It is shown in Fig. 2 for drives
which are in phase with the periodic current probe cos kwyt.
Out of phase signals lead, in general, to a suppression of
X® and consequently of the squeezing effect [see Eq. (15)].
The presented results have been obtained by numerically
minimizing the noise as a function of z (amplitude of the ac
drive). It is easy to note that for the cosine drive the fluctuations
of the quadrature (A2 ). ((B2,).) goes below the quantum
vacuum (thin black horizontal line) for g =1 (¢ = —1) at
expenses of the other which stays well above, as already
reported in Ref. [12]. This phenomenology is exactly what
is expected for a generic squeezed state where the fluctuations
along one quadrature are suppressed, while the ones along the
canonically conjugated one are enhanced in order to preserve
the Heisenberg principle. Very similar behavior is obtained

TABLE I. Minimum of the quadratures for the square, cosine,
and Lorentzian drive achieved numerically at various experimentally
relevant temperatures.

0=0 0 =0.04 0 =0.08
Square 0.641 0.697 0.753
Cosine 0.618 0.676 0.733
Lorentzian (n = 0.1) 0.486 0.549 0.611

for the square drive (rectangular pulse at n = 1/2, not shown)
even if in this case the noise signal is slightly above the one
for the cosine drive at any temperature (see Table I). The
explicit mirror symmetry connecting (A2 ). and (B2). (also
present in the square drive) is in full agreement with the general
properties of the photoassisted amplitude probabilities [23].
Even more evident is the squeezing behavior of the radiation
generated by the Lorentzian drive. Indeed, one has that (B,zor)C
(black full curve in Fig. 2) goes below both the quantum
vacuum and the minimum associated with the cosine drive.
This is obtained at the expense of (Alzor)c (red full curve in
Fig. 2) that is above (B2 ). for the same value of z which

cos

minimizes the conjugated quadrature. Moreover, the mirror
symmetry discussed above is absent here. This picture survives
also at finite temperature comparable with experiments [12]
(see Table I). The present analysis seems to indicate that
the strict hierarchy among the periodic drives reported in
Refs. [23,24] for the photoassisted noise at zero frequency still
survives in the finite frequency case (and consequently for the
associated electromagnetic quadratures) indicating again the
Lorentzian drive as the best candidate in order to minimize
the noise (maximize the squeezing).

This idea is further strengthened by the analysis of the
evolution of the minimum of (Bﬁ)r)c at zero temperature as
a function of the width of the Lorentzian pulse 1 (see black
squares in Fig. 3). The minima of the quadrature are obtained
by choosing for each n the value of parameter z at which

0.65F T T . T —
Y I L L -
/\060* a" " . N
N .. e 30 T T T
Moossh Wt f 1
\T:/O.SO* - .. 5 0} ._';
] ° monnnn®l . 4 ||
= g'igr..' 0 0.2- 0.4 0.6
0.0 0.2 0.4 0.6 0.8
n

FIG. 3. Value of the minimum of (B2 ). (Lorentzian drive, black
squares) and <Br2ec[)C (rectangular drive, red circles) in units of A, as
a function of n and at zero temperature (6 = 0). They are compared
with the theoretical minimum derived for a Dirac comb 4 /72 ~ 0.405
(thin gray horizontal line) and the numerical minimum calculated for
the cosine drive (*0.618) (thin black horizontal line). The values of
z are different for each n in order to maximize the squeezing (z =
Zmin)- Inset: Corresponding evolution of the value of z.;, at which
the minimum of the noise occurs (same color code and style for the
points).
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FIG. 4. Evolution of the single-photon purity u as a function of n
in the optimal squeezing configuration [z = zyi,(17)] for a Lorentzian
drive (red diamonds) and a rectangular pulse (blue triangles). Curves
are compared with the optimal values calculated for a cosine (*0.931,
thin black horizontal line). The corresponding value for a square wave
is obtained for the rectangular pulse at n = 1/2.

the squeezing is maximized (zmin). This curve remains above
the theoretical minimum 4/72 A 0.405 (thin gray horizontal
line) predicted in Ref. [22] for a Dirac comb signal and
asymptotically approaches the minimum of the cosine drive
(=0.618) (thin black horizontal line) [12]. Notice that, as stated
above, the corresponding minimum for the square drive is even
higher (*0.641). To complete this analysis, it is also interesting
to compare the Lorentzian drive with a train of rectangular
pulses (see red circles in Fig. 3). In this case, for a quite
extended range of n (0 < n < 0.4) we have a squeezing which
is better with respect to the cosine drive and comparable with
the Lorentzian pulse. Notice that both the Lorentzian and the
rectangular pulse converge towards the theoretical minimum
discussed above for n — 0, as expected. According to Fig. 3
(inset), while the value of z.,;, increases exponentially with 7 in
the Lorentzian case, it stays roughly constant in the rectangular
case. However, even if very promising in view of maximizing
the squeezing, narrow rectangular pulses requires a greater
number of harmonics to be generated experimentally and also
present some drawbacks for what it concerns the properties
of the emitted quantum photonic states. We will address this
point in the following.

Single-photon state purity

Another interesting quantity to look at in order to char-
acterize the electromagnetic radiation emitted by mesoscopic
devices is the purity of the outgoing single-photon state,
defined as [18]

_ LI([A.BD A
"T2AAAB T JG o am@ 1 a0y

(32)

This quantity is u = 1 for a pure state and lower than 1 for
a generic mixed state. In Fig. 4 we show the behavior of this
quantity for the Lorentzian drive (red diamonds) as a function
of 1 in comparison with the optimal values obtained for the
cosine drive (*0.931, thin black horizontal line). In all cases
we have a value of  quite close to one, signature of an highly
(even if not perfectly) pure state. Moreover, we can note that
there is a region of 5 (very narrow pulses) for which the
Lorentzian drive is slightly above the cosine drive. In particular,

the purity associated with the Lorentzian drive has a maximum
(for n = 0.2) as a consequence of the dependence of zy;, on
n (see the inset of Fig. 3) and asymptotically converges to
the value of the cosine drive from above. From this result we
can deduce the fact that Lorentzian drive cannot only generate
pure electronic states, namely the levitons [4,5,23,37], but
also quite pure outgoing single-photon squeezed states. For a
further comparison, one can see that the purity of the quantum
electromagnetic state emitted by a Lorentzian drive is by far
greater with respect to the one of a rectangular drive (blue
triangles). Indeed, even if we have showed above that this signal
leads to a compatible squeezing for the same range of 7, the
achieved values of u are quite far from the others, intersecting
and then exceeding the Lorentzian and cosine drive only for
n 2 0.65 where the corresponding squeezing is very small (see
Fig. 3). It is worth to note that even higher values of purity,
closely approaching unity, can be achieved for the Lorentzian
drive case (not shown). However, this regime is reached to the
detriment of the squeezing which, even if still present, becomes
less effective.

According to these considerations the Lorentzian drive
emerges as the most promising candidate among the exper-
imentally feasible drives in order to create pure squeezed pho-
tonic states suitable for quantum communication applications.
Notice that a recent analysis carried out for an asymmetric
quantum dot geometry also indicated a train of levitons as
the candidate to maximize the squeezing of the outgoing
electromagnetic field [22].

VI. TWO-PHOTON ENTANGLEMENT

According to the results derived above and following
Ref. [13], it is possible now to investigate the entanglement
properties of microwave photons emitted at different frequen-
cies w; = w and w, = wy — w. Proceeding as before, we can
define a quadrature for each frequency, namely

1
Ajp(wrp) = E[I(wl,z) + I(—w; )], (33)
Bia(@12) = —[I(@1.2) — I(—w1.2)]. (34)

V2

It is then possible to identify various different fluctuations
involving these quadratures, which are again connected to
different harmonic of the photoassisted finite frequency noise.

Due to the constraints w; + w; = wy and w; # wy, the
diagonal fluctuations read

(1), =(B1). = &,

(43). = (B2), =

where S, represents the photoassisted noise in Eq. (21)
calculated at frequency w, = wy — w, but with the parameters
properly rescaled with respect to w; = w in order to allow
comparison, namely

(35)

(36)

+00

-1
Si=3 Y P@ISo(qg + A —1+nn.0)

n=—00

+So(qg — 2+ 14+ nx,0)]. 37
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The nondiagonal fluctuations can be written instead as
(A1A2)c = —(B1By)c = XV (38)

It is worth noting that here, differently from what is seen in the
previous section, the ratio A = wy/w is a free parameter not
constrained a priori by the condition A = 2. Concerning the
crossed fluctuations one has

(A1By)e = (AyBy). = X0 — 20, (39)

with, for real probability amplitudes,
1
A0 = 23 pa@pi@Si(g + 1+nk0). (40)

1
X =23 pnnt@pn(@So(q — 1+ 4 +mh6). (41)

It is easy to note that, due to the reality of the photoassisted
amplitudes (valid for all the considered drives) and the fact that
the sum indices are mute, one has

(A1B2)e = (A2B1). =0 42)

as long as A ~ 2.

The above considerations justify the experimental choice
A =~ 2.07 (w) and w;, different but very close) done in Ref. [13].
Indeed, for this value of the parameter X, one can safely neglect
the crossed contributions with respect to the others (see Fig. 3
of Ref. [13]).

A. Two-photon squeezing

It is useful, at this point, to introduce the rescaled operators

o = A 43)
oY
a = A (44)

V2AML — 1)
and analogous definitions for 8, and §,, leading to the quantum
limit at zero ac and dc voltage and zero temperature

(alzsz)c = <ﬂ12,2)c = % (45)

It is easy to note that the fluctuations of these new operators
are trivially related to the previously discussed photoassisted
noise measured at finite frequency. More interesting are the
operators

o1 — oy

\/5 k)

yo Pith
V2

connecting two photons emitted at different frequencies. Their
fluctuations are given by
17 S 2x®
=S+ = - :
4A A—1 A—1

Proceeding in the same way we can define a similar expression
also for the combinations w = (; + a2)/+/2 and y = (B; —
B2)/~/2 (with an opposite sign in front of the nondiagonal

contribution). The behavior of the above quantities is quali-
tatively very similar to what was reported in Fig. 2 for the

(46)

u =

(47)

W) = (v¥), (48)

TABLE II. Minimal values of the parameter § (at fixed A = 2.07)
achieved numerically for various experimentally relevant drives and
temperatures.

60=0 0 =0.04 0 = 0.08
Square 0.661 0.699 0.752
Cosine 0.639 0.668 0.732
Lorentzian (n = 0.1) 0.512 0.551 0.610

single-photon squeezing (due to the fact that A & 2 also in this
case), but the physical meaning is deeply different. Indeed, they
indicate the emergence of nontrivial correlations between the
fluctuations of the quadratures of photons emitted at different
frequencies. This phenomenology usually indicated as two-
photon squeezing represents a first, even if not conclusive,
indication of the possibility of entanglement between the
emitted photons. We have that, at low enough temperatures,
all the investigated drives show two-photon squeezing atg ~ 1
for the operators (u?). = (v?),, which is again maximum for
the Lorentzian drive case.

B. Comments about entanglement

The two-photon squeezing discussed above proves the
existence of nontrivial correlations between the quadratures of
the electromagnetic field at different frequencies. For strong
enough correlations one can have entanglement occurring
not in the real, but in the frequency space. However, the
present device in not able to separate the outgoing photons
in such a way to achieved nonlocality as is usually done in
Bell-like experiments. The continuous variables description of
the entanglement is given in terms of the constraint

8= (uhe+ (). <1, (49)

which constitutes the continuous version of the Bell inequality
[38], is satisfied for some range of parameters. Conversely the
two-photon state is separable. The above condition is obviously
fulfilled for arelatively wide range of voltages around g ~ 1 for
all the considered drives and also at experimentally reasonable
values of temperature as reported in Table II.

C. Purity of the two-photon state

Also in this case it is possible to define the purity of
the emitted two-photon state. To this aim one can define
the quadrature vector [20] & = («y,B1,a2,82) and the related
correlation matrix y;; = 2(§;€;). in such a way that the two-
photon state purity reads

1 G- 1rA? (50)
2= Bety) 55, - [XOP

extending the definition given in Eq. (32).

The behavior of this quantity for the various drives is
reported in Fig. 5. The behavior is qualitatively similar to what
is observed in Fig. 4 for the single-photon purity w, with the
only difference that the Lorentzian drive (red diamonds) shows
no maximum and asymptotically approaches the value for the
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FIG. 5. Evolution of the two-photon purity u, as a function of
n in the optimal squeezing configuration (z = Zp,) for a Lorentzian
drive (red diamonds) and a rectangular pulse (blue triangles). They
are compared with the optimal values calculated for a cosine voltage
(~0.917, thin black horizontal line).

cosine drive (*0.917, thin black horizontal line) from below.
Also in this case the purity associated with a rectangular pulse
crosses the others atn & 0.6, a slightly lower value with respect
to what was observed in the single-photon case.

The above considerations allows us to draw interest-
ing conclusions about the prominent role played by the
Lorentzian pulses in generating quite pure entangled two-
photon states suitable for quantum information application (see
also Ref. [22]).

VII. CONCLUSION

We have considered a mesoscopic device in a tunnel
junction (or QPC geometry) subjected to various different

periodic drives. Under this condition the system emits mi-
crowave radiation with remarkable nonclassical features. We
have compared various experimentally relevant drives like
cosine, rectangular, and Lorentzian in order to determine which
one is more suitable in order to enlighten quantum properties
of the outgoing electromagnetic field. We have showed that
a train of Lorentzian voltage pulses, already investigated at
length in the framework of electron quantum optics due to its
remarkable peculiarities in terms of single-electron emission,
represents the best candidate in order to achieve both single and
two-photon squeezing as well as two-photon entanglement in
the frequency domain. Moreover, this peculiar drive leads to
single and two-photon quantum states of quite high purity. We
think that the present analysis will have an important impact
on quantum communication applications. Possible further
developments of our work could address the role played by
interaction in further enhancing or suppressing the observed
quantum features of the emitted radiation [39,40].
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