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Andreev reflection of fractional quantum Hall
quasiparticles
M. Hashisaka 1,2✉, T. Jonckheere3, T. Akiho1, S. Sasaki1, J. Rech 3, T. Martin3 & K. Muraki 1

Electron correlation in a quantum many-body state appears as peculiar scattering behaviour

at its boundary, symbolic of which is Andreev reflection at a metal-superconductor interface.

Despite being fundamental in nature, dictated by the charge conservation law, however, the

process has had no analogues outside the realm of superconductivity so far. Here, we report

the observation of an Andreev-like process originating from a topological quantum many-

body effect instead of superconductivity. A narrow junction between fractional and integer

quantum Hall states shows a two-terminal conductance exceeding that of the constituent

fractional state. This remarkable behaviour, while theoretically predicted more than two

decades ago but not detected to date, can be interpreted as Andreev reflection of fractionally

charged quasiparticles. The observed fractional quantum Hall Andreev reflection provides a

fundamental picture that captures microscopic charge dynamics at the boundaries of topo-

logical quantum many-body states.
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When a two-dimensional electron system (2DES) is
subjected to a perpendicular magnetic field at low
temperatures, electrons condense into the strongly

correlated phase of the fractional quantum Hall (FQH) state1.
Quasiparticles in FQH systems have fascinating properties, such
as fractional charge2 and anyonic statistics3. Furthermore, for
particular states such as that at Landau-level filling factor v= 5/2,
the theory predicts that quasiparticles obey non-Abelian braiding
statistics that provide the basis of fault-tolerant quantum
computation4,5. The fractional charge6–9 and anyonic nature10–12

of the quasiparticles have been revealed experimentally by shot-
noise measurements and Fabry–Pérot interferometry. These stu-
dies have elucidated the behaviour of quasiparticles within the
FQH state—either bulk or edges—that gives their defining
properties. On the other hand, one may expect the quasiparticles
to exhibit unique behaviour at an interface between the FQH state
and another topologically distinct system, in a similar way as the
Cooper-pair correlation in a superconductor manifests itself as
Andreev reflection, where an electron incident from a normal
metal to a superconductor is reflected as a hole13,14. This, in turn,
poses a fundamental question as to whether electron correlation
in a topological quantum many-body state shows up as a unique
interface phenomenon. FQH Andreev reflection, which we
demonstrate in this paper, is an elementary process that answers
this question.

The FQH Andreev process has been predicted by theories
examining charge transport across a narrow junction between
quantum Hall (QH) states with different filling factors. The most
intensively studied system is one comprised of the v= 1/3
Laughlin state and the v= 1 integer QH (IQH) state15,16. The
charge transport can be modelled as the tunnelling between the v
= 1/3 and 1 edge channels, which can be treated as a chiral
Luttinger liquid and a Fermi liquid, respectively17. When the
channels are coupled through a single scatterer, the problem can
be solved analytically by transforming it into that of tunnelling
between edge states with Luttinger parameter g= 1/218,19. The
exact solution predicts that in the strong-coupling regime the
two-terminal conductance G exceeds the conductance e2/3h (e:
electron charge, h: Planck’s constant) of the v= 1/3 state,
reaching e2/2h in the strong-coupling limit15,16,18–21. The
enhancement of G can be interpreted as the result of the Andreev
process, where two incoming charge-e/3 quasiparticles are scat-
tered into a transmitted electron with charge e and a reflected
quasihole with charge −e/315. This theoretical prediction, how-
ever, has not yet been confirmed experimentally, despite recent
progress in experiments on related systems22–26.

In this paper, we present evidence of the FQH Andreev pro-
cess, namely G exceeding e2/3h in a narrow junction between v=
1/3 and 1 states. As the junction width is varied using the split-
gate voltage applied to form the junction, G oscillates around e2/
3h, exhibiting several peaks where G overshoots the bulk con-
ductance e2/3h, reaching G≅ 1.2 × e2/3h. The conductance
oscillations indicate several Andreev processes at multiple scat-
terers present between the v= 1/3 and 1 edges. The evidence is
also reinforced by demonstrating that the junction operates as a
dc-voltage transformer generating a negative voltage output for
positive input.

Results
FQH-IQH junction. Our QH device, formed in a Hall bar con-
taining a 2DES in a GaAs quantum well, has several top gates and
pairs of split gates in between (Fig. 1a). A perpendicular magnetic
field of B= 9 T sets the bulk of the 2DES at v= 1. We then use
the leftmost top gate (VL=−0.42 V) to form a v= 1/3 region
underneath (see the inset in Fig. 2a). A narrow 1/3-1 junction is

formed by applying a negative gate bias VS to both electrodes of
the split gate located immediately to the right of v= 1/3 region
and depleting the 2DES underneath (Fig. 1b). In this situation,
the setup for transport measurements can be expressed schema-
tically as in Fig. 1c [see Supplementary Note 1]. We measured the
two-terminal differential conductance dI/dVin by applying a
source-drain voltage Vin= Vin

dc+ Vin
ac on the v= 1/3 side of the

junction and measuring the transmitted current I on the v=
1 side using a standard lock-in technique.

Enhanced two-terminal conductance. Figure 2a presents the
central result of this paper, where we plot the zero-bias con-
ductance G, i.e., dI/dVin at Vin

dc= 0 V, as a function of VS. A
narrow junction forms at VS <−0.55 V. As VS is decreased below
−0.55 V, the junction width decreases and G starts to oscillate
around e2/3h with the amplitude growing with decreasing VS. The
most striking observation is that G overshoots e2/3h at several
oscillation peaks before the junction is pinched off at VS≅−1.4
V. The maximum G reaches 1.2 × e2/3h at VS≅−1.1 V. Such a
two-terminal conductance, enhanced by narrowing the junction
and exceeding the conductance of the constituent element, is
nontrivial and counter-intuitive. We note that these features
appear only in 1/3-1 junctions and not in 1/3-1/3 or 1-3 junctions
(see Supplementary Note 7).

The peculiarity of the charge-transfer process is revealed
alternatively by probing the potentials, or voltages Vi (i= 1–4) of
the incoming and outgoing edge channels. Figure 2b, c displays Vi

measured at Vin
dc= 0 V normalised by Vin, plotted as a function

of VS. The voltages V1 and V3 of the incoming channels are,
respectively, equal to potentials Vin and 0 V of the electrodes on
their upstream, independent of VS. In contrast, the voltages V2

and V4 of the outgoing channels vary with VS. The most
remarkable feature is the negative voltage that appears in V2.
Phenomenologically, this demonstrates that the junction operates
as a dc-voltage transformer generating negative voltage output
(V2 < 0) for a positive input (Vin > 0).

From the Landauer–Büttiker formalism, V2 and V4 are related
to G as

V2 ¼ ½1� Gðe2=3hÞ�1�V in; ð1Þ

V4 ¼ Gðe2=3hÞ�1
V in: ð2Þ

These formulas show that both V2 < 0 and V4 >Vin/3 correspond
to G > e2/3h. Within the picture of Andreev reflection, the
negative voltage (V2 < 0) of the back-reflected channel is a direct
manifestation of the quasihole reflection.

Bias and temperature dependence. While it is evident that the
Andreev reflection is responsible for the observed G > e2/3h, to
understand microscopic processes therein, we need to explain the
origin of the conductance oscillations, which is not predicted
from the original models based on the tunnelling through a single
scatterer18,19. Resonant tunnelling through unintentional discrete
levels in the junction, which are responsible for the oscillations in
the low-conductance regime near VS=−1.3 V (see Supplemen-
tary Note 4), cannot account for the conductance oscillations with
G > e2/3h. In the following, we present the dependence of the
conductance on Vin and temperature T and discuss the oscillation
mechanism.

Figure 3a displays a colour plot of differential conductance dI/
dVin as a function of VS and Vin

dc. The oscillations with dI/dVin >
e2/3h are seen only at |Vin

dc| < 40 μV. For illustration, we plot in
Fig. 3b the pinch-off trace at Vin

dc= 100 μV, where dI/dVin < e2/3h
over the entire range of VS. Figure 3c shows the Vin

dc dependence of
dI/dVin at VS=−1.113 and −0.985 V. At VS=−1.113 (−0.985) V,
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which corresponds to the peak (valley) of the oscillations in Fig. 3b,
we observe a pronounced zero-bias enhancement (suppression) of
the conductance. In contrast, at VS= 0 V, where the v= 1/3 and 1
regions form a long junction spanning across the 80-μm-wide Hall
bar, dI/dVin remains constant at e2/3h. These results clearly show
that the Andreev process is observed only in narrow junctions at
low bias. The data also reveal that not only the conductance
enhancement but also its suppression are low-bias anomalies.

Figure 3d shows the T dependence of the conductance
oscillations. The oscillation amplitude decreases with increasing
T, and the signature of the Andreev process, G > e2/3h, disappears
above 200 mK. We focus on two single periods of the oscillations
near VS=−1.113 and −1.095 V and extract the amplitude A as
the peak-to-valley value of G in each period. The two sets of A vs.
T data are well fitted by an exponential function A0exp(−T/T0),
as shown in Fig. 3e, where A0 is the amplitude at T= 0 and T0 is
the characteristic temperature. The exponential temperature
dependence bears analogy with that seen in various electronic
interferometers27. The T0 values (170 and 190 mK) are close to
each other, indicating that these oscillations share the same origin
in nature. The data in Fig. 3 also demonstrate that the
conductance oscillations with G > e2/3h are highly reproducible
(similar conductance oscillations were reproduced for different

cool-downs and in different samples, see Supplementary Notes 3,
5, and 6).

Multiple-scatterer model. We argue that several Andreev pro-
cesses in the junction are responsible for the conductance oscil-
lations, as predicted in theories involving multiple scatterers or a
line junction of finite width18,19,28–32. We consider N scatterers
along the counter-propagating v= 1/3 and 1 channels and inco-
herent transport between them. N is proportional to the junction
width (i.e., length of the counter-propagating channels) and hence
varies with VS. Here, “incoherent transport” means that the N
scatterers give independent scattering events, where the outgoing
channels are characterised by a chemical potential that defines the
input for the next scatterer. With this assumption, the voltage of
the v= 1/3 (1) channel incoming to the nth scatterer is given by
Vn−1= in−1 × 3h/e2 (WN−n= jN−n × h/e2), where in−1 (jN−n) is
the current in the incoming channel (see Supplementary Figure 7).
With this setup, one can use the exact solution for the single-
scatterer model19 to define the conductance gn for each scatterer as
a function of the applied bias Vn−1–WN−n and evaluate the cur-
rent In flowing through it. Notably, as shown for the single-
scatterer case, the charge conservation law and the requirement
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Fig. 1 Fractional-integer quantum Hall junction. a, b False-colour scanning electron micrograph of the Hall-bar sample with measurement configurations
(a) and magnified view near the narrow junction (b). A perpendicular magnetic field B= 9 T is applied from the back to the front of the sample. The v=
1 states develop over the wide blue regions in the 2DES with the front-gate voltages, including VR, set at 0 V. Meanwhile, electron density below one of the
front gates (red region) is reduced to form the v= 1/3 state by applying VL=−0.42 V. A narrow 1/3-1 junction is formed by depleting the 2DES under the
split gate electrodes (yellow) with negative VS. Chiral edge states are displayed by arrows (blue, between v= 1 and v= 0; red, between v= 1/3 and v= 0).
Vin is the applied source-drain voltage, I is the measured current, and Vi (i= 1–4) are the measured voltages of the incoming and outgoing channels of the
1/3-1 junction. c Schematic of the experimental setup. A narrow junction is formed between v= 1/3 and v= 1 states.
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that the outgoing power be equal to or less than the incoming one
lead to 0 ≤ gn ≤ 1/221. Here, the charge transport through the nth
scatterer becomes dissipationless only when gn= 0 or 1/2. The
latter (former) corresponds to the strong-coupling limit (complete
decoupling). Namely, tunnelling for any intermediate gn values is
accompanied by energy dissipation.

The conductance G of the whole junction is obtained by
solving a non-linear system of equations numerically. The results
are shown in Fig. 4a for three representative cases: strong (Tk= 0,
black open circles), intermediate (Tk= 1.5 mK, red filled circles),
and weak couplings (Tk= 36 mK, blue diamonds) under the
experimental condition with an applied voltage of 20 µV and a
temperature of 9 mK. Here, Tk is the crossover energy scale
between strong- and weak-coupling regimes19 (for details, see
Supplementary Note 8). In the strong-coupling limit, where we
have gn= 1/2 for all n, each scatterer only switches the sign of the

voltage between the channels without causing energy dissipation.
Consequently, G oscillates as a function of N between 0 (N even)
and e2/2 h (N odd) (black circles). This oscillation can be regarded
as the result of successive dissipationless Andreev processes,
where the tunnel current switches direction at each scatterer
without changing magnitude. When the coupling weakens to give
gn < 1/2, each scatterer equilibrates the channels, which results in
the reduced output voltage at each scatterer and hence damping
of the conductance oscillations (red circles). The damping is
significant particularly for large N, where the channels experience
equilibration many times. When the coupling weakens further to
give gn < 1/3 for all n, the tunnel current flows only in one
direction. In this case, G monotonically increases with N,
asymptotically approaching G= e2/3h30 (blue diamonds). The
simulation for the intermediate coupling (red circles) captures
essential features of the experimental data in Fig. 2a. If we take
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into account more realistic experimental situations, including the
confining potential of the split gate and randomness in the
positions of the scatterers, the simulation can even better
reproduce the experimental features (Fig. 4b). In the simulation,
the confining potential controls the effective width of the junction
by multiplying a position-dependent window function to the
coupling strength of the scatterers, resulting in weaker coupling
near the junction ends and hence reduced oscillation amplitude
(for details, see Supplementary Note 8).

While the above multiple-scatterer model well explains the VS

dependence of G, it still fails to account for the observed Vin and T
dependence. Since the model inherits the Vin and T dependence of
the conductance from the single-scatterer model18,19, which gives
dI/dVin as an increasing function of Vin and T, it remains
incapable of reproducing oscillations decaying with Vin or T. This,
in turn, suggests that coherent processes neglected in the above
model, such as interference between successive scattering events33,
play an important role. We speculate that constructive (destruc-
tive) interference of tunnelling amplitudes can enhance (suppress)
the coupling strengths of several scatterers in some range of VS.
Indeed, a theory considering coherent interference predicts that a
1/3-1 junction with Coulomb interaction shows conductance
oscillations up to e2/2h as a function of the junction width28. In
this view, conductance enhancement or suppression at the
extrema of the oscillations is partly due to the interference

enhancement of the coupling. This picture explains why the
oscillations appear only at low Vin and T. Furthermore, it helps to
understand why the simulation for the weak-coupling regime of
the incoherent model can mimic the VS dependence of G at high
Vin (Fig. 3b) or high T (Fig. 3d).

Discussion
Finally, we discuss a related interesting issue, namely the mixing
of the v= 1/3 and 1 edge modes expected for a wide junction.
Counter-propagating v= 1/3 and 1 channels studied here is a
basic setup in the model for the edge modes of the hole-conjugate
v= 2/3 FQH state34. There, inter-channel Coulomb interaction
and disorder-assisted tunnelling govern the mixing of the chan-
nels and thus determine their fate in the low-temperature and
long-channel limit. The conductance oscillations with G exceed-
ing e2/3h observed in our experiment can be interpreted as a
precursory phenomenon of the mixing process, namely the
“mesoscopic fluctuation” predicted in ref. 32, suggesting the pre-
sence of the neutral-mode physics of counter-propagating chan-
nels at the 1/3-1 junction31,32. Our findings indicate that the
Andreev process is a vital ingredient therein.

We have demonstrated FQH Andreev reflection, which is one
of the essential concepts for understanding edge transport at the
boundaries of topological quantum many-body systems. We
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expect to observe similar Andreev processes in various FQH
junctions with different electronic systems, including non-QH
systems such as normal metals and superconductors35,36.

Methods
Sample fabrication. We fabricated the sample in a 2DES in a GaAs quantum well
of 30 nm width. The centre of the well is located 190 nm below the surface. The
sample was patterned using e-beam lithography for fine gate structures and pho-
tolithography for chemical etching, coarse metalized structures, and ohmic contacts
formed by alloying Au–Ge–Ni on the surface.

Measurement setup. We set electron density in the 2DES at 2.2 × 1011 cm−2 by
applying a back-gate voltage of 1.29 V at a refrigerator temperature of 9 mK, except
for the data in Fig. 3d, e. A perpendicular magnetic field B= 9 T was applied from
back to the front of the sample. The lock-in measurements were performed with
the ac modulation of Vin

ac= 20 μV RMS at 31 Hz. The experimental results
demonstrated in the main text were obtained for the split-gate device with an
opening of 300 nm. The data from the devices with wider apertures are available in
Supplementary Note 6.

Data availability
All data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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