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Polarized heat current generated by quantum pumping in two-dimensional topological insulators
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We consider the transport properties of a two-dimensional topological insulator in a double quantum point
contact geometry in the presence of a time-dependent external field. In the proposed setup an external gate is
placed above a single constriction and it couples only with electrons belonging to the top edge. This asymmetric
configuration and the presence of an ac signal allow for a quantum pumping mechanism, which, in turn, can
generate finite heat and charge currents in an unbiased device configuration. A microscopic model for coupling
with the external time-dependent gate potential is developed and the induced finite heat and charge currents are
investigated. We demonstrate that in the noninteracting case, heat flow is associated with a single spin component,
due to the helical nature of the edge states, and therefore a finite and polarized heat current is obtained in this
configuration. The presence of e-e interchannel interactions strongly affects the current signal, lowering the
degree of polarization of the system. Finally, we also show that separate heat and charge flows can be achieved,
varying the amplitude of the external gate.
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I. INTRODUCTION

The fast development in nanotechnologies has spurred the
investigation of quantum effects in electronic devices at the
submicron scale [1–5]. In past years, this attention has been
devoted mostly to the study of charge transport and related phe-
nomena in electronic nanocircuits [6–11]. Here, spectacular
effects have been predicted and also experimentally observed,
including quantum interference patterns [1], single electron
injection and control in quantum conductors [7,8,12,13], and
coherent behavior in hybrid devices [4,5,9,14–16].

Conversely, the question how thermodynamic aspects such
as heat transport, power conversion, and energy exchange work
at the nanoscale has posed interesting challenges [14,17–23].
A precise control and manipulation of heat flows in quantum
conductors can lead to interesting applications, i.e., new
logic devices based purely on thermal transport. Towards
this goal, pioneering experiments have achieved the phase
control of coherent thermal transport in hybrid quantum
systems [5,14,24–27].

In this respect, the possibility to tune and control some
physical parameters by means of external fields and a time-
dependent potential is of great interest [28–33]. Indeed, a
periodically driven system can be immediately associated
with thermal machines or heat engines which are based on
cyclic operations. Different papers focused on the effects
induced by an external driving field both in closed and
open quantum systems. For example, the influence of an
ac field on the efficiency of thermoelectric setups or heat
pumping mechanisms on quantum-dot-based devices have
been investigated [28,29,31,34–36].

The dynamical aspects of time-dependent energy and heat
flows have been addressed in order to understand fundamental
thermodynamical problems such as energy exchange, work
distribution, and entropy production (see reviews [20,31] and
references therein).

Interestingly, locally applied time-dependent voltages can
lead to heat pumping mechanisms in quantum systems

[9,31,37–42]. The peculiar characteristic of heat pumps is
that a direct heat current is generated by a purely ac drive
which acts against some present thermal gradients. Moreover,
it can also generate dc finite current signals even in a purely
equilibrium situation, in the absence of any thermal or voltage
bias [31,43,44].

Recently, much attention has also been paid to the interplay
between heat and spin transport properties, in the emerging
research field of spin caloritronics [45–47]. Thermally driven
spin sources are very interesting for the improvement of
spintronic devices, which are believed to be more efficient with
respect to their electronic counterparts [14,20,48]. Striking
experimental results in this field have extended the ther-
moelectric concept to spin transport by the observation of
spin-Seebeck [49] and spin-Peltier [50] effects in magnetic
systems. Intriguingly, spin-dependent effective temperatures
of the electrons were observed in nanopillar spin valves
powered by a heat source, thus showing that electron heat
conduction can depend on the spin degree of freedom [51,52].

Among all mesoscopic systems for the investigation of
spin transport properties, a relevant role is certainly played
by two-dimensional topological insulators (2D TIs) [53–56].
These system are constituted by a wide bulk gap and charge and
energy transport are mediated by the presence of edge states.
These are constituted by two counterpropagating electronic
states with opposite spin polarization (spin-momentum lock-
ing), and are also called helical edge states [53,57]. Moreover,
as long as time-reversal symmetry is preserved and multiparti-
cle inelastic backscattering is absent [58], electrons flowing
along these edge states are topologically protected against
backscattering and transport occurs in the so-called ballistic
regime [53–55]. Experimental evidence of 2D TIs was reported
in CdTe/HgTe [59] and InAs/GaSb [60,61] quantum wells and
has been predicted for a large class of new materials which
relies on the presence of strong spin-orbit coupling [62–64].
These systems constitute an interesting playground to study
coherent heat transport in which the spin degree of freedom
can play a nontrivial role [31,65]. Moreover, the unavoidable
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presence of e-e interactions in helical edge states [53,66–69]
can dramatically affect the dynamics and have important
consequences on thermal transport properties [65].

In this paper we focus exactly on these issues. We consider
a 2D TI device in a double quantum point contact (QPC)
geometry [70–77]. In this setup, tunneling of electrons is
allowed by the presence of constrictions and can lead to
quantum interference effects. We also introduce a model to
couple electrons of the top edge to a local time-dependent gate
potential located above a single QPC. Our aim is to investigate
the generation of a direct heat current by the time-dependent
drive along the edge of a 2D TI. We demonstrate that the
presence of an ac field can generate dc finite current signals
in the absence of thermal or voltage bias, relying on a
quantum pumping mechanism. We inspect the interplay with
the peculiar spin properties of helical edge states and heat
transport. We do not take into account a spin-non-conserving
mechanism in our model, such as the one due to Rashba
scatterers, since here we concentrate on the role played by
e-e interactions in the helical edge states. We show that in
the proposed setup a polarized heat current can be ensured,
carried solely by a single spin species. Moreover, the presence
of e-e interactions can strongly modify the behavior of the heat
pumped current in this device. Interestingly, it turns out that by
looking at the resulting oscillating patterns, one can identify
the presence of e-e interactions in the system.

The paper is organized as follows. In Sec. II, we present the
setup and describe the various contributions to the Hamiltonian
of the system. In Sec. III, we define charge and heat currents
and evaluate their average values. Section IV is devoted to a
discussion of our main results. Finally, in Sec. V, we draw our
conclusions.

II. MODEL AND SETUP

We consider a 2D TI connected to two reservoirs at
equilibrium kept at the same chemical potential μ and
temperature T .

Here, electrons can propagate along the edges and, in the
absence of interactions, have well-defined chirality of right-
(R) and left- (L) moving particles [53,54]. Moreover, the
spin-momentum locking property of 2D TI constrains the
direction of propagation and the spin projection of electrons:
In the top edge the spin of R electrons is ↑ and the spin of L

electrons is ↓, and vice versa for the bottom edge. These edge
states are usually referred to as helical liquids (HLLs), and in
the following we assume that there are no magnetic impurities
or Rashba scatterers [58,78–80] close to the edges which can
lead to spin-non-conserving processes along the edge itself.
Electrons in the top edge are capacitively coupled to an external
gate potential Vg(x,t), confined in a region −L2 < x < L1

(see Fig. 1). The combination of the asymmetry and of the
time-dependent gate potential, assumed to be periodic in time
for simplicity, is crucial in order to generate finite dc current
signals, in the absence of a dc voltage bias [31,41]. Top
and bottom edges are separated by macroscopic distances
and interedge tunneling is only possible in the presence of
some constrictions. Here, we consider a double quantum point
contact (QPC) geometry [72–74], where the two constrictions
are placed at x = ±d, as schematically shown in Fig. 1. The

FIG. 1. Scheme of the proposed setup. A 2D TI is connected to
two reservoirs with chemical potential μ and temperature T . On each
edge, the direction of propagation of spin ↑ (solid red line) and spin ↓
(dashed blue line) electrons is opposite. Two quantum point contacts,
placed at x = ±d , allow for interedge tunneling. An ac external gate
voltage Vg(x,t) is capacitively coupled to the top edge in the region
around x ∼ −d between −L2 and L1 (L1 can take a value between
−d < L1 < d).

total system can be described by the following Hamiltonian,

Ĥ = ĤHLL + Ĥtun + Ĥg, (1)

where ĤHLL = Ĥfree + Ĥint describes the interacting edge
states of the 2D TI. The free contribution associated with
fermionic channels can be written as

Ĥfree =
∑

r=R/L

∑
σ=↑,↓

Ĥr,σ , (2)

with (from now on, h̄ = 1)

Ĥr,σ = −iξrvF

∫
dx e−iξr kFx : ψ̂†

r,σ (x)∂x[eiξr kFxψ̂r,σ (x)]:,

(3)

where vF and kF = μ/vF are the Fermi velocity and Fermi
momentum, respectively, ξR/L = ±1, and ψ̂

†
r,σ (x) the corre-

sponding electron creation operator. In the following, electron
interactions on each edge are treated assuming the breaking
of Galilean invariance, i.e., in the absence of intrachannel
interactions [3,4,57,81,82], and the corresponding term reads

Ĥint =
∑

σ=↑,↓
2g2

∫
dx ρ̂R,σ (x)ρ̂L,−σ (x), (4)

where g2 is the coupling constant describing the interchannel
interaction strength (for the sake of convenience, we have
adopted the same label as in the Luttinger liquid language [3]).
In the above equation the density operator is denoted as
ρ̂r,σ (x) =: ψ̂

†
r,σ (x)ψ̂r,σ (x) :. Following standard bosonization

prescriptions [3,4,81] (see Appendix A for more details), ĤHLL

can be written in a diagonal form in terms of chiral bosonic
field operators φ̂

(�)
± (x) as

ĤHLL =
∑
�=1,2

u

∫
dx{[∂xφ̂

(�)
+ (x)]2 + [∂xφ̂

(�)
− (x)]2}, (5)

where u = vF
2K

1+K2 represents the renormalized velocity, ex-
pressed in terms of the dimensionless interaction parameter

K =
√

2πvF−g2

2πvF+g2
[82] and � = 1,2 identifies the top/bottom

edge, respectively. It is worth noting that in this work we
restrict the analysis to the range of interaction strengths given
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by 1/
√

3 � K � 1, for which it is possible to show that
single electron tunneling is the dominant process (in the
renormalization group sense), both in single and double QPC
geometry [57,65,73,74].

In this work, we assume that the external gate potential
Vg(x,t) is capacitively coupled to the electron density of the
top edge via

Ĥg = −e

∫
dx Vg(x,t)[ρ̂R,↑(x) + ρ̂L,↓(x)], (6)

with the time-dependent potential

Vg(x,t) = [θ (x + L2) − θ (x − L1)]V (t). (7)

Here, L1,L2 are linked to the dimension of the gate (see
Fig. 1), and V (t) = V0 cos (ωt) is a periodic time-dependent
drive, with period T = 2π

ω
. In particular, we will consider the

gate located around x ∼ −d, i.e., −L2 < −d (L2 > 0) and
−d < L1 < d, as shown in Fig. 1. We point out that a generic
time-dependent potential Vg(x,t) will break time-reversal
invariance, depending on the precise shape of the potential
Vg(x,t). We underline that the chosen shape of V (t) preserves
time-reversal symmetry.

Tunneling events between the two edges are allowed in the
double QPC geometry under consideration. For the sake of
simplicity, here we focus on spin-preserving tunneling events
described by [69–72]

Ĥtun =
∑

σ=↑,↓

∫
dx h(x)ei2kFxψ̂

†
L,σ (x)ψ̂R,σ (x) + H.c., (8)

with h(x) = �
∑

p=±1 δ(x − pd) the space-dependent ampli-
tude describing the double constrictions depicted in Fig. 1.
Here, � represents the tunneling amplitude which is assumed
to be energy and time independent, as usually discussed in
closely related experimental geometry [8]. In the following
analysis we do not include spin-flipping tunneling at the
QPCs: since the bare amplitudes of the tunneling processes
are usually assumed to be unmodified by the presence of
a time-dependent gate voltage, we expect the amplitude of
spin-flipping tunneling to be smaller with respect to the spin-
preserving one [70,83]. Moreover, we note that, since in our
model the spin quantization axes are a good quantum number,
spin-non-conserving mechanisms, such as magnetic impurities
or Rashba scatterers [58,79,80,84], are not supposed to affect
the tunneling dynamics. Finally, we note that the chosen
configuration, with the external gate located around a single
QPC at x ∼ −d, naturally guarantees the required asymmetry
needed for a quantum pumping mechanism [9,40,41].

III. AVERAGE PUMPED CURRENTS

We are interested in the study of transport properties in the
setup introduced above. We recall that the 2D TI is connected
to two reservoirs, which we assume to be at equilibrium
at the same chemical potential μ and same temperature T .
Nevertheless, finite dc current signals can be generated due
to the presence of the time-dependent gate potential. Indeed,
as already mentioned, the ac field supplied by the external
gate above one single QPC can lead to a quantum pumping
mechanism, which, in turn, generates dc finite currents. Here,

we investigate this aspect by studying the pumped currents
which flow through the 2D TI. In particular, we will consider
the generation of heat current Iq and charge current Ic, focusing
on their dc components, extracted from the finite temperature
current contributions by further averaging the signals over one
period of the gate potential V (t).

It is possible to show (see Appendix A) that in the dc limit
the only possible contributions to pumped currents are due to
backscattering. The latter are present whenever the edges are
coupled and tunneling events occur, i.e., in proximity to the two
QPCs. Therefore, in this section we focus on the evaluation of
the backscattering contribution to the average currents (we thus
introduce a related index BS). Backscattering charge current
ÎBS
c can be defined as

ÎBS
c ≡ −e

(
ÎBS
N↑ + ÎBS

N↓
)
, (9)

where (−e) is the electron charge (e > 0) and we have
identified the particle current per spin component, which is
given by

ÎBS
Nσ = i

2
[Ĥtun,N̂R,σ − N̂L,σ ], (10)

with the particle number operator N̂r,σ = ∫
dxρ̂r,σ (x). Using

Eq. (8) we can thus write

ÎBS
Nσ = i

∫
dx h(x)ei2kFxψ̂

†
L,σ (x)ψ̂R,σ (x) + H.c. (11)

Analogously, the backscattering heat current flowing between
the two reservoirs can be written as the sum of the heat current
per spin direction,

ÎBS
q ≡ ÎBS

q↑ + ÎBS
q↓ , (12)

with

ÎBS
qσ ≡ i

2
[Ĥtun,Q̂R,σ − Q̂L,σ ], (13)

where Q̂r,σ = Ĥr,σ − μN̂r,σ . The expression in Eq. (13),
related to the heat current contribution per spin component,
in terms of fermionic fields is

ÎBS
qσ = vF

2

∫
dx h(x)ei2kFx∂x[ψ̂†

L,σ (x)ψ̂R,σ (x)]. (14)

It is worth underlining that Eq. (12) corresponds to the net
amount of heat flow exchanged between the R channel and L

channel due to backscattering processes and it does not give
any information on the heat which locally enters into each
reservoir separately.

Using the standard perturbative approach [4,65,72,85] in
the tunneling Hamiltonian, the average pumped currents can
be calculated. At the lowest order in the tunneling one has the
finite temperature currents (here, ν = n,q for particle-number
and heat contributions)

IBS
νσ = i

∫
dt ′ θ (t − t ′)

〈[
Ĥ

(0)
tun (t ′),ÎBS,(0)

νσ (t)
]〉

0, (15)

where the average 〈· · · 〉0 is taken with respect to Ĥ HLL + Ĥg .
In the above equation we have introduced the index (0) to

indicate the time evolution of operators evaluated in the ab-
sence of tunneling, i.e., with respect to ĤHLL + Ĥg for the top
edge and to ĤHLL for the bottom one. We remind the reader
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that in our model the external gate potential couples only
to the top edge electrons (see Fig. 1). In order to evaluate
the expression in Eq. (15), it is sufficient to know the time
evolution of fermionic operators, obtained from ĤHLL + Ĥg . In
particular, we are interested only in their time evolution close
to the QPC positions at x = ±d, since we are assuming local
tunneling with a δ-like spatial shape for the QPCs centered
around x = ±d. The explicit derivation of the time evolution
of these operators is reported in Appendix B for the case of a
sinusoidal voltage V (t) = V0 cos(ωt), and here we quote only
the relevant results:

ψ̂R,↑(x,t) = eiA1↑ cos[ωt−θ1↑(x)]ψ̂
(HLL)
R,↑ (x,t), (16)

ψ̂L,↓(x,t) = eiA1↓ cos[ωt−θ1↓(x)]ψ̂
(HLL)
L,↓ (x,t), (17)

in the region close to the QPC1 (right) at x = d, and

ψ̂R,↑(x,t) = eiA2↑(x) cos[ωt−θ2↑(x)]ψ̂
(HLL)
R,↑ (x,t), (18)

ψ̂L,↓(x,t) = eiA2↓(x) cos[ωt−θ2↓(x)]ψ̂
(HLL)
L,↓ (x,t), (19)

in the region around the QPC2 (left) located at x = −d. In the
above equations we have denoted with ψ̂ (HLL)

r,σ (x,t) the time
evolution of operators with respect to the bare ĤHLL, without
the external gate. The amplitudes and phases introduced just
above are given by

A2σ (x) = eV0

2ω

√
α2

σ (x) + β2
σ (x), (20)

θ2σ (x) = arctan
ασ (x)

βσ (x)
+ 2mπ (with m ∈ N), (21)

A1↑/1↓ = eV0

ω
(1 ± K) sin

[
ω

2u
(L2 + L1)

]
, (22)

θ1σ (x) = ω

2u
(L2 − L1 + 2x), (23)

where the amplitudes A1σ have no spatial dependence, con-
trary to what happens for A2σ (x) which is affected by the gate
voltage Vg . The coefficients ασ (x) and βσ (x) are connected to
the geometry of the setup and are given by

α↑/↓(x) = 1 − cos

[
ω

(
L2+L1

2u

)]
cos

[
ω

(
x

u
+L2 − L1

2u

)]

±K sin

[
ω

(
L2+L1

2u

)]
sin

[
ω

(
x

u
+L2 − L1

2u

)]
,

(24a)

β↑/↓(x) = sin

[
ω

(
L2+L1

2u

)]
cos

[
ω

(
x

u
+L2 − L1

2u

)]

±K cos

[
ω

(
L2+L1

2u

)]
sin

[
ω

(
x

u
+L2 − L1

2u

)]
.

(24b)

One can immediately note that in the noninteracting case,
i.e., K = 1, the amplitude A1↓ = 0 vanishes. This will have
significant implications on the pumped charge and heat
currents, as we will discuss below.

We recall that the tunneling is local at the QPC posi-
tions, with amplitude h(x) = �[δ(x − d) + δ(x + d)], and we

introduce the following series representation [86,87],

h(x)eiA1σ/2σ (x) cos[ωt−θ1σ/2σ (x)]

= �

∞∑
n=0

(i)n(2 − δn,0)δ(x ∓ d)Jn(A1σ/2σ (x))

× cos[n(ωt − θ1σ/2σ (x))], (25)

where Jn(x) is the Bessel function of nth order. Notice that
the first order of the above Fourier expansion is consistent
with the periodic modulation of the tunneling amplitudes
introduced by hand in Refs. [72,86]. By inserting this relation
into Eq. (15) one can obtain the expressions for the average
pumped currents. We stress that the only contributions come
from positions located at the QPCs x = ±d. We thus introduce
the simplified notations

A2σ (x = −d) ≡ A2σ θ1σ (x = d) ≡ θ1σ ,

θ2σ (x = −d) ≡ θ2σ , (26)

and we obtain the dc components,

IBS
Nσ = 2i

|�|2
(πa)2

∞∑
n=1

Jn(A1σ )Jn(A2σ ) sin[n(θ2σ − θ1σ )]

× sin(4kFd)
∫

dτ sin(nωτ )Pγ

(
τ−2d

u

)
Pγ

(
τ+2d

u

)
,

(27)

for the average particle current per spin component, and

IBS
qσ = i

|�|2
(πa)2

vF

u

∞∑
n=1

Jn(A1σ )Jn(A2σ ) sin[n(θ2σ − θ1σ )]

× cos(4kFd)
∫

dτ sin(nωτ )

[
∂τPγ

(
τ − 2d

u

)

× Pγ

(
τ + 2d

u

)
− Pγ

(
τ − 2d

u

)
∂τPγ

(
τ + 2d

u

)]
,

(28)

for the contribution associated with the heat current per
spin component. Notice that the n = 0 contributions in the
infinite sums cancel out and the series expressions presented in
Eqs. (27) and (28) start from n = 1. In the above equations we
have introduced a, the usual short-distance cutoff of HLL [4],
and Pg(t) = egW(t), where W(t) is the bosonic correlation
function [4,10,88–90]

W(t) = ln

∣∣�(
1 + kBT

ωc
+ i kBT t

)∣∣2

�2
(
1 + kBT

ωc

)
(1 + iωct)

. (29)

Here, ωc = vF/a is the energy cutoff, which represents the
highest energy scale of the problem. Note that this quantity
can be related to the energy gap between the bulk conduction
and valence bands of the 2D TI. The dimensionless parameter
γ depends on the interaction strength and reads

γ ≡ 1

2

(
1

K
+ K

)
. (30)
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Performing the integrals present in Eqs. (27) and (28) (see
Ref. [73] and Appendix C for details) the average pumped
currents can be written as

IBS
Nσ = 4|λ|2

∞∑
n=1

Jn(A1σ )Jn(A2σ ) sin[n(θ2σ − θ1σ )]

× sin(4kF d)H
(

γ,
2dnω

u
,
2dkBT

u

)

× [P̃2γ (nω) − P̃2γ (−nω)], (31)

IBS
qσ = − vF|λ|2

∞∑
n=1

Jn(A1σ )Jn(A2σ ) sin[n(θ2σ − θ1σ )]

× cos(4kF d)�

(
γ,2d,

nω

u
,
kBT

u

)

× [P̃2γ (nω) − P̃2γ (−nω)], (32)

where λ = �/(2πa) and H and � are modulating functions
(see Appendix C for the explicit expressions) and P̃g(E) is
the Fourier representation in the energy domain of Pg(t).
In passing, we note that H and � do not depend on the
voltage amplitude V0, but this dependence is crucially present
in the argument of the Bessel functions. Before discussing the
behavior of the average pumped currents, some comments are
in order. First of all, contrary to previous works [72,73], here
the time-dependent tunneling amplitudes and phase shifts of
the two QPCs are not introduced a priori in the system. Indeed,
the solution of the microscopic model of the coupling to the
external gate have lead to the time dependence of the tunneling
amplitude and to the microscopic derivation of the phase shifts
θ1σ and θ2σ . One can note that dc finite current signals strongly
rely on quantum interference effects [14,65,75], induced by the
presence of the two constrictions in this geometry. Indeed, both
currents in Eqs. (31) and (32) vanish in the limit d → 0. From
a physical point of view, each contribution in the sum over
n accounts for tunneling processes in which electrons absorb
or emit n photons. Therefore, the tunneling amplitudes, for
each QPC, associated with these processes are weighted by
the corresponding Bessel function Jn(x) present in Eq. (25).

We also note that quantum interference effects are sup-
pressed if the tunneling amplitude through the left (x = −d)
QPC A2σ or through the right (x = d) QPC A1σ vanish
A1σ/2σ → 0, resulting in a vanishing pumped current signal.
The fact that both currents strongly rely on quantum inter-
ference implies that the probability of propagation across the
junctions for electrons is related to the phase acquired in the
tunneling process. These phases depend on the energy at which
electrons impinge upon the barrier and on the phase shift
�θσ = θ2σ − θ1σ between the two QPCs. Since the phase shift
�θσ has opposite signs for R,σ and L,σ electrons, it generates
a left-right asymmetry which is crucial for the generation of
currents (31) and (32) [91]. This asymmetry, together with
the energy dependence of the tunneling junctions, entails
that, at each energy, electrons moving in a specific direction
are more likely to be transmitted across the junctions than
electrons moving in the opposite one. This fact is consistent
with the general prescription of the parametric pumping
mechanism [9,40,41,86,87]. Once Eqs. (31) and (32) have been

obtained, all stationary currents can be computed by using the
relations in Eqs. (9) and (12).

IV. RESULTS AND DISCUSSION

In this section we will discuss our main results. We will
mainly focus on the generation of finite heat current induced
by the pumping mechanism in the absence of external bias. We
investigate the net amount of heat current flowing through the
2D TI, studying the behavior of IBS

q as a function of various
external parameters, inspecting also the role played by e-e
interactions.

In the following, all energies are rescaled with respect to
the chemical potential μ (dimensionless quantities are thus
indicated with an overbar, i.e., ω = ω/μ, V 0 = eV0/μ, T =
kBT/μ, ωc = ωc/μ). For the sake of convenience, we also
introduce

η = dkF = d
μ

vF
, (33)

a dimensionless parameter directly connected to the presence
of quantum interference effects, as it appears in the expressions
for the pumped current, Eqs. (31) and (32), and is linearly
proportional to the distance between the two QPCs.

We restrict the analysis to a physically reasonable range of
parameters, remaining as close as possible to experimentally
accessible values. We fix the chemical potential to μ = 3 meV
and the temperature to T = 300 mK (T = 0.01). The energy
cutoff, which represents the largest energy scale involved,
is related to the typical energy bulk gap in 2D TI. Recent
proposals have predicted a very wide bulk gap for 2D TIs in
topological materials with strong spin-orbit coupling [62–64].
Recent measurements on novel devices have reported bulk gap
values up to ∼800 meV [62]. Here we fix the energy cutoff to
ωc = 200.

Concerning the characteristic parameters of the external
gate, here we fix ω = 0.1, which corresponds to a drive
frequency of ν = ω/(2π ) ∼ 75 GHz. We vary the gate
amplitude in the range 0 � V 0 � 20. In this case, we can
investigate a large range of parameters, including the nonlinear
regime eV0/ω � 1 where interesting features appear.

Let us start considering the noninteracting case (K = 1).
Interestingly enough, we get A1↓ = 0, which in turn leads to
the vanishing of the heat current component associated with
↓ electrons IBS

q↓ = 0. This fact leads to the conclusion that, in
the noninteracting case, a finite heat current is produced and
is associated only with a single spin species σ =↑,

lim
K=1

IBS
q = IBS

q↑ . (34)

Therefore, this setup can allow for the generation of fully
polarized heat current. Note that the vanishing of the compo-
nent associated with ↓ electrons with A1↓ → 0 is intimately
connected to the spin-momentum locking property of 2D TIs.
In the end this is also connected to the chosen geometry.
Indeed, if the external gate is placed on top of the other QPC,
this would imply A2↑ → 0 with an opposite polarization of
the pumped heat current. Indeed, physically, the vanishing
of spin ↓ components can be understood in terms of the
tunneling paths of electrons. When L, ↓ electrons reach the
right QPC, they have not increased or reduced their energy
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FIG. 2. Average pumped heat current IBS
q (in units of

10−3|λ2|/ωc) as a function of the external gate voltage V 0 = eV0/μ

in the noninteracting case (K = 1). Drive frequency and temperature
are fixed to ω = 0.1 and T = 0.01. Other parameters are η = 1.5,
L1 = 0.2d , L2 = 2d , and the energy cutoff is set to ωc = 200. As
discussed in the text, finite heat current is generated by pumping and
for K = 1 it is only carried by ↑ electrons, resulting in a flow of
polarized heat current.

yet by passing through the gate. Therefore, each contribution
to transport that could arise from L, ↓ tunneling at x = d is
exactly compensated by the contribution R, ↓ tunneling at the
right QPC. Only the tunneling path through the other QPC is
due to ↓ electrons and interference effects would completely
vanish.

In Fig. 2 we show the average pumped heat current IBS
q =

IBS
q↑ in the noninteracting case, where an oscillating behavior is

clearly visible as a function of the gate voltage V 0. The latter
is due to the Bessel functions Jn(A1↑) and Jn(A2↑) present in
Eq. (32). In order to understand this oscillating behavior, it is
instructive to look at the limit of small ηω of A1↑ (as it is in
our case with the chosen parameters),

lim
ηω<1

A1↑ → V 0η
L1 + L2

d
, (35)

proportional to V 0. One can see that for η(L1 + L2)/d > 1,
as it is in our case, the maxima and minima of Jn(A1↑), as a
functions of the gate amplitude, are several in the considered
range of V 0. This basically would explain the oscillating
pattern present in Fig. 2 for the polarized heat current in the
noninteracting case. Indeed, the other Jn(A2↑) present a slower
oscillating behavior, since A2↑ is linked to L2 − d always
smaller than L1 + L2. We underline that the same qualitative
features are present also for higher values of ωη, where in
general the full expression of A1↑ governs the observed pattern.
Finally, the magnitude of IBS

q is related to the weight function
present in Eq. (32) and to the product of Bessel functions
itself. The latter are responsible of the increasing magnitude for
increasing gate voltage V 0 in the chosen range of parameters,
where Bessel functions of higher order n become relevant.

The presence of e-e interactions strongly modifies the above
picture, as we now discuss.

0 4 8 12 16 20

V 0

−2

−1.5

−1

−0.5

0

0.5

1
IBS
q↑ (K = 0.6)

IBS
q↓ (K = 0.6)

(a)

0 4 8 12 16 20

V 0

−0.4

−0.2

0.0

0.2

0.4

0.6
J1(A1↑)

J1(A1↓)
(b)

0 4 8 12 16 20

V 0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
IBS
q (K = 0.6)

IBS
q (K = 0.8)

(c)

FIG. 3. Average pumped heat current in the presence of e-e
interactions (K < 1). (a) shows the spin-up IBS

q↑ (blue solid line)
and spin-down IBS

q↓ (green dashed line) components of the average
heat current for K = 0.6. (b) represents the behavior of the more
relevant Bessel functions with n = 1 with an interaction strength
K = 0.6. (c) shows the heat current IBS

q (in units of 10−3|λ2|/ωc) as

a function of the gate voltage V 0 = eV0/μ. The blue solid line and
green dashed curve correspond to K = 0.6 and K = 0.8, respectively.
Other parameters are the same as in Fig. 2.
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The interacting case is reported in Fig. 3. The first important
difference with respect to the noninteracting case is that now
both spin components contribute to the average pumped heat
current IBS

q = IBS
q↑ + IBS

q↓ , and thus the heat current is not
polarized anymore [see, in particular, Fig. 3(b)].

The behaviors of IBS
q↑ and IBS

q↓ can be ascribed qualitatively
to the difference between the Bessel functions Jn(A1↑) and
Jn(A1↓). These functions are plotted in Fig. 3(b) versus the
gate voltage V 0. As one can see, Jn(A1↑) displays more
oscillations than Jn(A1↓). Indeed, looking at Eq. (22), one
can note that A1↓ = εA1↑, with ε = 1−K

1+K
, which is ε < 1 for

all interaction strengths in the interval 0 < K � 1. Therefore,
the number of zeros of Jn(A1↓) are reduced of a factor ε

with respect to Jn(A1↑)as a function of V 0. We underline that
this factor ε, related to the interaction parameter K , arises as
a consequence of the particular form for the phases of the
bosonized expression for ψ̂R,↑ and ψ̂L,↓ in Eq. (B9) and is a
peculiar property of HLL.

The differences between A1↑ and A1↓ are also reflected in
the different amplitudes of the spin components of the heat
current. Summing over the higher nth order of the Bessel
functions and considering the faster oscillation related to
A1↑, the amplitude of IBS

q↑ decreases with respect to IBS
q↓ [see

Fig. 3(a)]. This trend is reflected in the total heat current,
i.e., the sum of the two spin contributions, which is thus
dominated by the slower oscillation associated to IBS

q↓ , as
one can see in Fig. 3(c). This fact is clearer if one considers
stronger interactions (see the green dashed line for K = 0.6),
where the period of oscillations is dominated by the slow spin
↓ component, presenting some beats due to the modulation
with the fast oscillation associated to IBS

q↑ . Due to all these
different features, the pumped heat current can be also used as
a sensitive probe of the presence of e-e interactions. Indeed, as
we have shown, the heat current is no longer fully polarized and
presents a different pattern of oscillations, with characteristic
modulations related to the interaction strength.

0 4 8 12 16 20

V 0

−2.5

−1.5

−0.5

0

0.5

1.5

2.5

I
B

S
c

K = 0.6
K = 0.8
K = 1

FIG. 4. Pumped charge current IBS
c , in units of 4 × 10−4e |λ|2

ω
, as

a function of the gate amplitude V 0. Different curves correspond to
different interaction strengths, K = 0.6 (blue solid line), K = 0.8
(green dashed line), K = 1 (red line). Other parameters are the same
as in Fig. 2.

A similar behavior is expected also for the average charge
current. Indeed, the same pumping mechanism would lead to
a finite charge current signal. This is reported in Fig. 4, where
IBS
c is plotted as a function of the gate voltage V 0 for different

interaction strengths. It turns out that in the noninteracting case
the pumped charge current is also fully polarized and carried
solely by spin ↑ electrons. The presence of interactions induces
the same qualitative changes discussed for the heat current and
the associated oscillations can be explained in full analogy to
what happens for IBS

q .
It is interesting, however, to look at the sign of the product

of the two pumped currents, i.e.,

S(V 0,K) ≡ IBS
c IBS

q∣∣IBS
c

∣∣∣∣IBS
q

∣∣ , (36)

as a function of the gate amplitude V 0, as shown in Fig. 5.
Here, we show the noninteracting case K = 1 in the upper
panel and K = 0.6 in the lower panel. In general, the fact that
this quantity does not have a definite sign indicates that by

0 4 8 12 16 20

V 0

−1.0

−0.5

0.0

0.5

1.0

S(
K

=
1)

(a)
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−0.5

0.0

0.5

1.0

S(
K

=
0.

6)

(b)

FIG. 5. Sign of the product of charge current IBS
c and heat current

IBS
q , as a function of the gate amplitude V 0. In the upper panel,

K = 1 (noninteracting case), and in the lower panel, K = 0.6. Other
parameters are the same as in Fig. 2.
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varying the gate voltage one can achieve regimes in which
charge and heat currents flow in opposite directions. The
difference in the sign of charge and heat currents can be
understood in terms of the currents generated by processes
with a specific number of absorbed photons n. Electrons
contributing to these currents belong to an energy window
defined by the energy quantum nω. At each energy within this
window, right-moving or left-moving electrons are more likely
transmitted, as discussed in Sec. III, resulting, respectively, in
positive or negative contributions to the currents. The sum
of all these contributions determines the charge and heat
currents. However, electrons carry different values of energy
across the system and the energy dependence of the tunneling
junctions suppresses or increases the transfer of some of them.
On the other hand, electrons carry all the same charge. As
a consequence, each positive and negative contribution of
electrons within the energy window fixed by n is differently
weighted for charge and heat. Therefore, this fact leads to the
possibility of charge and heat currents generated by a single
photoassisted process with opposite sign. Moreover, this holds
true also for the total currents Ic and Iq .

In the presence of interactions, when A1↓ �= 0, the lower
number of oscillations of Jn(A1↓) with respect to Jn(A1↑)
allows one to better distinguish the effect of processes of
each order n on the sign of charge and heat currents. On
the other hand, for K = 1, only Jn(A1↑) remains and brings
many oscillations into each nth process, thus resulting in a
strong reduction of the modulating function. In the interacting
case (see the lower panel in Fig. 5) the regions with a definite
sign of S as a function of V 0 become wider with respect to the
noninteracting one. Here, charge and heat flow in the same—or
opposite—directions for a larger range of the external gate
voltage V 0.

V. CONCLUSIONS

In this paper, we have investigated a double quantum point
contact geometry in a 2D TI. Based on this, we have proposed a
setup in which a pumping mechanism can generate finite heat
and charge currents without an external dc bias or thermal
gradient. The pumping mechanism relies on the presence of
an external gate potential placed on top of one of the two
constrictions which acts on the system with an external ac
field. We have developed a microscopic model of the coupling
between the external gate and the electrons of the edge states
of the 2D TI. We have therefore evaluated the average heat
and charge currents pumped into the system as a function of
various parameters, also taking into account the presence of
e-e interactions. In the noninteracting case, this setup generates
a finite heat current which is carried solely by a single spin
species, resulting in a fully polarized heat flow. The presence

of e-e interactions strongly modifies the behavior of pumped
currents, which are no longer fully polarized since both spin
components now contribute to the net heat flow. Moreover,
looking at the behavior of the heat current as a function of the
gate voltage, one can distinguish between different patterns
of oscillations. The latter are connected to the interaction
strength, thus allowing one to use this setup as a tool to
identify the presence of e-e interactions. Finally, we have
studied the sign of the product of heat and charge pumped
currents, showing that one can reach a situation in which the
two quantities flow in the same or in opposite directions, by
varying the external gate voltage.
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APPENDIX A: ZERO ORDER CURRENTS

This Appendix is devoted to the evaluation of the average
currents in the absence of tunneling, taking into account
the presence of the time-dependent external gate Vg(x,t). In
particular, we are interested in the average quantities in the dc
limit or stationary regime. Here, we demonstrate that, in the
absence of tunneling events (i.e., without QPCs), all average
currents vanish.

Since the gate potential couples only to electrons belonging
to the top edge, we do not consider here the operators related
to the bottom edge. Charge and energy densities associated
with the top edge [denoted with the index (1)] can be written
as

ρ̂(1)
c (x,t) = −e[ρ̂R,↑(x,t) + ρ̂L,↓(x,t)], (A1a)

ρ̂(1)
q (x,t) = vF{[ρ̂R,↑(x,t)]2 + [ρ̂L,↓(x,t)]2}. (A1b)

The corresponding currents can be defined by using the
generalized continuity equation (ν = c,q)

∂t ρ̂
(1)
ν (x,t) + ∂x Î

(1)
ν (x,t) = 0. (A2)

Density operators, expressed in terms of bosonic fields, are
given by

ρ̂R,↑(x,t) = 1

2

[(
1√
K

+
√

K

)
∂xφ̂

(1)
+ (x,t)

(
1√
K

−
√

K

)
∂xφ̂

(1)
− (x,t)

]
, (A3)

ρ̂L,↓(x,t) = − 1

2

[(
1√
K

+
√

K

)
∂xφ̂

(1)
− (x,t) +

(
1√
K

−
√

K

)
∂xφ̂

(1)
+ (x,t)

]
. (A4)
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We now use the results found in Appendix B, where the time evolution of the operators φ̂
(1)
± (x,t) in the presence of the external

gate has been calculated. Given Eqs. (B5) and (B6), we can calculate average currents in the absence of tunneling events, in the
dc limit. After performing a thermal average with respect to ĤHLL + Ĥg , charge and heat currents are evaluated in the long-time
limit (dc regime), using (A2),

I (1)
c (x,t) = − eK

∑
ζ=+,−

{
θ (ζ (x + L2))V

(
t − ζ

x + L2

u

)
− θ (ζ (x − L1))V

(
t − ζ

x − L1

u

)}
, (A5)

for charge contribution,

I (1)
q (x,t) = e2

2u
(K + K2)

∑
ζ=+,−

ζ

{
θ (ζ (x + L2))V 2

(
t − ζ

x + L2

u

)
+ θ (ζ (x − L1))2

(
t − ζ

x − L1

u

)

− 2θ (ζ (x + L2))θ (ζ (x − L1))V

(
t − ζ

x + L2

u

)
V

(
t − ζ

x − L1

u

)}
, (A6)

for heat current.
The expression in Eq. (A5) is a periodic function of time

and it is linear in the time-dependent gate potential. Since the
average over one period of V (t) is zero, it is easy to realize
that charge current has no dc contribution in the absence of
tunneling.

On the other hand, the heat current is quadratic in the
gate potential, with a nontrivial spatial dependence. In order
to calculate its contribution, we thus consider two different
regions with x < −L2 and x > L1. In the first region (x <

−L2), the heat current, averaged over one period, reads

IqL = −e2V 2
0

2
(K + K3)

[
1 − cos

(
ω

L2 + L1

u

)]
, (A7)

while in the other region (x > L1) one has

IqR = e2V 2
0

2
(K + K3)

[
1 − cos

(
ω

L2 + L1

u

)]
. (A8)

It is worth noting that IqR corresponds to the dc heat current
flowing into the right reservoir, while −IqL represents the dc
heat current flowing into the left reservoir. Since these two
contributions are equal, the net heat current globally flowing
along the 2D TI is zero. This means that the heat current
introduced by the pumping mechanism, without tunneling
events and backscattering, is partitioned on two equal parts,
one to the left and one to the right, resulting into a zero net
contribution to the pumped heat flow.

APPENDIX B: PRESENCE OF AN EXTERNAL GATE

This Appendix is devoted to the derivation of the time
evolution of operators in the presence of a time-dependent
external gate Vg(x,t). As stated in the main text, we focus on
a periodic time-dependent gate potential, whose explicit time
dependence is

V (t) = V0 cos(ωt). (B1)

We start by evaluating the time evolution of the operators
φ̂r,σ (x,t) in the presence of the external gate. The Hamiltonian
associated with the gate potential in Eq. (6) can be rewritten
in terms of chiral bosonic fields as

Ĥg = e
√

K

∫
Vg(x,t)[:∂xφ̂

(1)
+ (x) : − : ∂xφ̂

(1)
− (x):]. (B2)

The equation of motion for the bosonic fields associated with
the top edge φ̂

(1)
ζ, (x,t) (in the presence of ĤHLL + Ĥg) is

∂t φ̂
(1)
ζ (x,t) + ζu∂xφ̂

(1)
ζ (x,t) = −e

√
K Vg(x,t), (B3)

with the corresponding solution,

φ̂
(1)
ζ (x,t) = φ̂

(1,HLL)
ζ (x − ζut)

− e
√

K

∫ t

0
Vg[x − ζu(t − t ′),t ′]dt ′. (B4)

Here, we have denoted with φ̂
(1,HLL)
ζ (x − ζut) the solution in

the absence of the external gate. Recalling the explicit form of
the gate potential in Eq. (7), we have

�φ̂
(1)
+ (x,t) = − e

√
K

[
θ (−L2 < x < L1)

∫ t

t− L2+x

u

dt ′V (t ′) + θ (x > L1)
∫ t− L2+x

u

t− −L1+x

u

dt ′V (t ′)

]
, (B5)

�φ̂
(1)
− (x,t) = − e

√
K

[
θ (−L2 < x < L1)

∫ t

t+ −L1+x

u

V (t ′)dt ′ + θ (x < −L2)
∫ t+ L2+x

u

t+ −L1+x

u

V (t ′)dt ′
]
, (B6)

where �φ̂
(1)
± (x,t) = φ̂

(1)
± (x,t) − φ̂

(1,HLL)
± (x,t). Recalling the explicit time dependence in Eq. (B1), the expressions in Eqs. (B5)

and (B6) become

�φ̂
(1)
+ (x,t) = − eV0

ω

√
K

{
θ (−L2 < x < L1)

[
sin(ωt) − sin

[
ω

(
t − x + L2

u

)]]

+ θ (x > L1)

[
sin

[
ω

(
t − x + L2

u

)]
− sin

[
ω

(
t − x − L1

u

)]]}
, (B7)
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�φ̂
(1)
− (x,t) = −eV0

ω

√
K

{
θ (−L2 < x < L1)

[
sin(ωt) − sin

[
ω

(
t + x − L1

u

)]]

+ θ (x < −L2)

[
sin

[
ω

(
t + x + L2

u

)]
− sin

[
ω

(
t + x − L1

u

)]]}
. (B8)

Time evolution of fermionic operators

We now evaluate the time evolution of fermionic operators ψ̂R,↑(x,t) and ψ̂L,↓(x,t). We recall that these operators are related
to bosonic fields by the bosonization identity [3,81]

ψ̂R,↑/L,↓(x,t) ∼ e
i
2 [(

1√
K

±√
K)φ̂(1)

+ (x,t)+(
1√
K

∓√
K)φ̂(1)

− (x,t)]
. (B9)

By writing φ̂
(1)
ζ (x,t) = φ̂

(1,HLL)
ζ (x,t) + �φ̂

(1)
ζ (x,t), Eq. (B9) can be recast as

ψ̂R,↑/L,↓(x,t) = exp

{
− i

[(
1 ± K

2
√

K

)
�φ̂

(1)
+ (x,t)

(
1 ∓ K

2
√

K

)
�φ̂

(1)
− (x,t)

]}
,ψ̂

(HLL)
R,↑/L,↓(x,t), (B10)

where we have identified with ψ̂
(HLL)
R,↑/L,↓(x,t) the time evolution of fermionic operator with respect to the bare ĤHLL without the

external gate potential. Inserting Eqs. (B7) and (B8) into Eq. (B10) one obtains

ψ̂R,↑/L,↓(x,t) = exp

{
i
eV0

2ω
[ασ (x) sin(ωt) + βσ (x) cos(ωt)

]}
ψ̂

(HLL)
R,↑/L,↓(x,t), (B11)

in the region around the left QPC in Fig. 1 at x ∼ −d, and

ψ̂R,↑/L,↓(x,t) = exp

{
i
eV0

ω
(1 ± K) sin

(
ω

L2 + L1

2u

)
cos

[
ω

(
t − L2 − L1 + 2x

2u

)]}
ψ̂

(HLL)
R,↑/L,↓(x,t), (B12)

in the region around the right constriction located at x = d. In Eq. (B11) we defined the geometrical factors

α↑/↓(x) = 1 − cos

[
ω

(
L2 + L1

2u

)]
cos

[
ω

(
x

u
+ L2 − L1

2u

)]
± K sin

[
ω

(
L2 + L1

2u

)]
sin

[
ω

(
x

u
+ L2 − L1

2u

)]
, (B13a)

β↑/↓(x) = sin

[
ω

(
L2 + L1

2u

)]
cos

[
ω

(
x

u
+ L2 − L1

2u

)]
± K cos

[
ω

(
L2 + L1

2u

)]
sin

[
ω

(
x

u
+ L2 − L1

2u

)]
. (B13b)

Equations (B11) and (B12) can be expressed as

ψ̂R,↑/L,↓(x,t) = eiA2σ (x) cos[ωt−θ2σ (x)]ψ̂
(HLL)
R,↑/L,↓(x,t), (B14)

in the first region around x ∼ −d, and

ψ̂R,↑/L,↓(x,t) = eiA1σ cos[ωt−θ1σ (x)]ψ̂
(HLL)
R,↑/L,↓(x,t), (B15)

in the second region around x ∼ d. We have defined the following amplitudes and phase factors:

A2σ (x) =eV0

2ω

√
α2

σ (x) + β2
σ (x), (B16)

θ2σ (x) = arctan
ασ (x)

βσ (x)
+ 2mπ (with m integer), (B17)

A1↑/1↓ =eV0

ω
(1 ± K) sin

[
ω

2u
(L2 + L1)

]
, (B18)

θ1σ (x) = ω

2u
(L2 − L1 + 2x). (B19)

Notably it turns out that the two amplitudes A1↑ and A1↓ do not depend on the position x in the chosen geometry.

APPENDIX C: USEFUL INTEGRALS

In the low-temperature limit kBT � ωc and ωct � 1, Eq. (29) becomes

W(t) = ln
πkBT t

sinh(πkBT t)(1 + iωct)
. (C1)
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In this case, it is possible to perform the integral in Eq. (27) and one obtains∫
dτ sin(nωτ )Pγ

(
τ − 2d

u

)
Pγ

(
τ + 2d

u

)
= 1

2i
H

(
γ,

2d

u
nω,

2d

u
kBT

)[
P̃2γ (nω) − P̃2γ (−nω)

]
, (C2)

where

H(γ,x,y) = 2π
�(2γ )

�(γ )

e−2πγy

sinh
(

x
2y

) Im

[
eix

�
(
γ + i x

2πy

)
�

(
1 − i x

2πy

) 2F1

(
γ,γ − i

x

2πy
,1 − i

x

2πy
; e−4πy

)]
, (C3)

and

P̃g(ω) =
(

2πkBT

ωc

)g−1
e

ω
2kB T

ωc

B
[
g

2
− i

ω

2πkBT
,
g

2
+ i

ω

2πkBT

]
. (C4)

Moreover, by noticing that∫
dτ sin(nωτ )

[
∂τPγ

(
τ − 2d

u

)
Pγ

(
τ + 2d

u

)
− Pγ

(
τ − 2d

u

)
∂τPγ

(
τ + 2d

u

)]

= −u

2
∂d

∫
dτ sin(nωτ )Pγ

(
τ − 2d

u

)
Pγ

(
τ + 2d

u

)
, (C5)

the integral in Eq. (28) can be expressed in the following form,∫
dτ sin(nωτ )

[
∂τPγ

(
τ − 2d

u

)
Pγ

(
τ + 2d

u

)
− Pγ

(
τ − 2d

u

)
∂τPγ

(
τ + 2d

u

)]

= − u

4i
�

(
γ,2d,

nω

u
,
kBT

u

)[
P̃2γ (nω) − P̃2γ (−nω)

]
, (C6)

where

�

(
γ,2d,

nω

u
,
kBT

u

)
≡ ∂d

[
H

(
γ,

2d

u
nω,

2d

u
kBT

)]
. (C7)
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125429 (2013).
[38] L. Arrachea, M. Moskalets, and L. Martin-Moreno, Phys. Rev.

B 75, 245420 (2007).
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