
Documentation for the program
computing the asymptotic expansion coe�cients

of the heat-trace for a nonminimal Laplace type operator

Thierry Masson, Bruno Iochum
Centre de Physique Théorique ∗

Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

January 6, 2019

Typographical conventions:
object, method, property, element (object instance), function, module, file, folder, command line in terminal.

Contents
1 Introduction 2

2 Installation and dependencies 2

3 Documentation 2
3.1 Objects de�ned in the code . 2

3.1.1 Object Rational de�ned in MathRational.js . 2
3.1.2 Object Integer de�ned in MathRational.js . 2
3.1.3 Object Polynomials de�ned in MathRationalExpression.js 2
3.1.4 Object RationalExpression de�ned in MathRationalExpression.js 3
3.1.5 Object MathElement de�ned in MathElement.js . 3
3.1.6 Object MathOperator de�ned in MathElement.js . 4
3.1.7 Object MathExpression de�ned in MathExpression.js . 4
3.1.8 Object MathProduct de�ned in MathExpression.js . 4
3.1.9 Object MathTensorProduct de�ned in MathExpression.js . 4
3.1.10 Object MathArgument de�ned in MathExpression.js . 5
3.1.11 Object MathSum de�ned in MathExpression.js . 5

3.2 Functions and initialization data . 5
3.2.1 The folder FUNCTIONS-FILES . 5
3.2.2 The folder INIT-FILES . 6

3.3 The computation and the script �les . 6
3.3.1 The folder COMPUTATIONS-0-SUBSTITUTIONS . 6
3.3.2 The folder COMPUTATIONS-1-MAIN-R2-R4 . 6
3.3.3 The folder COMPUTATIONS-2-u-PARALLEL-R4 . 6
3.3.4 The folder COMPUTATIONS-3-NCT-R2-R4 . 7

3.4 Other folders . 7
3.4.1 The folder RESULTS . 7
3.4.2 The folder LATEX . 7
3.4.3 The folder MATHEMATICA . 7
3.4.4 The folder SIMPLIFICATIONS . 7

∗thierry.masson@cpt.univ-mrs.fr, bruno.iochum@cpt.univ-mrs.fr

1

1 Introduction
Given a smooth hermitean vector bundleV of �ber CN over a compact Riemannian manifold and ∇ a covariant derivative on
V , let P = −(|д |−1/2∇µ |д |1/2дµνu∇ν +pµ∇µ +q) be a nonminimal Laplace type operator acting on smooth sections ofV where
u, pν , q are MN (C)-valued functions with u positive and invertible. For any a ∈ Γ(End(V)), we consider the asymptotics
Tr a e−tP ∼t ↓0

∑∞
r=0 ar (a, P) t

(r−d)/2 where the coe�cients ar (a, P) can be written as an integral of the functions de�ned on
x ∈ M by ar (a, P)(x) = tr [a(x) Rr (x)].
The purpose of this computer program is to help to compute the matrix-valued functions Rr , the so-called asymptotic ex-
pansion coe�cients of the heat-trace of P , in terms of u-dependent operators which are universal (i.e. P-independent) and
which act on tensor products of u, pµ , q and their derivatives. We refer to [4] for more details on the mathematical side of
this computation, which relies on our previous works [1, 2].

This computer program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

2 Installation and dependencies
This computer program is written in JavaScript (JS in the following) and requires the (free) framework Node.js to
execute the scripts. Its current state is production, but many aspects of the program can be improved.
Node.js can be installed on your computer from https://nodejs.org. The program also depends on the chalk mod-
ule, which is already installed in the node_modules folder (https://www.npmjs.com/package/chalk) given with
the code.
To install the code, just make a copy of the full folder at any place on your computer. Once node is installed, a script �le
named “the_script.js” can be executed using the command line “node the_script.js” in the terminal. The shell
script computations-and-checks.sh executes all the computations referred to in the scienti�c paper.

3 Documentation
All the �les have documentation written with the code. That point should nevertheless be improved. The global structure
and the objects de�ned in the code are described below to give some understanding of the way the code is conceived. The
scripts used to perform the computations rely on the objects described below, and, as far as possible, they contain their own
documentation.

3.1 Objects de�ned in the code
Here is a description of the objects de�ned in the code, with their properties. Some methods are mentioned, but we refer to
the documentation in the code for the complete list of methods and their characteristic. All the �les mentioned are in the
folder MATH-OBJECTS.

3.1.1 Object Rational de�ned in MathRational.js

This de�nes rational objects (p/q ∈ Z) with methods to manipulate them: addition, multiplication, reduction. . .

Properties:

– numerator is the signed integer numerator.
– denominator is the positive integer denominator.

3.1.2 Object Integer de�ned in MathRational.js

Extends Rational as a rational with denominator = 1.

3.1.3 Object Polynomials de�ned in MathRationalExpression.js

De�ne polynomials objects with many methods to manipulate them: addition, multiplication. . .

2

https://nodejs.org
https://www.npmjs.com/package/chalk

Properties:

– monomials is an array of integers: the position k of the signed integers ak in the array (starting at k = 0 as is usual
with JS) corresponds to the coe�icient ak in front of the monomial at power k in the polynomial. Some “empty” slot
in the array means that there is no monomial with this power.

– le�er is the le�er displayed, i.e. the (math) “variable” of the polynomials.

3.1.4 Object RationalExpression de�ned in MathRationalExpression.js

De�ne rational expression objects, whose numerator is a Polynomials and denominator is a positive integer, with many
methods to manipulate them: addition, multiplication, reduction. . .
This object plays the role of a prefactor in more complicated objects, where the numerator polynomials is in the space dimen-
sion parameter.

Properties:

– numerator is a polynomials.
– denominator is an integer.

The monomials array in numerator is normalized so that GCD = 1 with the denominator. The denominator is always strictly
positive.

3.1.5 ObjectMathElement de�ned in MathElement.js

This is the base object on which everything is constructed in a pyramidal tree way (see list, prefactor, etc below).

Properties:

– id is a unique identifier, it is used to compare two instances of MathElement, and so to simplify expressions.
– le�er is the string used to display in the terminal.
– latex_le�er is a tex string used to display in latex exportations.
– math_le�er is a string used to display in Mathematica exportations.
– productKind is a flag to indicate the behavior in product: commutative or noncommutative.
– sum_weight is a weight (integer) used to order terms in sum using a computed “global” weight for each term.
– product_weight is a weight (integer) used to order factors in (commutative) expressions.
– indices is an object containing informations about indices:

– id is unique to each instance, it is used to create contraction array. It is managed by the function FH.nextIndiceID
and is based on sequence of le�ers in alphabetic order. The global array GLOBAL.listElementID maintains the
lists of used id.

– list is the list of integer positions of indices, 0,1,2. . .
– symmetric is an array of indices (referred by their integer positions) that are symmetric.
– antisymmetric is an array of indices (referred by their integer positions) that are antisymmetric.

These informations are used for contractions and normalization of terms.
– contractions is an array of pairs of strings (alphabetically sorted) of the form ‘indiceID’ = indices.id + ‘-’ + ‘integer of

indice position’. This collects all the contractions in the MathElement.
– copiedInfo is used to propagate (in a bo�om-up way) information when the method makeCopy is fired.
– productStringWeight is a string constructed by the method getProductStringWeight using product_weight data in

order to sort MathElement in (commutative) products.
The global arrays GLOBAL.productWeightData and GLOBAL.productWeightOperatorData contain information to
transform integer values (product_weight) into strings.

– normalizedIndices is an object containing information about the indices, their positions in a global expression and how
they should appear (outer, inner, number). normalizedIndices is constructed by the method fillNormalizedIndice-
sArray (see the documentation of this method where it is defined) and propagated into every layers of an expression
by the method propagateNormalizedIndicesArray: then all elements in an expression get this information, which
is used to display expressions in a “normalized” way (and export to LATEX).

MathElement_one is a shared instance of MathElement which represents “1”, the unit in the algebra when products are
taken into account.

3

3.1.6 ObjectMathOperator de�ned in MathElement.js

Extends MathElement. This represents a di�erential operator that can be applied on MathElement.

Properties:

– behavior is the behavior as a derivation (Leibniz rule is the only one used until now).
– status is a flag to inform if the operator has an argument or not.
– argument is a MathElement or MathOperator on which it acts. There can be a “chain” of arguments of MathOper-

ator acting on MathOperator. . .

3.1.7 ObjectMathExpression de�ned in MathExpression.js

This is a base object which should not be used per se. It should be looked at as an abstract object from which useful objects
are extensions.
A lot of methods de�ned for MathExpression are aware of subclasses (see below) in order to factor the code.

Properties:

– list is an array of MathElement or MathOperator or MathExpression (or subclasses).
– prefactor is a RationalExpression, a prefactor in “front of” the list.
– contractions is, as in MathElement, an array of pairs representing contractions of indices of MathElement instances

inside list.
– copiedInfo is used to propagate (in a bo�om-up way) information when the method makeCopy is fired.
– sumStringWeight is a string constructed by the method getSumStringWeight using sum_weight data (from MathEle-

ment instances inside list) in order to sort MathExpression in sums.
The global arrays GLOBAL.sumWeightData and GLOBAL.sumWeightOperatorData contain information to transform
integer values (sum_weight) into strings.

– normalizedIndices is an array containing information about the indices, their positions in a global expression and how
they should appear (outer, inner, number). normalizedIndices is constructed by the method fillNormalizedIndice-
sArray (see the documentation of this method where it is defined) and propagated into every layers of an expression
by the method propagateNormalizedIndicesArray: then all elements in an expression get this information, which
is used to display expressions in a “normalized” way (and export to LATEX).

– stringRepresentation is a normalized string representation produced by the method getStringRepresentation that
is used to compare two expressions. When two expressions are the same, their strings should be equal. This uses
normalizedIndices data.

– display_symbols is an object in which are defined various properties used to display a MathExpression. It varies
according to subclasses of MathExpression.

3.1.8 ObjectMathProduct de�ned in MathExpression.js

Extends MathExpression. It represents a product of MathElement and MathOperator.

Properties:

– list contains MathElement and MathOperator only.
– prefactor contains information (it is not normalized to 1 contrary to other extensions of MathExpression, see below).

Normalization: when there are multiple MathElement_one in the list (see 3.1.5), they are removed (since it represents the
unit in the algebra): at the end, there are only “non” MathElement_one elements remaining or only one MathElement_one
element in list if this latter contains only one element.

3.1.9 ObjectMathTensorProduct de�ned in MathExpression.js

Extends MathExpression. It represents a tensor product of MathProduct.

Properties:

– list contains MathProduct only.
– prefactor contains information.

Normalization: all the prefactor of MathProducts in list are normalized to 1, so that only the main prefactor is meaningful
(it collects all the prefactor of MathProducts in list).

4

3.1.10 Object MathArgument de�ned in MathExpression.js

Extends MathTensorProduct. It represents the structure of the “arguments” in the computation (see [4]): it contains a
prefactor (RationalExpression), a pre-element (MathProduct of commutative MathElement), a main part represented by
the list (MathTensorProduct) and a post-element (MathProduct).

Properties:

– list contains only MathProduct (since its extends MathTensorProduct).
– preElement is a MathProduct, which collects all the commutative elements in MathProduct in its list when the

method collectCommutativeElementsInPreElement is fired: metric, inverse metric, Riemann tensor, Ricci, scalar curva-
ture. . .

– postElement is a MathProduct, an object multiplying on the right in the final computation of arguments (gauge
curvature, etc). It represents Q[A] in [4].

– prefactor contains no information (normalized to 1).

Normalization: the main prefactor, the prefactor of the MathProduct in list (as in MathTensorProduct) and the prefactor
of postElement are all normalized to 1. Only prefactor of preElement contains information (collected from the other prefactor).
So, preElement plays the role of a “super prefactor” which collects what can be put outside the spectral operators “X ” in the
computation (by linearity).

3.1.11 Object MathSum de�ned in MathExpression.js

Extends MathExpression. It represents the sum of MathExpression objects.
Its list contain terms which are all of the same type: MathProduct, or MathTensorProduct, or (for the computation)
MathArgument.
Normalization: the main prefactor is normalized to 1 (since a “global” factor for the sum is meaningless). So, only prefactor of
terms contain information (see other classes to get where it is located in theses terms).

3.2 Functions and initialization data
The scripts written to perform the computations need functions that implement the mathematical results described in [4], as
well as functions to help the coding. These functions are de�ned in �les in the folder FUNCTIONS-FILES. Moreover, initial
data are managed in a central place in �les in the folder INIT-FILES.

3.2.1 The folder FUNCTIONS-FILES

This folder contains �les de�ning collections of functions used for the computations. The most important �les, because they
rely on mathematical results, are functions-computation.js and functions-rules.js.
The �le functions-computation.js de�nes functions to perform computations, for instance the propagation of the
derivations in arguments. All functions are grouped in the JS object FC: so all functions beginning with “FC.” are de�ned in
this �le.
The �le functions-rules.js de�nes a procedure to apply mathematical rules, like raising of indices of tensors with the
inverse metric or contractions of tensors. All functions are grouped in the JS object FR. The set of rules applied consists of a
collections of functions that share some code but that rest unique, except for a limited number of rules that rely on “generic
code” factored out in “generic functions”. This collection of rules need to be enlarged if other computations are performed
(Rr for r ≥ 6, Noncommutative Torus. . .).
The �le functions-substitutions.js de�nes functions (JS object FS) speci�cally used to compute substitutions.
These substitution procedures help to decompose the computations into successive steps, using generic mathematical objects
at some point, which are later replaced by more speci�c mathematical objects.
The �le functions-input.js de�nes functions (JS object FI) to interpret expressions written in a simpli�ed syntax, for
instance the hand-written �les of the simpli�ed expressions obtained at the end of the computation (see below).
The �le functions-factorize.js de�nes functions (JS object FF) to help factorize polynomials over integers (using
the “Rational Root Theorem”).
The �le functions-helpers.js is a collection of many functions (JS object FH) used in the code: interface to save and
read �les, management of arrays and strings, management of unique ID’s. . .

5

3.2.2 The folder INIT-FILES

The various scripts written to compute Rr need initial data that are shared by all of them. These data, called “initialization
data”, are collected in the unique �le initialization-data.js. It contains instances of objects used to perform the
computation (P , K µ , H µν , u, N µ , ∇µ , ∇̂µ . . .) collected in the JS object PROTO (“PROTO” for “prototype” since only copies
of these instances are used); initial substitutions, collected in the JS object SUBST; rules data passed as arguments of rules
functions, collected in the JS object RULE_DATA; and selection data used to separate terms in the computation ofR4, collected
in the JS object SELECTION.
The �le options.js contains more general data: the JS object GLOBAL which collects various “global” data; a collection
of constant parameters in the JS object CONST; symbols used to display the results in the JS object DISPLAY_SYMBOLS;
options passed to display functions in the JS object OPT; and a list of �le paths used by the scripts in the JS object FILES.
The �le options-substitutions.js contains data used to compute substitutions, in the JS object FS_DATA.

All these data are passed to the scripts that need them at the beginning of �les.

3.3 The computation and the script �les
The computations are performed in script �les that use the objects described in Section 3.1. These �les are gathered in folders
described below. The shell �le computations-and-checks.sh executes, in the correct order, all the computations
mentioned below.

3.3.1 The folder COMPUTATIONS-0-SUBSTITUTIONS

This folder contains scripts (with self-explained �le names) used for the computations of the substitutions data into normal
coordinates and from∇ to ∇̂. As explained in [4], these substitutions are computed starting from the substitutions of the metric
дµν up to 4th derivation: they are given “by hand” in the �le initialization-data.js in the object SUBST.g_powNC.
An important improvement to the code would be to compute these “initial” substitutions, so that they could be generated to
any order of derivations. Computed substitutions are saved (JSON �le format) in the folder RESULTS in a way the code can
directly read and use them.
The script show-substitutions.js exports to human readable LATEX �les these computed substitutions: the master �le
preliminary-computations.tex in the folder LATEX/MASTER-FILES displays these results. Since substitutions
take care of contractions of indices, they are presented fully contracted with a “placeholder” tensor to show how contractions
behave.

3.3.2 The folder COMPUTATIONS-1-MAIN-R2-R4

This folder contains scripts used for the computations of R2 and R4 in the generic situation. The computation of R2 requires
only one �le, compute-R2.js, and the results are saved in JSON and LATEX �les.
Concerning R4, the computation is decomposed into several steps. The �rst step is the propagation of the derivations in the
arguments: the result is split according to the “post element” Q[A]v = ∇kv . For each values of k , the results are saved. For
k = 1, 2, 3, 4, the next step of the computation is done in the scripts compute-R4-1.js to compute-R4-4.js and the
results are saved in JSON and LATEX �les. The script compute-R4-234-split.js splits these results according to the
patterns of the terms for further simpli�cations (see folders with “SPLIT” root in RESULTS). For k = 0, the computation is
performed in several steps: substitutions to normal coordinates and to full covariant derivatives, simpli�cations, exportation
to LATEX, split of the result according to the patterns of the terms. Terms with double derivations on u get a special treatment
(split according to the symmetric and antisymmetric parts) in the script compute-R4-double-derivations-of-u.js.
Terms with same patterns are saved into (text) �les (folder MATHEMATICA) that can be inserted (cut and paste) into Mathe-
matica. The simpli�cations of collections of terms with same patterns is not unique and require to make (human) decisions
from propositions computed using Mathematica.
These simpli�ed expressions are then hand-written in �les using a simpli�ed syntax, see folder SIMPLIFICATIONS, that
are used in the script check-simplifications-R4.js to check them against the saved results. The script also checks
that all the “split �les” (collected in �les with su�xes -list.json in RESULTS/LISTS) are taken into account in the �nal
result. This script exports all the (hand-written) simpli�ed expressions in LATEX �les that are used to display the results (as
they appear in [4]).

3.3.3 The folder COMPUTATIONS-2-u-PARALLEL-R4

The script compute-R4-u-parallel.js uses the saved results (generated by scripts in the folder COMPUTATIONS-1-
MAIN-R2-R4) and substitutes all derivations of u to 0. The result is then simpli�ed, saved (JSON and LATEX �les), and split

6

according to the patterns of the terms. Using Mathematica, simpli�cations are then computed and hand-written in �les
using a simpli�ed syntax.
The script check-simplifications-R4-u-parallel.js checks these simpli�cations against the saved results and
exports the simpli�ed expressions in LATEX �les.

3.3.4 The folder COMPUTATIONS-3-NCT-R2-R4

This folder is devoted to the computation of R2 for the NonCommutative Torus (NCT), see [3]. The computation of R4 is a
work in progress.
The script compute-substitutions-NCT.js generates substitutions for the special case of the NCT and the script
compute-R2-NCT.js explicitly computes R2. Since in [3] the results where presented in terms of spectral functions
(instead of universal operators in the present situation), Mathematica compatible �les are generated to check the results
against the previous one (folder MATHEMATICA/SPECTRAL-FUNCTIONS).

3.4 Other folders
Besides the �les de�ning the objects, the initialization data, and the scripts, some folders collect computed data. In these
folders, “SPLIT” sub folders (already mentionned above) collect data according to patterns, with �le names explicitly referring
to these patterns.

3.4.1 The folder RESULTS

In this folder and its sub folders (with more or less explicit names), results in JSON �le format are saved. Many of these results
are used by scripts as input to perform further computations.
A priori no human intervention is required in these �les. Since the JSON �le format can be read by a lot of coding language,
these data could be used (may be after “translation”) by other computer algebraic systems.

3.4.2 The folder LATEX

This folder collects exportations of results in LATEX format, in small pieces of �les containing only equations. The align*
environment has been chosen to encapsulate equations. The sub folder MASTER-FILES contains �les that compile these
results using \input commands. These master �les can be edited and used to look at results. Some lengthy results displayed
in results.tex are not presented in [4].
The master �le split-results.tex displays the split results, and the numeration of sections in this �le is used in the
code to refer to particular groups of terms.
The master �le simplified-split-results.tex displays the simpli�ed results (generated by the checking scripts
check-simplifications-R4.js and check-simplifications-R4-u-parallel.js in the sub folder SIM-
PLIFICATIONS) obtained after studying results displayed in split-results.tex. These simpli�ed results are the ones
presented in [4].
The master �le preliminary-computations.tex displays the substitutions given by hand in the code and those which
are computed. This information can be used to check these computations with known results, in particular concerning normal
coordinates.

3.4.3 The folder MATHEMATICA

Since Mathematica has been used (essentially to simplify the �nal results) as an auxiliary computer algebraic system, some
results have been generated in text �les whose content can be cut and paste directly in Mathematica. These text �les are
saved in sub folder in the MATHEMATICA folder.
The folders with root names “SPLIT-NORMALIZED-” are versions where the patterns are simpli�ed to contain successive
letters a,b, c, . . . instead of ∇̂ν1u, ∇̂2ν1ν2u, ∇̂

3
ν1ν2ν3u, . . . for instance. This permits to work in Mathematica without worrying

about the exact meaning of the constitutive elements in the patterns.

3.4.4 The folder SIMPLIFICATIONS

This folder contains (in sub folders) hand-written �les for simpli�ed expressions of �nal results. These �les (JSON �le format)
use a simpli�ed syntax to code terms, that can be read by scripts using functions coded in functions-input.js.

7

References
[1] Bruno Iochum and Thierry Masson. Heat trace for Laplace type operators with non-scalar symbols. Journal of Geometry

and Physics, 116:90–118, 2017.
[2] Bruno Iochum and Thierry Masson. Heat asymptotics for nonminimal Laplace type operators and application to non-

commutative tori. Mathematica Notebook added as ancillary �le on arXiv, 2017.
[3] Bruno Iochum and Thierry Masson. Heat asymptotics for nonminimal laplace type operators and application to noncom-

mutative tori. Journal of Geometry and Physics, 129:1–24, 2018.
[4] Bruno Iochum and Thierry Masson. Heat coe�cient a4 for nonminimal laplace type operators. Preprint, 2019.

8

	1 Introduction
	2 Installation and dependencies
	3 Documentation
	3.1 Objects defined in the code
	3.1.1 Object Rational defined in MathRational.js
	3.1.2 Object Integer defined in MathRational.js
	3.1.3 Object Polynomials defined in MathRationalExpression.js
	3.1.4 Object RationalExpression defined in MathRationalExpression.js
	3.1.5 Object MathElement defined in MathElement.js
	3.1.6 Object MathOperator defined in MathElement.js
	3.1.7 Object MathExpression defined in MathExpression.js
	3.1.8 Object MathProduct defined in MathExpression.js
	3.1.9 Object MathTensorProduct defined in MathExpression.js
	3.1.10 Object MathArgument defined in MathExpression.js
	3.1.11 Object MathSum defined in MathExpression.js

	3.2 Functions and initialization data
	3.2.1 The folder FUNCTIONS-FILES
	3.2.2 The folder INIT-FILES

	3.3 The computation and the script files
	3.3.1 The folder COMPUTATIONS-0-SUBSTITUTIONS
	3.3.2 The folder COMPUTATIONS-1-MAIN-R2-R4
	3.3.3 The folder COMPUTATIONS-2-u-PARALLEL-R4
	3.3.4 The folder COMPUTATIONS-3-NCT-R2-R4

	3.4 Other folders
	3.4.1 The folder RESULTS
	3.4.2 The folder LATEX
	3.4.3 The folder MATHEMATICA
	3.4.4 The folder SIMPLIFICATIONS

