Fermions in quantum gravity

Hugo A. Morales-Técotl ${ }^{1}$ and Carlo Rovelli ${ }^{2}$
${ }^{1}$ Institute for Advanced Studies, V. Beirut 2, 34013 Trieste, Italy
${ }_{2}$ Physics Department, Pittsburgh University, Pittsburgh, Pa 15260, USA;
${ }^{2}$ Dipartimento di Fisica, Universitá di Trento; INFN, Sez. di Padova, Italia.

(Dated: July 21, 2022)

Abstract

The quantum fermions+gravity system (QGD) is studied using the loop representation for the Einstein-Weyl theory. This involves open curves besides loops. A hamiltonian is constructed that governs the evolution in the physical time defined by further coupling a ("clock"-) scalar field. The hamiltonian operator, definied by a regularization procedure, is finite, background independent and diffemorphism invariant; it acts only on the intersections and the end points of the open curves. The dynamics is thus coded into the combinatorics of graphs with open ends ("topological Feynman rules"). Exact dynamical states involving fermions are exhibited. In addition, we point out a strange feature of the gravity-fermion loop representation: the dynamics of the fermions is simply given by the immediate extension of the pure gravity dynamics to open loops.

PACS number: 04.60.+n
Recent results in nonperturbative quantum gravity - definition of general covariant regularization techniques [1], and construction of a finite physical-time evolution hamiltonian [2] - have been achieved using the loop representation $[3,4]$ in the context of pure gravity. An important question is whether these results and their geometrical simplicity survive in the presence of matter: not only because matter fields are constituents of a realistic theory, but also because the presence of matter drastically simplifies the key problem of defining physical observables in a general covariant theory [5]. Thus, an important problem in quantum gravity is to construct a generally covariant description of the dynamics of matter at the Planck scale [6]. In this letter we show: - i. The inclusion of fermions into the loop representation can be achieved in a natural way (as one may have expected) by extending loop space to include open curves. - ii. The diffemorphism invariant quantum states of the fermions-gravity system are classified by graphs containing open and closed lines. - iii. Physical time evolution can be implemented as in [2] by further coupling a ("clock"-) scalar field to the system: the resulting hamiltonian is diffeomorphism invariant, finite, and acts in a purely combinatorial fashion on the graphs - its action can be defined in terms of a simple set of "topological Feynman rules". A diffeomorphism invariant picture of fermionic matter and gravity at the Planck scale emerges from here. We describe the simplest dynamical states at the end of this letter. In addition, we describe what we consider a strange and surprising aspect of the loop representation: - iv. The dynamics of the coupled gravity-fermion system can be obtained by just acting on the open curves with the pure gravity hamiltonian (defined for closed curves). We have not been able to find any convincing interpretation of this fact.

We consider the Einstein-Weyl theory for a massless, two-components fermion field coupled to gravity. In the Ashtekar formalism [7, 8], this theory is defined by the constraints

$$
\begin{align*}
G_{A B} & =-i \sqrt{2} \mathcal{D}_{a} \sigma^{a}{ }_{A B}+\pi_{(A} \psi_{B)}, \tag{1}\\
V_{a} & =i \sqrt{2} \sigma^{b A B} F_{a b B A}-\pi_{A} \mathcal{D}_{a} \psi^{A}, \tag{2}\\
C & =\sigma^{a A B} \sigma^{b}{ }_{B}^{C} F_{a b C A}+i \sqrt{2} \sigma^{a}{ }_{A}^{B} \pi_{B} \mathcal{D}_{a} \psi^{A} \\
& =C_{g r}+C_{W e y l}, \tag{3}
\end{align*}
$$

on the phase space coordinatized by the Ashtekar variables $A_{a A B}$ and $\sigma^{a}{ }_{A B}$, and by the fermionic (Grassmann-valued) canonically conjugate fields ψ^{A}, π_{A}. Here $A, B=1,2$ are spinor indices and $a, b=1,2,3$ are space indices. See [4, 11] for notation and details. The minimally coupled fermion interaction in the Ashtekar formalism is not equivalent to the minimally coupled fermion interaction in the metric variable. Rather, it corresponds to the Einstein-Cartan-Weyl theory [9] - see [10], and references there.

We begin by introducing "loop" variables. These include the loop variables $T[\alpha], T^{a}[\alpha](s)$ of the purely gravitational case [3], and the "open loop" variables [12]

$$
\begin{align*}
X[A, \alpha] & :=\psi^{A}\left(\alpha_{i}\right) U_{\alpha A}{ }^{B} \psi_{B}\left(\alpha_{f}\right), \tag{4}\\
Y[A, \alpha] & :=\pi^{A}\left(\alpha_{i}\right) U_{\alpha A}{ }^{B} \psi_{B}\left(\alpha_{f}\right), \tag{5}
\end{align*}
$$

where α is a single open curve $\alpha: s \mapsto \alpha^{a}(s)$ (which we improperly insist denoting as "loop"), with end points α_{i} and α_{f}, and $U_{\alpha}[A]$ is the parallel transport matrix. These variables form a closed Poisson algebra among themselves and
with the T variables, as can be directly verified. They are reparametrisation invariant and satisfy the same retracing and spinor identities as the T 's [4]. The algebra can be expressed in terms of breaking and rejoining of loops at intersections and of gluing of loops at end points. As in the pure gravity case, we can also consider "higer order" variables, as

$$
\begin{align*}
& Y^{a}[A, \alpha](s):= \\
& \quad \pi^{A}\left(\alpha_{i}\right) U_{\alpha A}{ }^{B}(0, s) \sigma_{B}^{a}{ }_{B}^{C}(\alpha(s)) U_{\alpha C}{ }^{D}(s, 1) \psi_{D}\left(\alpha_{f}\right) . \tag{6}
\end{align*}
$$

The quantum theory is defined by a linear representation of the Poisson algebra of the loop observables[3, 13]. This is given by operators acting on wave functionals $\Psi[\beta]$ depending on sets β of open and closed curves (multiloops). The open loops can be seen as the continuum limit of the Wilson-Kogut-Suskind flux-tube states in lattice QCD [14]. The quantum operators corresponding to the open loop variables are

$$
\begin{align*}
\hat{X}[\alpha] \Psi[\beta]= & \Psi[\alpha \cup \beta], \tag{7}\\
\hat{Y}[\alpha] \Psi[\beta]= & i \sum_{e} \delta^{3}\left(\alpha_{i}, \beta_{e}\right) \Psi\left[\alpha^{-1} \cdot e \beta\right], \tag{8}\\
\hat{Y}^{a}[\alpha](s) \Psi[\beta]= & i \sum_{e} \delta^{3}\left(\alpha_{i}, \beta_{e}\right) \Delta^{a}[\alpha, \beta](s) \\
& \sum_{q= \pm} \Psi\left[\alpha^{-1} *_{e} *_{s}^{q} \beta\right] . \tag{9}
\end{align*}
$$

Here e labels end points β_{e} of the multiloop β. The notation $\alpha \cdot{ }_{e} \beta$ indicates loops' composition (gluing at coincident endpoints), and $\alpha *_{e} *_{s}{ }^{q} \beta$ indicates a double grasping [3] between α and β : one through β_{e} and the other at $\alpha(s)$, where q labels the two possible reroutings. See [4, 10] for other details on notation.

The quantum version of the diffeomorphism constraint (2) is the generator of the natural action of the diffemorphism group on the space of open and closed loops [3]. Its general solution is $\Psi[\alpha]=\Psi[K(\alpha)]$ where K is a generalized knot class, defined as a diffemorphism equivalence class of sets of open and closed lines. The knot states, which have support on a single class, can be (over-) characterized by: the number of end points N, intersections I, and their orders $m_{1} \ldots m_{I}$ (number of lines emerging from the intersection), the moduli-space parameters of the intersections $a_{1}^{m_{1}}, \ldots, a_{I}^{m_{I}}$, and the "braiding" \mathcal{K}_{M}, where $M=\sum_{i} m_{i}$, obtained by erasing the intersection points [2]. They can be denoted as $\left|N, I, a_{1}^{m_{1}} \ldots a_{I}^{m_{I}} ; \mathcal{K}_{M}\right\rangle$. The representation is defined by the assumption that these knot states have finite norm [15]. The total fermion "charge" $N=\int \pi_{A} \psi^{A}$ is a diffemorphism invariant conserved quantity. The corresponding quantum operator can be constructed as the space integral of the limit of $\hat{Y}[\alpha]$ when α shrinks to a point. The result is the fermion-number operator, and one can directly check that N - the number of end points - is its quantum number. This confirms the natural interpretation of the number of open ends as the number of fermions in the state.

Let us now extend the theory by (minimally) coupling a futher scalar field $T(x)$, with the aim of using it for defining a physical internal time, as in $[2,5]$. This turns the hamiltonian constraint into a genuine hamiltonian. By fixing the gauge $\partial_{a} T(x)=0$, and restricting to the clock regime $\partial_{t} T(x, t)>0$, we obtain a genuine Shrödinger equation $i \hbar \partial_{T} \Psi(T)=\widehat{H} \Psi(T)$ that governs the evolution of the gravity-fermions degrees of freedom in the constant $T(x)=T$ hypersurfaces. The hamiltonian turns out to be $H=\int d^{3} x \sqrt{-C}$. We refer to [2] for the details of this construction. The problem is to find a finite and general covariant definition of the operator \hat{H}. To this aim, following [1], we introduce a fictitious background flat metric and a preferred set of coordinates in which this metric is euclidean, and we write

$$
\begin{equation*}
H=\lim _{\substack{L \rightarrow 0 \\ A \rightarrow 0 \rightarrow 0 \\ \tau \rightarrow 0}} \sum_{I} L^{3} \sqrt{-C_{g r I}^{A, L, \delta}-C_{\mathrm{Weyl} I}^{L, \tau, \delta}} \tag{10}
\end{equation*}
$$

We have partitioned three-dimensional space into cubes of side L, labelled by the index I. The quantity $C_{g r}^{A, L, \delta}$ is the regularized form of the pure gravity hamiltonian constraint $C_{g r}$, as defined in [2]. Next, we define the open loop $\gamma_{\vec{x}, \vec{y}}^{\tau}$, where τ is a regularization parameter, \vec{x} is a point in space and \vec{y} is a vector in the tangent space around \vec{x}, as the (uniformly parametrized) straight line (in the background metric) that starts at \vec{x} in the \vec{y} direction and is long τ. Using this, we define the regularised form of the fermion component of the hamiltonian as

$$
\begin{align*}
C_{\text {Weyl } I}^{L, \tau, \delta} & =\frac{1}{L^{3}} \int_{I} d^{3} x C_{\text {Weyl }}^{\tau, \delta}(\vec{x}) \tag{11}\\
C_{\text {Weyl }}^{\tau, \delta}(\vec{x}) & =c_{\tau \delta} \int d^{3} y \theta(\delta-|y|) \frac{y^{a}}{|\vec{y}|} Y^{a}\left[\gamma_{\vec{x} \vec{y}}^{\tau}\right](|y| / \tau) \tag{12}
\end{align*}
$$

where $c_{\tau \delta}=\frac{3}{\tau} \frac{1}{\frac{4}{3} \pi \delta^{3}}$ and $\theta(x)$ is the step function. Note the role of the regularization parameters: L fixes the size of the boxes. τ gives the length of the "small" loop. The direction of this loop is integrated over ($d^{3} y$ angular integration). Y^{a} has a special point where the σ is inserted (the "hand"). The position of this point is also integrated over ($d^{3} y$ radial integration). The point splitting regularisation is implemented by this smearing of the position of the hand, and its size is determined by δ. By expanding in τ and δ one verifies that H so defined provides a genuine regularization of the hamiltonian. We define the quantum hamiltonian by replacing Y^{a} in (12) with the corresponding quantum operator (9). The computation of the action of the resulting operator on a loop state is again a straight forward exercize, yieleding (we temporarily put $\hat{C}_{g r}=0$)

$$
\begin{align*}
\hat{H} \Psi[\alpha] & =\lim _{L, \delta, \tau \rightarrow 0} \sqrt{\frac{9 L^{3}}{4 \pi \delta^{2} \tau}} \sum_{e}\left(\widehat{\mathcal{F}}_{e}^{\tau \delta}\right)^{-\frac{1}{2}} \Psi[\alpha], \tag{13}\\
\widehat{\mathcal{F}}_{e}^{\tau \delta} \Psi[\alpha] & =\sum_{\overrightarrow{l_{e}}} \sum_{q= \pm} \Psi\left[\left[\alpha * *^{q} e, \delta \gamma_{\vec{x}(\vec{x}+\delta \vec{l})}^{\tau}\right]\right. \tag{14}
\end{align*}
$$

where e labels end points of α and \vec{l}_{e} are the tangents of the lines emerging from the e-th end point — these lines can be more than one if the end point is not free, namely if α is not injective at the end point.

The operator \hat{H} is well defined only if it is finite and independent from the background metric used for the regularisation. We observe that powers of lengths of the regularization parameters L, δ, τ in the prefactor in (13) cancel, a necessary condition for a finite limit. This cancellation is a non trivial result that can be traced to the fact that H is diffeomorphism invariant, and that we are regulating "the square root of the square of a distribution", which, in a sense, is homogeneous of degree zero in the divergent factors. To complete the definition of \hat{H} we have to fix the order in which the limits are taken (the choice amounts to a quantum ordering problem). For consistency with the above definitions we must have $\tau>\delta$, and, in order to avoid "boundary effects" in the box, $L>\delta$. We introduce a parameter ϵ, and put $L(\epsilon)=k \epsilon^{3} a, \tau(\epsilon)=\epsilon a$, and $\delta(\epsilon)=\epsilon^{4} a$; where a is an arbitrary length, and k is an arbitrary dimensionless positive number. We can now take the $\epsilon \rightarrow 0$ limit, yelding

$$
\begin{equation*}
\hat{H} \Psi[\alpha]=\lambda^{2} \quad \sum_{\alpha_{e}}\left(\widehat{\mathcal{F}}_{e}\right)^{-\frac{1}{2}} \Psi[\alpha] \tag{15}
\end{equation*}
$$

where we have introduced the "end-point operator"

$$
\begin{equation*}
\widehat{\mathcal{F}}_{e} \Psi[\alpha]=\lim _{\epsilon \rightarrow 0} \widehat{\mathcal{F}}_{e}^{\tau(\epsilon) \delta(\epsilon)} \Psi[\alpha] \tag{16}
\end{equation*}
$$

and $\lambda=\left(\frac{3 k^{-3 / 2}}{2 \sqrt{\pi}}\right)^{1 / 2}$ is a free constant that emerges from the regularization. Since δ goes to zero faster than τ, we can just take the $\delta \rightarrow 0$ limit first, and the $\tau \rightarrow 0$ limit second. Let us consider the $\delta \rightarrow 0$ limit of $\widehat{\mathcal{F}}_{e}^{\tau \delta} \Psi[\alpha]$ (with finite τ). If the end-point is free, the action of the operator is simply to add a small straight line of length $\tau=\epsilon a$ to the end point of the loop, in the direction of the incoming loop. If the end-point is not free, the action of the operator produces one term for each component of α emerging from the end-point. These terms imply the addition of the line and also a rerouting through the intersection, the pattern of which is given by (14). Before taking the limit $\tau \rightarrow 0$, let us assume that $\Psi[\alpha]$ is a diffeomorphism invariant state. If the end point α_{e} is free, we simply have $\lim _{\tau \rightarrow 0} \widehat{\mathcal{F}}_{e}^{\tau 0} \Psi[\alpha]=2 \Psi[\alpha]$, because for small enough τ the added loop will not interject any other loop, and the addition of a small line at the end of a loop does not change the knot class of the loop. If α_{e} is not a free end-point, then $\alpha * * \gamma_{\alpha_{e}, \vec{l}_{e}}^{\tau}$ does belong to a different knot class than α. But in any case, since $\Psi[\alpha]$ is diffeomorphism invariant, for small enough τ we have that $\widehat{\mathcal{F}}_{e}^{\tau 0} \Psi[\alpha]$ becomes independendent from τ. The limit is thus the limit of a constant function and therefore is finite. Moreover, it is clear that the resulting action of $\widehat{\mathcal{F}}_{e}$ is well-defined on the diffeomorphism invariant states. Thus, the operator \widehat{H} is finite and diffeomorphism invariant in the limit. If we now reinstate $\hat{C}_{g r} \neq 0$, we have

$$
\begin{equation*}
\hat{H}=\sum_{i, e} \sqrt{\hat{M}_{i}+\lambda \hat{\mathcal{F}}_{e}} \tag{17}
\end{equation*}
$$

where i labels the intersections and \hat{M} was constructed in [2]. \hat{H} is a finite operator defined on knot states. We expect that the square root could be computed order by order as the complexity of the knots increases. This has been verified only in the simplest cases and work is in progress in this direction.

We are now in the position of describing the general structure of Quantum Gravitational Dynamics, or QGD, the quantum theory of gravitationally interacting fermions evolving in the clock time defined by a scalar field. A physical
quantum state $|K\rangle$ of the theory is specified by a generalized knot (a graph with open ends). The quantum dynamics is given by the matrix \hat{H} in knot space, given in equation (17). The matrix elements of the operators \hat{M}_{i} and \hat{F}_{e} can be directly computed between any two given knot states - from (14) and (16), and ref. [2]. The calculation amounts to an exercize in the combinatorics of breaking and rejoining of loops at intersections. This action can be coded in a small number of simple graphic rules ("topological Feynman rules"), which we will publish elswehere. These matrix elements determine the first order transition amplitudes in a time-dependent perturbation expansion in the clock time. In principle, exponentiation of the \hat{H} action gives the full evolution.

For instance, we can start from the simplest state formed by a single non self-intersecting open line. This can be denoted as $\left|2,0 ; 1_{2}\right\rangle$, or, graphically, as $|\bullet \bullet\rangle$. There are two fermions in this state. We have immediately $\hat{H}\left|2,0 ; 1_{2}\right\rangle=2 \lambda\left|2,0 ; 1_{2}\right\rangle$: this is a stationary state. Equivalently, the time dependent Schrödinger quantum state

$$
\begin{equation*}
\left|2,0 ; 1_{2} ; T\right\rangle=\exp ^{i \lambda \sqrt{\frac{\sigma^{5}}{h G}} T}\left|2,0 ; 1_{2}\right\rangle \tag{18}
\end{equation*}
$$

(we have reinstated conventional units) is a solution of the exact quantum interacting theory. It is suggestive to think at this state as a simple fermion-gravity quantum configuration, with only two fermions gravitating around each other in the simplest of the quantum geometries, or a kind of "atomic" "ground state" (minimal energy in the clock time) of a simple 2 -fermions state. Other eigenstates are given by sets of n disconnected open lines $\left|2 n, 0 ; 1_{2 n}\right\rangle$. The corresponding energy eigenstates are $E_{n}=n \lambda \sqrt{\frac{c^{5} \hbar}{G}}$. As soon as we consider intersecting states, the complexity of the operators \hat{M}_{i} and \hat{F}_{e} becomes relevant, and we have non-trivial time evolution.

Finally, let us come to the relation between the full theory and pure gravity. A detailed investigation shows that the action of the hamiltonian on end-points (fermion term) can be seen as the extension of its action on intersections (gravity term). Rather than describing these similarities, we present a simpler formal account of the result, which disregards regularisation issues. We recall from [3] that the action of the pure gravity hamiltonian constraint on loop states is given by the (divergent) shift operator. This is easily seen from the action of the connection representation [16] scalar constraint (smeared with a test density $f(x)$) on a loop state:

$$
\begin{align*}
& \hat{C}_{g r}(f) \Psi_{\alpha}[A]=\int d^{3} f(x) \operatorname{Tr}\left(F_{a b} \frac{\delta}{\delta A_{a}} \frac{\delta}{\delta A_{d}}\right) \operatorname{Tr} e^{\oint_{\alpha} A} \\
& =\int d t \int d s f(\alpha(s)) \delta^{3}(\alpha(s), \alpha(t)) \dot{\alpha}^{a}(s) \frac{\delta}{\delta \alpha^{a}(s)} \Psi_{\alpha}[A] . \tag{19}
\end{align*}
$$

The operator in the last line shifts the loop along its own tangent (as well as along the tangent of any intersecting line, if any). Now, consider this same shift action on an open loop state, where the end points are given by fermion fields, and repeat the above calculation backward

$$
\begin{align*}
& \int d t \int d s f(\alpha(s)) \delta(\alpha(s), \alpha(t)) \dot{\alpha}^{a}(s) \frac{\delta}{\delta \alpha^{a}(s)} \\
& \quad\left(\psi^{A}\left(\alpha_{i}\right) U_{\alpha A}{ }^{B} \psi_{B}\left(\alpha_{f}\right)\right) \\
& =\int d^{3} x f\left[\operatorname{Tr}\left(F_{a b} \frac{\delta}{\delta A_{a}} \frac{\delta}{\delta A_{d}}\right)\right. \\
& \left.\quad+2 \dot{\alpha}^{a} \mathcal{D}_{a} \psi_{A}(x) \frac{\delta}{\delta \psi_{A}(x)}\right] \Psi_{\alpha}[A] . \tag{20}
\end{align*}
$$

the last term being necessary to shift the fermions sited at the end points. The operator on the last line can be written as

$$
\begin{equation*}
\int d^{3} x f\left[\operatorname{Tr}\left(F_{a b} \frac{\delta}{\delta A_{a}} \frac{\delta}{\delta A_{d}}\right)+2 \frac{\delta}{\delta A_{a}} \frac{\delta}{\delta \psi} \mathcal{D}_{a} \psi\right] \tag{21}
\end{equation*}
$$

and its classical limit is precisely the hamiltonian constraint (3) of the interacting Einstein Weyl theory. To put it dramatically, we might say that by quantizing the matter free Einstein equations in the loop representation, extending the dynamics (the shift operator) to open loops (where the end points are interpreted as spinors), and taking the classical limit, one could have discovered the Dirac equation!

The formalism we have constructed holds only within the "clock regime" [2] in which the coordinate time derivative of $T(x, t)$ is positive. The effective hamiltonian H becomes immaginary when the system exits this regime. If the formalism is consistent the (real eigenvalue) eigenstates of the hamiltonian \hat{H} should form an orthogonal basis. This could be a futher step towards the (still open) problem of characterising the physical scalar product. The difficulty we
have left unsolved concerns the determination of the square root. The next step in the present direction of investigation should be to compute matrix elements of \hat{M}_{i} and \hat{F}_{e} explicitely, and understand whether there is a direct algoritm for extracting this square root. If this could be done, the theory would be at the stage in which physical evolution of physical states could be described.

We thank Lee Smolin for ideas, and encouragement. This work was partially supported by NSF Grant PHY-9311465.
[1] A. Ashtekar, C. Rovelli, L. Smolin, Phys. Rev. Lett. 69, 237 (1992).
[2] C. Rovelli, L. Smolin, Phys. Rev. Lett.72, 446 (1994).
[3] C. Rovelli and L. Smolin, Phys. Rev. Lett. 61, 1155 (1988); Nucl. Phys. B133, 80 (1990).
[4] C. Rovelli, Class. Quant. Grav. 8, 1613 (1991).
[5] C. Rovelli, Class. Quant. Grav. 8, 297 (1991), 317 (1991); Phys. Rev. D42, 2638; D43, 442; D44, 1339 (1991); Nucl. Phys. B405, 797 (1993).
[6] C.J. Isham, "Prima facie questions in quantum gravity", Imperial/TP/93-94/1, and references therein.
[7] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986); Phys. Rev. D36, 1587 (1987).
[8] T. Jacobson, L. Smolin, Phys. Lett. B196, 39 (1987); Class. and Quant. Grav. 5, 583 (1988). J. Samuel, Pramāna-J Phys. 28, L429 (1987). T. Jacobson, Class. Quant. Grav. 5, L143 (1988). A. Ashtekar, J. Romano and R. Tate, Phys. Rev. D40, 2572 (1989). H.A. Morales-Técotl and G. Esposito, Preprint Trieste: SISSA-165/93/A.
[9] T.W.B. Kibble, J. Math. Phys. 2, 212 (1961). D.W. Sciama, in Recent Developments in General Relativity (Oxford: Pergamon Press 1962).
[10] H.A. Morales-Técotl, PhD thesis, SISSA-Trieste 1994.
[11] A. Ashtekar, Lectures on non-perturbative canonical gravity, World Scientific 1991.
[12] C. Rovelli, L. Smolin, "Loop representation of Yang-Mills theories on the lattice". Rome University preprint 1989. R. Gambini and J. Pullin, Phys. Rev. D47, 5214 (1993); H-J Matscull, Class. Quant. Grav. 10, L149 (1993). C.B. Kim, T. Shimizu, K. Yoshida, Class. Quant. Grav. 9, 1211(1992); C. Kim, K. Yoshida, Class. Quant. Grav. 10, 2241 (1993). R. Gambini, L Setaro, University of Montevideo preprint IFFC-93-07 (1993).
[13] C. J. Isham, in Relativity, Groups and Topology II, ed B.S. DeWitt and R. Stora (Amsterdam, Elsevier).
[14] K. Wilson, Phys. Rev. D10, 247 (1974); J. Kogut, L. Suskind, Phys. Rev. D11, 395 (1975).
[15] A. Ashtekar, C.J. Isham, Class. and Quant. Grav. 9, 1069 (1992).
[16] T. Jacobson and Smolin L., Nucl. Phys. B299, 295 (1988). A. Ashtekar, New perspectives in canonical gravity, Bibliopolis, Napoli 1989.

