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I. CHIRAL LUTTINGER LIQUID THEORY OF QUANTUM HALL EDGES

In this section, we review the basics of bosonic theory of a general Abelian quantum Hall edge, and we show its
application to the case of the filling factor ν = 2/5. The FQHE edges are modeled as chiral Luttinger liquids with a
general Abelian quantum Hall edge being described by the action [S1, S2]

S =
1

4π

∫
dxdt

N∑
i=1

[
−χi∂xϕi∂tϕi − vi(∂xϕi)

2
]

(S1)

where ϕi denote the bosonic modes on the edge, vi > 0 denote the propagation velocity of i−th bosonic mode, and
χi = ±1 denote their chiralities, with i ∈ {1, . . . , N}. The bosonic fields satisfy commutation relations given by

[ϕi(x, t), ϕj(x
′, t′)] = iπδijSign(Xi −X ′

j) (S2)

where Xi = −χix+ t. The charge density ρ and the conserved current J on the edge are given by

ρ =
1

2π

∑
i

qi∂xϕi

J = − 1

2π

∑
i

qi∂tϕi

(S3)

where q2i e
2/h is the conductance of the i-th bosonic mode, e is the electronic charge, and h the Planck’s constant.

The conductance is related to the bulk filling fraction ν of the FQHE liquid via∑
i

χiq
2
i = ν (S4)

The edge hosts quasiparticle (qp) operators of the form

ψg ∼ eig.ϕ (S5)

where vectors with N components are denoted in bold, and A.B ≡
∑

i χiAiBi.
The spectrum of quasiparticle operators allowed in a given edge theory can be found in the following manner. First,

we find a set of N electron operators ψeα ∼ eieα.ϕ on the edge by demanding it to satisfy the following relations
expected of an electronic excitation

{ψeα(x, t), ψeα(x
′, t)} = 0,

ψeα
(x, t)ψeβ

(x′, t)± ψeβ
(x′, t), ψeα

(x, t) = 0,[
J0(x, t), ψeα

(x′, t)
]
= δ(x− x′)ψeα

(x, t).

(S6)

Each set of N electron operators defines a topological class of the quantum Hall system, which can be parametrized
by the K matrix

Kαβ = eα · eβ (S7)
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Then all the allowed quasiparticle operators ψg ∼ eig.ϕ are found by demanding that they commute or anti-commute
with the electron operators

ψg(x, t)ψeα
(x′, t)± ψg(x

′, t), ψeα
(x, t) = 0 (S8)

For tunneling of quasiparticles at a QPC, within a low energy approximation, the quasiparticles with the lowest scaling
dimension have the highest tunneling probability. Hence, the ones with higher scaling dimensions are usually ignored,
as is done in this work. We emphasize that the parameters N , q, and χ here are phenomenological, with the values
chosen below being motivated by experimental observations.

Having calculated the quasiparticle operators in a given edge theory, their relevant properties are given as follows.
The charge of ψg is given by

qg = g.q e (S9)

the scaling dimension is given by

δg =
∑
i

g2i (S10)

while the mutual exchange statistics of two different quasiparticle types ψg1 and ψg2 is given by

θg1g2 ≡ πλg1g2 = π g1.g2 (S11)

Laughlin states

Laughlin states are observed for the FQHE at filling factor ν = 1/(2m+ 1) (with m and integer). The edge theory
is described by a single Luttinger liquid (N = 1), with q = (

√
ν), and g = (

√
ν). This gives for the electron operator,

e = (1/
√
ν) and hence a trivial K-matrix, (1/ν). This recovers the usual results: the quasiparticle operator is given

by ψg ∼ ei
√
νϕ, quasiparticle charge is qg = νe, the exchange statistics is θgg = πν, and finally the scaling dimension

is δg = ν.

ν = 2/5

Theoretically describing the ν = 2/5 FQHE state requires two chiral Luttinger liquids on the edge (N = 2)
which is consistent with experiments. Moreover, experiment results suggest the presence of two edge modes with
conductance 1/3 and 1/15 respectively, giving us q = (

√
1/3,

√
1/15). Both modes propagate in the same direction,

hence χ = (+1,+1). This choice of q and χ satisfies Eq. (S4) and gives us for the electron operators

e1 =
(
−2/

√
3,−

√
5/3
)

e2 =
(
−
√
3, 0
) (S12)

and hence the K-matrix

K =

(
3 2
2 3

)
(S13)

From these, it can then be shown that there exist two quasiparticles of the lowest scaling dimension, having charge
e/5 [S3]. They are given by eig1.ϕ and eig2.ϕ, where

g1 =
(
0,
√
3/5
)

g2 =
(√

1/3,−2/
√
15
) (S14)

Both of these charge e/5 quasiparticles have the same scaling dimension δg1 = δg2 = 3/5. Their exchange statistics
is given by θg1g1 = θg2g2 = θg1g2 = 3π/5.

Since all the relevant quantities: charge, scaling dimension and exchange statistics are the same for both ψg1 and
ψg2 , the features of the multiple chiral Luttinger liquid model can be captured simply by using a single chiral Luttinger
liquid model with e∗ = e/5, δ = 3/5, and θ = 3π/5, as done in the main text. In general, such a simplification can
always be carried out for all fully chiral quantum Hall edges [χ = (+1, . . . ,+1)].
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II. CURRENT DUE TO SINGLE QUASIPARTICLE: GENERAL ABELIAN QUANTUM HALL EDGE

In this section, we calculate the tunneling current due to a single quasiparticle incident on the quantum point
contact, using the general theory recalled in the previous section. For simplicity, we make the assumption of a single
type of quasiparticle tunneling across the QPC (generalization is straightforward). The tunneling Hamiltonian at the
QPC is given by

HT (t) = Γ
(
eig1.ϕ

u−ig1.ϕ
d

+H.c.
)

(S15)

while the tunneling current from the upper edge to the lower edge is

IT (t) = iqg1Γ
(
eig1.ϕ

u−ig1.ϕ
d

−H.c.
)

(S16)

A single quasiparticle flows on the upper edge, hitting the QPC at time t0. This process is modelled by augmenting
the bosonic field ϕu with a solitonic excitation

ϕui −→ ϕui + 2πg2i

[
1

π
tan−1

(
t− t0
tw

)
+

1

2

]
(S17)

where we have assumed for the sake of illustration, that the quasiparticle tunneling across the QPC, and the one
impinging on the QPC are of different types. The tunneling current in the QPC can be expressed, to leading order
in the tunneling constant, within the Keldysh formalism as

⟨IT (t)⟩ = − i

2

∫
dt′
∑
ηη′

η′
〈{
TK IT (t

η)HT (t
′η′
)
}〉

(S18)

where η, η′ denote the Keldysh contour labels, and TK denotes time ordering on the Keldysh contour. We plug in the
tunneling Hamiltonian and tunneling current operators

⟨IT (t)⟩ =
qg1Γ

2

2

∫
dt′

∑
ϵηη′

ϵη′
〈{

TK

[
eig1.ϕ

u(tη)−ig1.ϕ
d(tη)

]ϵ [
eig1.ϕ

u(t′η
′
)−ig1.ϕ

d(t′η
′
)
]−ϵ
}〉

(S19)

where the sum over ϵ exists to account for both terms in Eqs. (S15) and (S16). We can further expand this as

⟨IT (t)⟩ =
qg1Γ

2

2

∫
dt′

∑
ϵηη′

ϵη′
∏
j

〈{
TK eiϵg1jϕ

u
j (t

η)e−iϵg1jϕ
u
j (t

′η′
)
}〉〈{

TK e−iϵg1jϕ
d
j (t

η)eiϵg1jϕ
d
j (t

′η′
)
}〉

× exp

{
2ϵg1jg2j

[
tan−1

(
t− t0
tw

)
− tan−1

(
t′ − t0
tw

)]} (S20)

Using now the identity, 〈{
TK eiϵg1jϕ

u/d
j (tη)e−iϵg1jϕ

u/d
j (t′η

′
)
}〉

= eg
2
1jG

ηη′
j (t−t′) (S21)

where Gηη′
(t) denotes the components of the Keldysh Green’s function for the bosonic modes, and summing over ϵ,

we get

⟨IT (t)⟩ = 2iqg1Γ
2

∫
dt′

∑
ηη′

η′
∏
j

e2g
2
1jG

ηη′
j (t−t′) sin

{
2
∑
j

g1jg2j

[
tan−1

(
t− t0
tw

)
− tan−1

(
t′ − t0
tw

)]}
(S22)

Summing now over the Keldysh contour indices and using the relations between different components of the Keldysh
Green’s function [S4], the current takes the form

⟨IT (t)⟩ = 2iqg1Γ
2

∫ t

−∞
dt′
(
e
∑

j 2g2
1jGj(t−t′) − e

∑
j 2g2

1jGj(t
′−t)
)
sin

{
2
∑
j

g1jg2j

[
tan−1

(
t− t0
tw

)
− tan−1

(
t′ − t0
tw

)]}
(S23)
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where the summation inside the sine includes only the bosonic modes flowing towards the QPC, and

Gj(t) ≡ G−+
j (t) = ln

(
sinh(iπkBTτ0j/ℏ)

sinh[πkBT (t− iτ0j)/ℏ]

)
(S24)

where τ0j is the cutoff corresponding to the j−th bosonic mode. We then have∑
j

g2j = δg (S25)

and for fully chiral edges [S5], ∑
j

g1jg2j ≡ g1.g2 = λg1g2 ≡ θg1g2/π (S26)

representing the exchange phase of the quasiparticles ψg1 and ψg2 . Finally, in the limit τ0j → 0

Gj(t) ≡ G(t) = ln

(
sinh(iπkBTτ0/ℏ)

sinh[πkBT (t− iτ0)/ℏ]

)
(S27)

for all j, where τ0 is smaller than the smallest τ0j . With this, we can write for fully chiral edges

⟨IT (t)⟩ = 2iqg1Γ
2

∫ t

−∞
dt′
(
e2δg1G(t−t′) − e2δg1G(t

′−t)
)
sin

{
2λg1g2

[
tan−1

(
t− t0
tw

)
− tan−1

(
t′ − t0
tw

)]}
(S28)

From the above one can see that the current through the QPC for an edge theory with multiple bosonic modes can
be simply captured using a single chiral Luttinger liquid expression, via the appropriate choice of the parameters qg1 ,
δg1 and λg1g2 , as done in the main text.

III. THEORY OF THE ANYON COLLIDER

We outline here the theory of the anyon collider, following Ref. S6. The geometry of the anyon collider comprises
three QPCs. The QPCs on the left and right are biased with a voltage V , and are placed in the weak-backscattering
regime. These QPCs emit fractional quasiparticles on the opposite edges, which then travel downstream toward
the central QPC. The left and right QPCs, called source QPCs henceforth, act as sources of random streams of
quasiparticles for the central QPC. The stream of incoming quasiparticles can be modeled by augmenting the bosonic
fields with solitons as

ϕ
u/d
i −→ ϕ

u/d
i + 2πgi

∑
k

[
1

π
tan−1

(
t− t

u/d
k

tw

)
+

1

2

]
(S29)

where the times t
u/d
k denote the time at which the k-th quasiparticle on the upper/lower edge hits the central QPC,

and these times follow a Poissonian distribution. We have assumed here that a single type of quasiparticle is emitted
on the edges from the source QPCs. The Poissonian stream of quasiparticles gives rise to an average input current
Iu/d on the upper/lower edge. The average tunneling current at the central QPC can be expressed with the Keldysh
formalism as

⟨IT ⟩ = − i

2

∫
dt′
∑
ηη′

η′
〈{
TK IT (t

η)HT (t
′η′
)
}〉

(S30)

where η, η′ denote the Keldysh contour labels, and TK denotes time ordering on the Keldysh contour. The tunneling
Hamiltonian HT (t) is given by

HT (t) = Γ
(
eig.ϕue−ig.ϕd +H.c.

)
(S31)

where we have assumed that a single type of quasiparticle tunnels across the central QPC. The tunneling current can
then be shown to take the form [S4, S6, S7]

⟨IT ⟩ = 2ie∗Γ2

∫ ∞

0

dt
sin [xImf(t, λ, τw)]

exp [Ref(t, λ, τw)]

(
e2δG(t) − e2δG(−t)

)
(S32)
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where x = I+/I−, I± = Iu ± Id, and the phase accumulated due to the finite width of quasiparticles is given by

f(t, λ, τw) =

∫ ∞

−∞
du

{
1−exp

(
− 2iλ

[
tan−1

(
t/ts − u

τw

)
− tan−1

(
0− u

τw

)])}
(S33)

The tunneling noise at the QPC can be expressed as

⟨ST ⟩ =
∫
dt′
∑
η

〈{
TK IT (t

η)IT (t
′−η)

}〉
(S34)

which after some manipulations gives us [S4, S6, S7]

⟨ST ⟩ = e2∗Γ2

∫ ∞

0

dt
cos [xImf(t, λ, τw)]

exp [Ref(t, λ, τw)]

(
e2δG(t) + e2δG(−t)

)
(S35)

In the limit tw −→ 0, these assume the form quoted in Ref. S6

⟨IT ⟩ = 2ie∗Γ2

∫ ∞

0

dt
sin
[
I−
e∗ t sin(2πλ)

]
exp

[
I+
e∗ t(1− cos(2πλ))

] (e2δG(t) − e2δG(−t)
)

(S36)

⟨ST ⟩ = e2∗Γ2

∫ ∞

0

dt
cos
[
I−
e∗ t sin(2πλ)

]
exp

[
I+
e∗ t(1− cos(2πλ))

] (e2δG(t) + e2δG(−t)
)

(S37)

The current cross-correlations, which are accessible experimentally, are related to the tunneling noise and tunneling
current via a fluctuation-dissipation relation

⟨δIuδId⟩ = −⟨ST ⟩+ e∗
(
I+

∂
∂I−

+ I−
∂

∂I+

)
⟨IT ⟩ (S38)

Finally, we define a generalized Fano factor, dividing the cross-correlations by the differential transmission of the QPC

P (x = I−/I+) =
⟨δIuδId⟩

e∗I+
∂⟨IT ⟩
∂I−

∣∣∣
I−=0

(S39)

IV. FINITE WIDTH QUASIPARTICLES WITH A RECTANGULAR PROFILE

In the main text, we considered finite width quasiparticles with a Lorentzian profile (see e.g. Eq.(1) of the main
text, where the tan−1 correspond the integration of a Lorentzian), and showed how the finite width impacts physical
quantities measured at a QPC. We consider here a different profile for finite-width quasiparticles, and show that
the results are qualitatively the same. We chose here to use a rectangular profile, as it corresponds to the case
of a maximally sharp profile (qp density exactly 0 outside the rectangular width), while the lorentzian profile used
in the main text corresponds to a quasiparticle with a long tail (qp density decreasing ∼ 1/x2). Other profiles of
quasiparticles should give results which are intermediate between these two cases. For the case of the rectangular
profile, the tunneling current and noise can be shown to be

⟨IT ⟩ = 2ie∗Γ2

∫ ∞

0

dt
sin [xImg(t, λ, τw)]

exp [Reg(t, λ, τw)]

(
e2δG(t) − e2δG(−t)

)
⟨ST ⟩ = e2∗Γ2

∫ ∞

0

dt
cos [xImg(t, λ, τw)]

exp [Reg(t, λ, τw)]

(
e2δG(t) + e2δG(−t)

) (S40)

with the only difference with the Lorentzian profile case (Eq. (6) of the main text, and Eq.(S35) of the SM) being in
the phase function g(t, λ, tw), the phase gathered at the QPC due to rectangular finite-width quasiparticles. This can
be expressed as

g(t, λ, tw) =

∫ ∞

−∞

[
1− exp

{
−2iπλ

tw
([(tw + u)− (tw + u)Θ(−tw − u)− t] Θ(t− tw − u)− [u− uΘ(−u)− t] Θ(t− u))

}]
(S41)
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FIG. S1. Imaginary part of the finite-width phase due to rectangular quasiparticles as a function of time for λ = 3/5, for scaled
width τw = 0, 0.07, 0.21. Qualitatively, the behaviour is similar to Lorentzian quasiparticles presented in Fig.2 of the main text
where the slope is equal to sin(2π ∗ 3/5)(t/ts) for τw = 0, but becomes positive at small time t for non zero τw. In contrast
with Lorentzian quasiparticles, the change of slope from positive to negative is more abrupt for rectangular quasiparticles.
As a consequence, a same scaled width tw will have a smaller quantitative effect for rectangular quasiparticles compared to
Lorentzian ones. Inset: same curves for λ = 1/3, showing that for λ < 1/2 a finite width does not significantly change the
phase.

0
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FIG. S2. Generalized Fano factor of Eq. (S39) plotted as a function of the current asymmetry for rectangular quasiparticles
hitting the QPC (compare with Fig.3b of the main text). We achieve a reasonable agreement with experimental data for
τw = 0.55, a factor ∼ 7 larger than the value τw = 0.075 found for Lorentzian quasiparticles.

where Θ(x) is the Heaviside step function. Again, the limit tw −→ 0 recovers the results of Ref. [S6].

We consider first the phase function g(t, λ, tw) for different values of the width tw in Figure S1 (to be compared with
Fig. 2 of the main text), for λ = 1/3 and λ = 3/5. For λ = 1/3, tw = 0 implies a positive slope of Img(t, λ, tw), and
increasing the width quantitatively changes the slope, but does not lead to drastic changes. In contrast, at λ = 3/5,
Img(t, λ, tw) displays a negative slope for tw = 0. When tw is non-zero, the slope becomes positive close to t = 0,
and eventually recovers a negative slope. The behavior of the phase for rectangular quasiparticles is qualitatively the
same as that for Lorentzian quasiparticles, presented in the Fig.2 of the main text. But in contrast with Lorentzian
quasiparticles, the change in slope from positive to negative for large t in Fig. S1 is more abrupt in the case of
rectangular quasiparticles. This is a consequence of the profile of the quasiparticles: Lorentzian quasiparticles have
a long tail and vary smoothly, leading to a smooth change in the effective phase seen at the QPC. On the other
hand, rectangular quasiparticles have no tails and vary abruptly, leading to the behaviour seen in Fig. S1. To achieve
quantitative agreement between Lorentzian and rectangular quasiparticles, we find that a larger finite width is needed
for rectangular quasiparticles. Fig. S2 (to be ocmpared with Fig.3b of the main text) shows the behavior of the
P-value measured in experiments for different values of finite width of the rectangular quasiparticles. Agreement with
experiments is achieved at τw = 0.55, a factor of ∼ 7 larger than the τw needed for Lorentzian quasiparticles.

Since different shapes of quasiparticles leads to agreement with experiments for different scaled widths, a compre-
hensive study of the effect of shapes of quasiparticles on the transport properties is required. Here, we illustratively
consider two extreme limits of shapes: Lorentzian quasiparticles having long tails, and rectangular quasiparticles hav-
ing no tails. Both achieve an order-of-magnitude agreement with experimentally used values of QPC transparency.
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V. CONNECTION BETWEEN THE SIGN OF CURRENT AND THE BRAIDING PHASE

In this section, we interpret the change of sign in the current in terms of the braiding phase of the anyons. For
simplicity, we will focus on the case where only one type of quasi-particle exists with its corresponding quasi-hole. In
this sense the mutual statistical exchange is given by

λpp = λhh = 1− λph = 1− λhp ≡ λ (S42)

where p corresponds to the quasi-particle and h to the quasi-hole and the choice of writing 1 − λph and 1 − λhp is
due to the fact that we want to ensure 0 < λ < 1. Eq.(S42) means that the double exchange phase between two
quasiparticles is given by exp(2iπλpp). For instance, in the case of ν = 1/3, one has λ = 1/3, which implies λpp = 1/3
and λph = 2/3. Despite the λ = 1/2 case being unphysical, it is instructive to notice that in this case λpp = λph.
In this sense the case λ = 1/2 is special and denotes a symmetric point. Indeed, one can observe that if λpp < 1/2
(λpp > 1/2), then one has λph > 1/2 (λph < 1/2). Due to this symmetry, the role of quasi-particles and quasi-holes
is exchanged between theories with 0 < λ < 1/2 and theories with 1/2 < λ < 1.
For illustration, we consider a single anyonic excitation incoming on a QPC, and compute the tunneling current.

Here, we focus on the case of zero-width excitations, since the relation between λ and the sign of the current does
not require to take into account the finite width. The effect of the latter is to reduce the effective value of λ. All the
technical details for the calculation of the tunneling current can be found in Ref.[S8]. It is useful to recast the current
as

I(λ) =
(
Γ
(λ)
+ (t)− Γ

(λ)
− (t)

)
e∗ (S43)

where we introduce the tunneling rates

Γ
(λ)
+ (t) = |Γ|2

∫ t

−∞
dt′

[〈
φ
∣∣∣ψ†

R(t)ψR(t
′)
∣∣∣φ〉〈0 ∣∣∣ψL(t)ψ

†
L(t

′)
∣∣∣ 0〉+

〈
φ
∣∣∣ψ†

R(t
′)ψR(t)

∣∣∣φ〉〈0 ∣∣∣ψL(t
′)ψ†

L(t)
∣∣∣ 0〉] (S44)

= |Γ|2
∫ t

−∞
dt′

[〈
φ
∣∣∣ψ†

R(t)ψR(t
′)
∣∣∣φ〉 e2δG(t−t′) +

〈
φ
∣∣∣ψ†

R(t
′)ψR(t)

∣∣∣φ〉 e2δG(t′−t)
]
, (S45)

Γ
(λ)
− (t) = |Γ|2

∫ t

−∞
dt′

[〈
φ
∣∣∣ψR(t)ψ

†
R(t

′)
∣∣∣φ〉〈0 ∣∣∣ψ†

L(t)ψL(t
′)
∣∣∣ 0〉+

〈
φ
∣∣∣ψR(t

′)ψ†
R(t)

∣∣∣φ〉〈0 ∣∣∣ψ†
L(t

′)ψL(t)
∣∣∣ 0〉] (S46)

= |Γ|2
∫ t

−∞
dt′

[〈
φ
∣∣∣ψR(t)ψ

†
R(t

′)
∣∣∣φ〉 e2δG(t−t′) +

〈
φ
∣∣∣ψR(t

′)ψ†
R(t)

∣∣∣φ〉 e2δG(t′−t)
]
, (S47)

where ψR/L are anyonic quasiparticle operators as defined in Eqn. S5, and |φ⟩ is the state of the system with an
incoming anyonic excitation on the edge R. Now we start discussing the physical meaning of these rates by focusing

on the averages γ+ =
〈
φ
∣∣∣ψ†

R(t)ψR(t
′)
∣∣∣φ〉 and γ− =

〈
φ
∣∣∣ψR(t)ψ

†
R(t

′)
∣∣∣φ〉, which carry all the information about

braiding processes. Let us focus on γ+ and make the average explicit. For a zero-width incoming excitation one has

|φ⟩ = ψ†
R(0) |0⟩ where the origin of time is chosen as the arrival time of the incoming quasi-particle at the QPC. This

gives us the rate γ+ to be

γ+ =
〈
φ
∣∣∣ψ†

R(t)ψR(t
′)
∣∣∣φ〉 =

〈
0
∣∣∣ψR(0)ψ

†
R(t)ψR(t

′)ψ†
R(0)

∣∣∣ 0〉 , (S48)

Physically this term corresponds to the interference between different braiding processes. Because of the integrals in
the tunneling rates we always have t > t′. If t > 0 and t′ < 0 (resp. t < 0 and t′ < 0) a quasi-particle/quasi-hole
pair is created at the QPC after (resp. before) the injected quasi-particles passes through the QPC. In this sense the

term γ+ is the interference between the process where the injected quasi-particles (ψ†
R(0)) meets a quasi-hole from

the QPC at time t′ (ψR(t
′)) and the process where the quasi-particle (ψR(0)) meets a quasi-hole from the QPC at

time t (ψ†
R(t)). We assume t > 0 and t′ < 0, and then have

γ+ =
〈
0
∣∣∣ψR(0)ψ

†
R(t)ψR(t

′)ψ†
R(0)

∣∣∣ 0〉 = ei2π(1−λ)
〈
0
∣∣∣ψ†

R(t)ψR(0)ψ
†
R(0)ψR(t

′)
∣∣∣ 0〉 (S49)

= ei2πλph

〈
0
∣∣∣ψ†

R(t)ψR(0)ψ
†
R(0)ψR(t

′)
∣∣∣ 0〉 = ei2πλphe2δG(t−t′), (S50)

where the phase e2iπλph comes from the exchange between the ψR(0) and ψ
†
R(t), and between ψ†

R(0) and ψR(t
′), and

where we used ψR(0)ψ
†
R(0) = 1 to recover the Green’s function in the last equality. Let us move to γ− and make the
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average explicit

γ− =
〈
φ
∣∣∣ψR(t)ψ

†
R(t

′)
∣∣∣φ〉 =

〈
0
∣∣∣ψR(0)ψR(t)ψ

†
R(t

′)ψ†
R(0)

∣∣∣ 0〉 . (S51)

In this case the injected quasi-particle is meeting the quasi-particle excited at the QPC and braids with it or not
(depending on the values of t and t′). As a result, for t > 0 and t′ < 0, one has similarly to γ+,

γ− =
〈
0
∣∣∣ψR(0)ψR(t)ψ

†
R(t

′)ψ†
R(0)

∣∣∣ 0〉 = ei2πλ
〈
0
∣∣∣ψR(t)ψR(0)ψ

†
R(0)ψ

†
R(t

′)
∣∣∣ 0〉 (S52)

= ei2πλpp

〈
0
∣∣∣ψR(t)ψR(0)ψ

†
R(0)ψ

†
R(t

′)
∣∣∣ 0〉 = ei2πλppe2δG(t−t′). (S53)

Therefore, one has

Γ
(λ)
+ (t) = Γ

(1−λ)
− (t), (S54)

which physically means that the difference between systems with λ < 1/2 and λ > 1/2 is that the braiding of the
incoming quasi-particles with the quasi-particle (quasi-hole) is replaced by the braiding of the incoming quasi-particles
with the quasi-hole (quasi-particle). In other words, the roles of quasi-particles and quasi-holes are exchanged in terms
of statistics.

As a result, one also has that

I(λ)(t) = −I(1−λ)(t) (S55)

and that, for delta-like particles,

sign
[
I(λ)(t)

]
= sign (1/2− λ) (S56)

Since, for ν = 1/3 one has λ = 1/3 < 1/2 and for ν = 2/5 one has λ = 3/5 > 1/2, the sign of charge current in these
two cases is opposite.
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