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Current correlations in an interacting Cooper-pair beam splitter
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We propose an approach allowing the computation of currents and their correlations in interacting multiterminal
mesoscopic systems involving quantum dots coupled to normal and/or superconducting leads. The formalism
relies on the expression of branching currents and noise crossed correlations in terms of one- and two-particle
Green’s functions for the dots electrons, which are then evaluated self-consistently within a conserving
approximation. We then apply this to the Cooper-pair beam-splitter setup recently proposed [L. Hofstetter
et al., Nature (London) 461, 960 (2009); Phys. Rev. Lett. 107, 136801 (2011); L. G. Herrmann et al., ibid. 104,
026801 (2010)], which we model as a double quantum dot with weak interactions, connected to a superconducting
lead and two normal ones. Our method not only enables us to take into account a local repulsive interaction on
the dots, but also to study its competition with the direct tunneling between dots. Our results suggest that even a
weak Coulomb repulsion tends to favor positive current cross correlations in the antisymmetric regime (where
the dots have opposite energies with respect to the superconducting chemical potential).
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I. INTRODUCTION

With the development of nanofabrication techniques, more
experiments in mesoscopic physics draw inspiration from
quantum optics. Among them, there is a particular interest in
generating entangled electronic states. Beyond the exploration
of nonlocal quantum effects through the test of Bell’s inequal-
ities in a solid-state device, there are potential applications in
quantum teleportation and information processing, where such
sources of entangled pairs could be integrated with existing
technology and infrastructure.

Because of the spin singlet character of Cooper pairs,
superconductors constitute a natural source of spin-entangled
Einstein-Podolsky-Rosen (EPR) pairs. The difficulty then
lies in spatially separating the constituents of these pairs
coherently. The commonly proposed setup to accomplish
such a task is composed of a superconductor connected to
a fork made out of two normal metal leads.1–4 The mechanism
for such a Cooper-pair beam splitter then relies on crossed
Andreev reflexion (CAR), a process in which the two electrons
of a Cooper pair are sent into different normal electrodes4–6 (as
opposed to the conventional direct Andreev reflexion, which
is local).

Previous attempts on metallic structures revealed the
difficulty of distinguishing CAR form other contributions as
there are various parasitic processes.7–9 Several theoretical
works have suggested different directions in order to provide
preferential enhancement of CAR, from simple spin and
energy filtering to the effect of strong electron interactions,
susceptible to favor single-particle over pair tunneling.10–14

An important step in the observation of Cooper-pair
splitting came from recent experimental works in tunable
double quantum dot devices based on carbon nanotubes15

and InAs nanowires.16 These systems showed great promise,
as they not only display local Coulomb repulsion on the
dots, but also allow for the exploration of different energy
configurations of the dots, two properties that should promote
CAR over other processes.

Nevertheless, further efforts are needed both experimentally
and theoretically. Future works should focus on time-resolved

correlation measurements of the currents in the normal leads,
particularly relevant to characterize nonlocal effects. However,
to this date, they remain to be measured experimentally, and
still represent an important challenge for theory, as there
are only a few examples of interacting mesoscopic devices
driven out of equilibrium, where current correlations have been
obtained,17–21 none of which involve hybrid systems.

In this work, we propose a general approach for computing
currents and current-current correlations in an interacting
multiterminal mesoscopic device involving quantum dots
coupled to multiple normal and superconducting leads. While
it is known22 that these quantities can be expressed in terms
of the single- and two-particle Green’s functions of the
dots electrons, here we show that those Green’s functions
can be computed self-consistently through a �-derivable
approximation, thereby ensuring that all conservation laws
are respected. The method relies on a perturbation theory as
formulated by Kadanoff and Baym,23 extended to the usual
Keldysh contour to allow for a nonequilibrium situation, and
will be referred to as the Kadanoff-Baym-Keldysh (KBK)
approach.

When applying this KBK formalism to the double-dot
Cooper-pair beam-splitter setup, we show that even weak
interactions have an important effect on both current and cross
correlations in the CAR-dominated regime, and that there
exists a competition between Coulomb interaction and direct
interdot tunneling.

The outline of the paper is as follows. In Sec. II, we discuss
the general model for a set of quantum dots connected to
multiple leads, and derive the corresponding expression for
currents and current-current correlations. We then show in
Sec. III how the KBK approach allows us to compute the
single- and two-particle Green’s function. In Sec. IV, we apply
this formalism to the case of the Cooper-pair beam splitter. We
conclude in Sec. V.

II. MODEL

Our starting point is a set of quantum dots (labeled α), with
energies εα , tunnel coupled to multiple leads (labeled j ) with
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tunneling amplitudes tαj . The leads have identical chemical
potentials μj = μ and are characterized by their voltage bias
Vj and superconducting order parameter �j (normal leads
correspond to �j = 0). The Hamiltonian for such a system is
of the form

H =
∑

α

Hα +
∑

j

Hj +
∑
j,α

Hjα. (1)

In terms of Nambu spinors d̂†
α = (d†

α↑dα↓), the dots Hamilto-
nians read

Hα = εαd̂†
ασzd̂α +

∑
β �=α

(
tαβ

2
d̂†

ασzd̂β + H.c.

)
+ Uαnα↑nα↓,

(2)

where we also introduced the interdot tunneling amplitude tαβ

and the local Coulomb repulsion Uα .
Similarly, the leads Hamiltonians are given by

Hj =
∑

k

�̂
†
jk(ξkσz + �jσx)�̂jk, (3)

where ξk = k2

2m
− μ and we used the Nambu spinors �̂

†
jk =

(�†
jk↑�j−k↓). Here and throughout the remainder of the paper,

we work with physical dimensions corresponding to h̄ = 1.
We chose to transfer the voltage dependence onto the

tunneling term using the Peierls substitution: Tjα(t) =
tjασze

iσzVj t . The tunneling Hamiltonian is thus given by

Hjα =
∑

k

[�̂†
jkTjα(t)d̂α + H.c.]. (4)

Since the total Hamiltonian is quadratic in the leads electrons
operators, we can integrate out these degrees of freedom. The
effect of the leads is then captured by a tunneling self-energy

̌T (t1,t2) = ∑

j 
̌j (t1,t2),


̌j,μ1μ2 (t1,t2) = [
T̃ †

jα1
(t1)g̃j (t1,t2)T̃jα2 (t2)

]η1η2

σ1σ2
, (5)

which depends on the tunneling amplitude written in Nambu-
Keldysh space T̃jα(t) = τz ⊗ Tjα(t), as well as the standard
noninteracting Green’s function for lead electrons, given in
Nambu-Keldysh space by

g̃
η1η2
j,σ1σ2

(t1,t2) = −i
∑

k

〈
TK�̂jkσ1

(
t
η1
1

)
�̂

†
jkσ2

(
t
η2
2

)〉
. (6)

For convenience, we also introduced the more compact
notation μi ≡ {σi,αi,ηi}, condensing the Nambu-dot-Keldysh
components into a single index.

This averaging over the leads degrees of freedom allows
us to express the relevant physical quantities in terms of the
tunneling self-energy as well as the dots electrons single- and
two-particle Green’s functions. These are defined in Nambu-
dot-Keldysh (NDK) space respectively as

Ǧμ1μ2 (t1,t2) = −i
〈
TKd̂α1σ1

(
t
η1
1

)
d̂†

α2σ2

(
t
η2
2

)〉
(7)

and

Ǩμ1μ2μ3μ4 (t1,t2,t3,t4)

= −〈
TKd̂α1σ1

(
t
η1
1

)
d̂α2σ2

(
t
η2
2

)
d̂†

α3σ3

(
t
η3
3

)
d̂†

α4σ4

(
t
η4
4

)〉
, (8)

where TK corresponds to the time-ordering operator along the
Keldysh contour.

In particular, the average current from the dot α into the lead
j is readily obtained using standard methods22 as a function
of the single-particle Green’s function Ǧ,

〈Ijα(t)〉 = e

2
TrNDK

[
(τz ⊗ Iα ⊗ σz)

∫
dt ′(Ǧ(t,t ′)
̌j (t ′,t)

−
̌j (t,t ′)Ǧ(t ′,t))
]
, (9)

where the matrix Iα is defined in dot space, with elements
[Iα]α1α2 = δαα1δαα2 , and TrNDK corresponds to the trace in the
full Nambu-dot-Keldysh space.

Similarly, the current correlations can be expressed in terms
of the two-particle Green’s function Ǩ as

〈
I

η

iα(t)I η′
jβ(t ′)

〉

= e2
∑
σσ ′

σσσ
z σ σ ′σ ′

z

∫
dt1dt2

∑
μ1μ2

×[

̌i,νμ1 (t,t1)
̌j,ν ′μ2 (t ′,t2)Ǩμ1μ2νν ′ (t1,t2,t,t

′)

−
̌i,νμ1 (t,t1)
̌j,μ2ν ′(t2,t
′)Ǩμ1ν ′νμ2 (t1,t

′,t,t2)

−
̌i,μ1ν(t1,t)
̌j,ν ′μ2 (t ′,t2)Ǩνμ2μ1ν ′(t,t2,t1,t
′)

+
̌i,μ1ν(t1,t)
̌j,μ2ν ′(t2,t
′)Ǩνν ′μ1μ2 (t,t ′,t1,t2)

]
, (10)

with the labels ν ≡ {σ,α,η} and ν ′ ≡ {σ ′,β,η′}.

III. KADANOFF-BAYM-KELDYSH FORMALISM

In order to proceed further, we need to evaluate the
fully interacting dots electrons Green’s functions Ǧ and
Ǩ . This is achieved through a perturbative expansion in
the Coulomb interaction Uα , within a so-called �-derivable
approximation.23 Such a conserving approximation relies on
the truncation of the Luttinger-Ward24 functional �[Ǧ]. The
latter is a function of the fully interacting single-particle
Green’s function Ǧ, and corresponds to the sum of all closed-
loop two-particle irreducible diagrams. Unfortunately, there is
no simple closed form of the Luttinger-Ward functional, which
is usually represented in a more convenient diagrammatic form
[see Fig. 1(a)].

The first striking feature of the Luttinger-Ward functional
is that it serves as a generating functional for the interacting
self-energy. Indeed, taking the functional derivative of �[Ǧ]
with respect to the one-particle Green’s function Ǧ leads to


̌C,μ1μ2 (t1,t2) = δ�[Ǧ]

δǦμ2μ1 (t2,t1)
. (11)

Note that the resulting expression for the self-energy is itself a
function of the full propagator, so that Ǧ has to be derived self-
consistently. This is achieved by solving the Dyson equation,

Ǧ(t1,t2) = Ǧ0(t1,t2) +
∫

dt3dt4Ǧ
0(t1,t3)

× [
̌C(t3,t4) + 
̌T (t3,t4)]Ǧ(t4,t2), (12)

where Ǧ0 is the dots electrons Green’s function in absence of
both interactions and tunneling to the leads.
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FIG. 1. Diagrammatic representation of (a) the contributions to
the Luttinger-Ward functional, (b) the Bethe-Salpeter equation in
the horizontal particle-hole channel, and (c) the two-particle Green’s
function in terms of the single-particle one and the vertex function.
The full lines correspond to full single-particle Green’s functions
for the dot electrons; the disks represent bare vertices. The large
circles and squares correspond to the irreducible and full vertices,
respectively, while the shaded block stands for the two-particle
Green’s function Ǩ defined in the text.

Further differentiating the Luttinger-Ward functional gives
access to more involved many-body objects. In particular,
one can derive an expression for the irreducible vertex from
a second-order functional differentiation. In the horizontal
particle-hole25 channel, it reads

�̌μ1μ2μ3μ4 (t1,t2,t3,t4) = − δ2�[Ǧ]

δǦμ2μ1 (t2,t1)δǦμ3μ4 (t3,t4)
. (13)

This in turn allows us to write the full vertex function �̌ by
self-consistently solving the Bethe-Salpeter equation in the
corresponding irreducibility channel [see Fig. 1(b)]:

�̌μ1μ2μ3μ4 (t1,t2,t3,t4)

= �̌μ1μ2μ3μ4 (t1,t2,t3,t4) +
∫

dt5 . . . dt8

∑
μ5...μ8

�̌μ1μ2μ5μ6 (t1,t2,t5,t6)Ǧμ5μ7 (t5,t7)Ǧμ8μ6 (t8,t6)

× �̌μ7μ8μ3μ4 (t7,t8,t3,t4). (14)

The two-particle dots electrons Green’s function Ǩ is then
readily obtained from

Ǩμ1μ2μ3μ4 (t1,t2,t3,t4)

= Ǧμ1μ4 (t1,t4)Ǧμ2μ3 (t2,t3) − Ǧμ1μ3 (t1,t3)Ǧμ2μ4 (t2,t4)

+
∑

μ5...μ8

∫
dt5 . . . dt8Ǧμ1μ5 (t1,t5)Ǧμ2μ8 (t2,t8)

× �̌μ5μ6μ7μ8 (t5,t6,t7,t8)Ǧμ7μ3 (t7,t3)Ǧμ6μ4 (t6,t4). (15)

It follows that from a given truncation of �[Ǧ], one can deter-
mine both the full single- and two-particle Green’s function,
respectively via the derivative of the Luttinger-Ward functional
and the self-consistent solution of the Dyson equation, then
through the second derivative of �[Ǧ], after solving the
Bethe-Salpeter equation. Note that although both Dyson and
Bethe-Salpeter equations have to be solved self-consistently,

FIG. 2. (Color online) Cooper-pair beam-splitter setup: (a) rep-
resentation of the experimental device where a nanowire/nanotube
is coupled to normal and superconducting leads and (b) schematic
representation of the double-dot model considered in the text (with
the corresponding notations).

the proposed scheme is only one-particle self-consistent, since
the Luttinger-Ward functional is a function of Ǧ only.

IV. APPLICATION TO THE COOPER-PAIR
BEAM SPLITTER

Let us now illustrate this procedure on the particular
example of the double-dot Cooper-pair beam splitter, whose
setup is recalled in Fig. 2.

A. Derivation of the self-energy and vertex function

Our system now consists of a superconducting lead at
potential VS = 0, coupled to two quantum dots (labeled 1 and
2), which are each connected to a different normal electrode
(at potential VL and VR , respectively). We will be interested
in the branching currents IL1 and IR2 as well as their cross
correlations. Here IL1 corresponds to the current between dot
1 and the left normal lead, while IR2 flows between dot 2 and
the right normal lead.

In what follows, we focus on the first term in the
diagrammatic expansion of the Luttinger-Ward functional so
that our conserving approximation amounts to writing

�[Ǧ]= i

2

∫
dt

∑
σ,σ ′
η,α

τ ηη
z Uασσσ

z σ σ ′σ ′
z Ǧ

ηη

αα
σσ ′

(t,t)Ǧηη

αα
σ̄ σ̄ ′

(t,t),

(16)

where σ̄ = −σ .
Following the procedure outlined in the previous section,

we first obtain the interacting self-energy, which in frequency
space writes


̌C,μ1μ2 (ω) = iUα1δα1α2τ
η1η2
z σ σ1σ1

z σ σ2σ2
z

∫
d�

2π
Ǧμ1μ2 (�).

(17)

One readily sees from this expression that, at this level of
approximation, the interacting self-energy in Fourier space
is frequency independent, and can thus be viewed as a
renormalization of the dots energies. However, this constant
still needs to be evaluated self-consistently, through the Dyson
Eq. (12), as it depends on the full single-particle Green’s
function Ǧ.
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The irreducible vertex is further obtained following
Eq. (13), and takes the following simple frequency independent
form in Fourier space:

�̄μ1μ2μ3μ4 = iτ η1η2
z δη1η3δη1η4Uα1δα1α2δα1α3δα1α4

× σσ1σ1
z σ σ3σ3

z δσ1σ̄4δσ2σ̄3 , (18)

where we used the energy conservation to introduce
�̌(ω1,ω2,ω3,ω4) = 2πδ(ω1 − ω2 − ω3 + ω4)�̄. The result of
Eq. (18) is nothing but the bare interaction vertex, where
one recognizes the properties of locality in time (all ti and
ηi are equal) and space (all αi are equal), as well as the
spin conservation (the sum of incoming and outgoing spin
projections is zero).

Substituting this expression for the irreducible vertex back
into the Bethe-Salpeter Eq. (14) and moving to Fourier
space, one notices that the frequency-dependent full vertex
function depends on a single frequency argument, so that by
further introducing �̌(ω1,ω2,ω3,ω4) = 2πδ(ω1 − ω2 − ω3 +
ω4)�̄(ω2 − ω1), we are left with

�̄μ1μ2μ3μ4 (ω2 − ω1)

= �̄μ1μ2μ3μ4 +
∫

d�

2π

∑
μ5...μ8

�̄μ1μ2μ5μ6

× Ǧμ5μ7 (�)Ǧμ8μ6 (� + ω2 − ω1)�̄μ7μ8μ3μ4 (ω2 − ω1).

(19)

In order to extract an explicit expression for the full vertex,
one needs to invert Eq. (19), which cannot be straightforwardly
achieved since we are dealing with fourth-order tensors.
To circumvent this issue, we propose to construct a matrix
representation of the full and irreducible vertices in an enlarged

NDK⊗NDK space, by combining two by two the four labels
of these tensor elements.26 Indeed, the matrix representation
of the single-particle Green’s function relies on identifying a
single coordinate in NDK space ni (running from 1 to 8) out
of the values of the Nambu, dot, and Keldysh components
{σi,αi,ηi}. In the same spirit, we construct enlarged 82 × 82

matrices to represent the full and irreducible vertices, in which
the coordinates are obtained from a linear combination of the
ni according to

Ǧ
η1η2

α1α2
σ1σ2

= [Ǧ]n1n2 ⇒ �̄
η1η2η3η4

α1α2α3α4
σ1σ2σ3σ4

= �̄n1n2n3n4 = [�̄]N1N2 ,

(20)

with N1 = 8(n1 − 1) + n2 and N2 = 8(n3 − 1) + n4. The
resulting 64 × 64 matrices, which we hereby denote with
brackets, ultimately lead to the following explicit form for
the full-vertex function:

[�̄(ω2 − ω1)] = [�̄]{[1] − [�(ω2 − ω1)] × [�̄]}−1, (21)

where we introduced the generalized polarization bubble [�]
as

[�(ω)] =
∫

d�

2π
[Ǧ(�) ⊗ ǦT (� + ω)], (22)

and ǦT is the transpose of the matrix Ǧ in NDK space.

B. Numerical results

We computed numerically the currents and crossed correla-
tions as a function of the left lead voltage VL (with fixed VR),
for different values of the interaction parameter U1 = U2 = U .
We focused on the most favorable regime for CAR, i.e., when
the dots energies are chosen antisymmetric with respect to
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FIG. 3. (Color online) Currents IL1 and IR2 (in units of I0 = e�/h̄) as a function of VL, for different values of the interaction U =
0,0.05,0.1,0.15�, and the parameters (in units of �) β = 100, ε1 = 0.5, ε2 = −0.5, VR = −0.7, and tL1 = tS1 = tS2 = tR2 = 0.2. The upper
panels correspond to td = 0, while the lower panels are computed for td = 0.2�.
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the superconductor chemical potential, and considered the
situations of a negligible and a strong direct tunneling.

We first solve self-consistently the Dyson equation in order
to compute the single-particle Green’s function Ǧ and derive
the currents IL1 and IR2 from Eq. (9), which we present in
Fig. 3. In the absence of direct tunneling, the two currents are
almost identical, while for a finite td , the current difference is
significant, due to the opening of a new conduction channel
between the normal leads.

As a function of U , one readily sees that the amplitude
of all currents gets reduced, already for small values of the
interaction strength. This reduction does not equally affect
the whole range of voltages. In particular, the region of
high voltages, where the current is dominated by electron
cotunneling, is only marginally modified. However, the current
reduction in the presence of interactions is sizable in the
low-voltage CAR-dominated regime. Moreover, the effects
are qualitatively similar whether a direct tunneling is present
or not. These are purely static single-particle effects, and

can be understood as a detuning of the resonances in the
dots density of states,22 a direct consequence of the constant
interacting self-energy. Note that while the latter is frequency-
independent, it does depend on VL (through self-consistency),
explaining why different regions of the curves are not equally
affected.

The most interesting and nontrivial results come from the
calculation of the current cross correlations as both one- and
two-particle effects are present in this case. In what follows,
we focus on the zero-frequency current-current correlation
Siα,jβ (0) defined as

Siα,jβ (0) =
∫

dt(〈I−
iα(t)I+

jβ(0)〉 − 〈Iiα(t)〉〈Ijβ(0)〉). (23)

Substituting the expressions (9) for the branching cur-
rents and (10) for the current-current correlators, and using
Eq. (15) to replace the two-particle Green’s function in
terms of the full vertex, the zero-frequency correlations
become

Siα,jβ (0) = e2
∑
σσ ′

σσσ
z σ σ ′σ ′

z

∑
μ1μ2

{ ∫
dω

2π

[

̌i,νμ1
̌j,ν ′μ2Ǧμ1ν ′Ǧμ2ν − 
̌i,νμ1
̌j,μ2ν ′Ǧμ1μ2Ǧν ′ν − 
̌i,μ1ν
̌j,ν ′μ2Ǧνν ′Ǧμ2μ1

+ 
̌i,μ1ν
̌j,μ2ν ′Ǧνμ2Ǧν ′μ1

]
(ω) +

∫
dω1

2π

dω2

2π

∑
μ5,μ6,μ7,μ8

�̄μ5μ6μ7μ8 (ω2 − ω1)
[(


̌i,νμ1Ǧμ1μ5Ǧμ7ν

)
(ω1)

(

̌j,ν ′μ2Ǧμ2μ8

× Ǧμ6ν ′
)
(ω2) − (


̌i,νμ1Ǧμ1μ5Ǧμ7ν

)
(ω1)

(

̌j,μ2ν ′Ǧν ′μ8Ǧμ6μ2

)
(ω2) − (


̌i,μ1νǦνμ5Ǧμ7μ1

)
(ω1)

(

̌j,ν ′μ2Ǧμ2μ8Ǧμ6ν ′

)
(ω2)

+ (

̌i,μ1νǦνμ5Ǧμ7μ1

)
(ω1)

(

̌j,μ2ν ′Ǧν ′μ8Ǧμ6μ2

)
(ω2)

]}
. (24)

Using the matrix representation introduced above, the cross
correlations can be recast in a much more manageable form as

SL1,R2(0) = e2
∫

dω

2π
TrNDK[�̌−

L1Ǧ�̌+
R2Ǧ](ω)

+ e2
∫

dω1

2π

dω2

2π
TrNDK2

{
[�̄(ω2 − ω1)]

× [(Ǧ�̌−
L1Ǧ)(ω1) ⊗ (Ǧ�̌+

R2Ǧ)T (ω2)]
}
, (25)

where we introduced the trace TrNDK2 over our enlarged
NDK⊗NDK matrices and defined the compact notations

�̌
η

iα(ω) = (παη
̌i(ω) − 
̌i(ω)παη), (26)

πα± = 1
2 (1 ± τz) ⊗ Iα ⊗ σz. (27)

The first term on the right-hand side of Eq. (25) is similar to
the expression obtained in the absence of interactions,22 only
here it involves the full dots electrons single-particle Green’s
function. The second term, however, corresponds to truly two-
particle effects.

In Fig. 4, we show the results obtained for the zero-
frequency current-current correlations in the absence of direct
tunneling. As in the noninteracting case, one can typically
isolate two relevant regimes of voltages. At low voltage
(VL < ε1), transport is dominated by CAR processes and we
observe positive cross correlations, which are approximately
constant. Increasing the interaction parameter leads to strongly
enhanced correlations in this region. This enhancement cannot

be solely attributed to the renormalization of Ǧ due to
interactions. We could check that the vertex-dependent term in
Eq. (25) contributes substantially to the final result, therefore
suggesting that interaction-induced two-particle effects are
particularly important in the Cooper-pair beam-splitter setup.

In the region of high voltage (VL > ε1), we came across
a somewhat counterintuitive result. In this regime, CAR is
greatly unfavored and one expects electron cotunneling to
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FIG. 4. (Color online) Zero-frequency current cross correla-
tions (in units of S0 = e2�/h̄) as a function of VL, for U =
0,0.05,0.1,0.15�, and the same parameters as in Fig. 3, in the absence
of direct tunneling.
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FIG. 5. (Color online) Zero-frequency current cross correla-
tions (in units of S0 = e2�/h̄) as a function of VL, for U =
0,0.05,0.1,0.15�, and the same parameters as in Fig. 3, in the
presence of direct tunneling, td = 0.2�.

be the dominant process, as confirmed by the current plots
of Fig. 3, where IL1 and IR2 are opposite in this region,
therefore signaling the transfer of electrons from the left to the
right normal lead. One would thus expect to observe negative
correlations, as was the case in the absence of interactions.
However, paying close attention to the high-voltage region
(see the magnified area of Fig. 4), we see that the effect of
interactions, although weak, is sufficient to flip the overall
sign, resulting in slightly positive correlations.

When a direct tunneling is allowed between dots, there is
still an important enhancement of positive correlations at low
voltage, even for weak interaction strength (see Fig. 5). Also,
in contrast with the constant behavior observed for td = 0, a
more pronounced feature develops around VL � −ε1. This is
reminiscent of what was observed in the noninteracting case,
and can be attributed to density of states effects.22 For voltages
VL > ε1, interactions have a weaker effect, and tend to reduce
the amplitude of cross correlations without causing any change
of sign.

Comparing the results of Figs. 4 and 5, it becomes clear that,
while a finite td tends to shift the correlations toward negative
values, a finite U has the opposite effect of shifting them
toward positive ones, thus revealing the competition between
interactions and direct tunneling.

V. CONCLUSION AND OUTLOOK

In conclusion, we presented a conserving approach to
study currents and their correlations in interacting out-
of-equilibrium mesoscopic systems. This Kadanoff-Baym-
Keldysh formalism amounts to computing the single- and
two-particle dots electrons Green’s functions from a given
truncation of the Luttinger-Ward functional. These are then
used to express the branching currents (in the same spirit as the
Meir-Wingreen formula27) as well as their correlations, there-
fore extending the Fisher-Lee/Landauer-Büttiker formula28

for the noise to the case of an interacting system. Applying
this formalism to the double-dot Cooper-pair beam-splitter
setup, we could study the effect of Coulomb interaction on
the currents and cross correlations, showing that even weak
interactions have an important effect in the CAR-dominated
regime, in particular, favoring positive cross correlations in
the antisymmetric case. Our results also exhibit the compe-
tition between local Coulomb interaction and direct interdot
tunneling, which affect the current correlations in an opposite
manner.

The present work can be extended in various ways. For
example, the formalism can also treat a nonlocal Coulomb
interaction between dots. This would yield new terms in
�[Ǧ], and therefore in the self-energy and irreducible vertex,
which can be easily accounted for. But the most natural
extension consists in including a second set of diagrams into
the Luttinger-Ward functional [see Fig. 1(a)]. In particular,
this second-order contribution would lead to a newly acquired
frequency dependence of the interacting self-energy and
irreducible vertex, and thus to new features associated with
these retardation effects. However, this would also make
the Bethe-Salpeter equation no longer invertible analytically,
therefore requiring a self-consistent numerical solution.
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