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Weak localization of light by cold atoms: The impact of quantum internal structure
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Since the work of Anderson on localization, interference effects for the propagation of a wave in the
presence of disorder have been extensively studied, as exemplified in coherent backscattering~CBS! of light.
In the multiple scattering of light by a disordered sample of thermal atoms, interference effects are usually
washed out by the fast atomic motion. This is no longer true for cold atoms where CBS has recently been
observed. However, the internal structure of the atoms strongly influences the interference properties. In this
paper, we consider light scattering by an atomic dipole transition with arbitrary degeneracy and study its
impact on coherent backscattering. We show that the interference contrast is strongly reduced. Assuming a
uniform statistical distribution over internal degrees of freedom, we compute analytically the single- and
double-scattering contributions to the intensity in the weak-localization regime. The so-called ladder and
crossed diagrams are generalized to the case of atoms and permit to calculate enhancement factors and
backscattering intensity profiles for polarized light and any closed atomic dipole transition.
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I. INTRODUCTION

Interference of waves is the general feature shared by
ferent fields of physics such as optics, acoustics, and q
tum mechanics. For waves propagating in disordered me
it was believed that interference effects would be scramb
and that a reliable Boltzmann transport theory would eme
@1#. But Anderson@2# predicted in the context of solid-stat
physics that interference can inhibit the propagation of m
ter waves in disordered media~Anderson localization!. Since
then, many theoretical and experimental works have sho
that elastic multiple scattering in the presence of disorde
full of rich phenomena@3–5#. The coherent backscatterin
effect, an interferential enhancement of the average refle
light intensity in the backscattering direction, was the fi
direct experimental evidence@6–8# that interference of light
waves persists in the presence of disorder and has bee
tensively studied for the past fifteen years.

At the same time, considerable advances were achieve
creating and controlling dilute gases of cold atoms, lead
to the experimental observation of Bose-Einstein conden
tion in 1995 and triggering active experimental and theo
ical research@9#. It is not surprising that cold atomic gase
have been suggested as promising media for strong~Ander-
son! localization of light@10#. Well-defined atomic transition
lines allow strongly resonant light scattering with cross s
tions of the order of the squared optical wavelength, mu
bigger than the actual size of the atom. In this respect, at
are natural realizations of the mathematical concept of p
dipole scatterers~also known as resonant Rayleigh scatt
ers!, a paradigmatic model in the context of multiple scatt
ing @11–13#. However, this simplified description has b
come questionable. The atomic dipole transition interact
with light in real experiments is usually more complicate
both the ground state~with angular momentumJ) and the
excited state~with angular momentumJe) present an impor-
tant degeneracy, necessary for cooling and trapping. This
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ternal structure makes the atom behave very differently fr
a point dipole scatterer. Indeed, coherent backscatterin
polarized light by a laser-cooled gas of Rubidium atoms
been observed recently@14,15# in the weak-localization re-
gime. There, surprisingly low enhancement factors for
backscattered intensity indicate that interference is less
cient for atoms than for classical point dipole scatterers
careful study of the coherent propagation of light waves
atomic gases therefore promises to be of great interest
both fields ‘‘multiple scattering in disordered media’’ an
‘‘cold atoms.’’

In this paper, we show in detail how the internal atom
structure can account for the reduction of the enhanced b
scattering of polarized light by atoms. In particular, we ge
eralize the theory of single and double scattering of polari
light by classical point scatterers to the case of atomic s
terers with an arbitrarily degenerate dipole transition. B
cause of this degeneracy, the full atomic scattering tensor
to be considered. It will be shown that its nonscalar parts
responsible for a single scattering background in all polari
tion channels and a drastic reduction of the interference c
trast.

The paper is organized as follows. Section II introduc
the basic notions of enhanced backscattering of light b
standard disordered medium. Section III presents an ana
of single- and double-scattering amplitudes of light by ato
and shows qualitatively how a quantum internal struct
reduces the backscattering enhancement. In Sec. IV,
single- and double-scattering intensities are calculated a
lytically, preparing the way for the quantitative analysis co
tained in Sec. V.

II. ENHANCED BACKSCATTERING OF LIGHT

A. Two-wave interference

A wave, characterized by its wave-lengthl or wavenum-
berk52p/l in vacuum, incident upon a disordered mediu
©2001 The American Physical Society04-1
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is scattered into a multitude of partial waves. If the ind
vidual scattering events are elastic, these partial waves ar
coherent and interfere. In the weak-localization regime, in
vidual scatterers with a scattering cross-sections are distrib-
uted with number densityn so that the scattering mean fre
pathl 51/ns is much larger thanl. This condition, equiva-
lently stated askl @1, says that the mean distance betwe
scattering events is much larger than the wavelength, so
waves propagate almost freely inside the medium. In
regime, the wave amplitudeA can be constructed by cohe
ent superpositionA5(pap of partial waves that are scattere
along a quasiclassical path joining the positions of conse
tive scatterers@16#. The positions of all scatterers in tur
determine the precise shape of the resulting interference
tern, as observed in the speckle figures of scattered l
light.

This interference pattern is naively expected to be was
out when averaged over the realizations of the disorder~for
example, by thermal motion of the scatterers!. In fact, the
average intensityI 5^uAu2& separates into independent
squared amplitudes and the sum of interference termI
5(p^uapu2&1(pÞp8^āpap8& ~the brackets indicate an ave
age over realizations of disorder, the bar denotes com
conjugation!. If the scatterers are distributed randomly, d
ferent scattering paths (p8Þp) involve uncorrelated phases
The interference terms may be expected to vanish,^āpap8&
50, yielding the uniform average intensity that is familiar
us from the view of most natural objects like clouds. In t
context of light scattering, it was first realized by Wats
@17#, de Wolf @18# and others, however, that each multipl
scattering sequence visitingN scatterers in a given orde
(1, . . . ,N) has exactly one reversed counterpart (N, . . . ,1).
The phase difference between the two corresponding pa
waves~visiting the same scatterers, but traveling in oppos
directions! is given byDf5(k1k8)"(r12rN), wherek and
k8 are the incoming and outgoing wave vectors, andr1 and
rN are the positions of the first and last scatterer along
scattering path. The phase difference is exactly zero in
backscattering direction wherek852k. Zero phase differ-
ence means constructive interference, independent of the
tual path configuration. This constructive two-wave interf
ence therefore survives the ensemble average and gives
to coherent backscattering, the enhancement of the mul
scattered intensity in the backward direction by a factor
two.

B. Enhancement factor

There is an exception to the systematic interference
tween direct and reverse amplitudes: scattering paths tha
their own reversed do not give rise to any interference te
and thus add a uniform background to the average scatt
intensity. In the weak-scattering regimekl @1, this uniform
background reduces to the single-scattering contributionI S.
In this regime, the average intensity can be written as a s
of three termsI (u)5I S(u)1I L(u)1I C(u) as a function of
the angleu with respect to the backscattering direction. He
the so-called ladder termI L(u) is the contribution of all
squared multiple-scattering amplitudes, neglecting inter
05380
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ence. The so-called crossed termI C(u) contains the interfer-
ences between direct and reverse amplitudes. Under w
chosen experimental conditions, where all paths and t
reverse counterparts have exactly the same amplitude,
constructive two-wave interference leads to a maximal c
trastI C(0)5I L(0). Awayfrom the backward direction,I C(u)
is averaged to zero once the typical phase difference of
terfering amplitudes approachesDf'1. Taking the double-
scattering contribution (N52), the distancer 125uur12r2uu
will be given on average by the scattering mean free pathl .
To first order inu, the typical phase difference then isDf
5kl u. Therefore,I C(u) decreases to zero over an angu
scale 1/kl that is very small in the weak scattering regim
kl @1. Higher orders of scattering involve paths with en
points further apart and thus contribute toI C with a smaller
angular width. For a semi-infinite and nonabsorbing scat
ing medium, the sum of all contributions has been shown
result in the so-called coherent backscattering cone, a s
intensity peak exactly in the backscattering direction@19–
21#. When higher orders of scattering become relevant,
width of the backscattering enhancement is determined
by the scattering mean free path but rather by the trans
mean free pathl tr5l /(12^cosu&); here,^.& denotes an av-
erage over the differential cross section. If^cosu&50, the
two length scales are identical,l tr5l . This is true for iso-
tropic point scatterers and unpolarized atoms~cf. Sec. IV D!,
so scattering and transport mean free path will be identi
throughout the rest of this article.I S andI L exhibit a smooth
angular dependence with respect to the normal of the sur
of the medium~Lambert’s law@22#!. They can thus be taken
constant, for not too oblique incidence, on the backscatte
angular scale 1/kl .

The ratio of the average intensity at backscatteringI (0)
5I S1I L1I C(0) to the average background intensi
I (kl u@1)5I S1I L is the enhancement factor

a511
I C~0!

I S1I L
. ~1!

Its maximum valuea52 is attained if and only if there is no
single-scattering background,I S50, and the contrast of the
two-wave interference is perfect,I C(0)5I L .

C. Polarization and reciprocity

Since light is a vector wave, polarization~which describes
the direction of the electric-field vector! is an essential ingre
dient of any analysis of the enhancement factor. T
incident-field polarization« and the scattered-field polariza
tion «8 define two sets of orthogonal polarization channe
For linearly polarized incident light, the scattered light c
be analyzed with parallel (lini lin) or perpendicular
(lin' lin) polarization. For circularly polarized inciden
light, it is convenient to use the concept of helicity, i.e., t
orientation of the circular polarization with respect to t
direction of propagation. The scattered light can be analy
with preserved helicity (h i h) or flipped helicity (h' h). At
exact backscattering, these two cases, respectively, co
spond to flipped («85«̄) and preserved polarization («8
4-2
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WEAK LOCALIZATION OF LIGHT BY COLD ATOMS: . . . PHYSICAL REVIEW A 64 053804
5«). Note that the circularly polarized light scattered bac
wards by a mirror has the same polarization, thus, flipp
helicity.

For classical scatterers, the following results have b
established@23,24#: ~i! Single scattering in the backscatterin
direction is absent in the lin' lin andh i h channels for scat-
terers of spherical symmetry; (i i ) In the absence of an ex
ternal magnetic field, the reciprocity theorem~see below!
assures thatI C(0)5I L in the parallel channels lini lin and
h i h. Satisfying simultaneously conditions~i! and (i i ), an
enhancement factora52 has been predicted and observ
for spherically symmetric scatterers in theh i h polarization
channel@25#.

As reciprocity is an important notion for coherent bac
scattering~CBS!, let us precise this point. Reciprocity is
symmetry property stemming from the invariance of the fu
damental microscopic dynamics under time reversal@24#.
Reciprocity assures that amplitudes relating to scattering
cesses where initial and final states are exchanged and
reversed are equal. For the scattering of incident light w
wave-vectork and polarization« into light with wave-vector
k8 and polarization«8, it implies

Tdir~k«→k8«8!5Trev~2k8«̄8→2k«̄!. ~2!

Here,Tdir(k«→k8«8) is the amplitude of a given scatterin
sequence, andTrev(2k8«̄8→2k«̄) is the amplitude of the
reciprocal process~the bar denotes complex conjugation!. In
general, these reciprocal amplitudes describe different s
tering processes, and thus, cannot interfere. CBS interfer
arises between amplitudesTdir,rev(k«→k8«8) associated to
direct and reverse scattering paths with the same initial
final direction of propagation and the same polarization. T
reciprocity relation~2! thus assures equality for the two CB
amplitudes if and only if two conditions are met:

k852k and «̄85«. ~3!

From these conditions, it follows that the CBS amplitudes
any given path and its reverse are equal at backscatterin
the lini lin and h i h channels, implyingI C(0)5I L . On the
other hand, away from the backscattering direction or in
perpendicular channels, the relation~2! is still valid, but says
nothing about the pairs of amplitudes that interfere for CB
These amplitudes are therefore expected to be different, l
ing to a reduced contrastI C,I L .

III. AMPLITUDES FOR SCATTERING OF LIGHT
BY ATOMS

A. Description of the atomic medium and approximations

We are interested in the situation where the scatterers
not macroscopic objects, but individual atoms. One m
think of several specific characteristics of atomic light sc
terers that affect coherent backscattering:

• Atoms have extremelynarrow resonances. Close to an
atomic resonance, the light scattering cross-section is of
order of the square of the wavelength, much larger than
geometric cross-section of the atom. A dense cloud of ato
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therefore is ideal for strong elastic multiple scattering.
• Because of the high polarizability of atoms near

atomic resonance, it is rather easy to inducenonlineareffects
~e.g., saturation! with only few milliwatts of laser power.
Despite some studies of multiple scattering in nonlinear m
dia @26#, it is basically unknown how this affects CBS b
atoms.

• When an atom scatters a photon, its velocity changes
an amount of the order of mm/s. Thisrecoil effect becomes
important for cold atoms with typical velocities of a fe
cm/s.

• The atomic resonances being very narrow, atoms ma
driven in or out of resonance because of theDoppler effect.
Adding the contributions of the various velocity classes
the CBS signal is far from obvious.

• Atoms also have a quantuminternal structure. For a
given transition line, the total angular momentumJ of the
atomic ground state in general is not zero. In the absenc
any external magnetic field, the ground state then is (J
11)-fold degenerate. As a first consequence, there is
possibility of elastic light-scattering processes that cha
the internal atomic substate~degenerate Raman transitions!.
Subsequent light scattering then gives rise to optical pum
ing.

• When the atoms are very cold, their de Broglie wav
length becomes comparable to the optical wavelength. In
regime, the external atomic motion must be treated quan
mechanically. For high enough density, Bose-Einstein c
densation sets in.

Addressing all these problems is beyond the scope of
paper. We will focus our present investigation on the cruc
role of the atomic internal structure, making use of seve
simplifying approximations.

First, we assume the weak-scattering relationkl @1 to
hold. This will be the case for sufficiently low-densityn of
the atomic medium. Indeed, as the resonant atomic c
sections51/nl is of the order ofl2, weak scattering is
implied by the low-density conditionnl3!1. In this regime,
the independent scattering approximation~ISA! is justified
@11#. Equivalently, recurrent scattering~i.e., sequences visit
ing a given scatterer more than once! can be neglected. The
single-scattering transition matrix then suffices to comp
the single scattering intensity that, in turn, serves as a bu
ing block for higher-order scattering. In this regime, the a
erage index of refraction of the medium is very close to un
~cf. Sec. IV A!.

Second, we use quantum-mechanical perturbation the
to describe the scattering of light by an atom. This will
valid as long as the laser intensity is sufficiently low@27#.
We will restrict our calculation to the case of one-phot
scattering, determining the transient response of the sys
rather than its stationary state. This method thus ignores s
ration effects and optical pumping. In principle, both cou
be described by carrying the perturbation to higher numb
of scattered photons, but practically one has to calculate
stationary density matrix by solving the multilevel optic
Bloch equations. In the experimental application so far@15#,
the laser intensity was kept well below the saturation int
sity. Furthermore, optical pumping in the bulk of an optica
4-3
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thick atomic cloud is expected to be severely limited by m
tiple scattering.

Third, we treat the external motion of the atoms clas
cally. In other words, we require the atoms to be sufficien
hot so that the coherence length of the external wave fu
tion is shorter than the optical wavelength. This is the c
for cold atoms created in a standard magneto-optical t
The present treatment does not apply, however, to ultra-
atoms as, e.g., in a Bose-Einstein condensate.

The question of the recoil effect can then be addres
rather easily. Indeed, light imparts various momentum ki
to the atoms defining a scattering path, but these momen
transfers are identical for the direct and reverse path
backscattering. Consequently, the recoil effect does not a
the interference between the amplitudes along the two pa

Let us now discuss the role of the atomic motion. Close
an atomic resonance of widthG, the average time an atom
takes to scatter a photon isG21. If, in the meantime, atoms
move by more than an optical wavelength, then the inter
ence term between direct and reverse scattering seque
will be spoiled@28#. To avoid this, we require the spreadv of
the atomic velocity distribution to satisfy

kv!G. ~4!

If this condition is met, atoms can be thought as being fix
in space during the multiple-scattering process@15#. On a
much longer time scale, the motion of the atoms simply a
as a configuration average. Typically, Eq.~4! is satisfied for
atoms slower than few m/s, which is true for atoms origin
ing from a magneto-optical trap. Note that Eq.~4! can be
alternatively viewed as a resonance condition: under sca
ing, the Doppler shift will not bring atoms out of resonanc

Under these conditions, the most important effect w
come from the internal structure of the atoms, i.e., the
generacy of the light-scattering transition. We assume
the incident light is nearly resonant with an atomic transit
of ~bare! angular frequencyv0 between a ground state wit
total angular momentumJ and an excited state with tota
angular momentumJe ~see Fig. 1!. Since no external mag
netic field is supposed to be present, the atomic ground s
and the excited state are, respectively, (2J11)-fold and
(2Je11)-fold degenerate. The corresponding substates w
magnetic quantum numbersm andme with respect to some

FIG. 1. Energy representation of a degenerate atomic dip
transition, here forJ51, Je52. Arrows mark atomic transitions
from the initial substate, hereuJ,m5J&, under scattering of a pho
ton. In the absence of an external magnetic field, all transitions
elastic. Solid arrows: Rayleigh transitions, conserving the magn
quantum number (m85m). Dotted arrows: degenerate Raman tra
sitions, changing the magnetic quantum number~herem85m21
andm85m22).
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arbitrary quantization axis are denoted byuJm& for the
ground state (2J<m<J) and byuJeme& for the excited state
(2Je<me<Je).

The restriction to a singleJ→Je transition could be re-
laxed at the price of more complicated calculations since
essence, the various transitions contribute independentl
the atomic scattering tensor, the essential ingredient of
analysis as shown below. We will also assume that thJ
→Je transition is closed, so that light scattering is pure
elastic. Again, different final states with different energi
could be included along the same lines of reasoning.

In the following, we recall the amplitude for the scatterin
of one photon by one atom~single scattering! and determine
the amplitude for the scattering by two atoms~double scat-
tering!. We discuss how the degeneracy of the atomic dip
transition affects the CBS enhancement factor~1!. We will
use a full quantum-mechanical treatment of both atoms
electromagnetic field. While the internal atomic degrees
freedom can only be described quantum mechanically,
electromagnetic field will be described by quantum Fo
states for reasons of symmetry. An equivalent treatment
be set up for low-intensity coherent states that are known
correspond closely to a classical light field@29#.

Throughout the paper, transitions between identi
atomic substates (m85m) are calledRayleigh transitions
and transitions between different substates (m8Þm) are
calleddegenerate Raman transitions. Let us stress that, sinc
one-photon scattering on a degenerate atomic dipole tra
tion is necessarily elastic, inelastic processes~also known as
Ramanscattering! are completely absent of our analysis.
the following, we use natural units where\5c51 so that
@ length#5@ time#5@ frequency#215@energy#21.

B. Single-scattering amplitude

In the single-scattering situation, an atom at fixed posit
r is exposed to a plane light wave with wave-vectork, an-
gular frequencyv5k, and transverse polarization«. We de-
scribe the uncoupled system by the sum of the atomic in
nal Hamiltonian and the free field Hamiltonian,

H05v0(
me

uJeme&^Jemeu1 (
k,«'k

vak«
† ak« . ~5!

Here, ak« and ak«
† are the usual annihilation and creatio

operator of a transverse field mode with wave-vectork and
polarization vector«. The corresponding one-photon Foc
state will be denoteduk«& where the transversality (k•«)
50 is understood. The interaction between atom and ligh
given in the dipole form byV52D•E(r ). The atomic dipole
operatorD connects the subspacesHJ and HJe

~since we
consider a closed transition, no other subspaces are invol!
with reduced matrix-element̂JeuuDuuJ&5DA2Je11 @30#.
The electric field operator at the atomic position is given

E~r !5 i (
k,«'k

Ev«k«ak«exp@ i ~k•r !#1H.c. ~6!

le

re
ic
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The field strengthEv5(v/2e0L3)1/2 is defined in terms of a
quantization volumeL3 that eventually disappears in resu
of physical significance.

The probability amplitude for a transition from an initia
state u i &5uk«;Jm& to a final stateu f &5uk8«8;Jm8& is the
elementSf i of the scattering matrix. The transition amplitud
for iÞ f is written

Sf i522ipd~v2v8!Tf i~v1 i0!, ~7!

in terms of the transition operatorT. Here, because th
atomic ground state is degenerate, energy conservation
sured by the delta distribution, implies elastic light scatter
(v85v). The matrix elementTf i(z) is calculated perturba
tively using the Born expansionT(z)5V1VG0(z)V1 . . .
in powers of the interactionV and the resolventG0(z)5(z
2H0)21 of the unperturbed system. The excited atomic st
can be eliminated by partial summation of the Born ser
dressing the transition frequency and introducing a finite l
time @27#: d5v2v0 is the detuning from the~dressed! tran-
sition frequencyṽ0'v0 and G5D2v0

3/3pe0 is the natural
width of the atomic excited state.

Let us define the reduced dipole operatord5D/D and the
Rabi frequencyvR5DEv . The transition-matrix elemen
Tf i5^k8«8,Jm8uT(v1 i0)uk«,Jm& near resonance then is

Tf i5
vR

2

d1 iG/2
^Jm8u~ «̄8•d!~«•d!uJm& ei (k2k8)•r, ~8!

represented by its Feynman diagram in Fig. 2. The condi
‘‘near resonance’’ meansd!v0 ~but not necessarilyd,G).
Therefore, antiresonant scattering, i.e., first emission, t
absorption, can be neglected.

In Eq. ~8!, all information about the atomic internal de
grees of freedom and polarization has been factorized
the matrix element

^Jm8u«̄8•t•«uJm&5
vR

2

d1 iG/2
^Jm8u~ «̄8•d!~«•d!uJm&.

~9!

This defines the scattering operatort that acts on the produc
spaceHJ^ C3 of atomic internal states and polarizations. It
the scattering operatort that characterizes the scattering o
ject and contains all relevant information about the scatte
process@31#. We can separate its frequency dependence f
its tensor structure:t(v)5t(v) t̂ where

FIG. 2. Feynman diagram for the transition-matrix elementTf i

@Eq. ~8!# near resonance. Wavy lines denote photons, straight l
atomic internal states. The thick line stands for the dressed pr
gator (d1 iG/2)21 of the excited atomic state. The absorption v
tex yields a factorvRexp(ik•r )^Jemeu«•duJm&, the emission vertex

yields a factorvRexp(2ik8•r )^Jm8u«̄8•duJeme&, and all intermedi-
ate variables, hereme, have to be summed over.
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2

d1 iG/2
~10!

is given as the ratio of the squared Rabi frequency~or
squared coupling strength! and the resonant denominato
known for point dipole scatterers@11#. The novelty of the
present approach lies in the peculiar tensor partt̂. For a given
transitionm→m8, the dimensionless matrix element

t̂ i j ~m,m8!5^Jm8udidj uJm& ~11!

defines the scattering tensor that connects the incomin
the outgoing polarization. This 333 t matrix can be decom-
posed into its scalar, antisymmetric, and symmetric trace
components, transforming irreducibly under rotations@30#.

A classical point dipole scatterer is characterized byt
matrix proportional to unity@11#. This behavior is repro-
duced by the elementary dipole transitionJ50, Je51. In-
deed, the only matrix element of the scattering opera
yields the scalar part̂00u t̂ i j u00&5d i j . Nonspherical classi-
cal scatterers also display an additional traceless symm
part in their scatteringt matrix. In the case of atoms, there
fore, it is the antisymmetric part that is characteristic for t
quantum internal structure. The antisymmetric part sim
implies that an atom scatters light with polarizatio
dependent strength. To be more specific, consider scatte
of circularly polarized light in a Rayleigh transition (m8
5m; quantization axis is the direction of propagation!. The
scattering strengths for the two possible helicities are diff
ent because the Clebsch-Gordan coefficients associate
the transitionsuJ,m&↔uJe,m61& are unequal.

This situation is somewhat similar to the usual Farad
effect where circular polarizations with opposite heliciti
are scattered differently in the presence of an applied m
netic field @32#. There are, however, significant difference
in the Faraday effect, the antisymmetric part of the atom
polarizability depends both on the magnetic-field directi
and on the direction of light propagation; for the atomic sc
tering operator, antisymmetry is a fully intrinsic propert
When averaged over the internal state, the antisymme
part of the atomic scattering operator vanishes, leading
symmetric polarizability and to no dichroism inside the e
fective medium~cf. Sec. IV A!. Thus, the degenerate atom
situation ressembles a~zero magnetic field! Faraday effect
depending on the internal state of the atom.

The degeneracy of the atomic ground state also imp
that, by scattering a photon, the internal state may cha
~cf. Fig. 1!. The possibility of changing the internal sta
leaves more choice for the photon polarization. Which po
ization is possible for which transition follows from the co
servation of angular momentum. In exactly the backscat
ing direction (k852k) and choosing the quantization ax
along the direction of propagation, the following relatio
hold: linearly polarized light is scattered into the lini lin
channel by a Rayleigh transition (m85m), and into the
lin' lin channel by a degenerate Raman transition (um8
2mu51); circularly polarized light is backscattered into th

es
a-
4-5
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h' h channel by Rayleigh transition (m85m), and into the
h i h channel by a degenerate Raman transition (um82m
u52).

Therefore, the single-scattering amplitude shows t
changes in the atomic internal state permit changes in
light polarization. Since, in general, the atomic internal st
is not under control, the single backscattering contribut
cannot be removed by polarization analysis~with the only
exceptionJ51/2 in theh i h channel! and degrades the ob
servable enhancement factor~1!.

C. Double-scattering amplitudes

1. Direct and reverse transition amplitudes

In the double-scattering situation, a plane wave impin
upon two atomsa51,2 at fixed positionsra . The interaction
between atoms and field in the full Hamiltonian is nowV
52D1•E(r1)2D2•E(r2). This interaction defines a trans
tion operatorT along the lines of Sec. III B. Resonant dipo
interaction between the atoms arises from the exchang
photons. Among the numerous different diagrams that
scribe the transition u i &5uk«,Jm1 ,Jm2&→u f &
5uk8«8,Jm18 ,Jm28&, the two dominant diagrams involvin
both atoms are concatenations of two single-scattering
grams. The first diagram, shown in Fig. 3, describes the
rect scattering path: absorption of the incident photon
atom 1 and emission of the final photon by atom 2. T
diagram for the reversed path is obtained by exchanging
role of the two atoms. The Feynman rules introduced in F
2 permit to write out the scattering amplitudes. As usua
diagrammatic expansions, a sum over the virtual interme
ate states has to be carried out, here, the excited atomic s
and the intermediate photon. The matrix element for the
rect scattering path in the far-field approximationkr12@1
takes the following form:

Tf i
(dir)52

3Gt2~v!

4vR
2

exp~ ikr 12!

kr12
t̂dir ei (k•r12k8•r2). ~12!

Again, all information about polarization and internal stru
ture is factorized into the dimensionless matrix element

t̂dir5«̄8• t̂2~m2 ,m28!•D• t̂1~m1 ,m18!•«. ~13!

Here, the dimensionless one-atomt matrices, defined in Eq
~11!, are connected by the projectorD i j 5d i j 2n̂i n̂ j onto the
plane transverse to the unit vectorn̂5r12/r 12 joining the two
atoms.

FIG. 3. Feynman diagram of the direct transition matrix elem
Tf i

(dir) @Eq. ~12!#: resonant scattering first by atom 1, then by atom
The Feynman rules are defined in Fig. 2.
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The matrix elementTf i
(rev) for the reversed path is obtaine

from Eq.~12! by exchanging the roles of atoms 1 and 2. T
internal matrix element~13! becomes

t̂ rev5«̄8• t̂1~m1 ,m18!•D• t̂2~m2 ,m28!•«. ~14!

The two amplitudesTf i
(dir) and Tf i

(rev) describe indistin-
guishable processes and interfere. A maximal contrast in
backscattering direction is obtained if and only if the amp
tudes have equal magnitudet̂ dir5 t̂ rev. But due to the non-
scalar part of the atomict matrix, we expect that in genera
the matrices do not commute,t̂2•D• t̂1Þ t̂1•D• t̂2, so that Eqs.
~13! and ~14! are not equal. An exception to this rule is o
course the casem15m2 , m185m28 where the exchange sym
metry assures their equality. Furthermore, we can see th
is precisely the antisymmetric part of thet matrix that is
responsible for the inquality of amplitudes in the paral
polarization channels. Indeed, if the one-atomt matrix were
symmetric, then «̄8• t̂1(m1 ,m18)•D• t̂2(m2 ,m28)•«5«

• t̂2(m2 ,m28)D• t̂1(m1 ,m18)•«̄8. In the parallel channels«̄8
5«, from this would immediately follow the equality of th
direct and reverse matrix elements~13! and ~14!. But be-
cause of the antisymmetric part of the atomic scattering t
sor, in general

«̄8• t̂1~m1 ,m18!•D• t̂2~m2 ,m28!•«

Þ«• t̂2~m2 ,m28!•D• t̂1~m1 ,m18!•«̄8, ~15!

so that the two interfering amplitudes are different in mag
tude. An explicit example for unequal interfering amplitud
in the h i h channel–one is zero while the other is not–h
been given in@33#.

2. Reciprocity revisited

A question may arise at this point: Does the imbalance
amplitudest̂dirÞ t̂ rev contradict the theorem of reciprocity
The answer is no: the complete system ‘‘field and atom
obeys reciprocity, but this does not implyt̂dir5 t̂ rev. The clas-
sical reciprocity relation~2! has to be generalized to take in
account the set$m% of the internal variables of all atoms@34#:

Tdir~k«,$m%→k8«8,$m8%!5~21!(
i

(mi82mi )

3Trev~2k8«̄8,2$m8%→2k«̄,2$m%!.

~16!

This relation shows that in order to obtain the recipro
sequence of a given sequence, the signs of all internal q
tum numbers have to be flipped. The reciprocity relation~16!
assures the equality of two interfering CBS amplitudes o
if three conditions are met: the two classical conditions~3!
on light direction and polarization, and a third one pertaini
to the atomic internal variables,

$m8%5$2m%. ~17!

t
.
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WEAK LOCALIZATION OF LIGHT BY COLD ATOMS: . . . PHYSICAL REVIEW A 64 053804
Whereas the direction of observation and polarization can
controlled experimentally, this is impossible for the intern
atomic states in an optically dense medium. Just as in
case of scattering away from the backward direction or i
perpendicular polarization channels, reciprocity includi
the internal states never ceases to be valid, but simply
comes inapplicable to predict the equality of interfering a
plitudes. It follows that although there might be some amp
tudes satisfying condition~17!, the majority will not, and
perfect interference contrast is lost. Of course, in the cas
the elementary dipole transitionJ50, Je51, the condition
~17! is trivially fulfilled since all atoms verifym85m50
and we recover the classical case.

Classical reciprocity for light scattering has been deriv
using Maxwell’s equations for a linear scattering mediu
provided that its constitutive tensors~dielectric constant, per
meablility, and conductivity! be symmetric @35#. In the
present case, when one does not consider the internal at
states as intrinsic variables of the system but as given pa

eters for each path, thet-matrix t̂(m,m8) then has an anti-
symmetric part. In this respect, atoms with degenerate t
sitions constitute a scattering medium that does not o
classical reciprocity, and a reduced interference is no
prise. Indeed, the same is observed in scattering media
the Faraday effect@36,37# where the external magnetic fiel
is said to break time-reversal invariance.

Finally, let us note that the ensemble average over
internal variables$m% cannot restore the equality of the dire
and interference contributions to the diffuse intensity.
deed,I C(0) is equal toI L if and only if, for each pair of
scattering paths, the direct and reverse amplitudes are e
In the sum of all contributions, the equal amplitudes can
win back what the nonequal amplitudes have lost: the re
is a reduced overall enhancement factor.

3. The role of degenerate Raman transitions

In the case of the elementary dipole transitionJ50,
Je51, the atomic scattering tensor only has a scalar p

^00u t̂ i j u00&5d i j . The analysis of the double scattering am
plitudes in Sec. III C 1 shows that the internal amplitud
then are equal and full interference contrast is guaranteed
for J50, no degenerate Raman transitions (m8Þm) can oc-
cur, the following question is inevitable: can the decrease
interference contrast be attributed to the Raman transit
alone?

Indeed, one might be tempted to suggest incoherenc
the Raman scattered light~i.e., the loss of phase coherence
spontaneous emission! as the origin for this loss of contras
In the present description, however, this isnot a pertinent
explanation. It is true that the Raman scattered light does
interfere with the reference light from the source: the resp
tive final atomic states are orthogonal and the two amplitu
do not describe indistinguishable processes~this is a typical
‘‘which-path’’ argument @38,39#!. But a photon scattered
elastically along the direct path interferes very well with t
same photon scattered along the reverse path — as lon
the internal states of all atoms in both processes are ident
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no matter whether they describe degenerate Raman or
leigh transitions.

A closer analysis of the situation in the channels of circ
lar polarization permits the following remarks. In the chann
h' h of flipped helicity, a selection rule special to th
double-scattering configuration admits only Rayleigh tran
tions to the crossed intensity. The ladder intensity contain
contribution from Rayleigh transitions~equal to the crossed
intensity! and an additional contribution from degenerate R
man transitions. In this sense, the degenerate Raman tr
tions are responsible for a reduced double-scattering inte
ence in theh' h channel. This is consistent with th
observation that degenerate Raman transitions make th
oms behave as nonspherical scatterers for which reduce
terference in the perpendicular channels is expected. Bu
higher-scattering orders, Raman transitions contribute als
the crossed intensity, and it is no longer evident to comp
the relative weights of Rayleigh and Raman contributions

The explicit example of a double Rayleigh transition
the h i h channel with zero interference given in Ref.@33#,
shows that Rayleigh transitions also are responsible for a
of contrast. On the other hand, the fact that Raman tra
tions give to atoms some characteristics of nonspherical s
terers does not by itself imply a loss of contrast: the recipr
ity theorem is independent of the actual shape of
scatterers and applies to spherical as well as to nonsphe
classical scatterers. For example, a double Raman trans
such that (m15m252m1852m28Þ0) satisfies the reciproc
ity condition ~17! and has perfect contrast~as is also evident
from the exchange symmetry!. In the sum of all scattering
amplitudes, Raman scattering amplitudes can even be d
nant in the backscattering interference signal. An explicit
ample of such a situation is given in Fig. 9.

In fact, independently of the scattering order, it is pr
cisely the antisymmetric part of the atomic scattering ten
that is responsible for the loss of contrast in the para
polarization channels. This antisymmetric part appears
both degenerate Raman and Rayleigh transitions~cf. the un-
equal scattering of circularly polarized light with differen
helicities as mentioned in Sec. III B!. Therefore, the degen
erate Raman transitions mustnot be held responsible alon
for the reduction of interference contrast.

IV. ANALYTICAL FORMULATION OF THE INTERNAL
ENSEMBLE AVERAGE

We wish to describe the light propagation inside a mac
scopic disordered medium on average. Starting from an
tirely symmetric microscopic description of matter and ligh
the ensemble average is a trace over the matter degre
freedom. This trace contains an average over atomic p
tions as well as an average over the internal degrees of f
dom. This is analogous to the case of classical nonsphe
scatterers where averages over position and orientation
to be performed. We suppose in the following that the atom
sample is prepared without correlations between positi
and internal substates, and that different atoms are unco
lated. This is a reasonable assumption for a cloud of c
atoms created from a standard magneto-optical trap. The
4-7
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MÜLLER, JONCKHEERE, MINIATURA, AND DELANDE PHYSICAL REVIEW A64 053804
averaging procedures then become independent. As fa
positions are concerned, we will use the averaging te
niques developed for classical point scatterers@3#. In the in-
dependent scattering approximation, the average over th
ternal quantum numbers$m% can be expressed as traces ov
a one-atom density matrixr and one-atom operators.

A. Average amplitudes: Effective medium

Tracing over the matter degrees of freedom defines
effective medium for the average propagation of light amp
tudes and intensities. In this paragraph, we will deal with
rather simple issue of the average amplitude. As will be se
the internal structure of the atomic scatterers provides
major surprise, and we are able to recover the well-kno
properties of a dilute atomic gas@29#. The impact of the
effective medium on the amplitude is described by the s
energyS(v) that renormalizes the vacuum light frequen
v @11#. In the independent scattering approximation, the s
energy is proportional to the average scattering operator

S~v!5N Tr rt~v!5N^t~v!& int . ~18!

Because of the vector character of the light wave, the
energy is formally a second rank tensor. Assuming a sc
density matrix, i.e., a uniform distribution over intern
states, the internal average simply projects onto the sc
part: S(v)5S(v)1. Calculating the average is elementa
using the closure relation of Clebsch-Gordan coefficien
and we find

S~v!5nMJ

3p

v2

G/2

d1 iG/2
. ~19!

Here, we define for convenience the ratio of multiplicities

MJ5
2Je11

3~2J11!
, ~20!

with M051. The atomic polarizability close to resonance
given by

a~v!52
2L3

v
^t~v!& int . ~21!

Writing out the internal average as a weighted sum o
substates,

^t~v!& int5(
m

pm^Jmut~v!uJm&, ~22!

it is evident that solely the Rayleigh transitions (m85m)
enter into the definition of the self energy and of the pol
izability. In the case of a uniform distribution with weigh
pm5(2J11)21, this average selects the scalar part of
scattering operator. A thorough discussion of the polariza
ity, the scattering operator, and its analysis by decomposi
in irreducible components can be found in the textbook
Berestetskiiet al. @31#.
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The susceptibility of the dilute atomic medium isx5na,
and the condition of low density now readsunau!1. The
effective refractive index then is given bynr511na/2. Its
real part is very close to unity, and we need not distingu
between the optical wavelength in the medium and in
vacuum. Its imaginary part describes attenuation of the a
age amplitude, and here the effect of the dilute medium
essential. Since we do not describe any absorption, all
tenuation is necessarily due to scattering from the ini
mode into other modes. This argument is the essence o
optical theorem

s tot522L3Im ^«̄•t•«& int5k Ima~v!. ~23!

We thus find the total scattering cross section

s tot5MJ

6p

k2

1

114d2/G2
. ~24!

This well-known expression features the resonant dip
cross section 6p/k253l2/2p and the Lorentzian line shap
for detuningd around the resonance with widthG.

The mean free path of the light inside the average med
is l 522@ Im S(v)#21. By virtue of the optical theorem, i
depends on the total cross section and on the number de
of scatterers through

l 5
1

ns tot
, ~25!

and is independent of both the polarization and the direc
of propagation. This reflects statistical invariance of t
atomic medium under rotation.

In summary, in the weak-density and weak-scattering
gime, the internal structure has very small influence on
properties of an average light amplitude. For a uniform s
tistical distribution over internal states, all average quantit
are isotropic and are only modified by a factorMJ5(2Je
11)/3(2J11) with respect to the classical dipole point sca
terer whereM051. This is not surprising since the intern
average over a scalar density matrix simply selects the sc
part of the atomic scattering operator. The antisymmetric p
that appeared as the genuine quantum feature in Sec
therefore is not present here.

B. Average intensities

Coherent backscattering is an interference effect for
average intensity, which of course must be distinguish
from the square of the average amplitude. Consequently
stress that it is not sufficient to calculate quantities pertain
to the average amplitude~such as the polarizability or the
scattering mean free path! in order to decide whether th
internal structure affects CBS or localization. In the follow
ing paragraphs, we show how proper use of tensor alge
makes it possible to analytically perform the averaging o
the atomic internal degrees of freedom. In the specific c
of a semi-infinite medium, exact averaging over the exter
4-8
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WEAK LOCALIZATION OF LIGHT BY COLD ATOMS: . . . PHYSICAL REVIEW A 64 053804
position of the atoms is also possible for the single- a
double-scattering contributions.

The average scattered intensityI far away from the me-
dium can be calculated in terms of the dimensionless bist
coefficient@40#

g5
4p

A K ds

dV
~k«→k8«8!L . ~26!

Here, the light incidence is supposed to be perpendicula
the surfaceA of the medium that will be taken to become th
half spacez.0 asA→`. The average differential cross se
tion is determined by Fermi’s golden rule which reads

K ds

dV
~k«→k8«8!L 5

L6v2

4p2
^uT~k8«8,k«!u2&. ~27!

The square of the transition operator means explic
uT(k8«8,k«)u25^k«uT(v1 i0)†uk8«8&^k8«8uT(v1 i0)uk«&
and acts on the atomic states only. Note that the factorL6

cancels with the inverse factor coming from the squared tr
sition operator, so that the quantization volume finally dis
pears.

For single scattering, Eqs.~8! and~9! show that the inter-
nal average has to be taken over the square of the~dimen-
sionless! scattering operator:

^u«̄8• t̂•«u2& int5Tr@r~ «̄•d!~«8•d!~ «̄8•d!~«•d!#. ~28!

It is crucial that the average be taken over the square of
scattering tensor. This is not equivalent to taking the squ
of the average, which is essentially the polarizability~21!.
Again, the trace over a scalar density matrix will select
scalar part of the averaged operator. But, as becomes ev
in Appendix A, now the antisymmetric and symmetric trac
less parts can combine with their counterpart in the dir
product and contribute a non-trivial scalar component.

In the double-scattering situation, the two atoms
coupled by the intermediate photon. Let

t̂215«̄8• t̂2•D• t̂1•« ~29!

be a short-hand notation for the contracted double-scatte
operator for the direct path, andt̂12 for the reverse path. The
ladder contribution to the double-scattering intensity, j
like in the classical case, is given by the average sum of
squares of the two amplitudes,

Tr@r12~ u t̂21u21u t̂12u2!#. ~30!

Here, r12 is the two-scatterer density matrix. The cross
contribution is obtained, again in perfect analogy to the cl
sical case, by the interference between the direct and rev
amplitude

Tr@r12~ t̂12t̄̂ 21exp@ i ~k1k8!•r12#1~1↔2!!#. ~31!

Since the atoms are uncorrelated, the density matrix fac
izes, r125r1^ r2. Furthermore,ra5r since the atoms are
identically distributed. The two-atom scattering operator~29!
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is not factorized in terms of elementary scalar products.
by expliciting the transverse projectorD i j 5d i j 2n̂i n̂ j , it be-
comes

t̂215~ «̄8•d2!@~d2•d1!2~ n̂•d2!~ n̂•d1!#~«•d1!. ~32!

All averages~28!, ~30!, and ~31! can then be expressed a
linear combinations of the one-atom trace

Tr@r~x4•d!~x3•d!~x2•d!~x1•d!#

where the fixed vectorsxa stand for«,«̄,«8,«̄8,n̂, or d8 ~the
dipole operator of the other atom!. Rather than calculating
each term separately, we determine the one-atom trace
four arbitraryxa and later substitute what is required by th
single- and double-scattering terms.

C. The single-scattering vertex

We proceed to calculate the dimensionless trace func

T~xa!5
1

MJ
Tr@r~x4•d!~x3•d!~x2•d!~x1•d!#. ~33!

It depends linearly on the components of thexa , albeit in a
complicated manner, involving the characteristics of the tr
sition and the elements of the density matrix. A systema
way of evaluating the trace is a development in terms tra
forming under irreducible representations of the rotat
group@41#. We shall explain the solution in the simplest ca
when the atom is distributed with equal probability over
internal substates. Since the corresponding density matr
then proportional to unity and therefore a scalar under ro
tions, the trace selects the scalar part of the averaged op
tor. The result can only be a function of the scalar produ
(xa•xb), of the most general form

T~xa!5w1~x1•x2!~x3•x4!1w2~x1•x3!~x2•x4!

1w3~x1•x4!~x2•x3!. ~34!

The coefficientswi are calculated explicitly using the stan
dard techniques of irreducible tensor operators~details are
given in Appendix A!:

w15
s02s2

3
, w25

s22s1

2
, w35

s11s2

2
, ~35!

where

sK53~2Je11!H 1 1 K

J J Je
J 2

. ~36!

The ‘‘6J’’ symbols @30# ~or Wigner coupling coefficients!
contain all essential informations about our problem. Th
are the simplest scalar quantities that can be constru
from the basic ingredientsJ, Je, 1 ~the rank of the vector
operatord) andK ~the tensor ranks of the irreducible com
ponents of the scattering operator!. The ‘‘6J’’ symbols intro-
duce the following useful selection rules:
4-9
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MÜLLER, JONCKHEERE, MINIATURA, AND DELANDE PHYSICAL REVIEW A64 053804
(i) uJ2Jeu<1, the usual selection rule for a dipole tra
sition;

(ii) 0<K<2: the scattering operator is the direct produ
of two vector operators and thus has irreducible compon
of rank K50,1,2. In other words, the change of the atom
angular momentum is limited toum82mu<2 for the one-
photon scattering;

(iii) K<2J: the ground-state degeneracy determin
which tensor rank comes into play. ForJ50, K50 and thus
only Rayleigh transitionsm82m50 are possible; forJ
51/2, K50,1 and degenerate Raman transitions withum8
2mu51 become possible; forJ>1, K50,1,2 and all pos-
sible transitionsum82mu<2 can take place.

A sum rule overK for the ‘‘6J’’ symbols implies that the
w coefficients are not independent but obey

w11w213w351 ~37!

for arbitraryJ,Je. Explicit formulas for thewi are contained
in Appendix B1.

We introduce a diagrammatical representation for
trace function~34!

~38!

This four-point intensity vertex is the weighted sum of t
three pairwise contractions between the vectorsxa . A factor
w1 comes in for the horizontal pairwise contraction (x1
•x2)(x3•x4), a factorw2 for a diagonal pairwise contraction
and a factorw3 for a vertical pairwise contraction. It res
sembles Wicks’s theorem known from Gaussian integra
@42#, but here, the weights of the possible contractions
not equal. As in quantum field theory, this diagrammatic r
resentation proves especially useful for the systematic
scription of higher-order scattering~cf. Sec. IV E!.

D. The single-scattering contribution

Using «5 x̄15x4 and«85x25 x̄3 in Eq. ~34!, the internal
average~28! for the single-scattering contribution become

^u«̄8• t̂•«u2& int5MJ~w1u«̄8•«u21w2u«8•«u21w3!. ~39!

The average differential cross section for single scattering
an unpolarized atom is

K dsS

dV L
int

5
3s tot

8p
~w1u«̄8•«u21w2u«8•«u21w3! ~40!

in terms of the total scattering cross section~24!. Using this
expression, we see that the sum rule~37! simply represents
flux conservation. All angular information is contained in t
squared moduli of polarization contractions. Since these
pressions are even in the scattering angleu, the mean value
^cosu&5*du^ds/dV&cosu vanishes, justifying that the trans
port mean free pathl tr5l /(12^cosu&) is equal to the scat
tering mean free pathl .
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To determine the bistatic coefficient now means to av
age Eq.~40! over position. We assume a semi-infinite, h
mogenous medium of independently distributed atoms. T
single-scattering bistatic coefficient then is

gS5
4pn

A E
z.0

d3r K dsS

dV L
int

e22z/l . ~41!

The exponential takes account of the extinction of incom
and scattered light with the mean-free-pathl inside the scat-
tering medium. Since the differential cross section is ind
pendent of the position, the integral is readily calculated a
we find

~42!

The coefficientswi(J,Je) carry the weights of the differen
contractions of the polarization vectors~for detailed expres-
sions, see Appendix B 1!. In the case of a transitionJ50,
Je51, these coefficients are simply (w1 ,w2 ,w3)5(1,0,0).
So one recovers exactly the classical expression@43#

~43!

In the classical diagram, the upper line, read from left
right, signifies scattering of the wave amplitude, and
lower line, read from right to left, signifies scattering of th
complex conjugate amplitude by the same scatterer~identi-
fied by the dashed line!. The only possible connection i
horizontal, giving the factoru«̄8•«u2 that implies a dipole
radiation pattern. For atoms, however, the coefficientsw2
and w3 come into play and lead to contributions in th
lin' lin channel~where«̄8•«5«8•«50) as soon asJ>1/2.
WhenJ>1, there is a signal even in the helicity preservi
backscattering channelh i h ~where «̄8•«50, «8•«51).
Now we see why the polarizability~21! is not sufficient to
describe the scattering by a degenerate transition. The p
izability is essentially the average scattering tensor, a tw
point vertex connecting the incoming to the outgoing pol
ization. If the atom is distributed with equal probability ov
its substates, the polarizability then is diagonal and define
purely horizontal contraction proportional tou«̄8•«u2. But the
internal structure of an atom allows also for diagonal a
vertical connections in the single-scattering diagram:
classical line stretches to a two-dimensional ribbon.

E. The double-scattering contributions

Van Tiggelen et al. @43# have calculated the double
scattering contribution to the ladder bistatic coefficient in t
backward direction,

gL25
9

16pAl 2Ez1,2.0
d3r 1d3r 2

e2(z11r 121z2)/l

r 12
2

PL2 ~44!
4-10
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WEAK LOCALIZATION OF LIGHT BY COLD ATOMS: . . . PHYSICAL REVIEW A 64 053804
for classical point scatterers in a half space, within the we
scattering limit kl @1 and in the far-field approximation
kr12@1. Here, the exponential describes the attenuation
incident, intermediate, and scattered light with mean-fr
path l . For classical dipole point scatterers, the polarizat
kernel is given byPL2

(cl)5u«̄8•D•«u2. For atomic scatterers
under the same conditions, Eq.~44! remains valid. As all
information about the internal structure is connected to
polarization, only the polarization kernel has to be gene
ized. Keeping track of all factors, it follows from Sec. IV
that the polarization kernel is given as the internal aver
~30! over the square of the dimensionless double scatte
operator

PL25MJ
22^u«̄8• t̂2•D• t̂1•«u2& int . ~45!

Using Eqs.~29! to ~38!, it is represented by the generalize
ladder diagram

~46!

This double-scattering ladder diagram is the product of t
single-scattering diagrams~38! connected by the polarizatio
propagatorD i j 5d i j 2n̂i n̂ j , one for the amplitude~upper
line! and one for its complex conjugate~lower line!. The
diagram is evaluated using the following rules. Each scat
ing box yields three pairwise contractions: horizontal w
weight w1, diagonal with weightw2, and vertical with
weightw3. Now choosewiwj for the two boxes and contrac
the vectors accordingly. For example,w1

2 comes with the

twofold horizontal contractionu«•D•«̄8u2; w1w2 and w2w1
both giveu«•D•«8u2. For the vertical connections involvin
factors ofw3, one has to use that the polarization propaga
is a projector,D•D5D, and its total contraction~arising for
w3

2) is ( iD i i 52. Finally

PL25~w1
21w2

2!u«̄8•D•«u212w1w2u«8•D•«u2

1~w11w2!w3@~ «̄•D•«!1~ «̄8•D•«8!#12w3
2 .

~47!

For classical dipole scatterers, modeled by a transitioJ
50, Je51, one has (w1 ,w2 ,w3)5(1,0,0) and recovers th
known result

~48!

The crossed bistatic coefficient for the double-scatter
contribution as calculated by van Tiggelenet al. @43# under
the same assumptions is
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gC25
9

16pAl 2Ez1,2.0
d3r 1d3r 2

e2(sz11r 121sz2)/l

r 12
2

3cos@~k1k8!•r12#PC2, ~49!

where s5 1
2 (111/cosu). For classical dipole-point scatte

ers, the crossed and ladder polarization kernels are eq
PC2

(cl)5PL2
(cl) . This assures that in the backscattering direct

(u50, k852k), crossed and ladder intensities are eq
~the strict equality for all polarizations is characteristic
double scattering; for higher-scattering orders, equality
crossed and ladder is only given for parallel polarization!.
In the case of atomic scatterers, Eq.~49! remains valid, but
the polarization kernel has to be generalized. Casting
internal average~31! in diagrammatical form, it is

~50!

The crossed diagram is evaluated efficiently using the c
traction rules defined above for the ladder diagram. Exp
itly,

PC25~w1
21w3

2!u«̄8•D•«u212w1w3~ «̄8•D•«8!~«•D•«̄!

1~w11w3!w2@~«•«8!~ «̄•D•«̄8!1~ «̄•«̄8!~«•D•«8!#

12w2
2u«8•«u2. ~51!

Obviously, the crossed kernel is not equal to the ladder k
nel, PC2ÞPL2 . What is the relation between the two? In th
classical theory, one habitually uses time reversal invaria
to reduce one to the other: returning the lower line of t
crossed diagram for classical point scatterers

~52!

the connecting lines are straightened out, and the cros
diagram becomes equal to the ladder diagram~48! in the
parallel polarization channels«̄85«. This is the signature of
reciprocity and assure a perfect interference contrast in
backscattering direction. But returning the bottom line of t
generalized crossed diagram~50!, we find

~53!

which differs from the ladder diagram~46!, even if we put
«̄85«. What has happened? The ribbon that has replaced
classical line cannot unwind and blocks the diagram to
logically. It blocks because the diagonal and the vertical c
traction are not equivalent:w2Þw3. Only in the caseJ50,
Je51, we havew25w350, and one recovers the correspo
dence to the classical point dipole scatterers. Equation~35!
shows thatw25w3 if and only if s150. The coefficients1
stems from the antisymmetric part of the scattering opera
4-11
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MÜLLER, JONCKHEERE, MINIATURA, AND DELANDE PHYSICAL REVIEW A64 053804
~cf. Appendix A!. As the analysis of the double-scatterin
amplitude in Sec. III C already showed, it is the antisymm
ric part of the atomic scattering operator that is respons
for the reduction of the backscattering enhancement in
parallel channels.

V. ENHANCEMENT FACTORS AND PEAK ANALYSIS
FOR ANY ATOMIC TRANSITION

The results of the previous section enable us to calcu
analytically the intensity of polarized light scattered at fi
and second order by atoms that are positioned randomly
half-space. The spatial integrals in Eqs.~44! and ~49! are
challenging because of the half-space geometry, but ca
performed fully analytically – see Sec. B3. We therefo
obtain the various enhancement factors at backscatterin
well as the shape of the backscattered cone fully analytic
In this section, we analyze the contributions of single a
double scattering to the backscattered intensity and de
mine the second-order enhancement factor as a functio
the polarization channel and the atomic dipole transition.

A. Single-scattering background

The single-scattering intensity in terms of the bistatic c
efficientgS is given by Eq.~42! as a function of the ground
state angular momentumJ, the transition typeJe2J50,61,
and the polarization vectors. Figure 4 showsgS for all tran-
sition types and the four standard polarization configuratio

FIG. 4. Single-scattering intensity in terms of the bistatic co
ficient ~42! in the backscattering direction as a function of t
ground-state angular momentumJ: ~a! preserved and flipped helic
ity in the circular polarization channels,~b! parallel and perpendicu
lar polarization in the linear channels. Full symbols: parallel ch
nels (h i h and lini lin). Open symbols: perpendicular channe
(h' h and lin' lin). Transition types: (.,,): Je5J11, (j,h):
Je5J, (m,n): Je5J21.
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For classical point dipole scatterers, the single-scatte
bistatic coefficient isgS53/4 in the channelsh' h and
lin i lin ~corresponding to the reflection from a mirror! and
gS50 in the channelsh i h and lin' lin @43#. Figure 4 re-
produces these values for the transitionJ50, Je51. As ex-
plained in Sec. III B, forJ.0 degenerate Raman transition
become possible and open the classically forbidden chann
the first signal is obtained in the lin' lin channel for J
51/2 and in theh i h channel forJ51.

In all four polarization channels, the graphs of the tw
transition typesJe5J61 ~upward and downward triangles!
tend towards the same value asJ→`. Indeed, as shown in
Appendix B 1, the coefficientswi for these two transition
types have the same limit, corresponding to asymptotic
equal Clebsch-Gordan coefficients.

The following two main conclusions are to be drawn fro
Fig. 4:

(i) A degeneracy of the atomic dipole transition leads to
single-scattering contribution to the backscattered inten
in all four polarization channels~with the only exceptionJ
51/2 in h i h); this background signal therefore cannot
eliminated by polarization analysis and reduces the obs
able height~1! of the coherent backscattering peak;

(ii) The intensity in theh i h and lin' lin channels al-
ways stays below the intensity in theh' h and lini lin chan-
nels, respectively; the single-scattering contribution thus
always minimized by choosing the classically forbidd
channels.

B. Double-scattering interference contrast

The contrast of second-order backscattering interferen

c25
gC2~0!

gL2
, ~54!

is determined by the crossed and the ladder bistatic co
cients, given in Eqs.~44! and~49! as integrals over the gen
eralized polarization kernels~47! and ~51!, respectively.
These integrals can be evaluated analytically, and their
pressions as functions ofJ and Je in the four polarization
channels are contained in Appendix B. Here, we plot
interference contrastc2 in Figs. 5 and 6 in the four standar
polarization channels as a function of the ground-state an
lar momentumJ.

Two features of Fig. 5 are particularly striking: First,
perfect contrastc251 is obtained solely for the transitionJ
50, Je51 corresponding to classical point dipole scattere
The degeneracy of the atomic transition then degrades
contrast considerably. For instance, in the channel of p
served helicity (h i h) and for a transition of typeJe5J11
~full downward triangles in Fig. 5!, the contrast drops to
about 0.3 already atJ51/2 and takes typical values of 0.2
Second, the channelh' h can offer a contrast up to thre
times higher than the channelh i h, depending on the transi
tion type and the degeneracy of the ground state.

Figures 5~b! and 6~b! show that in the crossed channe
(h' h and lin' lin), the contrast is always maximized for
transition typeJe5J11. But in the parallel channels (h i h

-

-

4-12
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WEAK LOCALIZATION OF LIGHT BY COLD ATOMS: . . . PHYSICAL REVIEW A 64 053804
and lini lin) and for larger values ofJ, the contrast is opti-
mized forJe5J. In the limit Je5J→`, the contrastc2 even
approaches one. A contrast of one indicates that the antis
metric part of the scattering tensor vanishes. Indeed,
Clebsch-Gordan coefficients display a symmetry that s
presses the antisymmetric part of the scattering tensor aJe
5J→`.

C. Backscattering enhancement factor

Figure 4 shows that the smallest single-scattering sign
obtained in theh i h channel forJe5J11. This configura-
tion could also be expected to render the best enhance
factor. However, Fig. 5 shows that the interference cont
in this configuration is particularly low. As will indeed b
seen in this section, the choice ofJe5J11 andh i h does
not guarantee an optimized backscattering enhancement
pending on the degeneracy, the crossed channel or the
sition typeJe5J can offer a better interference contrast a
lead to a higher-enhancement factor.

An enhancement factor up to second order,

a511
gC2~0!

gS1gL2
, ~55!

combines the single- and double-scattering contributions
has to be pointed out, however, that its exact value may
be compared directly to experimental results. Indeed, ei
the scattering medium has the semi-infinite geometry o
half space, but then third- and higher-scattering orders c
not be neglected. Or it has the finite geometry of a las
cooled atomic cloud that truncates higher-scattering ord
but then the relative weight between single and double s

FIG. 5. Contrast of double backscattering interference~54! as a
function of the ground-state angular momentumJ for circular po-
larizations: ~a! conserved helicity,~b! flipped helicity. Transition
types: (.,,): Je5J11, (j,h): Je5J, (m,n): Je5J21.
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tering is modified. Numerical simulations can determine
role of restricted geometry and are currently under stu
Preliminary results show that the ratio of the doub
scattering crossed intensity to the ladder intensity is alm
independent of the shape of the medium. In other words,
the internal structure that is essential for the low contras
the interferences, not the spatial arrangement of the var
atoms. Thus, the present analytical calculation permits to
low how the effects of single-scattering background and
duction of interference contrast combine to result in sm
enhancement factors.

Figures 7 and 8 show the enhancement factor~55! as a
function of the ground-state angular momentum for the fo
standard polarization channels.

The difference between Figs. 5 and 7 is given by t
single-scattering contribution, shown in Fig. 4~a!. In the
channel of conserved helicity (h i h), the lowest single-
scattering intensity is observed for theJe5J11 transition
type, so that the enhancement factor, following closely
interference contrast, drops from its classical value 2 to ab
1.2. The already poor contrast for theJe5J21 transition
type is further reduced by single scattering. The increasin
good contrast forJe5J at higher values ofJ is counterbal-
anced by an important single scattering contribution, so t
the effective enhancement stays below 1.4. We thus find
the classical enhancement factor of two in the helicity p
serving channel is irrevocably lost for atomic scatterers
soon asJ.0.

Although the contrast of interference tends to be highe
the h' h channel than in theh i h channel ~Fig. 5!, the
single scattering contribution@Fig. 4~b!# also is more impor-
tant, resulting in low-enhancement factors below 1.31.

FIG. 6. Contrast of double backscattering interference~54! as a
function of the ground-state angular momentumJ for linear polar-
izations: ~a! parallel polarizations,~b! perpendicular polarizations
Transition types: (.,,): Je5J11, (j,h): Je5J, (m,n): Je

5J21.
4-13
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MÜLLER, JONCKHEERE, MINIATURA, AND DELANDE PHYSICAL REVIEW A64 053804
The enhancement factors in the linear channels, displa
in Fig 8, show the same characteristics. With the only exc
tion of theJ50, Je51 transition in the lin' lin channel, we
find that all possible atomic transitions yield enhancem
factors below 1.35.

The interplay between single-scattering background
interference contrast makes it difficult to predict in whi
configuration the optimal enhanced backscattering can
measured. Intuition formed with classical scatterers wo
recommend a transition of typeJe5J11 and theh i h chan-
nel. But for a high enough degeneracy of the atomic tran
tion, classical intuition turns out to be a bad counselor.
J53, Je54, the calculated effective enhancement facto
higher in theh' h channel (a51.21) than in theh i h chan-
nel (a51.17). This had first been observed experimenta
@14# and remained puzzling until taking into account t
atomic internal structure@33#.

Figure 7 indicates that an optimized enhancement is
pected for a transitionJe5J in theh i h channel. However, a
direct experimental verification seems delicate becaus
transition of typeJe5J is not closed in general~the emission
of a photon from the excited levelJe to a final levelJe5J
21 is allowed!. These events cut off elastic scattering pa
and yield a high background intensity, unfavorable for e
perimental detection. An interesting exception to this rule
the closed transitionJ5Je51/2, which has the additiona
advantage that no single scattering background pollutes
h i h channel.

FIG. 7. The second-order backscattering enhancement fa
~55! as a function of the ground-state angular momentumJ for
circular polarizations:~a! conserved helicity,~b! flipped helicity.
Transition types: (.,,): Je5J11, (j,h): Je5J, (m,n): Je

5J21.
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D. Enhanced backscattering peaks forJÄ3, JeÄ4

The scattered intensity enhancement

a~m!511
gC2~m!

gS1gL2
~56!

as a function of the reduced scattering anglem5kl u for any
atomic transition and any polarization is given analytically
terms of the bistatic coefficients~see appendix B for details!.
Figure 9 displays the backscattering peaka(m) for the case
that has been experimentally studied: the optical transi
between two hyperfine levels (F53 and Fe54) of laser
cooled Rubidium atoms@14#. Hyperfine levels are characte
ized by a total angular momentumF including the coupling
with the nuclear spin; our analysis applies to any total an
lar momentum which we continue to note here byJ. The
highest peak arises in the channel of flipped helicity (h' h),
the linear peaks are almost equivalent, and the smallest p
is given for preserved helicity (h i h). The calculated en-
hancement factor in all four channels is of the order of 1
The experimentally measured enhancement factors
smaller than the present values because the atomic cloud
neither a uniform density nor the geometry of a half spa
Nevertheless, we stress that the calculated peaks repro
semi-quantitatively the experimental ones as shown in@33#.

The shape of the CBS cone for atoms is similar to the o
for point dipole scatterers: the angular width is of the ord
of 1/kl and can vary by a factor two depending on t
polarization channel. In the helicity channels, the CBS co
is isotropic. In the linear channels, its presents an anisotr
that is characteristic of polarization memory in low-ord

tor FIG. 8. The second-order backscattering enhancement fa
~55! as a function of the ground-state angular momentumJ for
linear polarizations:~a! parallel polarizations,~b! perpendicular po-
larizations. Transition types: (.,,): Je5J11, (j,h): Je5J,
(m,n): Je5J21.
4-14
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WEAK LOCALIZATION OF LIGHT BY COLD ATOMS: . . . PHYSICAL REVIEW A 64 053804
scattering@44#, see also Appendix B 5. In the lini lin chan-
nel, it extends further in the direction of the polarization th
perpendicularly, reflecting the anisotropy of the dipole sc
tering cross-section in the Fourier plane.

A small scattering angle is associated to endpoints of s
tering paths lying far apart. Conversely, short scattering pa
dominate for larger scattering angles. Analytical results
double scattering thus provide information about the win
of the backscattering peak that are in principle measura
experimentally. Appendix B5 contains the analytical expr
sions for the wings of the backscattering peak in the f
usual polarization channels. It can be seen that the inten
decreases as (kl u)21 in all four channels, with coefficients
depending onJ, Je. Furthermore, the anisotropy in the line
polarization channels, i.e., the dependence of the scatt
intensity on the angle between incident polarization and
direction of the scan, decreases as the degeneracy o
atomic transition increases. This reduction of the anisotr
is consistent with the intuitive picture that degenerate ato
transitions depolarize the incident light more efficiently th
dipole-point scatterers and that the memory of direction
seen in the backscattering anisotropy is lost more rapidly

VI. CONCLUSIONS AND OUTLOOK

The internal structure of an atom determines its light sc
tering properties. We have shown that a degeneracy of
atomic dipole transition reduces the observable backsca
ing enhancement factor in two ways: single scattering
present in all polarization channels and the nonscalar pa
the scattering tensor reduces the contrast of CBS inte
ence. A complete analytical solution for the case of unpo
ized atoms has been presented together with a generaliz
of the classical ladder and crossed diagrams to the cas
atoms. An immediate extension, under current study, is

FIG. 9. The intensity enhancement~56! as a function of the
reduced scattering anglem5kl u for J53, Je54 in the four po-
larization channels. In the linear channels, the intensity is scan
in the direction parallel to the incident polarization. In the helic
channels, the intensity is independent of the scan direction.
dashed curve in theh i h channel shows CBS contribution from
Rayleigh transitions (m85m) only. In this channel, the dominan
contribution to the CBS peak comes from Raman transitions
tween different substatesm8Þm, see also Sec. III C 3.
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application of the present method to higher orders of scat
ing. Finally, going beyond the weak-localization regime, fu
ther research is needed in order to decide whether the in
nal structure is not a substantial difficulty in the quest for t
strong localization of light in cold atomic gases.
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APPENDIX A: TRACE EVALUATION USING
IRREDUCIBLE TENSOR OPERATORS

In the following, we employ the standard theory of irr
ducible tensor operators as exposed in the textbooks by
monds@30# and Blum@41#. We have to calculate

T~xa!5
1

MJ
Tr@rJ~x4•d!~x3•d!~x2•d!~x1•d!#, ~A1!

where d5d(1) is the reduced dipole operatord5D/D, an
irreducible tensor operator of rank 1 acting upon the eig
statesuJm& of the angular momentum operatorsJ2 and Jz .
Its reduced matrix element is by definition̂JeuuduuJ&
5A2Je11. We introduce the ratio of multiplicitiesMJ

5(2Je11)/3(2J11) for convenience. Thexa5xa
(1) are

fixed free vectors commuting withJ2,Jz ,d. Therefore, thexa
are irreducible tensors of rank 1, but not operators, and
trace~A1! acts only ond.

Let O be an operator decomposed into its irreducib
components,

O5(
L,q

aLqOq
(L) . ~A2!

Its averagê O&5Tr rO in a system described by a densi
matrix r can again be decomposed,

Tr rO5(
L,q

aLq

A2L11
(
J,J8

rq
L~J,J8!^J8uuO(L)uuJ&. ~A3!

All angular information has been concentrated into the co
ficientsaLq and the components

rq
L~J,J8!5 (

m,m8
~2 !L2J82m^JJ82mm8uLq&^JmuruJ8m8&

~A4!

of the so-called statistical tensor operator.
If the system is distributed with equal probability over a

substatesuJm& for a given J, the density matrix with ele-
ments ^JmuruJ8m8&5(2J11)21dJJ8dmm8 is purely scalar,

ed

e

e-
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and its only nonzero irreducible component isr0
05(2J

11)21/2. The trace~A3! then reduces to

Tr rO5
a00

A2J11
^JuuO(0)uuJ&. ~A5!

All we have to do now is to decompose the operatorO
5(x4•d)(x3•d)(x2•d)(x1•d) into its irreducible compo-
nents, determine the coefficienta00 and the reduced matrix
element̂ JuuO(0)uuJ&. We begin with decomposing the oper
tor of second ordero125(x2•d)(x1•d). The scalar products
can be expressed in any basis, in the Cartesian basis as
as in irreducible components,

o125 (
K50

2

(
m52K

K

~2 !K2m@x2x1#2m
(K) @dd#m

(K) . ~A6!

Here,@A(k)B(k8)# denotes the direct product of two irredu
ible tensors. The irreducible components of the product
composed from the irreducible components of the factor

@A(k)B(k8)#m
(K)5(

r ,s
^kk8rsuKm&Ar

(k)Bs
(k8) , ~A7!

using the Clebsch-Gordan coefficients^kk8rsuKm&. Applica-
tion of the inverse formula

Am
(K)Bm8

(K8)
5(

L,q
^KK8mm8uLq&@A(K)B(K8)#q

(L) ~A8!

to the productO5o43o21 leads to the decomposition

O5 (
K,K8,L,q

~2 !K1K82q
†@x4x3# (K)@x2x1# (K8)

‡2q
(L)

3†@dd# (K)@dd# (K8)
‡q
(L) , ~A9!

which is a linear combination~sum overK,K8) of totally
decomposed operators~sum overL,q). Under the trace ac
cording to Eq.~A5!, only L5q50 survives so that we ar
left with a sum of three termsK5K850,1,2.

The reduced matrix element ^JuuO(0)(K)uuJ&
5^Juu@@dd# (K)@dd# (K)# (0)uuJ& can be calculated using th
general formula

^J8uu@A(k)B(k8)# (k9)uuJ&

5~2 !k91J1J8~2k911!1/2(
J9

H k k8 k9

J J8 J9
J

3^J8uuA(k)uuJ9&^J9uuB(k8)uuJ& ~A10!

for the reduced matrix element of the direct product of t
irreducible tensor operators acting on the same system@30#.
Two iterated applications of this formula yield

^JuuO(0)~K !uuJ&5~2Je11!2~2 !KS 2K11

2J11 D 1/2H 1 1 K

J J Je
J 2

.

~A11!
05380
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The last thing to do now is to evaluate

~2 !K~2K11!1/2a00~K !5@x1x2# (K)
•@x3x4# (K).

~A12!

This scalar product of two irreducible tensors of rank 2 c
again be written in any basis, in irreducible components
well as in Cartesian components,

@x1x2# (K)
•@x3x4# (K)5(

i , j
@x1x2# i j

(K)@x3x4# j i
(K) . ~A13!

The cartesian components@xaxb# i j
(K) are given by the usua

decomposition of matrices: forK50, the scalar part or trace

@xaxb# i j
(0)5

1

3
~xa•xb!d i j , ~A14!

for K51 the antisymmetric part

@xaxb# i j
(1)5

1

2
~xa ixb j2xa j xb i !, ~A15!

and forK52 the traceless symmetric part

@xaxb# i j
(2)5

1

2
~xa ixb j1xa j xb i !2

1

3
~xa•xb!d i j . ~A16!

Putting everything together, we summarize

T~xa!53~2Je11!(
K

H 1 1 K

J J Je
J 2

TK~xa!

T05
1

3
~x1•x2!~x3•x4! ~A17!

T15
1

2
@~x1•x4!~x2•x3!2~x1•x3!~x2•x4!#

T25
1

2
@~x1•x4!~x2•x3!1~x1•x3!~x2•x4!#2T0 .

This form shows nicely that the scalar, antisymmetric, a
traceless symmetric parts of the single-scattering oper
combine with their counterparts in the direct product a
contribute to the scalar trace. Regrouping of the differ
contractions leads to the vertex form~34! presented in Sec
IV B.

APPENDIX B: ANALYTICAL EXPRESSIONS OF THE
DOUBLE SCATTERING-CONTRIBUTIONS

1. Values of transition-dependent coefficients

For Je5J11, the transition-dependent coefficients~35!
are explicitly
4-16
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wi5
1

10~J11!~2J11!
3H 6J2117J110, i 51

24J~J12!, i 52

J~6J17!, i 53.
~B1!

For Je5J,

wi5
1

10J~J11!
3H 2J212J11, i 51

2~J12!~J21!, i 52

2J212J11, i 53.

~B2!

For Je5J21,

wi5
1

10J~2J11!
3H ~6J11!~J21!, i 51

24~J11!~J21!, i 52

~J11!~6J21!, i 53.

~B3!

As pointed out in Sec. IV E, the antisymmetric part of t
scattering tensor plays no role whenw25w3. The only finite
values of J, Je for which this condition is fulfilled areJ
50, Je51, the case of the classical dipole-point scatte
wherew25w350. The coefficients take nontrivial values
the limit J→`:

~w1 ,w2 ,w3!5
1

10
3H ~3,22,3!, Je5J61

~2,2,2!, Je5J,
~B4!

and we see that a nontrivial realizationw25w351/5 of a
vanishing antisymmetric part of the scattering tensor is gi
asymptotically in the caseJe5J→`.

2. Ladder contribution

The six-dimensional integral~44! with the generalized
ladder polarization kernel~47! can be exactly calculated. Th
first ~trivial! step is to use the translational invariance p
pendicularly to the incoming direction, and reduce it to
integral over the three components of the interparticle ve
r12 and over (z11z2)/2. In a second step, we use spheric
coordinates (r 12,q,w) for r12, whereq is the angle between
the z direction andr12, and w the azimuthal angle~in the
circularly polarized case, the ladder kernel is independen
w). The integrals overr 12 and (z11z2)/2 are then easily
performed, leading to the double scattering ladder contri
tion

gL25
9

32pE E sinqPL2~q,w!dqdw

11ucosqu
, ~B5!

expressed as an integral over the directionn̂
5(sinq cosw,sinu sinw,cosq) of the interparticle vector.
The kernelPL2 , given by Eq.~47!, involves only simple
trigonometric functions ofq andw, which makes the calcu
lation of the integral easy. The result depends of course
the incoming and outgoing polarizations« and«8.

We finally obtain
05380
r,

n

-

r
l

n

-

n

gL25
9

8
@ l 1~w11w2!21 l 2w1w21 l 3~w11w2!w31 l 4w3

2#.

~B6!

Here, the termsw1
21w2

2 have been completed to (w1

1w2)2, simplifying all following expressions. The coeffi
cientswi(J,Je) carry the dependence on the atomic tran
tion, and the coefficientsl i are given as functions of the
polarization channels

h i h h' h lin i lin lin ' lin

l 1
5

48 ln 22
19
48 ln 22

11
32

5
96

l 2 2 ln 221 2(2 ln 221) 0 0

~B7!

and

l 352 ln 22
1

2
, l 452 ln 2, ~B8!

in all four channels. The coefficientl 1 for the four channels
had been derived in Ref.@43#, the others describe the gene
alization to the case of degenerate atomic transitions.

3. Crossed contribution

The calculation of the crossed contribution given by E
~49! and ~51! follows the same lines. There is however
complication due to the cos@(k1k8)•r12# term. We choose
the spherical coordinates (r 12,q,w) such that thex axis is
along (k1k8), that is in the direction of observation. Th
integral over the transverse components ofr12 and over (z1
1z2)/2 andr 12 yields the following result:

gC2~m!5
9

32pE E sinqPC2~q,w!dqdw

11ucosqu1m2~12ucosqu!cos2w
,

~B9!

where

m5ukl ~B10!

is the reduced scattering angle.
The kernelPC2 is a combination of simple trigonometri

functions of q and w. This makes it possible to calculat
easily the integral overw, leading to

gC2~m!5
9

8E0

1

dx
C~x;J,Je!

A~11x!21m2~12x2!
, ~B11!

where the crossed kernelC(x;J,Je) depends on the atomi
transitionJ→Je via the coefficientswi ,

C~x;J,Je!5~w11w3!2c1~x!1w1w3c2~x!

1~w11w3!w2c3~x!1w2
2c4~x! ~B12!

and the functionsci(x) depend on the polarization channe
4-17
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h i h h' h lin i lin lin ' lin

c1(x) 1
4 (12x2)2 1

4 (11x2)2 1
4 (11x2)21Ai A'

c2(x) 2x2 0 0 2x2

c3(x) 11x2 0 11x21Bi 0
c4(x) 2 0 2 0

~B13!

In the h' h channel, the only nonzero coefficient
c1(x). This means that apart from a multiplicative fact
(w11w3)2, the backscattering peak for any atomic transiti
has exactly the same shape as the classical peak. This i
to the fact that only Rayleigh transitions contribute to t
CBS peak in theh' h channel and that the radiation dia
gram of such transitions is—averaged over the magn
quantum number—identical to the one of classical po
dipole scatterers. In all other channels, the form of the ba
scattering peak itself is changed, be it only in minor ways
the linear channels, a supplementary complication arises
cause the intensity depends on the anglef between the in-
cident polarization vector and the direction of the obser
tion. f50 corresponds to a scan parallel to the incid
polarization vector,f5p/2 to a scan perpendicular to th
incident polarization vector~in Ref. @43#, the opposite con-
vention is chosen!. This anisotropy of the backscattering e
hancement, observed already for classical point scattere
contained in the expressions

Ai5
~12x2!2

8
~11X2cos4f!1

12x4

2
X cos2f,

Bi5~12x2!X cos 2f, ~B14!

A'5
~12x2!2

8
~12X2cos 4f!,

with

X5122
A~11x!21m2~12x2!212x

~12x!m2
. ~B15!

Finally, the integral~B11! can be calculated analytically
The expressions are rather complicated and we give them
completeness. We obtain

gC2~m!5~w11w3!2g1~m!1w1w3g2~m!

1~w11w3!w2g3~m!1w2
2g4~m!, ~B16!

where the nonzero functionsg i(m) are given by the follow-
ing expressions:

• In the h i h channel

g1~m!5
3

256~12m2!4
@322176m2284m4118m6

1~2221144m2217m4!A11m213m4

3~48216m213m4!F~m!#,
05380
due
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or

g2~m!5
9

8~12m2!2
@2422m213A11m2

1~21m4!F~m!#, ~B17!

g3~m!5
9

16~12m2!2
@2422m213A11m2

1~424m213m4!F~m!#,

g4~m!5
9

4
F~m!.

• In the h' h channel

g1~m!5
3

256~12m2!4
@22~80256m2142m4139m6!

1~1222144m21127m4!A11m2

13~32264m2196m4248m6119m8!F~m!#.

~B18!

• In the lini lin channel

g1~m!5
3

512~12m2!4
@2288148m22252m42138m6

1~2222144m21237m4!A11m2

1~1922384m21720m42336m61123m8!F~m!

1A1~m!cos 2f1A2~m!cos 4f#, ~B19!

g3~m!5
9

16~12m2!2
@2422m213A11m2

1~424m213m4!F~m!1B~m!cos 2f#

g4~m!5
9

4
F~m!.

• In the lin' lin channel

g1~m!5
3

512~12m2!4
@322176m2284m4118m6

1~2221144m2217m4!A11m213m4

3~48216m213m4!F~m!2A2~m!cos 4f#,

~B20!

g2~m!5
9

8~12m2!2
@2422m213A11m2

1~21m4!F~m!#.
4-18
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All other g i are zero as evident from~B13!. In the linear
channels, the anisotropic contributions from Eq.~B14! are
weighted by

A1~m!5@256~2218m214m615m8!

128~24118m2214m4115m6!A11m2

112m4~1618m216m415m6!F~m!#/m2,

A2~m!5@482152m21128m4148m62212m8270m101

~2481176m22222m4188m61111m8!A11m2

13m8~8124m213m4!F~m!#/m4, ~B21!

B~m!5@224m224m41~2215m2!A11m2

1m4~21m2!F~m!#/m2.

In all these expressions, the auxiliary functionF(m) is given
by

F~m!52 arg coshS 1

umu D2arg coshS 1

m2D . ~B22!

Under this form,F(m) is not a manifestly real function ofm.
It can be rewritten as

2

A12m2
arg sinhS A11m221

A2m2
A12m2D , umu,1

2

Am221
arcsinS A11m221

A2m2
Am221D , umu.1.

~B23!

In table~B13!, the functionc4(x) is just a constant, withou
any angular dependence onf or x5cosq. The correspond-
ing contributiong4(m) in Eqs.~B17! and~B19! is essentially
F(m). We see therefore thatF(m) is—within a factor 9/4—
the crossed double-scattering bistatic coefficient for a sc
wave scattered by a semi-infinite homogeneous medium
point scatterers. It is a bell-shaped function aroundm50
with width of the order of unity.

With the help of the previous expressions, the scatte
intensity can be plotted, for all atomic transitions, all pola
ization channels and all directions of observation.

4. Crossed contribution for exact backscattering

In exactly the backscattering directionm50, the above
expressions simplify considerably, yielding the crossed
static coefficient in the backscattering direction
05380
ar
of

d
-

i-

gC2~0!5
9

8
@c1~w11w3!21c2w1w31c3~w11w3!w2

1c4w2
2#, ~B24!

where the numerical coefficientsci are given as functions o
the polarization channels

h i h h' h lin i lin lin ' lin

c1
5

48 ln 22
19
48 ln 22

11
32

5
96

c2 2 ln 221 0 0 2 ln 221
c3 2 ln 22

1
2 0 2 ln 22

1
2 0

c4 2 ln 2 0 2 ln 2 0

Just as for the ladder contribution, the coefficientc1 had
been derived in Ref.@43#, the others describe the generaliz
tion to the case of degenerate atomic transitions. In the
allel channels, all crossed coefficientsci are equal to the
corresponding ladder coefficientsl i Eqs.~B7!–~B8!. This is
the signature of reciprocity since the ladder and crossed c
tributions are then equal forw25w3. In the perpendicular
channels, no such correspondence can be observed.

5. Wings of the crossed contribution

For a large reduced scattering anglem5kl u@1, the pre-
vious expressions can be expanded in powers ofm21, giving
the wings of the enhanced backscattering peak. T
asymptotic expression describes the wings of the ba
scattering peak even if higher orders of scattering contrib
to the intensity at smaller angles. The crossed bistatic c
ficient in the wings becomes

gC~m!5
9p

8m
@a1~w11w3!21a2w1w31a3~w11w3!w2

1a4w2
2#1O~m22!, ~B25!

where the wing coefficients are

h i h h' h lin i lin lin ' lin

a1
3

64
19
64

1
16(312 cos2f13 cos4f) 3

64sin22f
a2

1
2 0 0 1

2

a3
3
4 0 1

2 (11cos2f) 0
a4 1 0 1 0

The wing coefficients in the linear channels depend on
anglef between the incident polarization and the directi
of the intensity scan, carrying the anisotropy of the line
backscattering peaks. In the lini lin channel, the intensity is
higher in the direction of the polarization (f50) than per-
pendicular to it, yielding a cigar-shaped intensity pattern
the plane of observation@in Eq. ~A.5! of Ref. @43#, a term
2(3/4)sin22f is missing, otherwise all coefficientsa1 coin-
cide#. In the lin' lin channel, the intensity is smaller in th
directions of incident (f50) and scattered (f5p/2) polar-
ization than along the diagonals, yielding a cloverleaf patt
in the observation plane. As pointed out in Ref.@43#, in the
4-19
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lin' lin channel the classical coefficienta1}sin22f vanishes
if the intensity is scanned in the direction parallel or perp
dicular to the incident polarization (f50,p/2). That means
that the peak decreases in thesedirections asm22 instead of
m21. But for atoms, a second constant coefficienta251/2
comes into play that maintains a~modulated! decrease as
d

.

l.

.

d

d

ys

k,

ys

,

05380
-
m21 in all directions, thus reducing the anisotropy. In t
lin i lin channel, the above expressions permit to verify th
the classical anisotropy ratiogC(f50)/gC(f5p/2)58/3
decreases as the atomic degeneracy increases, converg
40/19 for transitions of typeJe5J61 and to 40/22 for tran-
sitions of typeJe5J asJ→`.
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