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Quantum dot dephasing by fractional quantum Hall edge states
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We consider the dephasing rate of an electron level in a quantum dot placed next to a fluctuating edge
current in the fractional quantum Hall effect. Using perturbation theory, we show that this rate has an anoma-
lous dependence on the bias voltage applied to the neighboring quantum point contact, which originates from
the Luttinger liquid physics which describes the Hall fluid. General expressions are obtained using a screened
Coulomb interaction. The dephasing rate is strictly proportional to the zero-frequency backscattering current
noise, which allows us to describe exactly the weak to strong backscattering crossover using the Bethe-ansatz

solution.
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Transport through a quantum dot is typically affected by
the environment which surrounds it: the level of such a dot
acquires a finite linewidth if this environment has strong
charge fluctuations which couple to the dot. Several seminal
experiments, performed with a quantum dot embedded in an
Aharonov-Bohm loop, probed the phase coherence of trans-
port when this dot is coupled to a controlled environment,
such as a quantum point contact (QPC) with a fluctuating
current.'~* Charge fluctuations in the QPC create a fluctuat-
ing potential at the dot, modulate the electron levels in the
dot, and destroy the coherence of the transmission through
the dot.>® The destruction of coherence is called “dephas-
ing.” A general theoretical framework for describing dephas-
ing has been presented in Refs. 7 and 8 and was applied to a
quantum Hall geometry’ and to a normal-metal—
superconductor QPC.!” In all of the above, the dephasing
rate typically increases when the voltage bias of the QPC is
increased.

The purpose of the present paper is to discuss the case of
dephasing from a QPC in the fractional quantum Hall effect
(FQHE) regime.'' QPC transmission can then be described
by tunneling between edge states,'” the quantized analog of
classical skipping orbits of electrons. In this strongly corre-
lated electron regime, edge states represent collective excita-
tions of the quantum Hall fluid: depending on the pinching of
the QPC, it is either FQHE quasiparticles or electrons which
tunnel. It is particularly interesting because the current-
voltage and the noise characteristics deviate strongly from
the case of normal conductors: '3~ for the weak backscatter-
ing (BS) case, the current at zero temperature may increase
when the voltage bias is lowered, while in the strong BS case
the I(V) is highly nonlinear. It is thus important to address
the issue of dephasing from a Luttinger liquid. Here, we
consider the case of simple Laughlin fractions, with filling
factor v=1/m (m odd integer). As in Ref. 7, the dephasing of
a state in the dot is induced by its capacitive coupling to the
biased QPC, assuming that the level modulation in the dot is
a Gaussian process and neglecting back-action effects.

In Fig. 1, a gate voltage controls the transmission in the
fractional quantum Hall fluid through the QPC. The single-
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level Hamiltonian for the dot reads HQDzeocTc, where ¢f
creates an electron. This dot is coupled capacitively to the
nanostructure—a point contact in the FQHE. The Hamil-
tonian which describes the edge modes in the absence of
tunneling is

hv

£ dx[(ax¢l)2+ (ax¢2)2]7 (1)
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with ¢;(x) (i=1,2) the Luttinger bosonic field, which relates
to the electron density operator p,(x) by dy¢h;(x)=Ep;(x).
By varying the gate potential of QPC, one can switch
from a weak BS situation, where the Hall liquid remains in
one piece [Fig. 1(a)], to a strong BS situation where the Hall
liquid is split in two [Fig. 1(b)]. In the former case, the
entities which tunnel are edge quasiparticle excitations. In
the latter case, between the two fluids, only electrons can
tunnel. Here, we consider first the weak BS case; we use a
duality transformation'>!¢ to describe the strong BS case.
The tunneling Hamiltonian between edges 1 and 2 reads

H; =0T y5(0)4,(0) + Hec., (2)

where we have used the Peierls substitution to include the
voltage: for the weak BS, wy=e*V/#, (e*=ve is the effective
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FIG. 1. Schematic description of the setup: the quantum dot
(top) is coupled capacitively to a quantum point contact in the
FQHE regime: (a) case of weak backscattering and (b) case of
strong BS.
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charge and v is the filling factor), while wy=eV/# for the
strong BS case. The quasiparticle operator in the case of
weak BS is (x)=¢! VAt \27a (the spatial cutoff is
a=vpT), with 7, the temporal cutoff), and in the strong BS
case the electron operator is obtained with the substitution
v—1/v.

The Hamiltonian describing the interaction between
the dot and QPC reads H,,=c*c[dxf(x)p,(x), with f(x)
is a Coulomb interaction kernel, which is assumed to include
screening by the nearby gates f(x) = e2e™ s/ \x2+ 42, where
d is the distance from the dot to the edge and A is a
screening length.

The dephasing of an electron state in a dot coupled to a
fluctuating current is caused by the electron density fluctua-
tions, which generate a fluctuating potential in the dot, re-
sulting in a blurring of the energy level €. The dephasing
rate, expressed in terms of irreducible charge fluctuations in
the adjacent wire, is written as’™’

T;]—? dtfdxf(x)fdxf(x)

X ({p1(x.0)py(x",0) + py (x".0)py (x.1))). (3)

In normal and superconducting systems, the dephasing

2 <TKP1(Xl Np(x', ¢~ 77)
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rate can be calculated using the scattering approach. For
Luttinger liquids and in particular for the FQHE, it is
conveninent to use the Keldysh approach.'>!7
Here a tunneling event (at x=0) creates an excitation
which needs to propagate to the location of the dot. The
equilibrium (zero-point) contribution to the dephasing rate
corresponds to the zero order in the tunneling amplitude T’
[it is labeled (T;l)«))]. There is no contribution to first order
in the tunneling Hamiltonian, while the nonequilibrium con-
trlbutlon corresponding to the second order in I'; exists,
(7' H© +(7, l)(2)+ - The dephasing rate in the weak BS
case is obtalned as'®

CARE 4ﬂ2”h2jw dt def(x) fdx’ £

X X & Gl x—x'1). 4)
=%
The bosonic Green’s function is G/"(x—x',t,—1,)

=(¢(x, 1T i(x" ,17?)— ¢7). The coefficients 7, 77, ,== iden-
tify the upper and lower branches of the Keldysh contour.
For second order, since ¢, i, are independent in the absence
of tunneling, we obtain

Jdtlf dt,H(t,)H ( t2)>

7=+
I'(z)v (et )
T i 2ma) > df] dt e 10T Q) 1) o (Tiedo by (x,17) 0y by (x4 77)
T g, MM>72,€1,€2 ¥ = -
X gl ver1 (0.7 ei\fvez¢1(0,t;72)> (Ty oV ve1dy(0.]1) e—i¢7»52¢2(0,z§2)>_ (5)

Quasiparticle conservation imposes €, =—€, =€, SO

e I
bt 22ma ), A ) | S

(P =-

> 7]1772J dtlf dyei€0i=12) grGy P0u1=1) prG (0.1 ~1y)

7.M1>72-€

X{&ix,G?_”(x _xl?t) + V[axGlnm(-xJ - tl) - axGlnnz(x’t - t2)][(9x’GT7]7]|(x,7_ tl) - JX’GTWWZ(-X,7_ t2)]}' (6)

The dephasing rate depends on the geometry of the setup via the length scales d, A, and «. The equivalent result for strong
BS is obtained by replacing v— 1/v next to the Green’s function (duality).
The assumption of strong screening \,~ a=v7, is made [f(x)=2e?ad(x)/d]: it turns out that this assumption is not

necessary, and it will be relaxed later on. Inserting the Green’s function at finite temperature G{” (x,t)=—In[sinh(m(x/vp

=0[(p+75")sgn(t)—(n—n')]/2+ity/hB)/sinh(iw7y/fiB)] in the dephasing rate [Egs. (4)—(6)] gives (7‘;1)(0)
=4e* v/ (mh3Bd?), and with the change of variables 7=¢,~1,, 7,=t—t,, and 7,=t,, we obtain:
sinhz”<lir sinh?” lir
T2 P PP
(7= —— Ef d7cos[wyT] B B
’ P 772 s'nhz”{ ul (pr+i )J s'nhz”{ ul ( +i )J
i —(pr+iT i —(=npr+ir
Y n 0 4B 7 0
xfxd{ () th<”[ () +-])+ th<”( +~))}
n —[- n —
B 71| Sgn{7;)co ﬁﬁ nsgnl7) 7T +17 CO ﬁﬁ nT+1i7
Xfmd { ) th(i[ (1) +i ]>+ th<1( +i ))} (7)
B ) SgN\ 7, )CO ﬁﬂ nSgN7) 7T + 17, CO hﬁ nT +17, .
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FIG. 2. Dependance of the nonequilibrium contribution of the
dephasing rate on the filling factor for both case weak (solid line)
and strong (dashed line) backscattering at 8=5,10,50 (in units of
the temporal cutoff) and QPC bias eV=0.1. The star, diamond, and
circle points correspond to the Laughlin fractions v=1/m, m odd
integer.

In the integral over 7, we change variables to
t=—7F iTyxihB/2 for the first (second) term, and the inte-
gral now runs in the complex plane from —o ¥ iry+ifi3/2 to
+00 ¥ iTyxifB/2. We bring it back to (-, +0) by deform-
ing the contour because there are no poles in the integrand.
For 7,<< wal ,ii3, one obtains

472 2 2v 2v-1
(7= 20 Fg ok (2—77) cosh( wOﬁﬂ)
¢ i T(2v) \ BB 2
h 2
x I‘(v+iw0 B) . (8)
T
In the zero-temperature limit, we have (T;l)(o)zo and
e A
(T;l)(2)= " 20 . 0 |wo|2y—1_ 9)
ahvpd” T'(2v)

Note that (7,')®=(e7y/d)S/(0), with S,(0)=[d{{I(1)I(0)))
the zero-frequency BS current noise.

The nonequilibrium contribution of the dephasing rate is
proportional to the zero-frequency noise in the quantum Hall
liquid, which is computed in Refs. 14—17. This is understood
from the continuity equation, which relates the current op-
erator to the density operator.'? The theoretical predictions of
noise in the weak and strong BS limits have been verified in
point-contact experiments at filling factor v=1/3,1/5.1920
At zero temperature, the nonequilibrium dephasing rate of
Eq. (9) for weak BS depends on the QPC bias with the ex-
ponent 2v—1<0. This is in sharp contrast with Ref. 7, where
the QPC bias dependence is linear. We also calculate numeri-
cally this contribution at finite temperatures and consider it
as a function of the filling factor or the QPC voltage bias. In
our numerical calculations, we choose the inverse cutoff T(_)l
as the energy scale and the nonequilibrium contribution for
the dephasing rate is plotted in units of e*TI'37/(mA*vid?).

In Fig. 2, we plot the dependence of this contribution on
the filling factor v for both weak and strong BS cases for
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FIG. 3. Nonequilibrium contribution in the dephasing rate as a
function of QPC bias with the filling factor v=1/3 at some values
of temperature S=10,50,100 (B=1/kgT) for the weak and strong
backscattering cases (correspond to the solid and dashed lines). The
inset is the ratio of nonequilibrium contribution in the dephasing
rate between the arbitrary screening and strong screening multiplied
by (a/d)? as a function of d/X\,.

several temperatures (8=5,10,50) at fixed QPC bias. v is
considered here as a continuous variable, while it has physi-
cal meaning only at Laughlin fractions.!! For the strong BS
case, the dephasing rate increases when the filling factor in-
creases. At small v, it is zero; then, it increases rapidly. The
higher the temperature, the faster the increase. For the weak
BS case, the shape of the dephasing rate depends on the
ratio of QPC bias and temperature. At low temperature
(1/B<teV), the dephasing rate function has a local maximum
at v<<1/2, the position of which depends on temperature:
when the temperature increases, it gets closer to »=1/2 and
its height decreases, the rate at v=1 is smaller than that at
v=1/3. This result demonstrates that for two different filling
factors, we can have comparable dephasing rates. Around
the crossover in temperature (BeV=1), the local maximum
in the dephasing rate broadens. At high temperature
(1/B>eV), the dephasing rate increases when the filling fac-
tor increases. We find that the dephasing rates evaluated at
different temperatures coincide at the (unphysical) value
v=1/2, because the hyperbolic cosine multiplied by the
squared modulus of the gamma function with v=1/2 in Eq.
(8) does not depend on temperature, while at the same time
the exponent (2v—1) is zero: this is known for perturbative
calculations of the backscattering current and noise.

In Fig. 3, the dependence of the nonequilibrium contribu-
tion of the dephasing rate on the QPC bias voltage is plotted
for several temperatures. In the case of strong BS, the
dephasing rate increases when the bias eV increases. When
the temperature is low enough (1/8<¢eV), the dephasing rate
saturates. In the case of high temperatures (1/8>¢V), the
dephasing rate also increases when eV increases, but it in-
creases from a finite value (not shown), which is propor-
tional to the temperature. Things are quite different at weak
BS. At high temperatures, the dephasing rate decreases when
we increase eV: this behavior is symptomatic of current and
noise characteristic in a Luttinger liquid. In the low-
temperature case 1/8<<eV, for small eV, the lower the tem-
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perature, the larger the dephasing rate and the faster it de-
creases when we increase eV. At T=0, the dephasing rate is
“infinite” at eV=0. This Luttinger liquid behavior is in sharp
contrast with the result of Ref. 7.

The charge fluctuations are directly related to the current
fluctuations along the edges. The fluctuations of the currents
along the edges are also identical to the fluctuations of the
tunneling current. The tunneling current fluctuations were
computed nonpertubatively using Bethe-ansatz techniques.”!
We can therefore invoke current conservation at the point
contact to derive a general formula for the decoherence rate,
which describes the crossover from weak to strong BS (Ref.
22):

&P 1-v

(T;l)(z) = (VG = 1), (10)
where G;p=dyl is the differential conductance and [ is the
current, defined in Refs. 22 and 24. Equation (10) allows us
to describe the crossover in the dephasing rate from the weak
to the strong BS regime.

Remarkably, for the weak and strong BS regimes,
it is possible to go beyond the strong screening limit, and one
can compute Eq. (6) for an arbitrary Coulomb kernel f(x):
the triple-time integral in the second-order contribution
to the dephasing rate is computed analytically. Further
simplifications occur if f(x) is even. The result can be dis-
played in terms of the ratio between the arbitrary screening
dephasing rate and the strong screening dephasing rate (both
nonequilibrium contributions):

(7H? | (" 2
- ]

where the integral is a function of d/\; and we recall that «
is the spatial cutoff. If the Coulomb interaction kernel f(x) is
chosen as suggested before, the dephasing rate at arbitrary A
has an analytical expression: F=(md/2a)’[Eq(d/\,)
+No(d/\,)], where Ey(d/\,) and Ny(d/\,) are the Weber and
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Neumann functions,?® both of zero order. F is plotted in the
inset of Fig. 3, and (a/d)? is taken to be a small constant. F
is infinite in the absence of screening, but in practical situa-
tions, the presence of metallic gates always imposes a finite
screening length. F decreases with d/\; and approaches 1
when \; is close to the spatial cutoff « (strong screening).
The dephasing rate increases when the screening decreases.
To summarize, we have established a general formula for
the dephasing rate of a quantum dot located in the proximity
of a fluctuating fractional edge current. In the case where
screening is strong, we have shown that the dephasing rate is
given by the tunneling current noise, regardless of the regime
(weak or strong BS) which is considered. For weaker screen-
ing, the spatial dependence of the density-density correlation
function has to be taken into account, but we have shown
explicitly that the long-range nature of the Coulomb interac-
tion can be included as a trivial multiplicative factor. We
conjecture that in order to describe the crossover in the
dephasing rate between weak and strong backscattering cases
for arbitrary screening, it is sufficient to use the strong
screening crossover result of Eq. (10) and to insert it into Eq.
(I11). On the one hand, the fact that the dephasing rate de-
creases with increasing voltage can be reconciled with the
fact that the charge noise is directly related to the BS current
noise in the FQHE. There it is known, and seen experimen-
tally, that when the bias voltage dominates over the tempera-
ture, both the tunneling current and noise bear a power-law
dependence ~V?*~! with a negative exponent. On the other
hand, the fact that at low temperatures the dephasing rate for
fractional filling factors can be lower than that of the integer
quantum Hall effect comes as a surprise, which is contained
in the temperature-voltage crossover formula of Eq. (8). It is
yet another consequence of chiral Luttinger liquid theory.
The present results could be tested with gated heterostruc-
tures as in Ref. 6 [see Fig. 4(a) of this work], provided that
the electron mobility and the magnetic field are further in-
creased in order to achieve the FQHE regime and provided
that the quantum dot is placed next to the QPC as in Fig. 1.
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