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Effect of many-body correlations on mesoscopic charge relaxation
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We investigate nonperturbatively the charge relaxation resistance and quantum capacitance in a coherent RC

circuit in the strong-coupling regime. We find that the many-body correlations break the universality in the
charge relaxation resistance: (i) The charge relaxation resistance has peaks at finite frequencies �∗/h̄, where �∗

is an effective level broadening, and (ii) the zero-frequency resistance deviates from the universal value when
the Zeeman splitting is comparable to �∗. This behavior becomes even more prominent in the Kondo regime.
The observed features are ascribed to the generation of particle-hole excitations in the contacts accomplished by
spin-flip processes in the dot.
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Introduction. For a macroscopic capacitor coupled to a
reservoir [Fig. 1(a)], the low-frequency dynamical conduc-
tance is simple and determined solely by the geometrical
capacitance and the resistance. As the capacitor scales down to
nanometers size, the transport properties are significantly mod-
ified due to quantum coherence. First of all, the capacitance
now depends strongly on the density of states (DOS) as well as
the geometrical capacitance. More interestingly, the dynamical
resistance becomes quantized, universal, and independent of
the transmission through the mesoscopic conductor.1 The
capacitance and resistance are called electrochemical capac-
itance and charge relaxation resistance, respectively, to be
distinguished from the macroscopic counterparts.

So far, such a coherent RC circuit has been described with
various theoretical methods: the mean-field approach,2 the
spin-polarized configurations,3,4 the perturbative treatment,5,6

and the semi-classical limit.7 However, a proper description
of the many-body correlation effects is still missing. In this
Rapid Communication, we attempt to fill this gap by treating
the many-body interaction in a nonperturbative way.

We find that the many-body correlations break significantly
the universality of the charge relaxation resistance and that
the deviation is maximal at certain energy scale �∗, which
we interpret as an effective level broadening. Namely, (i) the
charge relaxation resistance has peaks at a finite frequency
ω = �∗/h̄, and (ii) the zero-frequency charge relaxation
resistance deviates significantly from the well-known universal
value when the Zeeman splitting becomes comparable to �∗.
Note that the peak structure cannot be explained in mean-
field-like approaches, and that the interplay of the Zeeman
splitting and the Coulomb interaction in the strong-coupling
regime has not been studied before. Further, we find that
the peak structure is most prominent in the Kondo regime,
where �∗ turns out to be given by the Kondo temperature
TK . This is surprising because the Fermi liquid picture,
which is widely used for the linear response conductance
in the Kondo regime, fails to explain this behavior. Below
we provide a clear interpretation of our findings in terms

of the particle-hole (p-h) excitations accompanying a spin-
flip in the dot due to the strong Coulomb interaction, see
Fig. 1(c).

The coherent RC circuit is an interesting and promising
electron analog of the on-demand single-photon source, which
is an essential part of photon-based quantum information
processing. The on-demand single-electron generation has
been successfully demonstrated in a recent experiment,8 not
long after the quantized charge relaxation resistance was
observed experimentally.9 Encouraged by the two pioneering
experiments8,9 and motivated by the potential applications,
there are a number of experimental studies of coherent RC

circuits.10–15

Model and Methods. We consider a nanoscale capacitor
(quantum dot) coupled to a single reservoir. A weak time-
dependent external gate voltageV (t) = Vac cos ωt is applied
on the quantum dot. In such a coherent RC circuit, the
ac transport is highly sensitive to the internal distribution
of charges and potentials, which needs to be calculated in
a self-consistently manner to ensure the gauge invariance
and current conservation. To achieve this accurately, we use
the numerical renormalization group (NRG) method,16,17 and
calculate the charge relaxation resistance Rq(ω) and the
electrochemical capacitance Cμ(ω). Note that Cμ(ω) is related
to the geometrical capacitance C and quantum capacitance
Cq(ω) by Cμ = (C−1 + C−1

q )−1.
The essential features of the system in the presence of

correlations can be well captured in the Anderson model,
where the dot is described by an interacting single level. The
Hamiltonian H = HL + HD + HT consists of the lead part

HL =
∑
kμ

[εk + eV (t)]c†kμckμ, (1)

the dot part

HD =
∑

μ

[εμ + eU (t)]d†
μdμ + 2ECd

†
↑d

†
↓d↓d↑, (2)
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LEE, LóPEZ, CHOI, JONCKHEERE, AND MARTIN PHYSICAL REVIEW B 83, 201304(R) (2011)

(a)

FIG. 1. (Color online) (left) Illustration of a quantum capacitor
and (right) second-order tunneling processes that generate a single
particle-hole pair in the conduction band (a) without and (b) with a
spin flip in the dot. Filled and empty arrows in the contact indicates
particles and holes, respectively. Here we assume �Z > 0.

and the tunneling part

HT =
∑
kμ

[
tkd

†
μckμ + (H.c.)

]
. (3)

The operator ckμ describes the the noninteracting conduction
electrons with energy εk (measured with respect to the Fermi
energy εF = 0) and spin μ in the single-channel reservoir
and dμ the interacting electron on the dot. EC = e2/2C is the
Coulomb charging energy and εμ = εd − μ�Z/2 are the dot
levels with Zeeman splitting �Z on the dot. tk is the tunneling
amplitude of electrons between the reservoir and the dot. For
simplicity, we assume tk = t and characterize the dot-lead
hybridization by � = πρ0|t |2 (ρ0 is the contact DOS at the
Fermi energy).

The time-dependent voltage V (t) induces the polarization
charges NU (t) between the dot and the gate, which, in turn,
leads to the time-dependent potential U (t) = |e|NU (t)/C

inside the dot. Consequently, the applied voltage not only
generates a current I (t) between the lead and the dot, but also
induces a dot-gate displacement current Id (t) = e(dNU/dt) =
−C(dU/dt). Charge conservation requires I (t) + Id (t) =
0. Assuming that the gate-invariant perturbation, V (t) −
U (t), is sufficiently small, the linear response theory leads
to the relation, I (ω) = g(ω)[V (ω) − U (ω)], where g(t) =
(ie/h̄) 〈[I(t),N ]〉 �(t) is the equilibrium correlation function
between the occupation operator N = ∑

μ d†
μdμ and the

current operator I = e(dN /dt). Note that the current-density
correlation function g(ω) is directly related to the charge
susceptibility χc(t) = −i 〈[N (t),N ]〉 �(t), which is prefer-
able for numerical computation, via the relation g(ω) =
iω(e2/h̄)χc(ω). Then, with the help of I (ω) = −Id (ω) =
−iωCU (ω), the dot-lead impedance Z(ω) = V (ω)/I (ω),
which is experimentally accessible, is given by Z(ω) =
1/(−iωC) + 1/g(ω). The relaxation resistance and the quan-
tum capacitance are then expressed in terms of the charge
susceptibility as

Rq(ω)

h/e2
=Re

[
1

2πiωχc(ω)

]
,

e2/h

Cq(ω)
= Im

[
1

2πiχc(ω)

]
.

(4)

We first calculate the the imaginary part of the susceptibility
using the NRG method,18 and then its real part via the
Kramers-Kronig relation. Note that the NRG results for
the finite-frequency linear response in the Kondo regime are
known to be reliable as long as the time-dependent voltage
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FIG. 2. (Color online) (a) Zero-frequency limits of Rq and Cq

versus εd . (b) Typical spectral structure of the real and imaginary
parts of χc. (c,d) Rq (ω) in the logarithmic scale. Here � = 0.04, and
EC = 0.5.

V (t) is weak enough.19 We focus on the zero-temperature case
and use the contact bandwidth D as the energy unit. We set
kB = 1 hereafter unless specified.

No Zeeman splitting, �Z = 0. Figure 2(a) shows the zero-
frequency limit values of Rq and Cq for the spin-degenerate
case. First, the zero-frequency limit of the relaxation re-
sistance, Rq(ω → 0) is always close to the universal value
h/4e2, regardless of values of εd and EC. This value can be
interpreted as the composite resistance of two parallel resistors
of resistance h/2e2, the well-known universal resistance per
channel.1,2,20 The NRG results show the quantization of
charge relaxation even in the Kondo regime where many-body
correlations are effective. The observed small deviations from
the exact value h/4e2, persisting even in the noninteracting
case, are attributed to the finiteness of the contact bandwidth
D, which introduces a frequency-dependent real part into
the dot self-energy.21 The universal value can be restored
by setting all the relevant energy scales to be much smaller
than D.22 Second, the quantum capacitance, Cq exhibits
two remarkable considerations: (i) at the degenerate points,
εd ∼ εF and εd + 2EC ∼ εF , Cq shows two pronounced peaks
[see Fig. 2(a)], which is consistent with the known understand-
ing that Cq is proportional to the dot DOS ρdot(εF ),1,23 and (ii)
Cq remains quite small in the Kondo regime although the DOS
at the Kondo resonant level pinned at the Fermi level achieves
its maximum value. It implies that the Kondo resonant level,
even though it can open a tunneling channel, is not a real
level which can hold real charges and cannot contribute to the
capacitance. Hence, in the presence of many-body correlations
Cq is not, always, directly related to the DOS.

The frequency dependence of Rq(ω) is shown in Fig. 2. One
can clearly see that Rq(ω) exhibits two peaks at ω = ±�∗/h̄,
see Figs. 2(c) and 2(d) for two dot level positions, εd =
−0.1 (fluctuating valence regime) and εd = −0.3 (Kondo
regime). One can interpret this structure in terms of the p-h
excitations and the relation in Eq. (4). Im[χc(ω)] reflects the
coupling between the ground state and p-h excitations via the
dot-lead hybridization. Since the spectral density of multiple
p-h excitations increases with energy, |Im[χc]| would grow
monotonically with |ω|. However, a finite D puts an upper limit
to the energy for p-h excitations [|ω| � O(D)] resulting in a
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nonmonotonic behavior for Im[χc], see Fig. 2(b). Moreover,
Im[χc] has two kinks at |ω| = min(|εd |,|εd + 2EC|) since
beyond this frequency p-h excitations accompanied with a
charge excitation contributes to Im[χc] as well. An interesting
structure appears in Im[χc] near ω = 0 [not seen in Fig. 2(b)
due to logarithmically small energy scale]. Close to ω = 0,
Im[χc] depends linearly with ω, mainly due to single p-h
excitations. However, Im[χc] departs from the linearity when ω

becomes of the order of the effective hybridization �∗ (=TK in
the Kondo regime). Here the effective level broadening �∗(TK )
is extracted from the width of the resonance close to(at) εF in
ρdot. Besides, we found that the slope of Im[χc(ω)] is the
largest at ω = �∗/h̄, and hence leading to the peak structure
in Rq(ω) as seen in Figs. 2(c) and 2(d).

In the Kondo regime Rq(ω) becomes several orders of
magnitude larger than the universal value, see Fig. 2(d).
Note that such peak structure in Rq(ω) is absent in the
noninteracting case and thus in the usual Fermi liquid picture
of the Kondo effect. For a noninteracting system, Rq(ω)
increases monotonically with increasing |ω|, and the only
characteristic energy scale is εd .24 Hence, the peaks seen in
Figs. 2(c) and 2(d) are a genuine many-body effect.

Finite Zeeman splitting, �Z 	= 0. The spin-split case
(�Z > 0) in the presence of external magnetic fields is
illustrated in Fig. 3. In contrast to the spin-degenerate case,
Rq(ω → 0) is no longer fixed to the universal value. Interest-
ingly, Rq(ω → 0) versus �Z exhibits a peak structure reaching
values much larger than the quantized resistance observed
in the spin-degenerate case: for example, Rq(ω → 0)|max ∼
100 × h/4e2 for εd = −0.15 (Kondo regime). Furthermore,
the peak is exactly located at �Z = �∗(TK ) for the fluctuating
valence (Kondo) regime. The peak height increases as the the
effective hybridization decreases so it is the highest in the
Kondo regime. In the meanwhile, Cq(ω → 0) remains rather
constant, except at the resonant tunneling regime (εd ≈ 0)
where it displays a small peak, see Fig. 3(b). The evolution
of the spectral distribution of Rq(ω) with �Z is displayed in
Fig. 3(c) for εd = −0.1 (Kondo regime). As �Z increases,
the low-frequency part of Rq(ω) for |ω| < kBTK/h̄ keeps
going up until �Z reaches kBTK ; the side peaks are merged
into the central peak. With increasing �Z further, the central
peak diminishes gradually and, eventually, together with the
side peaks located at ω = ±kBTK/h̄, disappear completely.
We have observed a similar transition of Rq(ω) with �Z in
the resonant tunneling regime (εd = −0.05,0) except that the
variation of the central part is smaller.

To clarify the role of the Coulomb interaction, we compare
the zero-frequency values of Rq for different values of the
Coulomb interaction in the resonant tunneling regime, see
Fig. 3(d). In the noninteracting case (EC = 0), there is no peak
at all, with Rq(ω → 0) equal to h/4e2. However, as soon as the
charging energy 2EC becomes comparable to �∗ ∼ �, a peak
starts to rise up and manifests itself for 2EC � �. It implies
that the existence of the peak structure observed in Fig. 3(d)
definitely has its origin in the Coulomb interaction.

Discussion. Now we have two questions to be answered:
(1) How can Coulomb interaction increase the relaxation
resistance far beyond the universal value, h/4e2 and (2)
Why does it take place noticeably at ω = ±�∗(TK )/h̄ in the
fluctuating valence (Kondo) regime for �Z = 0 or at ω = 0 for
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FIG. 3. (Color online) (a,b) Rq (ω → 0) and Cq (ω → 0) versus
�Z for annotated values of εd with EC = 0.2. The enlarged view
of Rq (ω → 0) for large �Z is shown in the inset. (c) Contour plot
of Rq as a function of ω and �Z in the logarithmic scale in the
Kondo regime (εd = −0.1). (d) Rq (ω → 0) versus �Z for εd = 0
and different values of EC as annotated. Here � = 0.02 is used.

�Z = �∗(TK )? The charge relaxation resistance is attributed
to p-h pair generation in the conduction band as shown in
Fig. 1. Such processes are put in action when the dot-lead
tunneling is switched on. The tunneling, in turn, hybridizes
dot and conduction band electrons, resulting in the lowering
of the ground state by the effective binding energy �∗ (TK in the
Kondo regime). It means that the p-h generation starts when the
energy supplied by the source is larger than �∗. This argument
explains the observed peak in Rq(ω) at ω = ±�∗/h̄ in the
absence of the Zeeman splitting. In the presence of finite but
small Zeeman splitting, the energy cost can be compensated
by the Zeeman splitting. The energy of the p-h pair excitation
states shown in Fig. 1(c) are now lowered by �Z compared
to the states in Fig. 1(b), and when �Z ≈ �∗ they become
almost degenerate with the ground state, allowing p-h pair
generation with negligible energy cost. Hence, Rq(ω) exhibits
a single peak at ω = 0 when �Z = �∗. This argument works
solely when �Z � �∗ in which the ground state is not yet
completely polarized and there exists a finite coupling among
spin-down dot states and spin-up dot states accompanying
with a p-h pair generation in the reservoir, see Fig. 1. The
importance of the spin flip in the boosting of the relaxation
resistance also explains why Rq(ω) can reach higher values in
the Kondo regime. The Kondo ground state is built from spin
fluctuations due to spin-flip scattering among the localized dot
electron and the delocalized electrons in the reservoirs, thus
spin-flip processes have large amplitudes in its wave function.
Hence the processes as shown in Fig. 1(c) can happen more
frequently, leading to a large Rq . Similarly, the answer for
the first question is now ready. The spectral weight for the
charge correlation function is proportional to | 〈α|N |gs〉 |2,
where gs and α represent the ground and the excited states. In
the second-order perturbation theory, the weight correspond-
ing to the processes in Fig. 1(c) is given by

| 〈α|N |gs〉 |2 = t4

∣∣∣∣∣
2

EμEμ̄

−
∑

μ

μ

�Z

(
1

Eμ

+ 1

εμ

)∣∣∣∣∣
2

, (5)
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in the ω → 0 limit with Eμ = 2EC + εμ. Interestingly,
this weight vanishes completely for EC = 0 for any value
of �Z . Thus, for the noninteracting case there exists no p-h
pair generation process accompanying spin flip in the dot,
and no boosting of the relaxation resistance can happen.
For finite values of EC, the weight is finite [see Eq. (5)]
and for EC → ∞, it becomes t4/(ε↑ε↓)2. This value can be
substantial depending on the level position. Note that this
analysis is not correct quantitatively because high-order events
should be considerably involved in the observed phenomena.
The observed boosting of Rq at �Z ∼ �∗ indicates that
the perturbation in the dot-lead tunneling or � is risky.
A more general theoretical analysis that treats �Z and �

on equal footing could provide more quantitatively reliable
interpretation. Besides, this perturbative analysis does not
work in the Kondo regime where the strong dot-lead coupling
is important. One may want to study the Kondo regime by
an effective single-particle Hamiltonian with a dot level at the
Fermi energy with the effective hybridization TK . However,
this picture is only suitable in the Fermi-liquid regime in which
p-h excitations accomplished by spin-flip events in the dot are
not allowed. Besides, this effective model predicts an enhanced
mesoscopic capacitance Cq(ω → 0) due to the presence of the

resonant level at the Fermi level. As noted before, however,
the Kondo resonant level cannot contribute to the charging of
real charges.

Conclusion. In closing, we have investigated the dynam-
ics of a many-body quantum capacitor, focusing on the
strong-coupling regime. We observe the breakdown of the
Fermi-liquid features such as the quantized low-frequency
relaxation resistance. We find that Rq(ω) shows peaks at
ω = ±�∗(TK )/h̄ for �Z = 0 and that R(ω → 0) is enhanced
over the quantized value when �Z = �∗(TK ). It can be
understood by the fact that a part of Rq(ω) is built by dot-lead
tunneling events connecting p-h excitations in the reservoirs
with spin-flip processes in the dot. The boosted low-frequency
(and high-frequency) relaxation resistance, which is much
stronger in the Kondo regime, is expected to be experimentally
observable by considering the current advances in RC-circuit
experiments.8,9
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(1993); M. Büttiker, A. Pr◦tre, and H. Thomas, Phys. Lett. A 180,
364 (1993).
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