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Periodic source of energy-entangled electrons in helical states coupled to a BCS superconductor
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We propose a source of purely electronic energy-entangled states implemented in a solid-state system with
potential applications in quantum information protocols based on electron flying qubits. The proposed device
relies on the standard tools of electron quantum optics and exploits entanglement of the Cooper pairs of a BCS
superconductor. The latter is coupled via an adjustable quantum point contact to two opposite spin-polarized
electron waveguides, which are driven by trains of Lorentzian pulses. This specific choice for the drive is crucial
to inject purely electronic entangled states devoid of spurious electron-hole pairs. In the Andreev regime, a
perturbative calculation in the tunnel coupling confirms that entangled electron states are generated at the output
of the normal side. We introduce a quantity related to charge current cross correlations which allows one to
experimentally verify the entangled nature of the emitted state.

DOI: 10.1103/PhysRevB.110.245410

I. INTRODUCTION

Quantum electronics is a fascinating research field address-
ing the fundamental properties of matter by accessing its
quantum properties, such as interference and entanglement
[1–4]. Nowadays, on-chip devices have been realized and
tested in ground-breaking experiments to probe the quantum
nature of electronic states down to the single-electron level
[5–9]. These major achievements have been enabled by the
implementation of a variety of single-electron emission pro-
tocols, such as acoustic surface waves [10,11], periodically
driven quantum dots [12–14], or Lorentzian-shaped voltage
drives [15]. The latter source is based on the proposal of
Levitov et al. that pulses with a Lorentzian profile can be
tuned to excite purely electronic excitations, i.e., devoid of
any additional electron-hole pairs, on top of the Fermi sea
[16–18]. These quasiparticles have then been termed levitons
[19]. By properly setting the drive parameters, the total charge
emitted in one period can be varied, thus allowing for the
simultaneous injection of multiple levitons [15,20]. Compared
to other sources of isolated electrons, the excitations emitted
by quantized Lorentzian-shaped pulses possess an intriguing
property for individual quantum systems: they are not entan-
gled with their environment [21].

This initial theoretical proposal originated several experi-
mental breakthroughs using levitonic quasiparticles [22,23].
For instance, the measurement of quantum transport proper-
ties of systems driven by Lorentzian-shaped pulses allowed
one to observe fermion antibunching [15,22] and to perform
electron tomography and time-resolved reconstruction of the
leviton wave function [13,24–26]. Many theoretical proposals
are still increasing the interest for levitons, which include the
excitations of half-charge zero-energy quasiparticles [27] or
the generation of electron-hole entanglement in Mach-Zender
interferometers [28,29]. An appealing research direction is
to investigate the effects of electron correlations, which are
ubiquitous in mesoscopic physics, on the generation and dy-
namics of single-electron excitations [30]. The properties of

levitons are currently assessed theoretically in strongly corre-
lated systems, such as the fractional quantum Hall effect [31],
where their stability with respect to the interaction has been
proven [32], even for thermal transport [33–35], and peculiar
effects, such as an analog of Wigner crystallization, have been
proposed [36–38]. Moreover, the effects of superconducting
correlations have also been taken into account for levitons in
the presence of tunneling junctions between two supercon-
ductors or between a normal system and a superconductor
[39–43].

This vast research framework, built on the close coop-
eration between theory and experiments, is called electron
quantum optics [44–48]. Indeed, the starting motivation for
this research field was to reproduce quantum optics experi-
ments by replacing photons by electrons. Nevertheless, the
fact that single-electron excitations are easily exposed to in-
teractions is a marked difference in comparison with photon
quantum states [49–51]. In this sense, the electron quantum
optics scenarios have been increasingly attracting a specula-
tive interest due to possible applications for quantum com-
putation schemes based on electron flying qubits [8,9,52–54].
In this framework, one-dimensional channels existing in
mesoscopic systems, as a consequence of quantum confine-
ment or topological properties, are exploited as waveguides
for these electronic states. These channels are termed quantum
rails and quantum information is encoded by accounting for
the presence or the absence of the flying electron in each of
them. Combining together several quantum rails and single-
electron sources would allow for a purely electronic quantum
computation scheme, which possesses a great potential for
scalability [55,56].

One of the main ingredients for the success of this
scenario is to find realistic implementations of two-qubit
gates, which requires the generation of entanglement between
electron flying qubits [9,57]. The main existing proposals
address this issue by considering the entanglement induced
in Mach-Zender interferometers where quantum rails, over
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finite-length regions, are brought sufficiently close to induce a
phase shift due to the Coulomb interaction between electrons
on neighboring channels [58]. While the latter proposal is cer-
tainly of great interest, other sources of entanglement deserve
to be explored in order to offer multiple paths to quantum
information processing with electrons.

In this paper, we investigate a mechanism to generate
entangled pairs of levitons by resorting to the entanglement
naturally existing in the Cooper-pair condensate of a BCS
superconductor [59–62]. More specifically, we will elaborate
on the proposal for an on-demand source of energy-entangled
electron states (EES), based on a hybrid superconducting
system [63–72]. The ballistic channels of a single edge of
a two-dimensional topological insulator (2DTI) [73–75] are
coupled via an adjustable quantum point contact (QPC) to
the BCS superconductor. These one-dimensional topological
edge states, which are termed helical, propagate with opposite
chiralities and, according to spin-momentum locking, they
possess an opposite spin-polarization axis [76–78]. Levitons
can be injected into the system by an AC periodic voltage or
by optical generation with radio-frequency frequency combs
[53]. We decide to focus on the first case for our calculations
in order to exploit the theoretical framework of the photo-
assisted formalism [30,38], but our results are valid for any
type of source of Lorentzian-shaped pulses.

We derive a perturbative expression for the quantum state
emitted in this configuration. Since two simultaneous tunnel-
ing events are required for one Cooper pair to be created, we
employ perturbation theory up to second order in the tunneling
amplitude. Our focus is on the Andreev regime, where the
superconducting gap is the largest energy scale. In this limit,
the BCS ground state is unperturbed and BCS excitations
are excluded, thus also validating the mean-field approach
considered here.

The emitted state propagates nonlocally by spreading over
the two spin-polarized edge channels. In order to assess
its properties, we analytically compute the charge locally
backscattered at the QPC by a quantum average over the emit-
ted state. Importantly, we show that the entangled nature of
the quantum state can be tested in a multiple-QPC setup with
five terminals, i.e., one superconducting lead, two sources, and
two detectors. In this situation, we compute a quantity related
to the detector’s cross correlations [79] and show that it is
always monotonous for separable states, while it can change
sign as a function of the system parameters for entangled
states.

The paper is organized as follows. In Sec. II, we introduce
the Hamiltonian model that we use for a time-dependent per-
turbation theory in the tunnel coupling. Then, in Sec. III, this
formalism is used to compute the quantum state analytically,
when the junction is driven by a periodic bias, in the Andreev
regime of frequencies. This allows us to compute transport
properties, such as the transmitted charge, in Sec. IV. Finally,
in Sec. V, a way to measure the entanglement of the output
state is also proposed, based on a multiple-QPC scheme. In
the following, units where h̄ = 1 and kB = 1 are employed.

II. MODEL

We focus on the three-terminal device represented in Fig. 1.
The spin ↑ (↓) edge state is exiting an electron reservoir

FIG. 1. The setup: An adjustable QPC connects a superconductor
(right, in blue) and the helical edge states of a quantum spin Hall
bar. Along the two channels, quantized Lorentzian-shaped pulses are
injected. The interplay between spin-momentum locking and BCS
superconductivity allows one to emit entangled leviton pairs in the
normal part.

in the top (bottom) part of the bar and propagating with a
fixed chirality to the second electron reservoir in the bottom
(top) part, after having interacted with the superconducting
terminals. The 2DTI edge states and the superconducting lead
are described in equilibrium by the Hamiltonian,

HN =
∑
kN

σ=↑,↓

Eσ
N (kN )c†

kN ,σ
ckN ,σ

,

HS =
∑

kS
σ=↑,↓

εkS c†
kS,S,σ

ckS,S,σ

+ �
∑

kS

(
c†

kS ,S,↓c†
−kS ,S,↑ + c−kS ,S,↑ckS ,S,↓

)
, (1)

where HN (HS) is the kinetic part of the Hamiltonian of the
normal (superconducting) lead, � is the superconducting gap,
and ck,σ

is the annihilation operator for electrons with mo-

mentum k and spin σ in the normal lead and ck,S,σ
in the

superconducting one. The chemical potential is set to zero
everywhere. The energy dispersion for the helical edge states
is [75,78]

E↑/↓
N (k) = v↑/↓(k − k↑/↓), (2)

where spin-momentum locking imposes v↑ = −v↓ and
k↑ = −k↓.

The superconducting Hamiltonian can be diagonalized by
resorting to the Bogoliubov-Valatin transformation. The latter
introduces new fermions in the superconductor [80],

γk,σ
= ukc†

k,S,σ
+ sign(σ )vkc−k,S,σ , (3)

where sign(↑ / ↓) = ±, and uk and vk are the superconductor
coherence factors, defined up to a complex phase factor as

|uk| = 1√
2

√
1 + εk

ES (k)
,

|vk| = 1√
2

√
1 − εk

ES (k)
, (4)

where ES (k) = (ε2
k + �2)1/2 is the energy required to create

an excitation of momentum k in the superconductor and εk is
the kinetic energy of the said excitation. We see that in the
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Andreev limit, i.e., for εk � �, ES (k) ≈ � is independent of
k and |uk| = |vk| = 1/

√
2 for any k.

The fermion operators γk,σ describe quasiparticles excited
at energies above the BCS ground state, which represents the
vacuum state for these fermions. Therefore, their action on the
BCS ground state |�BCS〉 is

γk,σ
|�BCS〉 = 0,

γk′,σ ′γ
†
kσ

|�BCS〉 = δk,k′δσ,σ ′ |�BCS〉. (5)

A. Tunneling matrix and periodic drive

In our proposal, we connect the helical edge of the 2DTI
to the superconducting lead by means of a QPC. The formal
description of the tunneling processes can be carried out in
the Nambu-Keldysh formalism by identifying the edge states
of the 2DTI as the left lead and the superconductor as the right
one. Following this line, one defines the Nambu spinors,

ψ
†
L = (c̃†

0,↑ c̃0,↓), ψ
†
R = (c̃†

0,S,↑ c̃0,S,↓), (6)

where we introduce the fermion operators in real space
c̃ j,σ and c̃ j,S,σ for the normal and superconducting parts,
respectively. The tunneling occurs at the site j = 0. The cor-
responding tunneling Hamiltonian between the leads is

HT = ψ
†
LWLRψR + H.c. (7)

The tunnel matrix between the coupled sites of the left and
right leads of the junction is Hermitian, i.e., W †

LR = WRL, and
it is defined as

WLR = λσze
iσzφ(t ), (8)

with σz the Pauli matrix in Nambu space and λ the tun-
neling amplitude. The phase φ(t ) = e

∫ t
−∞ dt ′ V (t ′) is the

time-dependent phase difference between the leads, which
accounts for the drive V (t ), applied to the normal leads. We
focus on periodical drives with period T and frequency �/2π ,
such that T = 2π/�.

For later calculations, it is convenient to introduce the
photo-assisted coefficients pl by means of which we can
express the electron phase in terms of the following Fourier
series:

eiφ(t ) =
∑

l

pl e
i(l+q)�t . (9)

In the following, we will consider a specific form of the
voltage drive,

V (t ) =
+∞∑

k=−∞

V0

π

γ 2

γ 2 + (t − kT )2
. (10)

The above equation represents a periodic train of Lorentzian-
shaped pulses with amplitude V0 and width γ . Each pulse
carries a charge −qe = e/(2π )

∫ T
0 dt V (t ). The main charac-

teristic of Lorentzian-shaped pulses is that for integer values

of q, the corresponding photo-assisted coefficients satisfy
pl = 0 for l < −q. In this case, the injected pulses are termed
levitons. The general expression for these photo-assisted co-
efficients in the case of Lorentzian-shaped pulses is

pl = qe−2πηl
∞∑

s=0

(−1)s �(l + s + q)

�(1 + q − s)

e−4πηs

s!(s + l )!
, (11)

where we introduced η = γ /T .

B. Time evolution and interaction picture

Below, we introduce the time-evolution operator in the
interaction picture with respect to the tunneling Hamiltonian
as a preliminary step to the perturbative calculation of the
electron state created in the system by the voltage drive.

As a starting point, we separate the total Hamiltonian be-
tween the contribution of the two separated leads as H0 ≡
HN + HS and the tunneling term, thus finding, for the total
Hamiltonian,

H = H0 + HT. (12)

It is useful to provide an explicit expression of the tunnel-
ing Hamiltonian,

HT = λ
∑

kN ,kS ,
σ=↑↓,ε=±

(
e−iφ(t )c†

kN ,σ
ckS ,S,σ

)ε
, (13)

where ε = − indicates the Hermitian conjugate. For the per-
turbative calculations, we resort to an interaction picture with
HT as a perturbation. As a result, we can introduce the time-
evolution operator, which is written as

S(t,−∞) = T exp

[
−i

∫ t

−∞
dt ′HT I (t ′)

]
, (14)

where T is the time-ordering operator, and where HT I (t ) de-
notes the tunnel Hamiltonian in the interaction picture as

HT I (t ) = eiH0t HT e−iH0t . (15)

As anticipated, Cooper-pair emission requires two tunneling
events and is therefore dominated by the λ2 terms. As a result,
for the following calculation of the quantum state, it is useful
to present the expansion of the time-evolution operator up to
the second order in the tunneling amplitude. The latter reads

S(t,−∞) = 1 + S(1)(t,−∞) + S(2)(t,−∞) + O(λ3),
(16)

where

S(1)(t,−∞) = −i
∫ t

−∞
dt1HT I (t1),

S(2)(t,−∞) = −1

2

∫ t

−∞
dt1

∫ t1

−∞
dt2 T [HT I (t1)HT I (t2)].

(17)

III. PERTURBATIVE CALCULATION
OF THE QUANTUM STATE

In this section, we compute the quantum state induced
in our system by the presence of the driving voltage V (t ).
In order to perform this calculation, we employ perturbation

245410-3



FLAVIO RONETTI et al. PHYSICAL REVIEW B 110, 245410 (2024)

theory and, therefore, we will make use of the perturbative ex-
pansion of the time-evolution operator presented in Eq. (17).
The calculation is performed by evaluating the action of the
time-evolution operator on the ground state of the system,
which we identify as the tensor products of the ground states
of each constituent part of the system,

|0〉 ≡ |F↑〉 ⊗ |F↓〉 ⊗ |�BCS〉, (18)

where |Fσ 〉 is the Fermi sea of spin channel σ . After the
different parts of the system are coupled by the QPC and the
voltage drive is switched on, the resulting quantum state is
obtained by the action of the time-evolution operator S on the
ground state,

|F̃ (t )〉 = S(t,−∞)|0〉. (19)

Our focus is on the Andreev regime for which the gap is
the largest energy scale and no BCS quasiparticle can be
excited at the outcome of second-order perturbation theory.
As a result, in the time evolution of the system, we exclude
all the tunneling processes that alter the BCS ground state of
the superconductor. This superselection rule implies that only
terms involving products of the pair γk1,σ1

γ
†
k2,σ2

can contribute
to the evolution of the quantum state. As a consequence, all
the odd terms in the perturbative expansion are excluded: in
particular, we can neglect the term S(1)(t,−∞).

We will focus on the second-order term in the perturbative
expansion, such that

|F̃ (2)(t )〉 = S(2)(t,−∞)|0〉. (20)

The latter state can be formally presented in terms of two
contributions as

|F̃ (2)(t )〉 = |F1p(t )〉 + |F2p(t )〉. (21)

In the above expression, the first term corresponds to the
generation of electron-hole pairs above the Fermi ground state
of the normal part. The second term describes the creation of
pairs of two electrons or two holes. By excluding the creation
of quasiparticle excitations above the BCS ground state, the
first contribution will be neglected in the rest of this paper.
In Appendix A, we rigorously show that the term |F1p(t )〉 is
independent of the voltage drive in the Andreev limit and can
therefore be left out of our discussion. This is in agreement
with the physical picture for which only Cooper pairs can be
transferred in the limit of large gap.

For these reasons, we will focus only on the two-particle
terms for the rest of this work and set

|F̃ (2)(t )〉 � |F2p(t )〉. (22)

The above approximation is valid in the Andreev limit,
�/� 
 1.

A. Time-dependent quantum state

We compute the two-particle terms in the quantum state
generated at the QPC by the presence of the driving voltage.
We start by replacing the Fourier coefficients in Eq. (9) and
by using Eq. (4), allowing us to write ukvk = ±�/[2ES (k)],

so that one has

|F̃ (2)(t )〉= λ2�

2

∑
k,k′,σ

ξσ

[
Uσ

kk′ (t )c†
k,σ

c†
k′,σ +Vσ

kk′ (t )ck,σ
ck′,σ

]|0〉,

(23)

where ξ↑/↓ = ± and

Uσ
kk′ (t ) = −

∑
l,m,kS

∫ t

−∞
dt1

∫ t1

−∞
dt2

p∗
l p∗

m

ES (kS )
eαt2

× ei[Eσ
l+q (k)−ES (kS )]t1 ei[E σ̄

m+q (k′ )+ES (kS )]t2 , (24)

Vσ
kk′ (t ) =

∑
l,m,kS

∫ t

−∞
dt1

∫ t1

−∞
dt2

pl pm

ES (kS )
eαt2

× ei[−Eσ
l+q (k)−ES (−kS )]t1 ei[−E σ̄

m+q (k′ )+ES (−kS )]t2 , (25)

where we defined, for notation convenience, Eσ
l+q(k) ≡

Eσ
N (k) − (l + q)�, and we introduced the parameter α → 0+

to ensure the convergence of integrals. By using the anticom-
mutation properties of fermion operators, the sum over σ in
Eq. (23) can be computed and the state can be recast as

|F̃ (2)(t )〉 = λ2

2

∑
k,k′

[
ϒ+

kk′ (t )c†
k,↑c†

k′,↓ + ϒ−
kk′ (t )ck,↑ck′,↓

]|0〉,

(26)
where we defined

ϒ+
kk′ (t ) = �[U↑

kk′ (t ) + U↓
k′k (t )], (27)

ϒ−
kk′ (t ) = �[V↑

kk′ (t ) + V↓
k′k (t )]. (28)

In the following, we will focus on the calculation of the
integrals in Uσ

kk′ and Vσ
kk′ : the derivation will be carried out in

parallel. Here, it is useful to express an intermediate result: let
I be the following integral,

I = lim
α→0

∫ t1

−∞
dt2 exp [i(E − iα)t2]

= lim
α→0

−ieiEt1

E − iα
. (29)

This allows us to perform the time integrals in Eqs. (24)
and (25) successively. First carrying out the integral over t2,
one has

Uσ
kk′ (t ) = −

∑
l,m,kS

∫ t

−∞
dt1

p∗
l p∗

meαt1

ES (kS )

× ei[Eσ
l+q (k)+E σ̄

m+q (k′ )]t1

i
[
E σ̄

m+q(k′) + ES (kS ) − iα
] , (30)

Vσ
kk′ (t ) =

∑
l,m,kS

∫ t

−∞
dt1

pl pmeαt1

ES (kS )

× e−i[Eσ
l+q (k)+E σ̄

m+q (k′ )]t1

i
[−E σ̄

m+q(k′) + ES (−kS ) − iα
] . (31)
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Then, by again using the result of Eq. (29), we compute the integral over t1, yielding

Uσ
kk′ (t ) =

∑
l,m,kS

p∗
l p∗

m

ES (kS )

ei[Eσ
l+q (k)+E σ̄

m+q (k′ )]t eαt[
E σ̄

m+q(k′) + ES (kS ) − iα
][

Eσ
l+q(k) + E σ̄

m+q(k′) − iα
] , (32)

Vσ
kk′ (t ) =

∑
l,m,kS

pl pm

ES (kS )

e−i[Eσ
l+q (k)+E σ̄

m+q (k′ )]t eαt[−E σ̄
m+q(k′) + ES (−kS ) − iα

][
Eσ

l+q(k) + E σ̄
m+q(k′) + iα

] . (33)

B. Large-gap limit

In the large-gap limit, defined as the case for which the
superconducting gap � is the largest energy scale, the above
expressions can be further simplified. In this regime, one can
write

1

±E σ̄
m+q(k′) + ES (±kS )

∼ 1

ES (±kS )
, (34)

as long as the terms in the sum over k and k′ appearing in the
quantum state can be neglected when |E σ̄

m+q(k′)| ∼ �. Here,
we will show that this is indeed the case. First of all, the
energies appearing in U↑

kk′ (V↑
kk′ ) must all be positive (negative)

because these coefficients multiply two creation (annihilation)
operators acting on the vacuum state. As a consequence, the
expressions E σ̄

m+q(k′) ± ES (±kS ) never vanish. This means
that when |E σ̄

m+q(k′)| ∼ �, the coefficients Uσ
kk′ (t ) and Vσ

kk′ (t )
behave as 1/�3, while when |E σ̄

m+q(k′)| � �, they behave as
1/�2. Therefore, we can safely set, in the Andreev regime,

Uσ
kk′ (t ) = AS

�

∑
l,m

p∗
l p∗

mei[Eσ
l+q (k)+E σ̄

m+q (k′ )]t eαt[
Eσ

l+q(k) + E σ̄
m+q(k′) − iα

] , (35)

Vσ
kk′ (t ) = AS

�

∑
l,m

pl pme−i[Eσ
l+q (k)+E σ̄

m+q (k′ )]t eαt[
Eσ

l+q(k) + E σ̄
m+q(k′) + iα

] , (36)

where, by using ES (kS ) = ES (−kS ), we defined the common
prefactor,

AS = �
∑

kS

1

E2
S (kS )

, (37)

which includes all the information about the sum over the
superconducting momenta. Interestingly, metallic and super-
conducting degrees of freedom are decoupled. We can further
simplify these coefficients by substituting l + m → l and per-
form the sum over m,∑

m

p∗
l−m(q)p∗

m(q) = p∗
l (2q), (38)

thus obtaining

Uσ
kk′ (t ) = AS

�

∑
l

p∗
l (2q)ei[Eσ

N (k)+E σ̄
N (k′ )−(l+2q)�]t eαt[

Eσ
N (k) + E σ̄

N (k′) − (l + 2q)� − iα
] ,

(39)

Vσ
kk′ (t ) = AS

�

∑
l

pl (2q)e−i[Eσ
N (k)+E σ̄

N (k′ )−(l+2q)�]t eαt[
Eσ

N (k) + E σ̄
N (k′) − (l + 2q)� + iα

] .

(40)

We observe that these two coefficients are both invariant if we
simultaneously exchange σ ↔ σ̄ and k ↔ k′. We exploit this

invariance to simplify the coefficients defined in Eqs. (27) and
(28) as

ϒ+
kk′ = 2�Ukk′ , (41)

ϒ−
kk′ = 2�Vkk′ , (42)

where we defined Ukk′ ≡ U↑
kk′ = U↓

k′k and Vkk′ ≡ V↑
kk′ = V↓

k′k .
One readily sees at this stage that the state in Eq. (26) is

entangled since it cannot be written as a product of two states
acting separately on the two Fermi sea of electrons with spin
↑ and ↓. Indeed, as can be seen from Eqs. (27) and (28), the
coefficients ϒ±

kk′ cannot be recast as a product of two separate
functions of k and k′.

For later calculation of the transport properties, it is useful
to anticipate that for the squared norms of Eqs. (41) and (42),
one has

|ϒ±
kk′ (t )|2 =

∣∣∣∣∣
∑

l

2AS pl (2q)ei(l+2q)�t

[E↑
N (k) + E↓

N (k′) − (l + 2q)� + iα]

∣∣∣∣∣
2

.

(43)

We comment that the above expressions are periodic functions
of time with period T = 2π/�.

We are interested in the expression for the state in the long-
time limit. For this purpose, we use the result

lim
t→∞

eiEt

iE
= lim

t→∞

∫ t

−∞
dt ′eiEt ′ = 2πδ(E ). (44)

By inserting the above expression into Eqs. (39) and (40), one
finds, in the limit α → 0,

ϒ+
kk′ = i4πAS

∑
l

p∗
l (2q)δ

[
Eσ

N (k) + E σ̄
N (k′) − (l + 2q)�

]
,

(45)

ϒ−
kk′ = −i4πAS

∑
l

pl (2q)δ
[
Eσ

N (k) + E σ̄
N (k′) − (l + 2q)�

]
.

(46)

The energies appearing in the δ functions of Eq. (45)
[Eq. (46)] are always positive [negative] for both k and k′
because of the action of the fermion creation [annihilation] op-
erators on the vacuum state of the normal regions. For a train
of Lorentzian-shaped pulses for which 2q ∈ N+, the photo-
assisted coefficients obey the property pl = 0 for l < −2q. As
a result, both δ functions in Eqs. (45) and (46) set the condition
that the energies EN are necessarily positive for any k and k′.
The term with two annihilation operators must then vanish in
Eq. (26). We conclude that the final state generated by driving
the system with a periodic train of Lorentzian-shaped pulses
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(with 2q ∈ N+) is purely electronic and reads

|F̃ (2)(t )〉 = λ2

2

∑
k,k′

ϒ+
kk′c

†
k,↑c†

k′,↓|0〉. (47)

We remark that if this state only contains electrons, it is due
to the peculiar properties of the levitons. For any other type
of drive, the terms associated with the two holes cannot be
neglected. Indeed, the state in Eq. (47) is a purely electronic
energy-entangled state.

IV. AVERAGE BACKSCATTERED CHARGE

The time-dependent charge backscattered at the QPC for
electrons with spin σ is defined as

Qσ (t ) = e〈F̃ (t )|
∑

k

c†
k,σ

ck,σ
|F̃ (t )〉. (48)

Despite the fact that this quantity is defined at the position of
the QPC, for 2DTIs, according to the spin-momentum locking
of the edge channels, the charge Qσ (t ) corresponds to the one
which is measured in the reservoir at the end of each channel.
Moreover, we assumed that the total charge in the vacuum
state is zero, such that

〈0|
∑

k

c†
k,σ

ck,σ
|0〉 = 0. (49)

We observe that the backscattered charge is induced solely by
the presence of the driving voltage and that this quantity is
related only to the transfer of Cooper pairs from the supercon-
ductor to the topological edge states.

By using the expression for the two-particle state in
Eq. (26) and the coefficients in Eqs. (27) and (28), the average
for the charge operator becomes

Qσ (t ) = eλ4

4

∑
k,k1,k′

1
k2,k′

2

[
ϒ−

k1k′
1
(t )

[
ϒ−

k2k′
2
(t )

]∗〈
c†

k′
1,↓c†

k1,↑c†
k,σ

ck,σ ck2,↑ck′
2,↓

〉 + ϒ+
k2k′

2
(t )

[
ϒ+

k1k′
1
(t )

]∗〈
ck′

1,↓ck1,↑c†
k,σ

ck,σ c†
k2,↑c†

k′
2,↓

〉]
. (50)

We use Wick’s theorem to compute the averages. One has〈
ck′

1,↓ck1,↑c†
k,σ

ck,σ c†
k2,↑c†

k′
2,↓

〉 = (
δσ,↑δk,k1 + δσ,↓δk,k′

1

)
δk′

2,k
′
1
δk2,k1�[E↑

N (k1)]�[E↓
N (k′

1)], (51)〈
c†

k′
1,↓c†

k1,↑c†
k,σ

ck,σ ck2,↑ck′
2,↓

〉 = −(
δσ,↑δk,k1 + δσ,↓δk,k′

1

)
δk′

2,k
′
1
δk2,k1�[−E↑

N (k1)]�[−E↓
N (k′

1)]. (52)

Here, we focused only on the connected contribution by removing all the average on operators with the same momentum by
means of Eq. (49).

The time-dependent charge becomes

Qσ (t ) = eλ4

4

∑
k,k′

{|ϒ+
kk′ (t )|2�[E↑

N (k)]�[E↓
N (k′)] − |ϒ−

kk′ (t )|2�[−E↑
N (k)]�[−E↓

N (k′)]}. (53)

We replace the discrete sums with integrals over energies, by putting E↑
N (k) = ω and E↓

N (k) = ω′. Here, we use the linear
approximation for the energies of the normal part, which is exact in the case of helical edge states, such that

Eσ
N (k) = vσ (k − kσ ). (54)

The expression for the backscattered charge can be recast as

Qσ (t ) = eλ4A2
Sν↑ν↓

∫
dω

2π

∫
dω′

2π

∑
l,m

p∗
l (2q)pm(2q)ei(l−m)�t [�(ω)�(ω′) − �(−ω)�(−ω′)]

[ω + ω′ − (l + 2q)� − iα][ω + ω′ − (m + 2q)� + iα]
, (55)

where we introduce νσ = ∑
k δ[ω − Eσ

N (k)] as the density of
states of the Quantum Spin Hall (QSH) edge states, which
is constant for a system with linear energy dispersion. The
details of the calculation of these integrals are given in
Appendix B. Finally, the charge becomes

Qσ (t ) = λ4A2
Sν↑ν↓

e2

2π

∫ t

−∞
dt ′eα(t ′−t )V (t ′). (56)

We notice that Q↑(t ) = Q↓(t ). Starting from the expression
for the quantum states, we recover the intuitive result for the
backscattered charge, i.e., that it is given by the integral of
the drive until the time t . Nevertheless, no information about
the entangled nature of the state can be extracted from this
quantity. In the next section, we will derive an observable
which can distinguish between product states and entangled
states. We will apply this result to the case of the quantum

state derived before and show how to detect the entanglement
produced by our source in a modified setup.

V. CROSS CORRELATION AS A WITNESS OF
ELECTRON-ELECTRON ENTANGLEMENT

In this section, we propose a way to detect the energy
entanglement of the quantum state appearing in Eq. (26). The
choice of quantized Lorentzian-shaped pulses allows us, as
shown in Sec. III, to focus on the injection of purely electronic
entangled states, by setting EN (k) > 0 and EN (k′) > 0. For
the sake of completeness, we report the corresponding elec-
tronic state below,

|F̃ (2)(t )〉 = λ2

2

∑
k,k′

ϒ+
kk′c

†
k,↑c†

k′,↓|0〉. (57)
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FIG. 2. A quantum spin Hall bar in a six-terminal configuration
with four QPCs. Terminals 1 and 2 are driven by Lorentzian-shaped
periodic voltages, while terminals 3 and 4 are the detectors and the
other terminals are grounded. A superconducting lead is coupled to
the helical edge channels in the middle of the quantum spin Hall bar.
One double-QPC barrier is placed on each on the two side of the
superconductor. By measuring the cross-correlation noise between
detectors, one is able to assess the entangled nature of the quantum
state generated by the interplay with the BCS superconductivity.

All the results can be straightforwardly extended to the
case of a two-hole state obtained by setting EN (k) < 0 and
EN (k′) < 0.

In the following, we present the setup and the experimental
quantity that can be used to detect the entanglement of the
state in Eq. (57). Let us present the principle of the probing
device. The entanglement is characterized by the factor ϒ+

k,k′
[see Eq. (45)], which imposes that if the state contains an
electron of spin up with energy k, the spin-down electron has
an energy k′ which can only take discrete values (these depend
on k and on the characteristics of the leviton drive encoded in
the q, �, and the pl coefficients). One way to characterize
the entanglement is then to take advantage of the helicity
of the edge states: the two electrons emitted from the BCS
lead travel naturally to the opposite sides of the device. One
can then separately access the currents produced by the two
electrons from an injected pair. Sending these currents into
energy-filtering devices will modify the correlations between
the two currents in a way which is specific to the entanglement
contained in ϒ+

k,k′ . As a simple schematic example, suppose
that the spin-up current is filtered such that only an electron
with energy k0 contributes to the current. Then the spin-down
current only contains electrons of energy k′ allowed by ϒ+

k0,k′ ,
and the current correlations will strongly depend on how the
k′ energies are filtered.

The setup is presented in Fig. 2. On each side of the source
of entangled electrons, we connect two QPCs in series, each
of them is characterized by a constant reflectivity amplitude r.
The two QPCs are placed at a distance DL and DR from each
other, respectively, in the left and right parts of the device. The
presence of two QPCs produces the required energy filtering
in the phase of electron states passing through these barriers
[81–83]. A similar interferometric setup has already been
proposed in Ref. [28] as a Mach-Zender-like device to probe
electron-hole entanglement.

It is instructive to remark that the proposed setup for wit-
nessing energy entanglement described in this paper bears
similarities (spin separation followed by energy filtering) with

FIG. 3. Sketch of the different tunneling processes associated
with different cross correlators in the weak-backscattering regime.
(a) The cross correlator S (0)

34 contains information about tunneling
processes where no interference occurs: the tunneling at each QPC
is an independent event. (b),(c) The cross correlators S (1,L)

34 − S (0)
34

and S (1,R)
34 − S (0)

34 include only the effect of the interference on one
of the two double barriers since the contributions coming from S (0)

34

have been subtracted. (d) The cross correlator �S includes only the
tunneling processes where both electrons take quantum interference
paths since all the previous processes have been subtracted according
to Eq. (59). In this way, each double barrier acts as an energy filter,
thus allowing for the detection of energy entanglement between the
two electrons.

the protocol for detecting Bell inequalities violation in normal
metal/BCS superconducting forks from energy entanglement
proposed in Ref. [68] (which is itself inspired from the pho-
tonic case [84]).

In the following, we will show that the entangled nature
of the quantum state |F̃〉 can be assessed by measuring the
cross-correlation noise between terminals 3 and 4. The latter
quantity is defined as

S34 = 〈F̃ |I3I4|F̃〉 − 〈F̃ |I3|F̃〉〈F̃ |I4|F̃〉, (58)

where we introduced the current operators I3 =
ev↓

∑
k d†

k,3dk,3 and I4 = ev↑
∑

k d†
k,4dk,4. In order to exploit

the correlation induced by the double barriers to extract
information about the state produced at the interface with the
SC, we set each QPC to the weak-backscattering regime, i.e.,
|r| � 1, such that their perturbation on the created entangled
state is minimal. Moreover, in this regime, the tunneling paths
through the system can be easily interpreted. In Fig. 3, we
associated the different tunneling paths at the lowest order in
tunneling with a different contribution to the cross-correlation
noise: this will be crucial to isolate the relevant contribution
containing the necessary energy filtering as discussed above.

In Fig. 3(a), we present a tunneling path in the absence of
interference between two QPCs. These paths give rise to the
correlations which can be observed in a setup with no double
barriers, but only a single QPC on each side: we term this
contribution the cross-correlation noise S (0)

34 and there are four
such processes in total. Then, in Figs. 3(b) and 3(c), we depict
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the case where interference paths occur only on one side of the
system, left or right, respectively. In this case, the associated
cross correlations are the ones which can be measured in a
setup with only one double barrier on the left or the right side,
respectively. We indicate these correlations with S (1,L/R)

34 and
there are two such processes for each side of the system. Ac-
tually, the correlations S (1,L/R)

34 also contain the contributions
coming from the tunneling paths with no interference, such
that what is depicted in Figs. 3(b) and 3(c) are tunneling paths
giving rise to some correlations quantified by S (1,L/R)

34 − 2S (0)
34 .

Finally, in order to isolate the contributions containing only
the interference paths on both double barriers, i.e., the ones
where there is some energy filtering for both spin ↑ and ↓
electrons, we should subtract all the previous contributions
from S34, thus defining the following quantity:

�S ≡ S34 − 2
[
S (1,L)

34 + S (1,R)
34 − 2S (0)

34

]
, (59)

whose associated tunneling paths are presented in Fig. 3(d).

A. Scattering-matrix description of the double barriers

In order to compute the cross-correlation noise, we employ
a scattering matrix description for the double barriers. We
will consider the case with a single double barrier or with no
double barriers as particular cases. The reflectivity amplitudes
are assumed to be equal for each QPC and corresponding to r.
In this regard, the full scattering matrix of the double δ barriers
reads [85]

S(L/R)
k =

(
rk,L/R t ′

k,L/R

tk,L/R r′
k,L/R

)
, (60)

where

tk,L/R = t ′
k,L/R = t2eikDL/R

1 − r2ei2kDL/R
, (61)

rk,L/R = r′
k,L/R = r

1 + (t2 − r2)ei2kDL/R

1 − r2ei2kDL/R
, (62)

where we have R ≡ |r|2, T ≡ |t |2, and R + T = 1. While here
we have presented the scattering matrix at all orders in tunnel-
ing, all QPCs are assumed to be in the weak-backscattering
regime. This choice is motivated by the research of a quantity
related to the quantum entanglement and is not a necessary
assumption for the calculation, as the noise can be exactly
computed in this configuration by means of the scattering-
matrix formalism. For the sake of clarity, we decided to
differently name the widths of the left and right barriers,
respectively, as DL and DR. Nevertheless, for the entanglement
witness, we will set DL = DR ≡ D.

In the weak-backscattering regime, one has |r| � 1 and
|t | � 1. Therefore, the coefficients of the scattering matrix
become

|tk,L/R| = |t ′
k,L/R| � 1, (63)

rk,L/R = r′
k,L/R � r(1 + ei2kDL/R ). (64)

The cross correlation S (1,L/R)
34 can be obtained by the re-

placement

rk,R/L → r, (65)

respectively. Therefore, these cross correlators can be mea-
sured in the presented setup by fully opening one QPC in the
right or left double barrier. Similarly, S (0)

34 corresponds to a
scattering matrix with

rk,L → r, (66)

rk,R → r. (67)

In terms of the corresponding experimental configuration, S (0)
34

can be measured by fully opening one QPC on both sides of
the system.

We describe the tunneling at the double barrier in terms
of a scattering problem of fermions exiting or entering all the
terminals in the system. The fermions “close” to the SC region
in between the two double barriers are ck,↑/↓, as appears in
Eq. (57). The fermions exiting (entering) terminal j, with
j = 1, . . . , 6, are termed ck, j (dk, j). We relate the fermion
operators appearing in the quantum state |F̃〉 to the ones
exiting terminals 1,2,3,4 as

ck,↑ = tk,Lck,1 + rk,Lck,3, (68)

ck,↓ = tk,Rck,2 + rk,Rck,4. (69)

In the weak-backscattering regime, the product appearing in
the entangled states reads

c†
k,↑c†

k′,↓ = c†
k,1c†

k′,2e−i(kDL+k′DR ) + O(r1,2). (70)

We see already that to lowest order in r, the combination of
operators appearing in Eq. (57) is related only to electrons
exiting from terminals 1 and 2, i.e., those which are driven by
Lorentzian pulses. In this sense, in the channels ↑ and ↓, the
source is producing a quantum state which is equivalent to the
one derived in the previous section, up to a phase. As a result,
despite the presence of the additional QPCs, the presented
configuration can be used to probe the properties of the state
|F̃〉.

The operators appearing in the cross correlator S34 are

dk,4 = rk,Rck,↑ + tk,Rck,5 ∼ rk,Rtk,Lck,1 + tk,Rck,5, (71)

dk,3 = rk,Lck,↓ + tk,Lck,6 ∼ rk,Ltk,Rck,2 + tk,Lck,6. (72)

In the next part, we will use this scattering-matrix description
to compute the cross correlations S34(DL, DR) [86].

B. Calculation of the cross correlations

The cross-correlation noise in Eq. (58) can be computed in
the weak-backscattering regime and to lowest order in λ as

S34 � λ4

4
e2v↑v↓

∑
k3,k4

∑
k,k′

k,k
′

[∣∣rk3,L

∣∣2∣∣rk4,R

∣∣2
ϒ+

kk′
[
ϒ+

kk
′
]∗

× 〈
ck,2

(
c†

k3,2
ck3,2 − Nk3,2

)
c†

k,2

〉
× 〈

ck
′
,1

(
c†

k4,1
ck4,1 − Nk4,1

)
c†

k′,1

〉]
, (73)

where we defined Nk, j = 〈0|c†
k, jck, j |0〉. Moreover, since the

operators ck,5 and ck,6 do not appear in |F̃〉, they will not con-
tribute to the calculation of the cross correlator, despite their
presence in Eqs. (71) and (72). As a result, the cross correlator
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is directly related to the electrons going out of terminals 1
and 2, upstream with respect to the QPC, to lowest order in
the tunneling amplitudes. This means that our observable is a
probe of the source of entangled electrons in the absence of
the double barriers, despite the presence of the QPCs.

The cross correlator in Eq. (73) can be simplified by using
Wick’s theorem, thus finding

S34 = λ4

4
e2v↑v↓

∑
k,k′

|rk,L|2|rk′,R|2|ϒ+
kk′ |2�[E↑

N (k)]�[E↓
N (k′)].

(74)

By using Eqs. (65) and (67), one can find the cross correlations
in the other configurations as

S (1,L)
34 = λ4|r|2e2v↑v↓

4

∑
k,k′

|rk,L|2|ϒ+
kk′ |2�[E↑

N (k)]�[E↓
N (k′)],

(75)

S (1,R)
34 = λ4|r|2e2v↑v↓

4

∑
k,k′

|rk′,R|2|ϒ+
kk′ |2�[E↑

N (k)]�[E↓
N (k′)],

(76)

S (0)
34 = λ4|r|4e2v↑v↓

4

∑
k,k′

|ϒ+
kk′ |2�[E↑

N (k)]�[E↓
N (k′)]. (77)

By inserting the above quantity in the definition of the en-
tanglement witness in Eq. (59) and the scattering-matrix
coefficients in the weak-backscattering limit [see Eq. (64)],
we obtain

�S = λ4R2e2v↑v↓
∑
k,k′

�[E↑
N (k)]�[E↓

N (k′)]

× cos(2kD) cos(2k′D)|ϒ+
kk′ |2. (78)

In the rest of this section, we will characterize the latter
quantity and show that it can be used as a witness of the
electron-electron entanglement of the state in Eq. (57) in
systems with time-reversal symmetry (TRS), such as the QSH
edge states.

C. Witness of electron-electron entanglement

For a separable state, the two-particle sector can always be
decomposed into the product of single-particle states [87]. As
a result, the matrix appearing in Eq. (57) would assume the
form ϒkk′ = f ↑

k f ↓
k′ , such that∣∣F̃ (2)(t )

〉 = λ2

2

∑
k

f ↑
k c†

k,↑|F↑〉 ×
∑

k′
f ↓
k′ c

†
k′,↓|F↓〉. (79)

For such separable state, the combination of cross correla-
tors defined in Eq. (59) becomes

�S = λ4R2e2v↑v↓
∑
k,k′

�[E↑
N (k)]�[E↓

N (k′)]

× cos(2kD) cos(2k′D)| f ↑
k |2| f ↓

k′ |2. (80)

For systems with TRS, one has that E↑
N (k) = E↓

N (∓k), v↑ =
−v↓, and f ↑

k = f ↓
∓k , respectively, such that the expression in

Eq. (80) becomes

�S = −λ4R2e2v2
↑

∣∣∣∣∣
∑

k

�[E↑
N (k)] cos (2kD)| f ↑

k |2
∣∣∣∣∣
2

, (81)

which is manifestly a negative or null quantity for any choice
of parameters. The condition �S � 0 for a separable state
allows us to employ this quantity as a witness of electron-
electron entanglement. For a separable state, the quantum
interference processes occurring on the left or right double
barrier are completely independent. As a consequence, the
cross correlations of two-particle states are simply the square
modulus of the same single-particle quantity, as it always
happens for independent entities.

For the entangled state of levitons, we will show that the
same quantity can change sign as a function of the parameters
of the interferometers. We can explicitly compute this quantity
by using the linear approximation for the energy dispersion,

Eσ
N (k) = vσ (k − kσ ). (82)

The main calculation is carried out in Appendix C. For sys-
tems with TRS, the final expression is

�S = −�S0

∑
l>−2q

|pl |2{(l + 2q) cos[αF + D̃(l + 2q)]

+ D̃−1 sin[D̃(l + 2q)]}, (83)

where we defined �S0 = 2e2v2
↑ν2

↑A2
S�λ4R. Here we also in-

troduced αF = 4k↑D as the phase acquired by an electron
traveling across one double barrier, and D̃ = D�/v↑ as the
ratio between the length of the barrier and the average space
separation between two consecutive leviton pulses. The ex-
pression in Eq. (83) can be positive or negative as a function
of the dimensionless system parameters. We conclude that
observing a positive value of �S as a function of D̃ is an indi-
cator of the entangled nature of the quantum state. Physically,
this can be explained by the fact that for entangled states,
the tunneling processes occurring on the two barriers are not
independent and give rise to additional quantum interference
mechanisms which are absent for separable states. In other
words, the intrinsic two-particle nature of these correlations
becomes manifest in the interference oscillations that appear
in Figs. 4 and 5.

We remark that the expression in Eq. (83) is valid
only in the case 2q ∈ Z. The values of the photo-assisted
coefficients are presented in Eq. (11). In particular, for
2q = 1, one can derive an analytical expression for �S (see
Appendix C),

�S = �S0(1 − e−4πη )2 e8πη[D̃ cos(αF + D̃) + sin(D̃)] − e4πη[2D̃ cos(αF ) + sin(2D̃)] + D̃ cos(D̃ − αF ) + sin(D)

4D[cos(D) − cosh(4πη)]2
. (84)
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FIG. 4. The entanglement witness �S for αF = 0 in units of
�S0 as a function of D̃ for different values of the rescaled leviton
half-height width η = γ /T . The charge is set to 2q = 1 in the upper
panel and to 2q = 2 in the lower panel.

The entanglement witness is presented for 2q = 1 and 2q = 2
as a function of D̃ in Figs. 4 and 5 for αF = 0 and αF = 1.5,
respectively. In both cases, this quantity is changing sign as a
function of the system parameters, thus proving that it can be
used as a test for the entanglement generated by the proposed
source.

VI. CONCLUSION

Here, we considered a protocol to create entangled pairs of
levitons in the helical edge states of two-dimensional quantum
spin Hall systems. The entanglement naturally arises in our
proposal by exploiting the proximity effect of a BCS super-
conductor, whose ground state is a condensate of Cooper pairs
entangled in the energy domain. In particular, we proposed
an on-demand periodic source of energy-entangled electron
states. We focused on a two-dimensional topological insula-
tor (2DTI) whose edge states are coupled via an adjustable
quantum point contact (QPC) to the BCS superconductor. The
choice of a two-dimensional topological insulator is illustra-
tive and we speculate that our results can be extended to other
systems with spin-polarized edge states, such as the chiral
edge states of the quantum Hall effect at ν = 2. Two sources
of levitons are connected to the topological bar. We decide
to focus on the case of voltage injection of levitons, but our
results are valid for any protocol of injection of Lorentzian-
shaped pulses (see Ref. [53]).

We employed perturbation theory up to second order in the
tunneling amplitude to compute the quantum state emitted in
this configuration. Our focus is on the regime where the su-
perconducting gap is the largest energy scale, i.e., the Andreev
regime. In this limit, the BCS ground state is unperturbed and

FIG. 5. The entanglement witness �S for αF = 1.5 in units of
�S0 as a function of D̃ for different values of the rescaled leviton
half-height width η = γ /T . The charge is set to 2q = 1 in the upper
panel and to 2q = 2 in the lower panel.

BCS excitations are excluded in the final outcome, thus also
validating the mean-field approach considered here.

Moreover, we analytically computed the charge locally
backscattered at the QPC by a quantum average over the
emitted state and we found the intuitive result that the charge
is proportional to the integral of the voltage source, thus
validating our perturbative approach. Second, we showed that
the entangled nature of the quantum state can be tested in a
multiple-QPC setup by computing a quantity related to the
cross correlations in this setup. We proved that it is always
monotonous and negative for separable states, while it can
change sign as a function of the system parameters for en-
tangled states. In future extensions of this paper, we plan to
explore ways to quantify the generated entanglement using
measures such as concurrence [78].

The generated energy-entangled states can be exploited in
a variety of quantum protocols based on nanoscale devices,
such as quantum teleportation [88], quantum key distribu-
tion [89], secure cryptography [90–92], or quantum dense
coding [93].
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APPENDIX A: ELECTRON-HOLE CREATION TERM

In this Appendix, we show that the electron-hole term |F1p(t )〉 appearing in Eq. (21) does not depend on the driving voltage
and that its only contribution is to renormalize the coefficient in front of the zeroth-order term.
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As a first step, we write the electron-hole term by making explicit the time dependence of the fermion operator,

|F1p(t )〉 = −λ2

4

∑
kN ,k′

N
kS,σ

∫ t

−∞
dt1

∫ t1

−∞
dt2 eαt2

[
e−iφ(t1 )eiφ(t2 )ei[Eσ

N (kN )−ES (kS )]t1 ei[−Eσ
N (k′

N )+ES (kS )]t2 u2
kS

c†
kN ,σ

ck′
N ,σ

+ eiφ(t1 )e−iφ(t2 )ei[−Eσ
N (kN )−ES (−kS )]t1 ei[Eσ

N (k′
N )+ES (−kS )]t2v2

kS
ckN ,σ

c†
k′

N ,σ

]|0〉, (A1)

where α is a positive regularization parameter that will be taken to zero, ensuring that the contribution at −∞ vanishes in the
integral over t2. Next, we express the voltage phase in terms of the photo-assisted Fourier series in Eq. (9), thus finding

|F1p(t )〉 = −λ2

4

∑
kN ,k′

N
kS ,σ

∑
l,m

∫ t

−∞
dt1

∫ t1

−∞
dt2 eαt2

[
p∗

l pmei[Eσ
N (kN )−ES (kS )−(l+q)�]t1 ei[−Eσ

N (k′
N )+ES (kS )+(m+q)�]t2 u2

kS
c†

kN ,σ
ck′

N ,σ

+ pl p∗
mei[−Eσ

N (kN )−ES (−kS )+(l+q)�]t1 ei[Eσ
N (k′

N )+ES (−kS )−(m+q)�]t2v2
kS

ckN ,σ
c†

k′
N ,σ

]|0〉. (A2)

Using the integral in Eq. (29), we perform the integral over t2 and take the limit α → 0,

|F1p(t )〉 = −λ2

4

∑
kN ,k′

N
kSσ

∑
l,m

∫ t

−∞
dt1

[
p∗

l pmei[Eσ
N (kN )−Eσ

N (k′
N )−(l−m)�]t1 u2

kS

Eσ
N (k′

N ) − ES (kS ) − (m + q)�
c†

kN ,σ
ck′

N ,σ
+ pl p∗

mei[−Eσ
N (kN )+Eσ

N (k′
N )+(l−m)�]t1v2

kS

Eσ
N (k′

N ) + ES (−kS ) − (m + q)�
ckN ,σ

c†
k′

N ,σ

]
|0〉.

(A3)

In the limit of large superconducting gap, we have, in particular, that ES 
 γ −1, where γ is the temporal width of the Lorentzian
pulses, defined in Eq. (10). This condition imposes an upper bound to the values of l and m, given the exponentially decaying
form of the photo-assisted coefficient for a train of Lorentzian-shaped pulses of width γ . This fact, together with the other
condition ES 
 �, entails that the term (m + q)� appearing in the denominator of the above expression can be dropped in the
Andreev limit. Therefore, one has

|F1p(t )〉 = −λ2

4

∑
kN ,k′

N
kSσ

∑
l,m

∫ t

−∞
dt1

[
p∗

l pmei[Eσ
N (kN )−Eσ

N (k′
N )−(l−m)�]t1 u2

kS

Eσ
N (k′

N ) − ES (kS )
c†

kN ,σ
ck′

N ,σ
+ pl p∗

mei[−Eσ
N (kN )+Eσ

N (k′
N )+(l−m)�]t1v2

kS

Eσ
N (k′

N ) + ES (−kS )
ckN ,σ

c†
k′

N ,σ

]
|0〉.

(A4)

Finally, one can use the following property: ∑
l,m

p∗
l pme−i(l−m)�t1 = e−iφ(t1 )eiφ(t1 ) = 1 (A5)

to show that

|F1p(t )〉 = −λ2

4

∑
kN ,k′

N
kSσ

∫ t

−∞
dt1

[
ei[Eσ

N (kN )−Eσ
N (k′

N )]t1 u2
kS

Eσ
N (k′

N ) − ES (kS )
c†

kN ,σ
ck′

N ,σ
+ ei[−Eσ

N (kN )+Eσ
N (k′

N )]t1v2
kS

Eσ
N (k′

N ) + ES (−kS )
ckN ,σ

c†
k′

N ,σ

]
|0〉. (A6)

The latter expression is clearly independent of the driving voltage. As a result, this is an equilibrium term which cannot affect
the transport properties of the system at zero temperature. Since this term is not affected by the train of Lorentzian pulses, we
just use the identification in Eq. (22) between the perturbative quantum state |F̃ (2)(t )〉 and the two-particle term |F2p(t )〉.

APPENDIX B: BACKSCATTERED CHARGE CALCULATIONS

In this Appendix, we provide the details for the calculations of the integrals appearing in the backscattered charge in Eq. (55).
For the sake of completeness, here we report the expression appearing in the main text,

Qσ (t ) = eλ4A2
Sν↑ν↓

∫
dω

2π

∫
dω′

2π

∑
l,m

p∗
l (2q)pm(2q)ei(l−m)�t eαt [�(ω)�(ω′) − �(−ω)�(−ω′)]

[ω + ω′ − (l + 2q)� − iα][ω + ω′ − (m + 2q)� + iα]
. (B1)

In order to simplify the expression inside the above integral, we use the following general identity:

1

x − iα

1

y + iα
= 1

y − x + 2iα

(
1

x − iα
− 1

y + iα

)
, (B2)
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which, by using 1/(x − iα) = iπδ(x) + x/(x2 + α2), valid in the limit α → 0+, becomes

1

x − iα

1

y + iα
= 1

y − x + 2iα

[
iπδ(x) + iπδ(y) + x

x2 + α2
− y

y2 + α2

]
. (B3)

By using the general identity in Eq. (B3), the integral appearing in Eq. (B1) can be recast as

Qσ (t ) = eλ4A2
Sν↑ν↓

∑
l,m

∫
dω

2π

∫
dω′

2π

p∗
l (2q)pm(2q)eαt ei(l−m)�t

(l − m)� + 2iα
[�(ω)�(ω′) − �(−ω)�(−ω′)]

×
{

iπδ[ω + ω′ − (l + 2q)�] + iπδ[ω + ω′ − (m + 2q)�]

+ [ω + ω′ − (l + 2q)�]

[ω + ω′ − (l + 2q)�]2 + α2
− [ω + ω′ − (m + 2q)�]

[ω + ω′ − (m + 2q)�]2 + α2

}
. (B4)

We focus on the second contribution to the integral,

1

(l − m)� + 2iα

∫
dω

∫
dω′[�(ω)�(ω′) − �(−ω)�(−ω′)]

{
[ω + ω′ − (l + 2q)�]

[ω + ω′ − (l + 2q)�]2 + α2
− [ω + ω′ − (m + 2q)�]

[ω + ω′ − (m + 2q)�]2 + α2

}
,

(B5)

and we will show that it vanishes. We compute the integral over ω, thus obtaining

1

2

1

(l − m)� + 2iα

∫
dω′[�(ω′) + �(−ω′)](ln{[ω′ − (l + 2q)�]2 + α2} − ln{[ω′ − (m + 2q)�]2 + α2})

= 1

2

1

(l − m)� + 2iα

∫
dω′(ln{[ω′ − (l + 2q)�]2 + α2} − ln{[ω′ − (m + 2q)�]2 + α2}). (B6)

For the last integral, one finds

1

2

1

(l − m)� + 2iα

∫
dω′(ln{[ω′ − (l + 2q)�]2 + α2} − ln{[ω′ − (m + 2q)�]2 + α2})

= 1

2

1

(l − m)� + 2iα

∫
dω′{ln[ω′2 + α2] − ln[ω′2 + α2]} = 0. (B7)

Let us now focus on the term with the δ functions in Eq. (B4). Since for levitons one has l + 2q > 0 and m + 2q > 0, for the
integrals with the Heaviside function �(−ω)�(−ω′), the argument of the δ functions cannot be zero and, therefore, they vanish
everywhere on the integration region ω < 0 and ω′ < 0. By putting all these results together, the charge becomes

Qσ (t ) = ieλ4A2
Sν↑ν↓

4π

∑
l,m

p∗
l (2q)pm(2q)eαt ei(l−m)�t

(l − m)� + 2iα

∫ ∞

0
dω

∫ ∞

0
dω′ {δ[ω + ω′ − (l + 2q)�] + δ[ω + ω′ − (m + 2q)�]}.

(B8)
We compute the integral over ω′,

Qσ (t ) = ieλ4A2
Sν↑ν↓

4π

∑
l,m

p∗
l (2q)pm(2q)eαt ei(l−m)�t

(l − m)� + 2iα

[∫ (l+2q)�

0
dω +

∫ (m+2q)�

0
dω

]
. (B9)

The integrals can be simplified to

Qσ (t ) = ieλ4A2
Sν↑ν↓

4π

∑
l,m

p∗
l (2q)pm(2q)eαt ei(l−m)�t

(l − m)� + 2iα
[(l + 2q)� + (m + 2q)�]. (B10)

Finally, the charge becomes

Qσ (t ) = eλ4A2
Sν↑ν↓

4π

∑
l,m

p∗
l (2q)pm(2q)e−αt e2αt ei(l−m)�t

(l − m)� + 2iα
[i(l + 2q)� + i(m + 2q)�] (B11)

= − ieλ4A2
Sν↑ν↓

4π

∫ t

−∞
dt ′ ∑

l,m

p∗
l (2q)pm(2q)eα(t ′−t )

{[
− d

dt ′ e
−i(l+2q)�t ′

]
ei(m+2q)�t ′ +

[
d

dt ′ e
i(m+2q)�t ′

]
e−i(l+2q)�t ′

}

(B12)

= λ4A2
Sν↑ν↓
2π

∫ t

−∞
dt ′eα(t ′−t )e2V (t ′). (B13)
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APPENDIX C: WITNESS OF THE ENTANGLEMENT

In this Appendix, we give the intermediate steps between Eq. (78) and Eq. (83) for the quantum state of levitons in Eq. (57).
We will consider a dispersion relation linear in k,

Eσ
N (k) = vσ (k − kσ ), (C1)

which is exact in the case of QSH edge states and an approximation for other spin systems.
The expression reads

�S = e2v↑v↓λ4R2
∑
k,k′

�[E↑
N (k)]�[E↓

N (k′)] cos (2kD) cos(2k′D)|ϒkk′ |2

= 4e2v↑v↓ν↑ν↓A2
Sλ

4R2
∫ ∞

0
dε↑

∫ ∞

0
dε↓ cos

[
2

(
ε↑
v↑

+ k↑

)
D

]
cos

[
2

(
ε↓
v↓

+ k↓

)
D

]

×
∑
l,m

p∗
l pmδ[ε↑ + ε↓ − (l + 2q)�]δ[ε↑ + ε↓ − (m + 2q)�]. (C2)

We compute the integral over ε↓ by using one of the δ functions,

�S = 4e2v↑v↓ν↑ν↓A2
Sλ

4R2
∑
l,m

∫ ∞

0
dε↑ cos

[
2

(
ε↑
v↑

+ k↑

)
D

]
cos

{
2

[
ε↑ − (l + 2q)�

v↓
− k↓

]
D

}
(C3)

× p∗
l pmδl,m�[−ε↑ + (m + 2q)�] (C4)

= 4e2v↑v↓ν↑ν↓A2
Sλ

4R2
∑

l

|pl |2
∫ (l+2q)�

0
dε↑ cos

[
2

(
ε↑
v↑

+ k↑

)
D

]
cos

{
2

[
ε↑ − (l + 2q)�

v↓
− k↓

]
D

}
. (C5)

From now on, we focus on a system with time-reversal symmetry (v↑ = −v↓, ν↑ = ν↓, and k↑ = −k↓), thus obtaining

�S = −4e2v2
↑ν2

↑A2
Sλ

4R2
∑

l

|pl |2
∫ (l+2q)�

0
dε↑ cos

[
2

(
ε↑
v↑

+ k↑

)
D

]
cos

{
2

[
ε↑ − (l + 2q)�

v↑
− k↑

]
D

}
. (C6)

Then, we evaluate the integral over ε↑,

�S = −e2v2
↑
ν2

↑A2
Sλ

4R2

D

∑
l

|pl |2
{

2D�(l + 2q) cos

[
4k↑D + 2D�(l + 2q)

v↑

]
+ v↑ sin

[
2D�(l + 2q)

v↑

]}
. (C7)

This expression can be recast as

�S = −�S0

∑
l>−2q

|pl |2{(l + 2q) cos[αF + D̃(l + 2q)] + D̃−1 sin[D̃(l + 2q)]}, (C8)

by defining

�S0 = 2e2v2
↑ν2

↑A2
S�λ4R2, (C9)

D̃ = 2D�

v↑
, (C10)

αF = 4kF D. (C11)

Moreover, we notice that

(l + 2q) cos[αF + D̃(l + 2q)] = d

dD̃
sin[αF + D̃(l + 2q)], (C12)

such that

�S = −�S0

∑
l>−2q

|pl |2
{

d

dD̃
sin[αF + D̃(l + 2q)] + D̃−1 sin[D̃(l + 2q)]

}
. (C13)

We remark that this expression is valid for levitons with 2q ∈ Z. For 2q = 1, the photo-assisted coefficients can be computed
analytically and, for l � 0, they are given by

|pl |2 = e−4πηl (1 − e−4πη )2. (C14)
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By using the above expression, the sum over l can be explicitly computed. In particular, one has

∑
l�0

e−4πηl sin[αF + D̃(l + 1)] = sin (αF ) − e4πη sin(D̃ + αF )

2 cos(D̃) − 2 cosh(4πη)
, (C15)

which can be plugged into Eq. (C13), thus obtaining

�S = �S0(1 − e−4πη )2 e8πη[D̃ cos(αF + D̃) + sin(D̃)] − e4πη[2D̃ cos(αF ) + sin(2D̃)] + D̃ cos(D̃ − αF ) + sin(D)

4D[cos(D) − cosh(4πη)]2
. (C16)
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