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A B S T R A C T

We investigate theoretically the out-of-equilibrium transport properties of a single-level quantum dot coupled
to a normal metal electrode and attached to a topological superconductor. Both voltage and thermal bias
responses of the system in the nonequilibrium regime are studied. To obtain transport characteristics we used
the nonequilibrium Green’s function approach. Particularly, we calculated the current and the corresponding
differential conductance in two distinct cases. In the former situation, the charge current is induced by applying
a bias voltage, whereas in the latter case it is generated by setting a temperature difference between the leads
with no bias voltage. Moreover, strong diode effect in thermally generated current is found and non-equilibrium
thermopower is analyzed.
1. Introduction

Discovery of Majorana bound states (MBSs) in a topological
nanowire [1–3] has initiated investigations on the transport properties
of hybrid systems, especially those including quantum dots [4,5]. Most
studies have been devoted to the systems in which the topological
superconductor has been described by low energy limit including
only MBSs, whereas the above-gap quasiparticle bands have been
disregarded. Such models are not sufficient to correctly describe the
thermoelectric properties of a hybrid system consisting of normal metal
and topological superconducting leads. Due to particle-hole symmetry
MBSs do not contribute to the thermoelectric response resulting in a
vanishing Seebeck coefficient (thermopower) [6]. Thus, most investiga-
tions have focused on the influence of the MBS on the thermoelectric
response in systems in which a temperature difference has been set
between two normal metal leads [7–20]. In turn, here we investigate a
two-terminal system consisting of a single-level quantum dot coupled
to a normal metal electrode and a topological superconductor which
includes not only MBS but also the quasiparticle states at energies
beyond the gap. These quasiparticle states lead to a nontrivial ther-
moelectric response of the considered system in which subgap states
may only indirectly influence it to some extent. It is worth noting
that the thermoelectric properties of QD’s hybrid systems with topo-
logical superconductor described within finite gap models are greatly
unexplored [21].

∗ Corresponding author at: Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland.
E-mail address: ptrocha@amu.edu.pl (P. Trocha).

The paper is organized in the following way. In Section 2 we present
the theoretical description of the considered system. Particularly, we
introduce the model taken into consideration and derive the formulas
for the current and the corresponding differential conductance. The
numerical results are presented and discussed in Section 3. Finally, the
paper is concluded in Section 4.

2. Theoretical framework

The system taken into consideration consists of a single-level quan-
tum dot coupled to a normal metal (NM) and a topological supercon-
ductor (TS) which is described by the Hamiltonian of the following
form;

𝐻 = 𝐻𝑁𝑀 +𝐻𝑇𝑆 +𝐻𝑄𝐷 +𝐻𝑇𝑁𝑀 +𝐻𝑇𝑇𝑆 . (1)

The first term, 𝐻𝑁𝑀 , describes a normal metal electrode and acquires
the form, 𝐻𝑁𝑀 =

∑

𝐤 𝜀𝐤𝑐
†
𝐤𝑁𝑀 𝑐𝐤𝑁𝑀 with 𝜀𝐤 denoting electron energy

of the state with wave vector 𝐤. Here, we consider spinless electrons,
as it is required to apply strong magnetic field to form Majorana
modes. This assumption is consistent with the experimental realization
of Majorana bound states in a semiconductor nanowire with strong
spin–orbit interaction deposited on s-wave superconductor and in the
presence of strong magnetic field [1–3]. The same formulation has been
adopted in [5–7]. Generally, the NM lead can be magnetic but as long
as only electrons with one spin orientation couple to the TS we can
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disregard the other one and omit the spin index. The corresponding
retarded/advanced Green’s function acquires the form in Nambu space,
𝐠𝑟∕𝑎𝑁𝑀 = ∓𝑖𝜋𝜌𝑁𝑀𝜎0 with 𝜌𝑁𝑀 denoting the density of states of the
normal metal reservoir. In turn, 𝐻𝑇𝑆 stands for the Hamiltonian of the
TS lead described by the low-energy limit of a Kitaev chain [22];

𝐻𝑇𝑆 = ∫

∞

0
𝑑𝑥𝛹 †

𝑇𝑆 (𝑥)(−𝑖𝑣𝐹 𝜕𝑥𝜎𝑧 + 𝛥𝜎𝑦)𝛹𝑇𝑆 (𝑥). (2)

Here, we assume the proximity-induced gap as real positive and 𝛹𝑇𝑆 =
(𝑐𝑟, 𝑐

†
𝑙 )
𝑇 is a Nambu spinor with right- and left-moving fermion op-

erators. The relevant boundary retarded/advanced Green’s function
acquires the following form [22];

𝐠𝑟∕𝑎𝑇𝑆 (𝜔) = 𝜋𝜌𝑁
[𝜃(𝛥 − |𝜔|)

√

𝛥2 − 𝜔2 ∓ 𝑖 sgn(𝜔)𝜃(|𝜔| − 𝛥)
√

𝜔2 − 𝛥2]𝜎0 + 𝛥𝜎𝑥
𝜔 ± 𝑖0+

(3)

with 𝜌𝑁 being the density of states in the normal state. The correspond-
ing density of states has the form;

𝜌𝑇𝑆 (𝜔) = 𝜋𝜌𝑁

[

𝜃(|𝜔| − 𝛥)
√

𝜔2 − 𝛥2

𝜋|𝜔|
+ 𝛥𝛿(𝜔)

]

(4)

which clearly states that the zero-energy Majorana bound state is the
intrinsic feature of the topological superconductor. Above, 𝜎𝑥 denotes

relevant Pauli matrix, whereas 𝜎0 is a unit matrix of the same
imension.

The quantum dot is modeled by a Hamiltonian of the following
orm;

𝑄𝐷 = 𝜀𝑑𝑑
†𝑑 (5)

ith 𝜀𝑑 denoting the dot’s energy level. The last two terms of the
amiltonian (1) describe tunneling of electrons between the dot and

he leads and acquire the following form;

𝑇𝑁𝑀 =
∑

𝐤
(𝑉𝑁𝑀 𝑐

†
𝐤𝑑 + H.c.), (6)

or coupling to the normal metal lead, and

𝑇𝑇𝑆 = 𝑉𝑇𝑆𝜓
†
𝑇𝑆 (0)𝑑 + H.c., (7)

or coupling to the TS lead. Here, we assumed independent wave
ector tunneling matrix elements 𝑉𝑖 for 𝑖 = 𝑁𝑀,𝑇𝑆. Furthermore, we
arametrize the coupling of the dot to 𝑖th lead by 𝛤𝑖 = 2𝜋|𝑉𝑖|

2𝜌𝑖 with
𝑖 being the density of states in the 𝑖th lead in the normal state. In the
uperconducting (SC) state the coupling becomes modified for the TS
lectrode.

The coupling matrix in the Nambu space can be represented in
atrix form,

𝑖 = 𝑉𝑖𝜎𝑧, (8)

hereas the corresponding retarded/advanced self-energies one can
ind using,
𝑟∕𝑎
𝑖 = 𝐕†

𝑖 𝐠
𝑟∕𝑎
𝑖 𝐕𝑖 (9)

here 𝐠𝑟∕𝑎𝑖 is the retarded/advanced Green function for the 𝑖th lead
efined above. Then, the coupling matrix Γ𝑖 (for 𝑖 = 𝑁𝑀,𝑇𝑆) is
xpressed by,

𝑖 = 𝑖[Σ𝑟
𝑖 −Σ𝑎

𝑖 ] (10)

The full retarded/advanced Green’s function of the coupled dot 𝐆𝑟∕𝑎
𝑑

s obtained from the Dyson equation,
𝑟∕𝑎
𝑑 = [(𝐠𝑟∕𝑎𝑑 )−1 −Σ𝑟∕𝑎]−1, (11)

ith 𝐠𝑟∕𝑎𝑑 denoting the bare dot’s retarded/advanced Green’s function
n Nambu space, [𝐠𝑟∕𝑎𝑑 ]−1 = diag(𝜔 − 𝜀𝑑 ± 𝑖0+, 𝜔 + 𝜀𝑑 ± 𝑖0+), and Σ𝑟 =
𝑟 + Σ𝑟 . In the wide band approximation and using Eq. (9) one
2

𝑁𝑀 𝑇𝑆
Fig. 1. Zero-temperature density of states for the quantum dot calculated for indicated
values of dot’s energy level, 𝜀𝑑∕𝛥, and for coupling asymmetry parameter (a) 𝑟 = 1, (b)
𝑟 = 10. The other parameters are: 𝛤 = 0.1𝛥.

obtains the self-energy for the dot’s coupling Σ𝑟
𝑁𝑀 = − 𝑖

2𝛤𝑁𝑀𝜎0 to the
NM lead and Σ𝑟

𝑇𝑆 = 𝛤𝑇𝑆
2𝜋𝜌𝑁

𝜎𝑧𝐠𝑟𝑇𝑆𝜎𝑧 to the TS reservoir.
To calculate the charge current we employ the non-equilibrium

reen’s function technique. Following Ref. [23], one can show that the
harge current flowing through NM junction is expressed by;

𝑒 ≡ 𝐽 𝑒𝑁𝑀 = 𝑒
ℎ ∫ d𝜀

[

(𝑓𝜔−𝜇𝑁𝑀 − 𝑓𝜔+𝜇𝑁𝑀 )𝐴(𝜔) (12)

+ (𝑓𝜔−𝜇𝑁𝑀 − 𝑓𝜔−𝜇𝑇𝑆 )𝑆 (𝜔)
]

,

with 𝐴(𝜔) = 𝐺𝑟12[𝜞𝑁𝑀𝑮𝑎𝜞𝑁𝑀 ]21 = 𝛤 2
𝑁𝑀 |𝐺𝑟12|

2, 𝑆 (𝜔) = [𝑮𝑟𝜞 𝑇𝑆𝑮𝑎

𝜞𝑁𝑀 ]11. Here, 𝑓𝜔−𝜇𝑖 = {exp[(𝜔 − 𝜇𝑖)∕𝑘𝐵𝑇𝑖] + 1}−1 is the Fermi-Dirac
distribution function for the lead 𝑖 with 𝜇𝑖 and 𝑇𝑖 denoting the corre-
sponding chemical potential and temperature, while 𝑘𝐵 stands for the
Boltzmann constant. We relate the chemical potential of the NM lead
to the voltage 𝑉 as 𝜇𝑁𝑀 = 𝑒𝑉 , assuming the TS electrode is grounded,
𝜇𝑇𝑆 = 0. Temperature is measured with respect to the TS lead, i. e.
𝑇𝑇𝑆 = 𝑇 and 𝑇𝑁𝑀 = 𝑇 + 𝛿𝑇 . For completeness, the current flowing
through the TS junction is obtained from particle (charge) conservation,
𝐽𝑇𝑆 = −𝐽𝑁𝑀 = −𝐽𝑒. Moreover, we assume that the bare energy level of
the dot is independent of the applied bias voltage. This can be achieved
for instance with a suitable gate voltage which tunes the dot’s energy
level.

3. Numerical results

We approximate the temperature dependence of the superconduct-
ing gap by the formula 𝛥(𝑇 ) = 𝛥

√

1 − (𝑇 ∕𝑇𝑐 )3 with 𝛥 denoting the
energy gap at zero temperature, whereas 𝑇𝑐 is the critical temperature
at which superconductivity vanishes. Furthermore, for a topological
nanowire one can assume 𝛥 = 1.764𝑘 𝑇 [24].
𝐵 𝑐
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Fig. 2. Differential conductance as a function of bias voltage calculated for indicated values of dot’s energy level and for (a) 𝑘𝐵𝑇 = 0, (b) 𝑘𝐵𝑇 = 0.01𝛥, (c) 𝑘𝐵𝑇 = 0.1𝛥, (d)
𝐵𝑇 = 0.3. The other parameters are: 𝛤𝑁𝑀 = 𝛤𝑇𝑆 = 0.1𝛥, 𝛿𝑇 = 0.
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Generally, we assume an asymmetry in the coupling strengths of the
D to NM and TS leads introducing the parameter 𝑟 parametrizing the

elevant couplings by 𝛤𝑁𝑀 = 𝛤 and 𝛤𝑇𝑆 = 𝑟𝛤 . In the numerical calcu-
ations we express all energy quantities in the units of zero temperature
uperconducting gap energy, 𝛥 and assume that 𝛤 = 0.1𝛥.

In this section we present the numerical results on electrically and
hermally induced charge transport in the considered system. However,
o get deeper insight into presented results, let us first consider the local
ensity of states of a quantum dot coupled to the external electrodes.
n Fig. 1 we present the local density of states calculated for different
alues of the dot’s energy level and for (a) symmetric (𝑟 = 1) and
b) highly asymmetric (𝑟 = 10) couplings. For dot’s energy level
𝑑 = 0 the density of states reveals a symmetric (with respect to the
ero energy) three-peak structure, consisting of one central resonance
nd two side maxima, regardless of the coupling strength to the TS
lectrode. Moreover, all three peaks acquire equal amplitude for 𝜀𝑑 = 0.
owever, the satellite peaks move away from the central maximum
hen the coupling strength to the TS increases. When the dot’s energy

evel moves away from zero, one of the side peaks of the DOS becomes
ore pronounced, whereas the other one gradually disappears and

anishes for 𝜀𝑑 ≈ 0.5𝛥 and 𝑟 = 1 (𝜀𝑑 ≈ 𝛥 and 𝑟 = 10). This means
hat in this case the satellite peaks cease to participate in transport as
ndreev processes require both of them. Meanwhile, the intensity and
osition of the central peak is immune to the change in both the dot’s
nergy level and the asymmetry in couplings, which clearly states that
ne deals with a MBS state. Apart from that, the width of the central
eak in the DOS becomes more and more narrow with increasing dot’s
nergy level regardless of the coupling strength to the TS electrode,
ndicating that the MBS becomes more and more localized at zero
nergy. However, this tendency is more pronounced for the symmetric
ase (𝑟 = 1) than for much larger dot’s coupling to TS (𝑟 = 10). In turn,
or 𝜀𝑑∕𝛥 ≥ 1 (or 𝜀𝑑∕𝛥 ≤ −1) finite features appear in the above-gap
egion, associated with quasiparticle tunneling.

Now, we consider the bias voltage dependence of the charge current
nd the corresponding differential conductance. The differential con-
uctance, 𝐺, is defined as the derivative of the electrical current with
espect to the applied bias voltage under zero temperature difference;

=
d𝐽𝑒
d𝑉

|

|

|

|𝛿𝑇=0
. (13)

Analyzing Eq. (12) one can notice that both sub-gap and above-gap
states contribute to 𝐺. In Fig. 2 we present the differential conductance
as a function of bias voltage calculated for indicated values of the dot’s
energy level and for various temperatures. Specifically, in Fig. 2(a) zero
temperature bias voltage dependence of 𝐺 is displayed. Generally, the
differential conductance in the sub-gap regime consists of three peaks.
Regardless of the dot’s level position, the differential conductance
reveals a zero bias peak (ZBP) of maximal allowed intensity, i. e. two
quanta of conductance 2𝑒2∕ℎ. On the other hand, intensities of the side
peaks achieve maximal values only for 𝜀𝑑 = 0 and rapidly diminish as
the dot’s level position moves away from zero. We must point out that
3

t

the present situation differs substantially from the case in which the TS
electrode is replaced by an s-wave superconducting lead. In the latter
system, the sub-gap differential conductance reveals one- or two-peak
structure depending on the coupling strength to the SC reservoir and/or
the position of the dot’s level [25]. This allows to distinguish the two
systems. The zero bias peak is directly related to the Majorana zero
mode, whereas the side peaks come from energy-level splitting caused
by the coupling to the TS. We note that a ZBP has been experimentally
observed in hybrid topological nanowire devices [1–3]. The broadening
of the central and side peaks originates from the coupling to the NM
reservoir. The position of the ZBP is pinned at zero bias voltage for any
dot’s level which results from particle-hole symmetry. This feature in 𝐺
differs from that revealed in a QD coupled to normal metal and s-wave
uperconductor in which the zero bias conductance diminishes when
uning the dot’s energy level away from zero [26,27]. Moreover, the
idth of the ZBP decreases when tuning the dot’s energy level away

rom 𝜀𝑑 = 0 and for sufficiently large 𝜀𝑑 ≫ 𝛥, i. e. for 𝜀𝑑 → ∞, it tends
o zero.

When the dot’s level position is close to the superconducting gap
dge, the above-gap conductance becomes relevant because quasipar-
icle tunneling is allowed. Even for 𝜀𝑑 ≪ 𝛥 the above-gap conductance
xists but is obscured due to the relatively large intensity of the sub-gap
onductance. In turn, for 𝜀𝑑 ≳ 𝛥 the conductance at 𝑒𝑉 > 𝛥 becomes
ignificant. A similar situation emerges when the dot’s energy level
s negative with the difference that the over-gap feature appears for
𝑉 < −𝛥.

So far, we have considered the zero temperature limit but as we
ill see, finite temperature has a profound influence on the differential

onductance. Interestingly, a relatively small change in temperature
ignificantly influences the differential conductance, especially in the
up-gap region. Both the intensity of the ZBP and the side-peaks become
educed when a finite temperature is switched on. Surprisingly, the
ntensity of the ZBP drops further down when moving the dot’s energy
evel away from zero. The former feature is due to the smoothening of
he Fermi-Dirac distribution with temperature. It results in a smaller
ensity of electrons (holes) around eV (−𝑒𝑉 ) (as they are redistributed
n a broader range of energies) and as a consequence leads to a slower
ise of the current when tuning the bias voltage. The aforementioned
emperature dependence of the Fermi-Dirac function together with the
ehavior of the MBS peak’s width when tuning the dot’s energy level
xplains this latter feature.

For sufficiently large temperatures (𝑘𝐵𝑇 > 0.05𝛥) the three-peak
tructure of the differential conductance merges into a single resonance,
hose width increases with rising temperature. Simultaneously, the

ntensity of the peak decreases. Similar behavior reveals the above-
ap feature resulting from quasiparticle tunneling. Generally, when
he temperature is relatively large and for detuning of the dot’s level
utside of the superconducting gap, the quasiparticle contribution to 𝐺
urpasses the sub-gap one.

Now, we consider the generation of charge current by means of a

emperature difference set between the NM and TS leads and assuming
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Fig. 3. Thermocurrent (upper panel) and differential conductance (lower panel) as a function bias temperature calculated for indicated values of dot’s level energy and for (a)–(b)
𝑘𝐵𝑇 = 0.01𝛥, (c)–(d) 𝑘𝐵𝑇 = 0.05𝛥, (e)–(f) 𝑘𝐵𝑇 = 0.1𝛥, (g)–(h) 𝑘𝐵𝑇 = 0.2𝛥, (i)–(j) 𝑘𝐵𝑇 = 0.3𝛥, (k)–(l) 𝑘𝐵𝑇 = 0.4𝛥, (m)–(n) 𝑘𝐵𝑇 = 0.6𝛥. The other parameters are: 𝛤𝑁𝑀 = 𝛤𝑇𝑆 = 0.1𝛥,
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ero bias voltage 𝑉 = 0. Such current is called thermocurrent and the
orresponding thermoconductance is defined as;

𝑇 =
d𝐽𝑒
d𝑇

|

|

|

|𝑉 =0
. (14)

n Fig. 3 we present thermocurrent and the corresponding thermo-
onductance, 𝐺𝑇 , as a function of the applied temperature bias 𝛿𝑇
alculated for indicated values of the dot’s energy level and for dif-
erent temperatures 𝑇 . First of all, when the temperature bias is zero,
o current flows through the system. One can notice that, for low
emperature and relatively small temperature bias 𝛿𝑇 , the current is
trongly suppressed for both positive and negative temperature bias.
e remind that temperature bias is applied only to the normal metal

ead, i. e. 𝑇𝑁𝑀 = 𝑇 + 𝛿𝑇 . For low 𝑇 , there is a small number of quasi-
articles which can tunnel to the normal electrode when negative bias
emperature is set. On the other hand, for positive but small 𝛿𝑇 there
re not enough high energetic electrons in the normal lead that can be
ransferred to the TS reservoir. However, increasing the temperature
ias, and thus, the temperature of the NM lead, the number of high
nergetic electrons grow and the current starts to flow. Of course, when
he dot’s energy level is deep in the SC gap this current is relatively
mall but rises when 𝜀𝑑 reaches the edges of the SC gap and becomes
ignificant for |𝜀𝑑 | ≥ 𝛥. When 𝜀𝑑 is located deep in the SC gap, the high
nergetic electrons from the normal electrode can be transferred to the
S’s quasiparticle states only via the tails of the dot’s level, whereas for
𝜀𝑑 | ≥ 𝛥 the electrons can tunnel resonantly through the dot. Regardless
f the dot’s level position, the thermocurrent monotonically grows with
ncreasing 𝛿𝑇 . The corresponding thermoconductance strictly follows
he behavior of the current: it acquires small values for 𝜀𝑑 deep inside
he SC gap and becomes relatively large for |𝜀𝑑 | ≥ 𝛥. The location of
he maximum of the thermoconductance moves towards lower values
f 𝛿𝑇 with increasing temperature 𝑇 (and for 𝑘𝐵𝑇 < 𝛥).

When the temperature 𝑇 is sufficiently high, more electrons can be
xcited to the quasiparticle states and the thermocurrent at negative
emperature bias becomes relevant, especially for |𝜀𝑑 | ≥ 𝛥 as shown
n Figs. 3(e) and in 3(g). However, the thermocurrent for negative 𝛿𝑇
nd the one for the corresponding positive 𝛿𝑇 still differ significantly.
his asymmetry in the thermocurrent with respect to the temperature
ias reversal leads to a rectifying effect. The negative 𝛿𝑇 bias does not
nfluence the number of quasiparticles in the TS, whereas a positive
𝑇 increases the population of high energetic electrons in the NM
ead which can be transferred to the TS reservoir. This explains the
esulting asymmetry in the current. Generally, both the thermocurrent
in the sense of its absolute value) and the corresponding thermocon-
uctance grow with increasing temperature. However, for sufficiently
igh temperature an exception occurs for |𝜀𝑑 | ≥ 𝛥 [see Fig. 3(g)].
n this case, the absolute value of the current and the corresponding
4

hermoconductance acquire larger values for smaller 𝜀𝑑 at negative
emperature bias. The larger the dot’s level value, the higher energetic
lectrons are able to be transferred through the dot, but their popula-
ion becomes reduced due to the Fermi-Dirac distribution temperature
ependence. Consequentially, smaller thermocurrent flows for larger 𝜀𝑑
t sufficiently high temperature. We point out that in general, this effect
s present independently of temperature but requires a sufficiently large
alue of the dot’s level i. e. the smaller the temperature the larger the
alue of 𝜀𝑑 to consider. However, due to the temperature dependence
f the superconducting gap, which becomes smaller as the temperature
ises and specifically for 𝑘𝐵𝑇 = 0.4𝛥, 𝛥(𝑇 = 0.4𝛥∕𝑘𝐵) ≈ 0.8𝛥, one can
bserve this phenomenon for 𝜀𝑑∕𝛥 = 1.2.

Apart from that, the 𝐽 and 𝐺𝑇 for 𝜀𝑑 = 0.8𝛥 seem to be much
arger in comparison with those noticed at lower 𝑇 which is also a
onsequence of the temperature dependence of the SC gap. This is not
urprising, as 𝛥(𝑇 = 0.4𝛥∕𝑘𝐵) ≈ 0.8𝛥.

To compare the results obtained for the topological phase, we also
alculated the thermocurrent and the corresponding thermoconduc-
ance for a temperature above the critical value, 𝑇 > 𝑇𝑐 , presented in
ig. 3(i-j). Thus, the SC gap is closed and the TS reservoir is in the nor-
al state. Due to the lack of an energy gap, significant current can flow

or |𝜀𝑑 |≪ 𝛥. Of course, both in the topological phase and in the normal
tate, the thermocurrent vanishes for 𝜀𝑑 = 0 due to bipolar effect i. e.
he thermally induced current carried by electrons is compensated for
y the current due to holes. One can notice that the thermocurrent
n topological and in normal phase behaves differently for negative
hermal bias. In turn, thermoconductance acquires maximal values for
egative temperature bias oppositely to those in the topological phase.
oreover, in the normal phase it decreases with increasing dot’s energy

evel.
Here, we presented results for positive dot’s energy level, 𝜀𝑑 > 0.

owever, due to symmetry, the corresponding results for 𝜀𝑑 < 0 can
e obtained making the transformation: 𝜀𝑑 → −𝜀𝑑 then 𝐽𝑒 → −𝐽𝑒 and
𝑇 → −𝐺𝑇 .

Better visualization of the diode effect associated with thermally
enerated current can be achieved by introducing a rectification factor
uantified by the ratio [28]

=
|𝐽+
𝑒 | − |𝐽−

𝑒 |

|𝐽+
𝑒 | + |𝐽−

𝑒 |
(15)

ith 𝐽+
𝑒 being calculated for 𝛿𝑇 > 0, whereas 𝐽−

𝑒 has been obtained
or the corresponding negative temperature bias, 𝛿𝑇 < 0. According

to the above definition, there are no rectification for 𝑅 = 0 and the
thermocurrent is maximally rectified for 𝑅 = 1 or 𝑅 = −1. Thus, the
former situation corresponds to |𝐽+

𝑒 ∕𝐽
−
𝑒 | = 1, whereas the latter case

occurs when 𝐽−
𝑒 = 0 or 𝐽+

𝑒 = 0 and the other current being finite, i. e. 𝐽+
𝑒

−
or 𝐽𝑒 , respectively. The definition given by Eq. (15) has an important
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Fig. 4. Rectification ratio as a function of bias temperature calculated for indicated
alues of dot’s level energy and for (a) 𝑘𝐵𝑇 = 0.1𝛥, (b) 𝑘𝐵𝑇 = 0.3𝛥. The other
arameters are: 𝛤𝑁𝑀 = 𝛤𝑇𝑆 = 0.1𝛥, 𝑉 = 0.

dvantage over the commonly used rectification ratio (|𝐽+
𝑒 ∕𝐽

−
𝑒 |) as it

esults in better resolution of the curves calculated for different values
f a given parameter [28,29]. In Fig. 4 the rectification ratio is shown
or the indicated values of dot’s energy level and for two different
emperatures of the TS electrode. Note that by tuning 𝛿𝑇 , only the
emperature of the normal lead, 𝑇𝑁𝑀 , is changed leaving 𝑇𝑇𝑆 constant.

The ratio 𝑅 grows monotonically with increasing temperature dif-
erence, 𝛿𝑇 , regardless of the temperature of the TS electrode. This rise
s strictly related with the current dependence on ±𝛿𝑇 described above.
articularly, for lower temperature of the TS lead, the 𝑅 factor grows
aster with 𝛿𝑇 reaching the maximal value of one. In turn, the dot’s
nergy level dependence of the rectification factor 𝑅 is nonmonotonic.
irstly, 𝑅 drops with increasing 𝜀𝑑 from 𝜀𝑑 ≈ 0 to 𝜀𝑑∕𝛥 ≈ 1. Then,
or 𝜀𝑑∕𝛥 > 1 it grows, reaching its maximal value for 𝜀𝑚𝑎𝑥𝑑 (which
epends on the temperature of the TS electrode), and decreases with
urther increasing 𝜀𝑑 . Surprisingly, the lowest rectification is noted for
𝑑 = 𝛥. The rise in 𝑅 in the range of 𝜀𝑑 ∈ (𝛥, 𝜀𝑚𝑎𝑥𝑑 ) can be understood as
ollows. Thermocurrent 𝐽+

𝑒 grows with increasing 𝜀𝑑 up to 𝜀𝑑∕𝛥 ≈ 1.2
nd then drops. The rise is due to the fact that around 𝜀𝑑∕𝛥 ≈ 1.2
he whole width of the dot’s level becomes available for quasiparticle
unneling. However, with further increase in 𝜀𝑑 , less electrons can be
ransferred from NM to TS lead and 𝐽+

𝑒 drops. On the other hand, |𝐽−
𝑒 |

monotonically decreases with increasing 𝜀𝑑 as the number of available
quasiparticles that can tunnel to NM lead also decreases. However, up
to 𝜀𝑑∕𝛥 = 𝜀𝑚𝑎𝑥𝑑 , the rate of drop of |𝐽−

𝑒 | is faster than that of |𝐽+
𝑒 |

resulting in a large 𝑅. Further growth of 𝜀𝑑 leads to a decrease in the
𝑅 factor as the difference between 𝐽+

𝑒 and |𝐽−
𝑒 | becomes smaller and

smaller (due to the growing similarity of Fermi-Dirac functions of both
electrodes for high energies).

Interestingly, the rectification factor also grows when decreasing 𝜀𝑑
below 𝜀 = 𝛥 reaching its maximal value for 𝜀 close to zero. Of course,
5

𝑑 𝑑
Fig. 5. Non-equilibrium Seebeck coefficient as a function of the dot’s energy level
calculated for indicated values of temperature bias, and for (a) 𝑟 = 1, (b) 𝑟 = 10. The
other parameters are: 𝑘𝐵𝑇 = 0.3𝛥 𝛤𝑁𝑀 = 0.1𝛥, 𝑉 = 0.

or 𝜀𝑑 = 0 the thermocurrent vanishes due to particle-hole symmetry.
owever, even a small departure of the dot’s energy level from zero

esults in an extremely small thermocurrent due to the difference in
ail profiles of dot’s level contributing to quasiparticle tunneling above
and below −𝛥. Although both 𝐽+

𝑒 and |𝐽−
𝑒 | are extremely small, their

atio turns out to be large for 𝜀𝑑 ≈ 0 and decreases with increasing dot’s
nergy level up to 𝜀𝑑 = 𝛥.

A similar analysis can be carried out for negative 𝜀𝑑 resulting in the
ame behavior of the rectification ratio 𝑅 as shown above.

Finally, we introduce the nonlinear Seebeck coefficient
thermopower), the quantity which is more available in nanoscopic ex-
eriments and a subject of recent investigations [30–33]. The Seebeck
oefficient is defined as;

= −
𝑉𝑡ℎ
𝛿𝑇

|

|

|

|𝐽𝑒=0
(16)

the ratio of thermally generated bias voltage to the temperature dif-
ference within the condition of vanishing charge current. Note, that
opposite to the linear response regime, here 𝑉𝑡ℎ and 𝛿𝑇 are finite. In
Fig. 5 we show the non-equilibrium Seebeck coefficient as a function
of the dot’s energy level calculated for indicated temperature bias 𝛿𝑇
and for two values of the dot’s coupling strength to the TS electrode,
i. e. for symmetric case (𝑟 = 1) and highly asymmetric case (𝑟 =
10). One notices that the thermopower is strongly suppressed within
the superconducting gap region, which results from the particle-hole
symmetry. Indeed, for the particle-hole symmetry point, here 𝜀𝑑 = 0,
the Seebeck coefficient is exactly zero as the current due to electrons is
completely compensated by the current associated with the holes. Finite
but vanishingly small thermopower in the superconducting gap region
besides 𝜀𝑑 = 0 is due to the tail of the dot’s level which contributes to
quasiparticle transport. When the dot’s energy level approaches the SC
gap edge, the thermopower changes significantly. The positive value
of 𝑆 is associated with the fact that majority carriers are electrons,
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whereas the negative sign of the thermopower is because majority
carriers are holes. The thermopower diminishes with decreasing tem-
perature bias 𝛿𝑇 which is understood as the number of high energetic
lectrons in the NM lead decreasing and simultaneously the number of
xcited quasiparticles in the TS electrode being independent of the tem-
erature bias. Moreover, the Seebeck coefficient drops with increasing
oupling to the TS electrode. Apart from that, for larger coupling to the
S lead, finite thermopower leaks into the superconducting gap region.

. Conclusions

In conclusion, we have studied out-of-equilibrium voltage and tem-
erature bias response of a quantum dot system attached to topological
uperconductor and normal metal electrodes. Using Green’s function
echniques, we have determined the differential conductance, ther-
ocurrent and the corresponding thermoconductance. We have shown

he variation of these quantities when tuning the system’s parameters.
n particular, we have shown that, in general, the differential conduc-
ance consists of three sub-gap peaks and some above-gap features. Our
esults clearly state that the zero bias anomaly in the differential con-
uctance, associated with Majorana bound state, is robust to changes
n the dot’s energy level. In turn, the remaining two side-peaks are
ery sensitive to variations of the dot’s level position. Moreover, the
bove-gap features, corresponding to quasiparticle tunneling, become
elevant as the dot’s energy level is situated close to the SC gap or
eyond it. Apart from that, we have analyzed in detail the temperature
ependence of the differential conductance.

We have also investigated current generation by means of a tem-
erature gradient applied to the external electrodes. It has been shown
hat thermocurrent and thermoconductance reveal striking differences
n topological and normal phases. We have shown that thermally
nduced thermocurrent reveals strong asymmetry under temperature
ias reversal which can lead to a rectifying effect. Interestingly, we
ave also indicated conditions under which the strong rectifying effect
s present and the system can work as a diode. Moreover, we have also
nvestigated the nonlinear Seebeck coefficient — a quantity that is more
vailable in nanoscopic experiments than the thermoconductance.
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