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ABSTRACT

In this short review (written to celebrate David Campbell’s 80th birthday), we provide a theoretical description of quantum transport in
nanoscale systems in the presence of single-electron excitations generated by Lorentzian voltage drives, termed Levitons. These excitations
allow us to realize the analog of quantum optics experiments using electrons instead of photons. Importantly, electrons in condensed mat-
ter systems are strongly affected by the presence of different types of non-trivial correlations, with no counterpart in the domain of photonic
quantum optics. After providing a short introduction about Levitons in non-interacting systems, we focus on how they operate in the presence
of two types of strong electronic correlations in nanoscale systems, such as those arising in the fractional quantum Hall effect or in super-
conducting systems. Specifically, we consider Levitons in a quantum Hall bar of the fractional quantum Hall effect, pinched by a quantum
point contact, where anyons with fractional charge and statistics tunnel between opposite edges. In this case, a Leviton–Leviton interaction
can be induced by the strongly correlated background. Concerning the effect of superconducting correlations on Levitons, we show that, in a
normal metal system coupled to BCS superconductors, half-integer Levitons minimize the excess noise in the Andreev regime. Interestingly,
energy-entangled electron states can be realized on-demand in this type of hybrid setup by exploiting crossed Andreev reflection. The results
exposed in this review have potential applications in the context of quantum information and computation with single-electron flying qubits.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0199567

A quarter of a century ago,1,2 Lorentzian voltage pulses were
introduced in the context of electron quantum transport as a time
domain version of the Anderson catastrophe:3 unless the time
integral of the injected bias voltage corresponds to an integer
number of flux quanta, the number of created electron–hole pairs
diverges. With the development of electronic quantum optics in
nanophysics/mesoscopic physics, these Leviton excitations have
been used to implement scenarios that mimic the Hanbury Brown
and Twiss (HBT) partitioning4 and Hong–Ou–Mandel (HOM)
collision5 experiments for single photon sources. Here, we exam-
ine to what degree these protocols can be extended to situa-
tions where electron correlations are operating. First, we consider
Lorentzian voltage pulses for Laughlin fractions of the fractional
quantum Hall effect and show that they give rise to minimal
excess noise when multiples of electron charge are injected as
opposed to fractional charges. Second, we show that the strongly
correlated background induces an effective interaction between
Levitons propagating in the edge states. Finally, we show that
Levitons in the presence of superconducting correlations can
realize a Cooper pair beam splitter operating in the time domain,

thus generating an on-demand source of delocalized energy-
entangled electron states.

I. INTRODUCTION

In modern condensed matter physics, the fabrication of
nanoscale systems at low temperatures allows us to access the wave-
like nature of electrons that manifests in coherent phenomena such
as interferences, similar to those associated with photons. This gave
rise to a field of research called mesoscopic physics. It was pio-
neered roughly about half a century ago by the ground-breaking
discovery interference effects in disordered metals soon to be fol-
lowed by that of the integer quantum Hall effect.6 Initially, transport
experiments were carried out at a constant electrical bias and many
peculiar phenomena were observed, such as the quantization of the
Hall conductance. Later on, the interest for a deeper exploration of
these systems pushed the mesoscopic physics community to explore
dynamical aspects of quantum transport by superposing to the DC
drive an AC voltage.
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The idea of pushing this investigation down to the single-
electron level gave rise during the last two decades to Electron Quan-
tum Optics (EQO). The wave-like nature of electrons traveling in
one-dimensional edge states of quantum Hall systems bears strong
analogies with the propagation of photons in wave-guides. Using
equivalents of beam-splitters and optical fibers, the electronic equiv-
alents of optical setups can be implemented in a solid-state system
and used to investigate mesoscopic transport at the single-electron
limit. These optical-like experiments provide a powerful tool to
improve the understanding of electron propagation in quantum
conductors. Inspired by the controlled manipulations of the quan-
tum state of light, the recent development of single-electron emitters
has opened the way to the controlled preparation, manipulation, and
characterization of single to few electronic excitations that propagate
in EQO setups. However, these experiments go beyond the sim-
ple transposition of optics concepts in electronics as several major
differences occur between electrons and photons. Photons are neu-
tral particles that interact weakly and obey Bose–Einstein statistics,
while electrons are fermions, they bear a charge and, thus, inter-
act strongly with their environment, and they are accompanied by a
Fermi sea.

In the context of EQO, a remarkable effort has been put forth
by the condensed matter community to implement on-demand
sources of electronic wave packets in mesoscopic systems.7–11 Here,
we focus on a type of on-demand source of electrons, which is
based on the application of a time-dependent voltage to a quan-
tum conductor.9,10,12–14 However, an arbitrary AC voltage generally
excites unwanted neutral electron–hole pairs, thus spoiling at its
heart the idea of a single-electron source. This issue was overcome
thanks to the theoretical prediction by Levitov and co-workers that
a superposition of quantized Lorentzian-shaped pulses, carrying
an integer number of particles per period, is able to inject single-
electron excitations devoid of any additional electron–hole pairs,
then termed Levitons.2,15,16 Indeed, this kind of single-electron source
is simple to realize and operate, since it relies on usual electronic
components, and potentially provides a high level of miniaturiza-
tion and scalability. For their fascinating properties,17 Levitons have
been proposed as flying qubits18 and as a source of entanglement19–21

with appealing applications for quantum information processing.
Moreover, quantum tomography protocols able to reconstruct their
single-electron wave-functions have been proposed22–24 and experi-
mentally realized.25

These single-electron sources allow the on-demand injection
of individual excitations into mesoscopic devices mimicking the
conventional photonic quantum optics, with quantum Hall edge
channels6 behaving as waveguides. For instance, the role of the half-
silvered mirror of conventional optics can be played by a quantum
point contact (QPC), where electrons are reflected or transmit-
ted with a tunable probability. In this sense, one seminal example
is the Hanbury Brown and Twiss (HBT) interferometer,4 where a
stream of electronic wave packets is excited along ballistic chan-
nels and is partitioned at the location of a QPC.26 Another fun-
damental achievement of EQO has been the implementation of
the Hong–Ou–Mandel (HOM) interferometer5 (see Fig. 1), where
electrons are incident on the opposite side of a QPC with a
tunable delay.7,10,27 By performing this kind of collision experi-
ments, it is possible to gather information about the forms of the

FIG. 1. HOM collisions between pairs of bosons and pairs of electrons at the loca-
tion of a semi-transparent mirror or its equivalent, a QPC, for electrons. Bosons
show a bunching effect and the two particles end up at the same output, while
electrons exit at opposite outputs.

impinging electronic wave packets and to measure their degree of
indistinguishability.13,28,29

As opposed to photons propagating in vacuum, electrons in
solid-state systems are affected by Coulomb interaction and its
interplay with other degrees of freedom in the material. As a
result, the research field of EQO in correlated nanoscale devices
presents many fascinating and appealing features, which have no
counterparts in standard quantum optics. Moreover, a full under-
standing of the propagation of single-electron excitations in cor-
related systems, such as the fractional quantum Hall edge states
and hybrid-superconducting systems, is extremely relevant for the
potential implementation of quantum information and computa-
tion schemes. Indeed, in very recent years, huge interest has been
devoted to the concept of electron flying qubits, which can be an
efficient and fully scalable solution toward solid-state quantum com-
putation. To this end, a better control on the realization of electron
flying qubits and their interactions would have to be achieved. This
requires a deeper investigation of Levitons in correlated systems. In
this review, we will introduce the powerful theoretical framework
for the description of transport properties of Levitons in the FQH
regime and in superconducting systems, or photo-assisted shot-
noise (PASN) formalism, and we will present the main results that
have been obtained so far in this field.

The scope of the paper is as follows. Levitons and electronic
quantum optics of the integer quantum Hall effect are introduced
pedagogically in Sec. II. The photo-assisted shot-noise formalism for
the weak backscattering regime of the fractional quantum Hall effect
(FQHE) is then considered in Sec. III, and Levitons are discussed
in this context in Sec. IV. Section V focuses on a time-dependent
version of the Cooper pair beam spitter. Perspectives and extensions
are described in Sec. VI.
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II. LEVITONS IN NON-INTERACTING SYSTEMS

Levitons have been first introduced in systems where corre-
lations between electrons play no role. As a starting point for our
main discussions, we begin by focusing on the emission and prop-
agation of Levitons in non-interacting systems. In this way, we can
introduce the general theoretical framework for the description of
fundamental concepts of EQO. In order to set the stage for our later
discussions, we present our calculations in the context of the Integer
Quantum Hall effect (IQHE)6 at ν = 1, where a correct theoretical
interpretation can be provided even by neglecting electronic corre-
lations. As a matter of fact, the results involving Levitons presented
in this case can be generalized to any non-interacting system where
quantum channels can be realized, e.g., a two-dimensional electronic
gas in the presence of a QPC.

As a first step, we demonstrate that Lorentzian pulses carry-
ing an integer number of electronic charges e behave as a controlled
source of single-electron excitations devoid of hole-like particles.

A. Edge state driven by a time-dependent voltage

Let us consider one edge of a quantum Hall bar at filling factor
ν = 1, connected to a reservoir driven by a generic time-dependent
voltage V(t). For the following discussion, it does not matter on
which chirality (right- or left-moving fermions) we focus on. A sin-
gle edge state of a quantum Hall bar at ν = 1 is described by the edge
Hamiltonian (we put ~ = 1 throughout the paper),

H0 =
∫ +∞

−∞
dx : 9†(x)(−iu∂x − µ)9(x) :, (1)

where µ = ukF is the chemical potential and

9(x) =
1

√
2πu

∫ +∞

−∞
dε eiε x

u a(ε). (2)

The fermionic operators a(ε) satisfy the following average
values over the equilibrium configuration at temperature θ :

〈a†(ε)a(ε ′)〉 = δ(ε − ε ′)f(ε), (3)

〈a(ε)a†(ε ′)〉 = δ(ε − ε ′)
(

1 − f(ε)
)

, (4)

where f(ε) =
[

1 + e
ε−µ
θ

]−1

is the Fermi distribution function at

temperature θ .
The time-dependent current flowing along this edge state is

given by J(t) = e2/(2π)V(t). The total charge C injected by the drive
into the edge states can be written as

C =
∫ +∞

−∞
dt J(t) =

e2

2π

∫ +∞

−∞
dt V(t). (5)

When time-dependent voltage V(t) is applied on a conducting
channel, the electrons that exit the contact and enter the conducting

channels have acquired a time-dependent phase eiχ(t), with

χ(t) = e

∫ t− x
u

−∞
dt′ V(t′), (6)

where we assumed a right-moving chirality for simplicity. It is useful
to introduce the Fourier transform of this voltage phase, which reads

p(ε) =
∫ +∞

−∞
dt eiεt eiχ(t). (7)

The fermion field operator in Eq. (2) can be recast in terms of this
Fourier transform as

9(x, t) =
1

√
2πv

∫ +∞

−∞
dε e−iε(t− x

u )ã(ε), (8)

where we defined

ã(ε) =
∫ +∞

−∞
dε1p(ε1)a(ε − ε1), (9)

which is expressed as a superposition of fermionic operators a(ε)
weighted by the coefficients p(ε). The latter can physically be under-
stood as the amplitude of probability of absorption and emission
of a photon with energy ε from the voltage drive. In the presence
of a time-dependent drive, electrons are excited above the chemical
potential when photons are absorbed and holes are generated below
the chemical potential when photons are emitted, with respect to the
equilibrium situation. In the following, we employ this description
of fermion fields in the presence of an external voltage to find out the
drive shape required to emit on-demand single-electron excitations.

B. Lorentzian drive as an on-demand single-electron

source

While the average value of the emitted charge can be controlled
by properly choosing the parameters of the voltage [see Eq. (5)],
additional neutral particles can be excited in the edge state, such as
electron–hole pairs. The number of holes can be calculated in terms
of fermionic operators ã(ε) as

Nh =
∫ µ

−∞
dε

〈

ã(ε)ã†(ε)
〉

, (10)

where the average is calculated at equilibrium. The integration is
performed exclusively over energies below the chemical potential.
In the zero temperature limit, one finds

Nh =
∫ 0

−∞
dε

∫ ε

−∞
dε1|p(ε1)|2. (11)

As a result, we linked the number of holes to the function p(ε) and,
as a consequence, to the shape of the time-dependent voltage drive.
A sufficient condition for having no electron–hole pairs on average
is, thus, given by p(ε) = 0 for ε < 0. This imposes a constraint on
the structure of eiχ(t): the integral in Eq. (7) vanishes when eiχ(t) has
no pole in the lower half plane, but at least one pole in the upper half
plane, since it has to be non-zero somewhere. The simplest choice of
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function that fulfills this requirement is

eiχ(t) =
t + iW

t − iW
, (12)

where W is a positive real number. By using the definition in Eq. (6),
one can find the corresponding voltage, which is a Lorentzian
voltage pulse,

Vlor(t) =
1

(−e)

2W

t2 + W2
, (13)

where W can now also be viewed as the half width at half height.
One can show that a quantized Lorentzian drive with a single peak
creates a quantum state of the form8,16

|9〉 =
∫

dxϕ∗
1 (x)9

†(x) |F〉 , (14)

where 9†(x) creates an electron at the position x, |F〉 is the ground
state of the system, and

ϕ1(x − ut) =
√

Wu

π

1

x − ut + iuW
(15)

is the wave-function of a single Leviton propagating in a chiral edge
state. For an implementation which can be compared to experi-
ments, one has to consider periodic voltage pulses. The expression
for a train of quantized Lorentzian pulses with period T is

Vlor(t) =
∞

∑

k=−∞

1

(−e)

2W

(t − kT )
2 + W2

. (16)

In this case, the wave-function becomes

ϕ1(x − ut) =

√

u sinh
(

2πW
T

)

2

{

sin

[

π
(

t − x
u

− iW
)

T

]}−1

. (17)

C. Current noise generated by Levitons in a QPC

geometry

Here, we consider a quantum Hall bar at filling factor ν = 1
in a four-terminal QPC geometry, presented in Fig. 2. Two peri-
odic voltages VR(t) and VL(t), with period T = 2π

�
, are applied to

reservoirs 1 and 4, respectively. In this setup, reservoirs 1 and 4
(respectively, 2 and 3) play the role of sources (respectively, detec-
tors) for right-movers and left-movers. The derivation of current
noise will be carried out for generic periodic voltages VR/L. At the
end of the calculations, we will focus on specific configurations for
the external drive and we will specify the form for VR/L.

Tunneling at the QPC is treated within the scattering matrix
theory.30–33 This kind of approach provides a phenomenological
description of tunneling processes in the presence of a QPC, with-
out resorting to a microscopic model, in terms of a scattering matrix
mixing incoming and outgoing fermion states. We remark that this
theory is valid only for free electrons and, when dealing with inter-
acting systems, it can no longer be applied. Fermion fields incoming

FIG. 2. Four-terminal setup for EQO experiments. Contacts 1 and 4 are used as
input terminals, while contacts 2 and 3 are the output terminals where current and
noise are measured.

into the edge states from the two reservoirs are given by

9in,R/L(x, t) ≡ 9R/L(x, t) = eiχR/L(t∓ x
u )ψR/L(x, t), (18)

where χR/L(t) = e
∫ t

−∞ dt VR/L(t) and ψR/L(x, t) are fermion fields
in the absence of the voltage drive exiting from terminals 1 and 4,
respectively. Electronic fields outgoing from the QPC are termed
9out,R/L(x, t), whether they enter into reservoir 2 or 3. Thus, one has

(

9out,L

9out,R

)

=
( √

T i
√

R

−i
√

R
√

T

) (

9in,L

9in,R

)

, (19)

where T is the transmission probability for incoming electrons and
R the reflection probability. The zero-frequency current noise is
defined as (α and β can assume the value 2 or 3)

Sαβ =
∫ T

2

− T

2

dt

∫ +∞

−∞
dt′ 〈δJα(xα , t)δJβ(xβ , t′)〉, (20)

where δJα(xα , t) ≡ Jα(xα , t)− 〈Jα(xα , t)〉 is the variation of the chiral
current operator incoming into reservoir α at position xα . The cur-
rent operator can be expressed as a balance of fermionic operators
entering or exiting reservoirs as

J2(x, t) = −ev9
†
out,R(x, t)9out,R(x, t), (21)

J3(x, t) = −ev = −ev9
†
out,L(x, t)9out,L(x, t). (22)

In the following, we focus on the cross-correlator of reservoirs 2
and 3, which we indicate by S . Below, we present the results for the
current noise in two relevant configurations of EQO, namely, Han-
bury Brown and Twiss (HBT) and the Hong–Ou–Madel experiment
(HOM).

1. Hanbury Brown and Twiss setup

In the HBT setup, a single voltage drive is turned on

VR(t) = V(t), VL(t) = 0, (23)
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where V(t) = Vdc + Vac(t), with Vac a generic function with period

T and satisfying
∫

T

2

− T

2

dt
T

Vac(t) = 0. We consider a periodic volt-

age source as it is relevant for the experimental case where data
acquisition is achieved over long times.

In order to conveniently deal with periodic voltage phases, we
introduce the following Fourier decomposition:34

eiχac(t) =
+∞
∑

l=−∞

pl e
−il�t, (24)

where χac(t) = e
∫ t

0 dt′ Vac(t
′) is a function with period T . Here, we

have introduced the Fourier coefficients,

pl =
∫ T

2

− T

2

dt eiχac(t) eil�t =
∫ T

2

− T

2

dt eiχ(t) ei(l+q)�t, (25)

where we defined q, the number of particle injected by V(t) in a
period, as

q = −
e

h

∫ T

2

− T

2

dt V(t). (26)

Equation (25) is the probability amplitude for particles to absorb
or emit an energy l�. The phase eiχac(t) and the coefficients pl

are the analogs in the periodic case of the quantity eiχ(t) and p(ε)
appearing in Eq. (7). This discretization of energy shifts can be
interpreted in terms of emission or absorption of finite quanta of
energy corresponding to photons of the electromagnetic field (typ-
ically microwaves) generated by Vac. These energy transfers due to
an AC drive are called photo-assisted processes and the pl in Eq. (25)
are called photo-assisted coefficients.12,34

In terms of the photo-assisted coefficients, the zero-frequency
noise at finite temperature θ due to a QPC with transmission T in
the HBT configuration is

S
HBT = −

e2

2π
RT

∑

l

|pl|2(l + q)� coth

[

(q + l)�

2θ

]

. (27)

This quantity is called photo-assisted shot-noise and carries infor-
mation about the properties of the driving voltage due to the pres-
ence of the coefficients pl. In the absence of the voltage drive, one
has pl = δl,0 and Eq. (27) gives the equilibrium thermal noise,

Sth = −RT
e2

π

θ

�
. (28)

At zero temperature, the noise in Eq. (27) becomes

S
HBT = −S0

∑

l

|pl|2|l + q|, (29)

where we introduced S0 = e2

T
RT.

The noise in the HBT geometry is typically used to verify the
single-electron nature of Levitons.7 This can be understood by com-
puting the number of electrons and holes generated by the drive.
Following Ref. 16, let us count the number of electrons generated
above the Fermi level (that we set to µ = 0) or holes below it on

a single right-moving edge channel. At θ = 0, these quantities are
defined as

Ne =
∫ +∞

−∞

dε

2π
2(ε)

〈

ã
†
in,R(ε)ãin,R(ε)

〉

,

Nh =
∫ +∞

−∞

dε

2π
2(−ε)

〈

ãin,R(ε)ã
†
in,R(ε)

〉

,

(30)

where 2(E) is the Heavyside distribution and we introduced the
operator

ãR(ε) =
1

√
2πv

∫ +∞

−∞
dt eiε(t− x

v )9in,R(x, t). (31)

Substituting the definition of operators ãR(ε) into Eq. (30), one finds

Ne =
1

(4πv)2

∑

l>−q

∣

∣pl

∣

∣

2 ∣

∣l + q
∣

∣�,

Nh =
1

(4πv)2

∑

l<−q

∣

∣pl

∣

∣

2 ∣

∣l + q
∣

∣�.

(32)

Therefore, the number of electrons plus the number of holes created
by the drive is proportional to the total noise (29). As will be clear
below, it is interesting to define the excess noise as

1S = S
HBT − Sdc, (33)

where Sdc is the noise due solely to Vdc (equivalent to setting
pl = δl,0). Indeed one can show, from Eq. (29), that it reads

1S = −S0

∑

l<−q

|pl|2|l + q|, (34)

i.e., it is proportional to the number of holes created by the drive. As
a result, at zero temperature,1S vanishes when the drive generates
electron-like excitations only.

Below, we give the theoretical results for the excess noise
for some experimentally relevant voltage drives. In particular, we
choose a sinusoidal (abbr. sin) drive, a square (abbr. sqr) drive, and
a Lorentzian (abbr. lor) drive, given, respectively, by

Vsin(t) = Vdc(1 − cos (�t)), (35)

Vsqr(t) = 2Vdc

∞
∑

k=−∞

2
(

t − kT
)

2

(

T

2
− t + kT

)

, (36)

Vlor(t) =
Vdc

π

+∞
∑

k=−∞

W

W2 +
(

t − kT
)2 . (37)

The corresponding form for the pl coefficients can be calculated and
the excess noise associated to each particular drive is reported in
Fig. 3 for the case of zero temperature.35

A common feature to all voltages is the appearance of min-
ima in correspondence of integer values of q = − eVdc

�
, showing that

an integer amount of charge always minimizes the generation of
electron–hole pairs. More interestingly, only the excess noise of the
Lorentzian voltage pulses exactly vanishes at zero temperature: the
excess noise of both the sinusoidal and the square drive stays well
above zero even for integer values of q.
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FIG. 3. Theoretical expectation for the excess noise 1S as a function of q
for a cosine drive (purple line), a square drive (red line), and a Lorentzian drive
(blue line), in units of S0, at zero temperature. The width of Lorentzian pulses is
W = 0.1T .

2. Hong–Ou–Mandel setup

In the HOM setup,

VR(t) = Vlor(t), VL(t) = Vlor(t + tD), (38)

where tD is the time shift between the two pulses and the parame-
ters of the Lorentzian drive are set so that q is an integer number
[see Eq. (37)]. The current noise computed in the HOM interfer-
ometer carries information about statistical properties of electrons.
In particular, it can be used to probe the fermion anti-bunching
property of electrons. For simplicity, we consider the limit of zero
temperature, where the quantum interference effects dominate over
the thermal fluctuations. The current noise reads

S
HOM = −S0

∑

l

|p̃l|2|l|, (39)

where we defined the HOM photo-assisted coefficients as

p̃l =
∫ T

2

− T

2

dt eiχac(t) e−iχac(t+tD) eil�t. (40)

It is instructive to recast the expression for noise in the case of q = 1
in terms of the single-Leviton wave-function in Eq. (17). In this way,
the HOM current noise becomes

S
HOM = 2S HBT − I (tD), (41)

where S HBT is the zero temperature limit of the HBT noise given in
Eq. (29) and

I (tD) = −2S0

∣

∣

∣

∣

∣

∫ T

2

− T

2

dt

T
ϕ1(t)ϕ

∗
1 (t + tD)

∣

∣

∣

∣

∣

, (42)

where the wave-function ϕ1(t) is related to the one introduced in
Eq. (17) as ϕ1(t) ≡ ϕ1(−vt). This last formula shows that the HOM
current noise is directly related to the overlap between the two wave-
functions of Levitons impinging at the QPC. In order to deal with

dimensionless quantity, it is common to introduce the following
ratio:

R(tD) =
S HOM

2S HBT
, (43)

and study the HOM noise normalized with respect to the HBT noise.
From the vanishing of excess noise1S for Levitons at zero temper-
ature (see the discussion about HBT setup), we know that the HBT
contribution becomes28

S
HBT = Sdc = S0q = S0, (44)

where in the last step, we put q = 1. By using these results, the HOM
ratio of two single-Leviton states colliding at the QPC becomes

R(tD) = 1 −
∣

∣

∣

∣

∣

∫ T

2

− T

2

dt

T
ϕ1(t)ϕ

∗
1 (t + tD)

∣

∣

∣

∣

∣

2

. (45)

Let us notice that for tD = 0, the overlap integral of the single-
Leviton wave-function reduces to the norm of the wave-function
ϕ1(t), which is, therefore, equal to 1. In this case, the HOM ratio
vanishes, in accordance with the expected anti-bunching effect of
fermions. An analytical form can be provided for this ratio at
q = 1,35

R(tD) =
sin2

(

π
tD
T

)

sin2
(

π
tD
T

)

+ sinh2 (

2π W
T

) . (46)

This HOM ratio is plotted in Fig. 4. Clearly, the interference effects
that lead to the total suppression of noise at tD = 0 are reduced for
greater time delays, when the distinguishability of the two Levitons
is increased.

It is interesting to point out a peculiar property of the ratio for
q = 1 at finite temperature. When thermal effects are relevant, one
has to provide a more general definition of the HOM ratio, where
equilibrium thermal noise Sth has to be subtracted from signals.

FIG. 4. Normalized HOM ratio R at q = 1, as a function of the time delay tD
between the two sources. The width of the Lorentzian is equal to W = 0.1T .
The dip at tD = 0 is a consequence of the Pauli principle obeyed by fermions.
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Therefore, for a finite temperature, the HOM ratio is defined as

R(tD) =
S HOM − Sth

2S HBT − 2Sth

. (47)

When a single Leviton is emitted by each source, this ratio has
exactly the same expression as the zero temperature limit given in
Eq. (46).

III. PHOTO-ASSISTED SHOT-NOISE FORMALISM IN

THE FQHE

The fractional quantum Hall effect (FQHE)36,37 represents a
seminal example of strongly correlated state where the interaction
between electrons cannot be neglected and gives rise to a new topo-
logical phase of matter. In the Laughlin sequence of the FQHE,
a single chiral channel exists at the boundary of the system and
the excitations are exotic quasi-particles with fractional charge and
statistics called anyons.38–41 The propagation of Levitons in these
exotic states of matter is currently under investigation.42 Here, we
present the photo-assisted shot-noise (PASN) formalism that is con-
veniently employed to deal with time-dependent voltage drives in
the FQH regime in the presence of a QPC.43

A. Model and Hamiltonian

In Sec. II, tunneling at the QPC in the IQH regime has
been treated within the scattering matrix approach. This theoreti-
cal description is not valid in the FQH phase because the presence of
correlation does not allow us to introduce fermion scattering states
as input and output states. Indeed, the excitations propagating along
the FQH edge states are bosons,44 while the ones who tunnel are
anyons,45 thus rendering tunneling at the QPC a highly non-linear
problem. The most convenient method to compute transport prop-
erties in this configuration is a perturbative calculation based on a
Hamiltonian approach.

We consider a four-terminal FQH bar in the presence of a QPC,
as shown in Fig. 2. For a quantum Hall system with filling factor ν
in the Laughlin sequence ν = 1/(2n + 1),37 with n ∈ N, a single chi-
ral mode emerges at each edge of the sample. The effective bosonic
Hamiltonian for edge states reads44

H0 =
∑

r=R,L

v

4π

∫ +∞

−∞
dx [∂x8r(x)]

2 , (48)

where 8(x) are the bosonic excitations. Due to the presence of the
voltage drives applied to reservoirs 1 and 4, the corresponding boson
modes experience a shift,

8R/L(x, t) = φR/L

(

t ∓
x

v

)

− e
√
ν

∫ t∓ x
v

−∞
dt′ VR/L(t

′). (49)

Tunneling between the two edges occurs through a QPC at
x = 0. The tunneling Hamiltonian describing weak backscattering
at the QPC reads as46,47

H
(qp)

T = 39R
†(0)9L(0)+ H.c., (50)

where 3 is the tunneling amplitude. Here, we introduced annihi-
lation and creation fields for Laughlin quasi-particles carrying frac-
tional charge −νe which are defined through the standard procedure

of bosonization.44 They read

9R/L(x ∓ vt) =
FR/L√

2πa
e−i

√
ν8R/L(x,t), (51)

where a is a short-distance cut-off and FR/L are the Klein
factors.31,44,47,48

The tunneling Hamiltonian will be treated perturbatively with
respect to the Hamiltonian H0. Note that only quasi-particles tun-
neling contribution has to be considered in the weak backscattering
regime, since this is the most relevant process in the renormalization
group sense.45

B. Transport properties in the QPC geometry

We are interested in computing charge current and noise in
EQO-like configurations for fractional filling factors in the Laugh-
lin sequence. To this end, we introduce the charge current operator
for FQH edge states and we present the perturbative approach to
compute the average current and noise to lowest order in3.

Charge current operators for right- and left-moving modes
can be defined by resorting to the continuity equation of densities
ρR/L(x, t), namely,

∂tρR/L(x, t)+ ∂xJR/L(x, t) = 0. (52)

According to the chirality of edge states, one finds

JR/L(x, t) = ∓evρR/L(x, t), (53)

where ρR/L(x, t) = (2π)−1
(

∂x8R/L(x, t)
)

are density operators evolv-
ing with respect to the whole Hamiltonian. Starting from the
definition of the chiral current operator, we can define the operators
for the charge current entering reservoirs 2 and 3 as

J2/3(t) = JR/L(±d, t), (54)

where the interfaces between edge states and contacts 2 and 3 are
placed in x = ±d, respectively.

Below, we compute the average charge current and the current
noise using the Kelysh formulation of non-equilibrium statistical
physics to lowest order in the tunneling at the QPC.

1. Average charge current

In the absence of tunneling processes (3 = 0), the zeroth-order
contributions correspond to the current generated by the two volt-
ages along the two separated edge channels with opposite chirality.
The total charge CR/L emitted by VR/L into the edge states, thus, reads

CR/L =
∫ T

2

− T

2

dt〈J2/3(t)〉(0) =
e2ν

�
V
(R/L)
dc = −eqR/L, (55)

where 〈J2/3(t)〉(0) is the current in the absence of the QPC, V
(R/L)
dc

=
∫

T

2

− T

2

dt
T

VR/L (t), and qR/L = − eνV
(R/L)
dc
�

are the numbers of elec-

tronic charges injected by VR/L.
Due to the QPC, some of the particles emitted into the edge

states are backscattered. Since the terms involving a different num-
ber of annihilation or creation field operators with a defined chirality
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have a vanishing average value, 〈J(1)2/3(x, t)〉 = 0 and the only remain-

ing contribution is due to 〈J(2)2/3(t)〉. This term can be physically
identified as the current due to the reflection of particles incom-
ing from reservoirs 1 and 4, respectively. These currents are usually
termed backscattering currents46,49 and are equal up to a sign. Thus,
we can define

JB(t) = 〈J3(t)〉(2) = −〈J2(t)〉(2), (56)

where 〈J2/3(t)〉(2) is the charge current to second order in the tun-
neling amplitude. The backscattering current can be evaluated by
computing the average on the unperturbed Hamiltonian. One finds

JB(t) = 2iνe |λ|2
∫ +∞

0

dτ sin

[

νe

∫ t

t−τ
dt′′V−(t

′′)

]

×
∑

ε=+,−
ε e2νG (ετ ), (57)

where we defined λ ≡ 3/(2πa) and the voltage difference V−(t)
= VR(t)− VL(t) and

G (t − t′) ≡
〈

φR/L(0, t)φR/L(0, t′)− φ2
R/L(0, t)

〉

= ln

{

π(t − t′)θ

sinh [π(t − t′)θ] [1 + iωc(t − t′)]

}

(58)

is the boson correlation function for the unperturbed edge at tem-
perature θ . The above expression is valid as long as all the energy
scales are much smaller than the high-energy cut-off ωc = u/a.

Since VR and VL are time-dependent voltages with period
T = 2π

�
, we expect the current to satisfy JB(t) = JB(t + T ). It

is, thus, relevant to consider the average over one period of the
backscattering current,

JB(t) = 2iνe |λ|2
∑

l

∣

∣pl

∣

∣

2

×
∫ +∞

−∞
dτ sin

[(

qR − qL + l
)

�τ
]

e2νG (τ ). (59)

Similarly to what happens in the IQH, the average backscattered cur-
rent is directly related to the properties of the voltage drive through
the coefficient p̃l and to the injected charges qR and qL.

The integral in Eq. (59) can be computed to leading order in
1/ωc and reads35

JB(t) =
2νe |λ|2

0 (2ν)

(

2πθ

�

)2ν−1
∑

l

∣

∣pl

∣

∣

2
sinh

[

(qR − qL + l)�

2θ

]

×
∣

∣

∣

∣

0

[

ν − i
(qR − qL + l)�

2πθ

]∣

∣

∣

∣

2

, (60)

where 0(x) is the Euler Gamma function.50

2. Current noise

We now turn our attention to the period averaged zero-
frequency current noise, which is defined as

Sαβ =
∫

T

0

dt

T

∫ +∞

−∞
dt′

〈

δJα(t)δJβ(t
′)
〉

, (61)

where α and β refer to reservoir 2 or 3. The time correlator
〈δJα(t)δJβ(t′)〉 depends independently on two times t and t′ and is
periodic in both.

We focus on the auto-correlator of reservoir 2, namely, S22,
and we use the shorthand notation SC ≡ S22. Expanding SC to
leading order in3, we find

SC = 2(νe)2 |λ|2
∫

T

0

dt

T

∫ +∞

−∞
dτ cos

[

νe

∫ t

t+τ
V−(t

′′) dt′′
]

e2νG (τ ).

(62)

Even though the noise is generated in a double-drive configura-
tion, it is interesting to point out that it actually depends only on
the single effective drive V−(t). Therefore, the same behavior can
be obtained in a single-drive configuration, where reservoir 4 is
grounded (VL(t) = 0) and reservoir 1 is contacted to the periodic
voltage V−(t). Even though one might consider this as merely a shift
in voltage, such a result cannot be obtained by means of a gauge
transformation. In this sense, the charge noise incidentally acquires
the same expression in these two physically distinct experimental
setups. As will be clearer in the following, for the charge case, this is
a consequence of the presence of a single local (energy independent)
QPC. Generally, we expect that the double-drive and the single-
drive (VR(t) = V−(t) and VL(t) = 0) configurations return different
outcomes for other physical observables, such as heat noise.51

As was done for the average current, the noise can be written in
terms of the coefficient p̃l as

SC = 2(νe)2 |λ|2
∑

l

∣

∣p̃l

∣

∣

2
∫ +∞

−∞
dτ cos

[

(qR − qL + l)�τ
]

e2νG (τ ).

(63)

Performing the integral yields35

SC =
4(νe)2 |λ|2

0 (2ν)

(

2πθ

�

)2ν−1
∑

l

∣

∣p̃l

∣

∣

2
cosh

[

(qR − qL + l)�

2θ

]

×
∣

∣

∣

∣

0

[

ν − i
(qR − qL + l)�

2πθ

]∣

∣

∣

∣

2

. (64)

3. DC case and zero temperature limits

The expressions for charge current and noise that we have just
derived are valid for a generic temperature θ � ωc and for all kinds
of periodic voltage drives. Before moving on with our discussion, it
is useful to discuss two limiting cases. The first one is the zero tem-
perature limit, where the temperature is assumed to be the lowest
energy scale in the problem. In the second case, only a DC drive Vdc

is applied to reservoir 1 and reservoir 4 is grounded.

a. Zero temperature limit. In this case, Eqs. (60) and (64)
become

JB(t)
∣

∣

∣

θ=0
=
νe

�
|λ|2

2π

0(2ν)

(

�

ωc

)2ν
∑

l

∣

∣pl

∣

∣

2

×
∣

∣qR − qL + l
∣

∣

2ν−1
sign(qR − qL + l), (65)
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SC

∣

∣

∣

θ=0
=
(νe)2

�
|λ|2

4π

0(2ν)

(

�

ωc

)2ν
∑

l

∣

∣pl

∣

∣

2 ∣

∣qR − qL + l
∣

∣

2ν−1
.

(66)

In the fractional case, each contribution to the sum follows a power
law in qR − qL + l with exponent 2ν − 1. Such a (negative) power-
law behavior in the tunneling properties at zero temperature is
typical of Luttinger liquids49,52–54 (in particular of chiral Luttinger
liquid in the weak backscattering regime where the exponent is
negative).

b. DC case. Here, VR(t) = Vdc and VL(t) = 0. This particular
configuration entails that the photo-assisted coefficients reduce to
p̃l = δl,0. Thus, the current and the noise become

JB =
2νe

ωc

|λ|2
1

0(2ν)

(

2πθ

ωc

)2ν−1 ∣

∣

∣

∣

0

(

ν − i
νeVdc

2πθ

)∣

∣

∣

∣

2

sinh

(

νeVdc

2θ

)

,

(67)

SC =
2(νe)2

ωc

|λ|2
1

0(2ν)

(

2πθ

ωc

)2ν−1 ∣

∣

∣

∣

0

(

ν − i
νeVdc

2πθ

)∣

∣

∣

∣

2

× cosh

(

νeVdc

2θ

)

, (68)

where q� = νeVdc and JB is the average current (it is time indepen-
dent as there is no AC voltage). These expressions are valid both at
zero and finite temperature θ . It is instructive to discuss the limit
θ → 0 of Eqs. (67) and (68), which read

JB

∣

∣

∣

θ=0
=
νe

ωc

|λ|2
2π

0(2ν)

∣

∣

∣

∣

νeVdc

ωc

∣

∣

∣

∣

2ν−1

sign(Vdc), (69)

SC

∣

∣

∣

θ=0
=
(νe)2

ωc

|λ|2
4π

0(2ν)

∣

∣

∣

∣

νeVdc

ωc

∣

∣

∣

∣

2ν−1

. (70)

In particular, in the zero temperature limit, one has55

SC = νeJB(t), (71)

which is the well-known Schottky result for noise in the weak
backscattering regime.56 Interestingly, noise and backscattering cur-
rent are directly proportional in this regime and the constant of pro-
portionality is exactly the charge of tunneling quasi-particles. This
result was confirmed in two pioneering experiments.57,58 To lowest
order in tunneling and at zero temperature, the charge current is
driven by a Poisson process. This corresponds to the already known
result in the non-interacting case at ν = 1, where the tunneling
charge is e.

IV. LEVITONS IN THE FQHE

In the first part of this section, we employ the results for the
charge current and noise previously derived in order to investigate
under which conditions Levitons are minimal excitation states of
the FQHE. Specifically, for both integer and fractional filling fac-
tors of the Laughlin sequence, one can probe the electron-like nature

of Levitons by means of an excess noise. The latter vanishes for
integer value of q in the case of a Lorentzian-shaped voltage. In this
way, it will be clear that Levitons are robust even to the presence of
electron-electron interaction.

In the second part of this section, we focus on a theoretical
proposal to reveal the interaction between two propagating Levi-
tons in the FQH edge states. A lot of attention has indeed been
attracted by the idea of exploiting Levitons and other types of
single-electron excitations for quantum information and computa-
tion purposes, such as schemes based on the concept of electron
flying qubits.10,11,19–21,59–61 In this context, the realization of two-
qubit gates crucially relies on the non-trivial entanglement between
electrons flying qubits, which can be induced by Coulomb inter-
action. The choice of focusing on the Laughlin sequence is moti-
vated by the absence of decoherence induced by other propagating
channels.27,62,63

A. Levitons as minimal excitations in the FQH effect

The charge current and noise previously evaluated for a generic
drive can now be employed to test whether quantized Lorentzian
pulses or other kind of driving voltages are minimal excitations even
in the FQH regime. To this end, the suitable experimental configu-
ration is the HBT setup, as for the integer case in Sec. II. Here, a
drive is applied only to reservoir 1 and reservoir 4 is grounded, such
that VR(t) = V(t) and VL(t) = 0, with V(t) a generic periodic drive.
Notice that, in this case, the emitted numbers of particles are qR = q
and qL = 0.

In this light, one should find an extension to the concept of
excess noise introduced in the IQH case. The idea to extend the
definition of excess noise to the FQH effect is based on the Schottky
result in Eq. (71). In general, time-dependent drives do not satisfy
that relation in contrast with a DCconstant bias. The combination
of transport properties that we use to define the excess noise is given
by

1S = SC − νeJB(t), (72)

where the noise is measured with respect to a reference value given
by the average value of ACcurrent. The explicit formula for the
excess noise can be obtained by combining Eqs. (59) and (62)
according to the definition in Eq. (72),

1S = 2(νe)2 |λ|2
∫ +∞

−∞
dτ ′

∫

T

0

dt

T
exp

[

iνe

∫ τ ′

τ ′−τ
dt′ V(t′)

]

e2νG (τ ).

(73)

This relation can be used to prove that Levitons are minimal excita-
tion states for any filling factor in the Laughlin sequence.35 In order
to understand the importance of the excess noise at any filling factor,
we will compare the fractional case to the integer one discussed in
Sec. II. As a starting point, we recast the number of holes in Eq. (30)
in terms of G (τ ),

Nh =
1

(2πa)2

∫ +∞

−∞

dτ ′

2π

∫ +∞

−∞

dτ

2π
exp

[

ie

∫ τ ′

τ ′+τ
dt′ V(t′)

]

e2G (τ ).

(74)
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The latter expression can be easily generalized to the fractional case
by replacing G (τ ) → νG (τ ) and e → e∗, thus obtaining

N =
1

(2πa)2

∫ +∞

−∞

dτ ′

2π

∫ +∞

−∞

dτ

2π
exp

[

iνe

∫ τ ′

τ ′+τ
dt′ V(t′)

]

e2νG (τ ).

(75)

The expression in Eq. (75) is proportional to the excess noise in
Eq. (73) for a generic ν belonging to the Laughlin sequence. As a
consequence, a voltage drive which emit clean pulses in the FQH
regime must fulfill the condition 1S = 0, where the excess noise
has been defined according to Eq. (72).

At θ = 0, one can consider the expressions for current and
noise in Eqs. (65) and (66) and write

1S =
(νe)2

�
|λ|2

4π

0(2ν)

(

�

ωc

)2ν
∑

l<−q

∣

∣pl

∣

∣

2 ∣

∣q + l
∣

∣

2ν−1
. (76)

Similarly to what happens in the IQHE case, by substituting the
proper form for the photo-assisted coefficient pl, one can directly
inspect whether a certain drive gives rise to a vanishing excess noise.
It can be proven mathematically that the Lorentzian pulse is the only
drive showing minimal (zero) excess noise, as all contributions of the
sum in Eq. (76) are positive terms and can thus only vanish if |pl|2 is
zero for all l below −q.

In order to confirm the validity of this analytical result, we plot
the excess noise for the Lorentzian-shaped voltage of Eq. (37) and
we compare it to another relevant voltage drive, as we did in Sec. II,
such as the square drive of Eq. (37).

The excess noise corresponding to these drives is presented in
Fig. 5 in the zero temperature limit for filling factor ν = 1

3
, which

is the most stable FQH plateau of the Laughlin sequence. All the
curves show local minima in correspondence of an integer value of
q. In particular, the signal for the Lorentzian drive at θ = 0 van-
ishes exactly for q = 1, 2, 3, . . ., in accordance with the quantization
condition already discussed in Sec. II in the framework of the non-
interacting edge states of the IQH effect. Again, a square voltage
drive always generates a finite excess noise, even for integer q. Inte-
ger Lorentzian voltage pulses still generate minimal excitation states
even in the Laughlin FQH regime. Moreover, fractional values of
q do not present any remarkable feature, despite the presence of
quasi-particles with a fractional charge.

Interestingly, all the curves show a diverging behavior right
before integer values of q. This feature is connected to the orthog-
onality catastrophe argument discussed by Levitov.2 Non-optimal
pulses generate a quantum state that is orthogonal to the unper-
turbed ground state, this manifests as a huge number of parti-
cle–hole pairs contributing to transport. Nevertheless, apart from
the power-law divergent behavior, the excess noise is qualitatively
similar to the case of a normal metal. At finite temperature, one can
modify the excess noise as follows:

1S = SC − νeJB(t) coth

(

q�

2θ

)

. (77)

Green solid curves in Fig. 5 are plotted for θ = 0.1ωc. Here, the
diverging behavior is smoothed by finite temperature effects. For
a non-zero temperature, the excess noise is always finite, a fact

FIG. 5. Excess noise1SC in units of
e2

�
|λ|2 at filling factor ν = 1

3
as a function

of q. We compare the square and Lorentzian voltages at θ = 0 (solid curves) and
θ = 0.1 (dashed curves). The width of Lorentzian pulses isW = 0.1T .

that was already observed in the Fermi liquid case. This immedi-
ately means that electron–hole pairs are always generated by thermal
effects, independently of the type of drive.

Turning to electronic Hong–Ou–Mandel interferometry,5 one
can study the collision of synchronized excitations impinging onto
the QPC from opposite edges of the Hall bar. When the delay
between the two trains of Levitons is reduced, second order inter-
ference effects lead to a Pauli-like dip,35 which for integer Levitons
has a universal feature. It does not depend either on temperature or
on the filling factor and is, therefore, identical to that displayed in
Fig. 4.

B. Two-Leviton correlated states

Here, we focus on the effect of the FQHE background on
the Levitons and we show that an interaction is induced between
them by the strong correlation of the edge states.64 We empha-
size the detection of the effect of this interaction between Levitons
rather than proposals of quantum information schemes based on
the aforementioned interaction. In order to study the effect of the
background correlations on q-Levitons, we take into account the
possibility of injecting multiple Levitons in one period separated by
a delay1t. The corresponding time-dependent potential is

V(t) =
q−1
∑

j=0

+∞
∑

k=−∞

V0

π

W2

W2 + (t − kT − j1t)2
, (78)
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with period T = 2π
�

, amplitude V0, and half width at half height W.
Later, we will consider also the case of an isolated pulse, which can
be recovered from the above expression in the limit W � T .

As proven in Ref. 42, a quantum transport analysis before the
QPC does not carry any information about the possible interac-
tion between two propagating Levitons. Therefore, we focus on the
transport properties backscattered at the QPC. Indeed, we expect
that, because of the non-linear nature of tunneling at the QPC, the
backscattered charge will be affected by correlations. For a periodic
time-dependent voltage, the charge which is backscattered in one
period T is given by

Q =
∫

T /2

−T /2

dt 〈JB(t)〉 . (79)

As described in Sec. III, a perturbative calculation can be carried out
in the assumption of weak backscattering regime between the edges.
To the lowest order in the tunneling amplitude λ, the backscattered
charge becomes

Q = 2i e∗ |λ|2
∫ +∞

−∞
dτ e2νG (τ )

×
∫

T /2

−T /2

dt sin [χ(t)− χ(t − τ)] . (80)

Although the expressions for the backscattered charge Q are valid
for any voltage drive V(t), our main interest is in electron-like exci-
tations such as Levitons. Hence, we consider the time-dependent
potential defined in Eq. (78) for q = 1 and q = 2 in the presence
of a time delay1t between the injections.

The calculation for a periodic signal is conveniently carried out
in the PASN formalism presented in Sec. III A.

The photo-assisted expressions for the backscattered charges
Q1 and Q2 are

Q1 = Q

∑

m

p2
m

∣

∣

∣

∣

0

(

ν + i
(m + 1)�

2θπ

)∣

∣

∣

∣

2

sinh

[

(m + 1)�

2θ

]

, (81)

Q2 = Q

∑

m

∣

∣p̃m

∣

∣

2
∣

∣

∣

∣

0

(

ν + i
(m + 2)�

2θπ

)∣

∣

∣

∣

2

sinh

[

(m + 2)�

2θ

]

,

(82)

where Q = 4π e∗ |λ|2 (2πθ/ωc)
2ν−1 �

ωc0(2ν)
. Here, we introduced the

photo-assisted coefficients for q = 1,

pm =











e−2πηm
(

1 − e−4πη
)

, m ≥ 0,

−e−2πη, m = −1,

0, m < −1,

(83)

and for q = 2,

p̃m =































[

1 − eiπα(m+1)
]

− e−4πη−iπα
[

1 − eiπα(m+3)
]

(1 − eiπα) eiπαm
pm, m ≥ 0,

eiπα
(

e−iπα + 1
) (

1 − e−4πη
)

p−1, m = −1,

eiπαp2
−1, m = −2,

0, m < −2

(84)

in terms of the rescaled pulse width η = W/T , the reduced temper-
ature θ = kBT/�, and the pulse separation α = 21t/T . The sums
appearing in Eqs. (81) and (82) can be evaluated numerically: their
convergence is ensured by the negative exponential of coefficients
pm in Eq. (83).

1. Correlated two-Leviton state

In this part, we recast the expression for the backscattered
charges Q1 and Q2 in terms of the wave-function of a single Leviton.
By using Eq. (17), the charge Q1 can be recast as

Q1 = −2 e∗ |λ|2
∫

T /2

−T /2

dt

∫ ∞

−∞
dτ<

[

ϕ1(t)ϕ
∗
1 (t − τ)

]

× sin
(πτ

T

)

τ e2νG (τ ). (85)

We observe that the charge Q1 contains a product of Leviton wave-
function, thus showing that it is determined directly by the charge
density of the state injected on the system’s ground state. One can
similarly express the charge backscattered by the two-Leviton state

as

Q2 = −8i e∗ |λ|2
∫ ∞

−∞
dt

∫ ∞

−∞
dτ τ 2 sin2

(πτ

T

)

=

×
[

ϕ1(t)ϕ
∗
1 (t − τ)ϕ1(t +1t)ϕ1 ∗ (t − τ +1t)

]

e2νG (τ ) + 2Q1.
(86)

We note that, while the Leviton wave-function is strictly valid only
for non-interacting systems, the expressions for the backscattered
charge are equivalent to the ones obtained in a system without inter-
actions where Green’s functions have been replaced by those of the
strongly correlated fractional quantum Hall edge channels. Based on
this observation, we claim that we can still use the Leviton wave-
function to support the physical interpretation for our result. A
general description of a Leviton, even with a fractional charge, in
terms of wave-functions is possible, but requires a more elaborated
formalism.65

Moreover, we observe that the integral appearing in the above
expression is zero for ν = 1. Indeed, in this case, e2G (τ ) is an even
function of τ , while the imaginary part appearing in Eq. (86) is an
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odd function of the same variable: therefore, the integral over τ van-
ishes at ν = 1 and one recovers the trivial result Q2 = 2Q1 at any
temperature.

It is instructive to recast the excess charge 1Q = Q2 − 2Q1 in
terms of the Leviton wave-function as

1Q = e∗ |λ|2 (i)2−2ν

∫ ∞

−∞
dt

[

ϕ1(t)gν(t,1t)ϕ1(t +1t)− H.c.
]

,

(87)
where

gν(t,1t) =
∫ ∞

−∞
dτ ϕ∗

1 (t − τ)ϕ∗
1 (t − τ +1t)τ 2 sin2

(πτ

T

)

e2νG (τ ).

(88)

In contrast with Q1, the excess charge is related to the product of four
Leviton wave-functions, thus proving that it stems from a density-
density interaction between Levitons. We interpret this result by
conjecturing that the strongly correlated background mediates an
effective interaction between the two Levitons.

The function gν is different from zero for fractional filling fac-
tors because of the propagator e2νG (τ ). The power-law decay for
fractional filling factors is slower than τ 2, thus inducing long-time
correlations between the two Levitons. These correlations do not
affect the charge only when the isolated pulses are well separated
(limit of 1t � W, 1/θ). Otherwise, correlations induce an effective
interaction between Levitons that effectively enhance the value of
the charge Q2 compared to the limit of two well-isolated pulses.

We highlight that the existence of this interaction dramatically
relies on the correlations of the FQH background. We base our claim
on the fact that for ν = 1, the interaction between Levitons is absent,
as discussed below Eq. (86). Indeed, the specific type of this correla-
tion, while influencing the form of the interaction between Levitons,
is not crucial for its existence. In particular, even at finite temper-
atures, where the power-law behavior of the correlation functions
is exponentially suppressed at times t > θ−1, the interaction gν is
still present. Since the long-range nature of FQH correlation is not
necessary for the interaction to exist, we consider in the next sub-
section the case of isolated pulses, which allows to derive analytical
expressions.

2. Isolated pulses

In the case of isolated pulses, the integral over t in Eq. (79) can
be extended from −∞ to +∞ and can be solved analytically. Let
us comment that this limit is well-defined only for voltage pulses
that go to zero at t = ±∞, which is the case for Lorentzian-shaped
pulses. The expression for the charge becomes

Q = 2i e∗ |λ|2
∫ +∞

−∞
dτ e2νG (τ )

×
∫ +∞

−∞
dt sin [ϕ(t)− ϕ(t − τ)] . (89)

The integral over t can be solved analytically for integer values of q.
For q = 1, one finds

Q1 = 16π i e∗ |λ|2 W2

∫ +∞

−∞
dτ e2νG (τ ) τ

τ 2 + 4W2
. (90)

Next, we consider the case q = 2, where the isolated pulses are
separated by a constant delay1t. The integral over t gives

Q2 = 64π i e∗ |λ|2 W2

∫ +∞

−∞
dτ e2νG (τ )

×
τ

[

(

4W2 +1t2
)2 − τ 2

(

31t2 + 4W2
)

+ 2τ 4
]

(τ 2 + 4W2)
[

(1t + τ)2 + 4W2
] [

(1t − τ)2 + 4W2
] .

(91)

These two expressions can be solved numerically at finite tempera-
ture θ . On the other hand, analytical expressions for Q1 and Q2 can
be obtained in the zero temperature limit. In this case, the bosonic
Green’s function reads

G (τ ) = − log (1 + iωcτ) . (92)

The residue theorem can be used to calculate the integrals over t in
Eq. (91). In the case q = 1, we obtain

Q1 = e∗
(

λ

v

)2

(2Wωc)
2−2ν + O

[

(ωcW)
2ν−1

]

, (93)

where we kept only the leading order in 1/ (Wωc). By performing a
similar calculation for Q2 in the limit of zero temperature, we find,
to lowest order in 1/ (Wωc),

Q2 = Q1

{

2<
[

(

1 +
2iW

1t

)2 (

1 −
i1t

2W

)−2ν
]

+2

(

1 +
4W2

1t2

)}

+ O

[

(

1

Wωc

)2ν−1
]

. (94)

We note that, at zero temperature, the backscattered charge for
two pulses is proportional to the backscattered charge for a single
pulse. For the filling factor ν = 1, we recover the trivial result that
Q2 = 2Q1. However, for the fractional filling factor, the constant of
proportionality depends on1t and W and Q2 6= 2Q1.

Before concluding this part, it is instructive to analyze two
extreme limits of the ratio1t/W at zero temperature. In the limit of
simultaneous pulses, which can be obtained by setting1t/W � 1 in
Eq. (94), we find

lim
1t/W→0

Q2 = 2Q1

(

2 − 3ν + 2ν2
)

. (95)

In this limit, the constant of proportionality acquires a simple
expression, becoming independent of W and being determined
solely by the filling factor ν.

Finally, we consider the opposite case of well-separated pulses,
which can be found by taking the limit 1t/W → ∞ in Eq. (94),
which yields

lim
1t/W→∞

Q2 = 2Q1. (96)

In this case, the charge backscattered for two Levitons is twice the
one obtained with a single Leviton. For well-separated injection
time, the system has relaxed to equilibrium when the second pulse
comes in. As a result, the two Levitons behave as two independent
single pulses.
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FIG. 6. Backscattered charge for a two-Leviton state Q2 rescaled with respect to
the same quantity for a single Leviton as a function of1t/W at zero temperature.
The black dashed line is the limit of a single pulse. Solid lines are computed for
the periodic case with η = 10−2, 10−3, 10−4, 10−5. We see that for the smallest
value of η = 10−5, the periodic case coincides with the analytical limit at infinite
period. The black dotted line is a visual guide for Q2 = 2Q1. The ratio Q2/Q1

always stays above this line, except for the highest value of η = 10−2: in this
case, Q2 can be smaller than twice Q1. The only other parameter is the filling
factor ν = 1/3. Figure taken from Ref. 64.

3. Results and plots

We start our analysis by plotting, in Fig. 6, the ratio of the
backscattered charges Q2/Q1 at filling factor ν = 1/3 as a function
of the time delay1t rescaled by the width of the pulses W. Different
curves are realized at different values of the parameter η = W/T .

For potential applications in the quantum information domain,
it has been conjectured that, in order to perform a single-qubit oper-
ation, one needs single-electron pulses of the order of W ∼ 10 ps,
which is at the limit of state-of-the-art technology.61 Here, in order
to provide an estimation for the experimentally realistic value of
W, we focus on Lorentzian pulses tailored for future applications
in the quantum information domain. By considering a frequency
� = 2π × 5 Ghz, typical for experiments with Levitons, the result-
ing value for the renormalized width is η = 5 × 10−2. For general
purposes, in Fig. 6, we consider also smaller values of η such that a
comparison can be done between the periodic and the isolated pulses
cases. One can clearly see that the case of isolated pulses (dashed
line) is recovered in the limit W � T . This is true for pulses width
lower than η ≈ 10−4, 10−5.

The analysis of Fig. 6 reveals some interesting features of Q2

in the periodic case. Indeed, at η = 10−4, 10−5, the ratio Q2/Q1

is always greater than or equal to 2. As a result, the correlated
background always enhances the value of the backscattered charge
compared to the case ν = 1. Remarkably, for η = 10−2, 10−3, this is
not the case anymore as we see that the ratio Q2/Q1 can become
smaller than or equal to 2. Thus, the effect of the correlated back-
ground is strongly affected by the width of Lorentzian pulses in

FIG. 7. Excess backscattered charge1Q rescaled with respect to the backscat-
tered charge Q1 for a single Leviton as a function of α = 21t/T at zero
temperature. The black dotted line is a visual guide for 1Q = 0. Solid lines are
computed for the periodic case with η = 10−3, 5 × 10−3, 10−2, 2 × 10−2. The
excess charge1Q changes sign as a function of α, except for the highest value
of η = 2 × 10−2: in this case,1Q is always negative. The smaller the value of η
and the higher the value of α at which1Q = 0. The only other parameter is the
filling factor ν = 1/3. Figure taken from Ref. 64.

the periodic case. In passing, we comment that this additional fea-
ture appears exactly for values of η, which are closer to realistic
experimental ones.

To continue our analysis, it is interesting to present more
information about the dependence of the backscattered charge on
the parameters α = 21t/T and η = W/T . To this end, let us
now focus on the excess charge 1Q. It is important to remark
that for 1Q > 0 (respectively, 1Q < 0), the backscattered charge
is increased (respectively, reduced) with respect to the trivial case at
ν = 1. In Fig. 7, we present the excess charge as a function of α for
different values of η. One can deduce from this plot that it exists a
large range of η for which the sign of1Q can be changed by tuning
the parameter α. Interestingly, there exist some values of α where
the excess charge1Q vanishes, thus showing that the effect of strong
correlations on two-Leviton states can be tuned on and off by acting
on the separation time1t. Above a certain value of η, we found that
the sign of1Q is negative for any value of α at zero temperature and
ν = 1/3. While the specific values of η depend on temperature and
filling factor, the important result is that there always exists a width
of Lorentzian pulse above which the sign of1Q is strictly negative.

V. LEVITONS AND SUPERCONDUCTING

CORRELATIONS

We now turn to a different form of electronic correlations:
those present in BCS superconductors. In such a metal, the phonon-
mediated interaction between electrons can be attractive. This gen-
erates a ground state consisting of a superposition of Cooper pairs.
The latter are pairs of electrons, which have opposite spin and
momentum in a singlet state. This can lead to interesting tunnel
processes when, for example, a superconductor is connected to two
normal metal leads. At the junction, the separation between the two
normal metals connected to the superconductor has to be smaller
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than the coherence length. The bias voltage between the normal
metals is much smaller than the superconducting gap. Temperatures
well below the gap are also necessary. The two constituent elec-
trons of a Cooper pair can either tunnel to the same lead (direct
Andreev reflexion) or they can tunnel in different leads (crossed
Andreev reflection).66–74 If there are no magnetic impurities involved
in the tunneling process, the singlet nature of the two-electron wave-
function is preserved. One can then impose additional constraints
on the two metallic leads—either by filtering separately electrons
(positive energies) and holes (negative energies)—with respect to
the superconductor chemical potential—or by imposing that both
leads are half metals with opposite spin polarization—so that crossed
Andreev reflection is the dominant process.

This constitutes a Cooper pair beam splitter,69,70 which has
been proposed two decades ago as a DC source of entangled elec-
trons. Indeed in the former case, the spin structure of the electron
bound state is preserved and gives rise to spin entanglement, while
in the latter case, because the spin is projected on the two (oppo-
site spin) ferromagnetic leads, this gives rise to energy entanglement.
This Cooper pair beam splitter has generated a lot of theoretical
and experimental activity since its proposal. Proposals for detecting
both the spin entanglement and the energy entanglement in both
setups via a Bell inequality test75 analogous to that proposed earlier
on for photon pairs experimentally76 have been made.72,77,78 Exper-
imental detection of entanglement in mesoscopic physics remains
a challenge; nevertheless, positive noise crossed correlations were
measured experimentally in a Cooper pair beam splitter, which
constitutes a step in the right direction.79

In a previous work,80 some of the authors studied a normal
metal/BCS superconductor junction subjected to a time-dependent
periodic voltage bias consisting of a superposition of Lorentzian
pulses. Reference 81 had used circuit theory in two specific lim-
its—the high frequency regime (1 � �)—where quasi-particle
transfer dominates, and the how frequency regime (1 � �), where
Andreev reflection operates. In the former regime, the injected
charge required to minimize the excess noise is an integer of the elec-
tron charge, while in the latter regime, half quantized Lorentzians
minimize this excess noise. This is a consequence of the fact that in
the Andreev regime, the effective bias corresponds to 2eV. The pre-
dictions of Ref. 81 were confirmed using a Keldysh–Nambu–Floquet
Hamiltonian approach80 where the tunnel coupling between the
normal metal and the superconductor is treated to all orders, for
arbitrary frequency drive, allowing to describe the intermediate
regime where 1 ∼ �. The concept of minimal excess noise only
makes sense in the small and the large gap regime: in the intermedi-
ate regime, the excess noise can grow arbitrarily, or even become
negative. Deep in the Andreev regime, it was shown with realis-
tic parameters that the normal metal/superconductor junction can
inject approximately one Cooper pair per period of the drive.82

A. Time-dependent driven normal-superconducting

junctions

In the setup consisting of a superconductor connected to two
half metals, time-dependent drives can be imposed on both leads
so that this Cooper pair source operates in the reverse order: one
Cooper pair per period can be ejected from the superconductor. In

FIG. 8. The setup: a superconductor (right) is tunnel coupled to a quantum spin
Hall (QSH) bar with two opposite edge spin channels via an adjustable QPC. The
voltages imposed on both channels correspond to trains of Lorentzian voltage
pulses V(t). The shaded area covering the channels (downstream from the injec-
tion point of the two electrons ejected from the superconductor) represents the
energy-entangled electrons that are generated on the normal side (left). Figure
taken from Ref. 82.

Ref. 82, we generalized the formalism of Ref. 80 to multi-lead sys-
tems in order to propose a time-dependent version of the Cooper
pair beam splitter. For convenience, and so as to optimize the
crossed Andreev process, the two half metals were replaced by a
quantum spin Hall (QSH) bar, as shown in Fig. 8. Indeed, due to
spin momentum locking, the edge channels with opposite spin prop-
agate in opposite direction. The spin of the two constituent electrons
of the Cooper pair is projected during tunneling on the two edge
states and it is natural to enquire whether the two outgoing electrons
have preserved some kind of entanglement. Naturally, momentum
entanglement cannot be preserved as the QPC breaks translational
symmetry.

1. Setup and model

The leads are described in equilibrium by the Hamiltonians,

HN =
∑

σ=↑,↓

H0,σ ,N,

HS =
∑

σ=↑,↓

H0,σ ,S +1
∑

i

(

c
†
i,S,↓c

†
i,S,↑+ci,S,↓ci,S,↑

)

,
(97)

where H0,σ ,j is the kinetic part of the Hamiltonian of lead j (with
spin σ ), i labels the various sites of these leads, 1 is the supercon-
ducting gap and the chemical potential is set to zero, and ci,S,σ is the
annihilation operator for electrons in the superconducting lead.

The tunnel Hamiltonian for electrons is defined as

HT(t) =
∑

j=N,S
j′=N,S

∑

σ

λj,j′ e
iφj,j′ (t)/2c

†
ejj′ ,j,σ

c
ej′ ,j ,j

′ ,σ + H.c., (98)

where λj,j′ is the tunneling amplitude from lead j to lead j′, ci,j,σ is
the annihilation operator for electrons at site i and with spin σ on
the lead j, ej,j′ denotes the site of lead j from which tunneling to lead

j′ occurs, and φjj′(t) = e
∫ t

−∞ dt′ Vjj′(t
′) is the time-dependent phase

difference between the leads which accounts for the drive-induced
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voltage difference Vjj′(t) between lead j′ and lead j. One can intro-

duce the tunnel matrix in lead space Wjj′ = λjj′σze
σz iφjj′ (t)/2 for leads

carrying both spin orientations. For the device of Fig. 8, λ↑↓ = 0,
the superconducting lead only is connected to two spin-polarized
chiral edge states of the QSH, so that j is a spin index for the QSH.
This allows us to replace the σz prefactor in WSj′ by (σz ± σ0)/2 (for
j′ =↑, ↓). From now on, we focus on λS↑ = λS↓ = λ.

B. Energy-entangled Levitons

In order to determine what type of electron states are gener-
ated at the output, we apply a single Lorentzian voltage pulse to both
of the spin-polarized channels and we expand the quantum state
to second order in the tunnel coupling at zero temperature. The
two pulses are synchronized both in time and amplitude, but this
assumption can be relaxed.83 The single pulse is a Lorentzian eV(t)
= − 1

2πW
1

1+t2/W2 with a width W � 1−1 chosen well above the

inverse gap in order to be in the Andreev regime. The two-electron
state created in the spin Hall bar then reads as82

|F 〉 = i
λ2

√
W

2
√

2π 2

∫ ∞

−∞
dε ϕT(2ε)

∫ ε

−ε
dEc

†
k(ε+E),↑c

†
k(ε−E),↓

∣

∣F↑
〉

⊗
∣

∣F↓
〉

⊗ |9BCS〉 , (99)

where
∣

∣F↑
〉

and
∣

∣F↓
〉

are the Fermi seas for the spin-polarized chan-

nels at equilibrium with BCS ground state, ϕT(ε) =
√

2W e−WεH(ε)
is the single-Leviton wave function,8,12,16,42 and H(ε) is the Heaviside
distribution.

One cannot factorize this state into a product of two states act-
ing separately on the Fermi seas of the leads. While momentum
entanglement is lost at the junction, both electron states have ener-
gies higher than the superconducting chemical potential and are
entangled in energy. As is the case for normal metal devices, this
state does not carry unwanted electron–hole pair excitations because
of the particular choice of a Lorentzian drive.

C. Excess noise in the normal-superconducting

junction

We now want to probe whether or not the generated state is
purely electronic. Hence, we consider periodic drive and compute
transport observables, such as the excess noise. Writing the Hamilto-
nian as H =

∑

j Hj + HTun, the current operator from lead j is given
by

Ij(t) =
∑

j′
iψ

†
j (t)σzWjj′(t)ψj′(t)+ H.c., (100)

where we introduced the standard Nambu spinor notation ψj for
the electron operators. The real time irreducible noise correlator
between lead j and l is defined as

S̃jl(t, t
′) =

〈

Ij

(

t + t′
)

Il (t)
〉

−
〈

Ij

(

t + t′
)〉

〈Il (t)〉 . (101)

It is computed from the Keldysh Green’s function G±∓
jj′ (t, t

′)

= −i
〈

TKψj(t
±)ψ

†
j′ (t

′∓)
〉

, where TK denotes Keldysh ordering, and

± superscripts stand for the branch on the contour. We look at the

noise Sjl(t) =
∫ +∞

∞ dt′ S̃jl(t, t′). One uses Wick’s theorem to cast the
noise as a product of single particle Green’s functions,

Sjl(t) = −e2
∑

j′ l′

∫

dt′ TrN

[

σzWjj′(t)G
−+
j′ l (t, t

′)σzWll′(t
′)G+−

l′ j (t
′, t)

+ σzWj′ j(t)G
−+
jl′ (t, t

′)σzWl′ l(t
′)G+−

lj′ (t
′, t)

− σzWj′ j(t)G
−+
jl (t, t

′)σzWll′(t
′)G+−

l′ j′ (t
′, t)

− σzWjj′(t)G
−+
j′ l′ (t, t

′)σzWl′ l(t
′)G+−

lj (t′, t)
]

. (102)

As before, V(t) = VDC + VAC(t), where VAC(t) averages to zero on
one period T = 2π/� of the periodic drive. The injected charge per
period and per spin is then given by q = − eVDC

�
. The Floquet coef-

ficients are defined as exp[−iχ(t)] =
∑

l pl e
−il�t and the Floquet

weights as Pl =
∣

∣pl

∣

∣

2
.

Green’s functions and Dyson’s equations of the system adopt
a double Fourier representation.80,84,85 The zero-frequency period

averaged noise (PAN) is defined as
〈

Sjl

〉

≡
∫ T/2

−T/2
dt
T

〈

Sjl (t)+ Slj (t)
〉

.
We define the total excess noise as

Sexc = 〈ST〉
∣

∣

DC+AC
− 〈ST〉

∣

∣

DC
, (103)

where 〈ST〉 ≡
∑

σ ,σ ′=↑,↓ 〈Sσσ ′〉 is the total noise of the source.

The Andreev transfer channel imposes further that 〈S↑↓〉 = 〈S↓↑〉
= 〈S↑↑〉 = 〈S↓↓〉.69

1. Optimal working point of the source

In the regime � � 1, the total noise of the source obeys the
analytical expression

〈ST〉q =
e2

π

(

4τ 2
Aθ + 2τA(1 − τA)

×
∑

n

(2q + n)�Pn(2q) coth

[

(2q + n)
�

2θ

]

)

, (104)

where τA = 4λ4/(1 + λ4)
2

is the Andreev transmission coefficient.
This excess noise is plotted as a function of q in Fig. 9. We observe
that it achieves minimal noise for half-integer and integer q at zero
temperature, and for slightly higher values of q when the tempera-
ture θ is finite. Periodic trains of Lorentzians always lead to minimal
noise when compared to cosine or square voltages.

This suggests that the optimal working point of this source of
energy-entangled states imposes near perfect transmission and an

average charge per period 〈Q〉 = 2π
〈I〉q
�

= 4qeτA, which is a multiple
of a half-integer.

What happens when we relax these constraints in order to
make a realistic proposal which works at finite temperature? The
fact that 〈Q〉 corresponds to a multiple of a Cooper pair charge can
also be achieved for τA < 1 provided that q is “slightly larger” than
a half-integer. One should then ensure the minimization of excess
noise so as to generate primarily minimal excitation states, which
can only be achieved by a Leviton voltage drive. This average charge
transferred per drive period is robust under variations of the electron
temperature.
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FIG. 9. Excess noise as a function of the injected charge for various drive shapes
and at two different temperatures.

Reference 7, the first experimental evidence for Levitons,
worked at a temperature is θ ≈ 10 mK with a drive frequency
f ≈ 5 GHz (VDC ≈ 10µV for q = 0.5). With a Niobum gap 1Nb

≈ 1.55 meV), this puts us well into the Andreev regime, as we have
1Nb ≈ 2000θ and1Nb ≈ 100�.

The excess noise gets modified as the temperature is increased,
leading to a first arch which, instead of vanishing exactly at q = 0.5,
now reaches a (nonzero) local minimum for a slightly higher value
of q. The value Smin of this local minimum is chosen as the refer-
ence point to optimize the quality of the produced entangled states.
We obtain the λ dependence of the excess noise under the con-
straint 〈Q〉 = 2e. For the above temperature and drive frequency, we
identify82 an amplitude λ ' 0.78, (τA ' 0.79) for which the excess
noise is close to the minimum noise, which imposes q∗ ' 0.65.
When operated at this optimized transmission, the junction displays
the minimal possible noise while transferring on average a charge 2e
per period that is distributed on both leads. One might, thus, achieve
an on-demand source of energy-entangled states, which generate
one nonlocal electron pair per cycle, and have optimized its working
conditions in a realistic finite temperature context.

VI. CONCLUSION

In this short review, we showed how Levitons can be employed
to achieve electronic quantum optics scenarios such as HBT and
HOM experiments for normal metal systems of condensed matter
physics. For arbitrary periodic voltage drives, the HBT excess noise
signal provides direct information on the presence of spurious holes
in the input/injected current: only Lorentzian drives bring the excess
noise to its minimal value, zero.

Our main motivation was to examine whether the Leviton
paradigm survives in the presence of electronic correlations and to
take profit of the latter to design new EQO experiments. For this
purpose, we first considered the strong correlations that are explicit
in the FQHE regime and showed that in the weak backscatter-
ing regime—where Laughlin quasi-particle tunneling between edge
states represents the dominant charge transfer process—minimal
excess noise is achieved for voltage pulses which carry an integer

multiple of the electron charge rather than the (quasiparticle) frac-
tional charge predicted in Ref. 16. Furthermore, we computed the
average charge transmitted from one edge state to the other when
the voltage injects two Levitons (per period in the AC regime). We
showed that it does not correspond to twice the charge associated
with a single Leviton and that it is due to the non-linearities of the
QPC associated with the scaling dimension of the tunneling opera-
tor. Moreover, we showed that the excess charge can be cast in the
form of an interaction between Leviton wave packets carried by the
strongly correlated medium of the FQHE.

We note that these results can be extended to other charge
transport observables such as the heat current.86 Regarding noise,
one can then consider noise observables where the correlator is the
product of a charge current and a heat current (“mixed” noise) or
the product of two heat currents (“heat” noise). It turns out (not
shown) that both of these quantities are also minimized for the same
condition as the charge noise.

Localized voltage pulses such as Levitons are likely to be rel-
evant in the different approaches aimed at making a diagnostic
of the fractional statistics of anyons in the FQHE, where braiding
effects between quasi-particles are explicit in the current and noise
signatures.40

The case of Levitons injected in a non-chiral Luttinger liquid
(a one-dimensional interacting electron system such as carbon nan-
otubes) has been studied elsewhere by some of the authors.87 Similar
results apply to this situation, except that the divergences of the
excess noise close to integer values of the charge are absent even at
zero temperature, and Fabry–Pérot resonances are found when the
charge is injected in the bulk of one-dimensional systems connected
to Fermi liquid leads.

Finally, we studied Levitons in a system where correlations
have altogether a totally different nature, when the device con-
tains as superconducting correlations. When a superconducting lead
is connected to two half metals (or equivalently to two opposite
spin edge channels of a quantum spin Hall bar) on which the bias
voltage is imposed, this allows to realize a time-dependent version
of the Cooper pair beam splitter.69,70 This allowed us to propose
an on-demand source of energy-entangled electron states whose
constituent electrons propagate in a nonlocal manner in opposite
spin-polarized channels and to determine its optimal working point
at finite temperatures. A detailed derivation of the state generated
by a train of Levitons will appear elsewhere, together with a diag-
nosis of entanglement via noise crossed correlation measurements.88

The entangled electron states, thus, generated could allow the imple-
mentation of quantum protocols89–94 in a condensed matter physics
setting.
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