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The quantum fermions+gravity system (QGD) is studied using the loop representation for the
Einstein-Weyl theory. This involves open curves besides loops. A hamiltonian is constructed that
governs the evolution in the physical time defined by further coupling a (“clock”-) scalar field. The
hamiltonian operator, definied by a regularization procedure, is finite, background independent and
diffemorphism invariant; it acts only on the intersections and the end points of the open curves.
The dynamics is thus coded into the combinatorics of graphs with open ends (“topological Feynman
rules”). Exact dynamical states involving fermions are exhibited. In addition, we point out a strange
feature of the gravity-fermion loop representation: the dynamics of the fermions is simply given by
the immediate extension of the pure gravity dynamics to open loops.

PACS number: 04.60.+n

Recent results in nonperturbative quantum gravity — definition of general covariant regularization techniques [1],
and construction of a finite physical-time evolution hamiltonian [2] — have been achieved using the loop representation
[3, 4] in the context of pure gravity. An important question is whether these results and their geometrical simplicity
survive in the presence of matter: not only because matter fields are constituents of a realistic theory, but also because
the presence of matter drastically simplifies the key problem of defining physical observables in a general covariant
theory [5]. Thus, an important problem in quantum gravity is to construct a generally covariant description of the
dynamics of matter at the Planck scale [6]. In this letter we show: – i. The inclusion of fermions into the loop
representation can be achieved in a natural way (as one may have expected) by extending loop space to include open
curves. – ii. The diffemorphism invariant quantum states of the fermions-gravity system are classified by graphs
containing open and closed lines. – iii. Physical time evolution can be implemented as in [2] by further coupling a
(“clock”-) scalar field to the system: the resulting hamiltonian is diffeomorphism invariant, finite, and acts in a purely
combinatorial fashion on the graphs — its action can be defined in terms of a simple set of “topological Feynman
rules”. A diffeomorphism invariant picture of fermionic matter and gravity at the Planck scale emerges from here. We
describe the simplest dynamical states at the end of this letter. In addition, we describe what we consider a strange
and surprising aspect of the loop representation: – iv. The dynamics of the coupled gravity-fermion system can be
obtained by just acting on the open curves with the pure gravity hamiltonian (defined for closed curves). We have
not been able to find any convincing interpretation of this fact.

We consider the Einstein-Weyl theory for a massless, two-components fermion field coupled to gravity. In the
Ashtekar formalism [7, 8], this theory is defined by the constraints

GAB = −i
√

2DaσaAB + π(AψB), (1)

Va = i
√

2 σbABFabBA − πADaψA, (2)

C = σaABσb C
B FabCA + i

√
2σa B

A πBDaψA

= Cgr + CWeyl, (3)

on the phase space coordinatized by the Ashtekar variables AaAB and σaAB , and by the fermionic (Grassmann-valued)
canonically conjugate fields ψA, πA. Here A,B = 1, 2 are spinor indices and a, b = 1, 2, 3 are space indices. See [4, 11]
for notation and details. The minimally coupled fermion interaction in the Ashtekar formalism is not equivalent to
the minimally coupled fermion interaction in the metric variable. Rather, it corresponds to the Einstein-Cartan-Weyl
theory [9] – see [10], and references there.

We begin by introducing “loop” variables. These include the loop variables T [α], T a[α](s) of the purely gravitational
case [3], and the “open loop” variables [12]

X[A,α] := ψA(αi)U
B

αA ψB(αf ), (4)

Y [A,α] := πA(αi)U
B

αA ψB(αf ) , (5)

where α is a single open curve α : s 7→ αa(s) (which we improperly insist denoting as “loop”), with end points αi and
αf , and Uα[A] is the parallel transport matrix. These variables form a closed Poisson algebra among themselves and
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with the T variables, as can be directly verified. They are reparametrisation invariant and satisfy the same retracing
and spinor identities as the T ’s [4]. The algebra can be expressed in terms of breaking and rejoining of loops at
intersections and of gluing of loops at end points. As in the pure gravity case, we can also consider ”higer order”
variables, as

Y a[A,α](s) :=

πA(αi)U
B

αA (0, s)σa C
B (α(s))U D

αC (s, 1)ψD(αf ). (6)

The quantum theory is defined by a linear representation of the Poisson algebra of the loop observables[3, 13]. This
is given by operators acting on wave functionals Ψ[β] depending on sets β of open and closed curves (multiloops).
The open loops can be seen as the continuum limit of the Wilson-Kogut-Suskind flux-tube states in lattice QCD [14].
The quantum operators corresponding to the open loop variables are

X̂[α]Ψ[β] = Ψ[α ∪ β], (7)

Ŷ [α]Ψ[β] = i
∑
e

δ3(αi, βe)Ψ[α−1 ·e β], (8)

Ŷ a[α](s) Ψ[β] = i
∑
e

δ3(αi, βe)∆
a[α, β](s)∑

q=±
Ψ[α−1 ∗e∗sqβ]. (9)

Here e labels end points βe of the multiloop β. The notation α ·e β indicates loops’ composition (gluing at coincident
endpoints), and α ∗e∗sqβ indicates a double grasping [3] between α and β: one through βe and the other at α(s),
where q labels the two possible reroutings. See [4, 10] for other details on notation.

The quantum version of the diffeomorphism constraint (2) is the generator of the natural action of the diffemorphism
group on the space of open and closed loops [3]. Its general solution is Ψ[α] = Ψ[K(α)] where K is a generalized
knot class, defined as a diffemorphism equivalence class of sets of open and closed lines. The knot states, which have
support on a single class, can be (over-) characterized by: the number of end points N , intersections I, and their
orders m1 . . .mI (number of lines emerging from the intersection), the moduli-space parameters of the intersections
am1

1 , . . . , amII , and the “braiding” KM , where M =
∑
imi, obtained by erasing the intersection points [2]. They can

be denoted as |N, I, am1
1 . . . amII ;KM 〉. The representation is defined by the assumption that these knot states have

finite norm [15]. The total fermion “charge” N =
∫
πAψ

A is a diffemorphism invariant conserved quantity. The

corresponding quantum operator can be constructed as the space integral of the limit of Ŷ [α] when α shrinks to a
point. The result is the fermion-number operator, and one can directly check that N — the number of end points
— is its quantum number. This confirms the natural interpretation of the number of open ends as the number of
fermions in the state.

Let us now extend the theory by (minimally) coupling a futher scalar field T (x), with the aim of using it for defining
a physical internal time, as in [2, 5]. This turns the hamiltonian constraint into a genuine hamiltonian. By fixing
the gauge ∂aT (x) = 0, and restricting to the clock regime ∂tT (x, t) > 0, we obtain a genuine Shrödinger equation

ih̄∂T Ψ(T ) = Ĥ Ψ(T ) that governs the evolution of the gravity-fermions degrees of freedom in the constant T (x) = T
hypersurfaces. The hamiltonian turns out to be H =

∫
d3x
√
−C. We refer to [2] for the details of this construction.

The problem is to find a finite and general covariant definition of the operator Ĥ. To this aim, following [1], we
introduce a fictitious background flat metric and a preferred set of coordinates in which this metric is euclidean, and
we write

H = lim
L→0 δ→0
A→0 τ→0

∑
I

L3
√
−CA,L,δgr I − C

L,τ,δ
Weyl I . (10)

We have partitioned three-dimensional space into cubes of side L, labelled by the index I. The quantity CA,L,δgr I is

the regularized form of the pure gravity hamiltonian constraint Cgr, as defined in [2]. Next, we define the open loop
γτ~x,~y, where τ is a regularization parameter, ~x is a point in space and ~y is a vector in the tangent space around ~x, as

the (uniformly parametrized) straight line (in the background metric) that starts at ~x in the ~y direction and is long
τ . Using this, we define the regularised form of the fermion component of the hamiltonian as

CL,τ,δWeyl I =
1

L3

∫
I

d3x Cτ,δWeyl(~x) , (11)

Cτ,δWeyl(~x) = cτδ

∫
d3y θ(δ−|y|) y

a

|~y|
Y a
[
γτ~x~y
]

(|y|/τ) (12)
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where cτδ = 3
τ

1
4
3πδ

3 and θ(x) is the step function. Note the role of the regularization parameters: L fixes the size

of the boxes. τ gives the length of the ”small” loop. The direction of this loop is integrated over (d3y angular
integration). Y a has a special point where the σ is inserted (the “hand”). The position of this point is also integrated
over (d3y radial integration). The point splitting regularisation is implemented by this smearing of the position of
the hand, and its size is determined by δ. By expanding in τ and δ one verifies that H so defined provides a genuine
regularization of the hamiltonian. We define the quantum hamiltonian by replacing Y a in (12) with the corresponding
quantum operator (9). The computation of the action of the resulting operator on a loop state is again a straight

forward exercize, yieleding (we temporarily put Ĉgr = 0)

Ĥ Ψ[α] = lim
L,δ,τ→0

√
9L3

4π δ2 τ

∑
e

(
F̂τδe

)− 1
2

Ψ[α], (13)

F̂τδe Ψ[α] =
∑
~le

∑
q=±

Ψ
[
[α ∗ ∗qe,δγτ~x(~x+δ~l)

]
, (14)

where e labels end points of α and ~le are the tangents of the lines emerging from the e-th end point — these lines can
be more than one if the end point is not free, namely if α is not injective at the end point.

The operator Ĥ is well defined only if it is finite and independent from the background metric used for the
regularisation. We observe that powers of lengths of the regularization parameters L, δ, τ in the prefactor in (13)
cancel, a necessary condition for a finite limit. This cancellation is a non trivial result that can be traced to the
fact that H is diffeomorphism invariant, and that we are regulating “the square root of the square of a distribution”,
which, in a sense, is homogeneous of degree zero in the divergent factors. To complete the definition of Ĥ we have to
fix the order in which the limits are taken (the choice amounts to a quantum ordering problem). For consistency with
the above definitions we must have τ > δ, and, in order to avoid ”boundary effects” in the box, L > δ. We introduce
a parameter ε, and put L(ε) = kε3a, τ(ε) = ε a, and δ(ε) = ε4a; where a is an arbitrary length, and k is an arbitrary
dimensionless positive number. We can now take the ε→ 0 limit, yelding

ĤΨ[α] = λ2
∑
αe

(
F̂e
)
− 1

2 Ψ[α], (15)

where we have introduced the ”end-point operator”

F̂eΨ[α] = lim
ε→0
F̂τ(ε)δ(ε)
e Ψ[α], (16)

and λ = ( 3k−3/2

2
√
π

)1/2 is a free constant that emerges from the regularization. Since δ goes to zero faster than τ , we can

just take the δ → 0 limit first, and the τ → 0 limit second. Let us consider the δ → 0 limit of F̂τδe Ψ[α] (with finite τ).
If the end-point is free, the action of the operator is simply to add a small straight line of length τ = εa to the end
point of the loop, in the direction of the incoming loop. If the end-point is not free, the action of the operator produces
one term for each component of α emerging from the end-point. These terms imply the addition of the line and also a
rerouting through the intersection, the pattern of which is given by (14). Before taking the limit τ → 0, let us assume

that Ψ[α] is a diffeomorphism invariant state. If the end point αe is free, we simply have limτ→0 F̂τ0
e Ψ[α] = 2Ψ[α],

because for small enough τ the added loop will not interject any other loop, and the addition of a small line at the
end of a loop does not change the knot class of the loop. If αe is not a free end-point, then α ∗ ∗γτ

αe,~le
does belong to

a different knot class than α. But in any case, since Ψ[α] is diffeomorphism invariant, for small enough τ we have that

F̂τ0
e Ψ[α] becomes independendent from τ . The limit is thus the limit of a constant function and therefore is finite.

Moreover, it is clear that the resulting action of F̂e is well-defined on the diffeomorphism invariant states. Thus, the

operator Ĥ is finite and diffeomorphism invariant in the limit. If we now reinstate Ĉgr 6= 0, we have

Ĥ =
∑
i, e

√
M̂i + λF̂e , (17)

where i labels the intersections and M̂ was constructed in [2]. Ĥ is a finite operator defined on knot states. We
expect that the square root could be computed order by order as the complexity of the knots increases. This has been
verified only in the simplest cases and work is in progress in this direction.

We are now in the position of describing the general structure of Quantum Gravitational Dynamics, or QGD, the
quantum theory of gravitationally interacting fermions evolving in the clock time defined by a scalar field. A physical
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quantum state |K〉 of the theory is specified by a generalized knot (a graph with open ends). The quantum dynamics

is given by the matrix Ĥ in knot space, given in equation (17). The matrix elements of the operators M̂i and F̂e can
be directly computed between any two given knot states – from (14) and (16), and ref. [2]. The calculation amounts
to an exercize in the combinatorics of breaking and rejoining of loops at intersections. This action can be coded in a
small number of simple graphic rules (“topological Feynman rules”), which we will publish elswehere. These matrix
elements determine the first order transition amplitudes in a time-dependent perturbation expansion in the clock
time. In principle, exponentiation of the Ĥ action gives the full evolution.

For instance, we can start from the simplest state formed by a single non self-intersecting open line. This can
be denoted as |2, 0; 12〉, or, graphically, as | •—• 〉. There are two fermions in this state. We have immediately

Ĥ |2, 0; 12〉 = 2λ|2, 0; 12〉: this is a stationary state. Equivalently, the time dependent Schrödinger quantum state

|2, 0; 12; T 〉 = expiλ
√

c5

h̄G T |2, 0; 12〉 (18)

(we have reinstated conventional units) is a solution of the exact quantum interacting theory. It is suggestive to
think at this state as a simple fermion-gravity quantum configuration, with only two fermions gravitating around each
other in the simplest of the quantum geometries, or a kind of “atomic” “ground state” (minimal energy in the clock
time) of a simple 2-fermions state. Other eigenstates are given by sets of n disconnected open lines |2n, 0; 12n〉. The

corresponding energy eigenstates are En = nλ
√

c5h̄
G . As soon as we consider intersecting states, the complexity of

the operators M̂i and F̂e becomes relevant, and we have non-trivial time evolution.
Finally, let us come to the relation between the full theory and pure gravity. A detailed investigation shows that

the action of the hamiltonian on end-points (fermion term) can be seen as the extension of its action on intersections
(gravity term). Rather than describing these similarities, we present a simpler formal account of the result, which
disregards regularisation issues. We recall from [3] that the action of the pure gravity hamiltonian constraint on loop
states is given by the (divergent) shift operator. This is easily seen from the action of the connection representation
[16] scalar constraint (smeared with a test density f(x)) on a loop state:

Ĉgr(f) Ψα[A] =

∫
d3f(x)Tr

(
Fab

δ

δAa

δ

δAd

)
Tr e

∮
α
A

=

∫
dt

∫
ds f(α(s)) δ3(α(s), α(t)) α̇a(s)

δ

δαa(s)
Ψα[A]. (19)

The operator in the last line shifts the loop along its own tangent (as well as along the tangent of any intersecting
line, if any). Now, consider this same shift action on an open loop state, where the end points are given by fermion
fields, and repeat the above calculation backward∫

dt

∫
dsf(α(s))δ(α(s), α(t)) α̇a(s)

δ

δαa(s)(
ψA(αi)U

B
αA ψB(αf )

)
=

∫
d3xf

[
Tr

(
Fab

δ

δAa

δ

δAd

)
+ 2 α̇aDaψA(x)

δ

δψA(x)

]
Ψα[A]. (20)

the last term being necessary to shift the fermions sited at the end points. The operator on the last line can be written
as ∫

d3x f

[
Tr

(
Fab

δ

δAa

δ

δAd

)
+ 2

δ

δAa

δ

δψ
Daψ

]
(21)

and its classical limit is precisely the hamiltonian constraint (3) of the interacting Einstein Weyl theory. To put it
dramatically, we might say that by quantizing the matter free Einstein equations in the loop representation, extending
the dynamics (the shift operator) to open loops (where the end points are interpreted as spinors), and taking the
classical limit, one could have discovered the Dirac equation !

The formalism we have constructed holds only within the ”clock regime” [2] in which the coordinate time derivative
of T (x, t) is positive. The effective hamiltonian H becomes immaginary when the system exits this regime. If the

formalism is consistent the (real eigenvalue) eigenstates of the hamiltonian Ĥ should form an orthogonal basis. This
could be a futher step towards the (still open) problem of characterising the physical scalar product. The difficulty we
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have left unsolved concerns the determination of the square root. The next step in the present direction of investigation
should be to compute matrix elements of M̂i and F̂e explicitely, and understand whether there is a direct algoritm
for extracting this square root. If this could be done, the theory would be at the stage in which physical evolution of
physical states could be described.

We thank Lee Smolin for ideas, and encouragement. This work was partially supported by NSF Grant PHY-9311465.

[1] A. Ashtekar, C. Rovelli, L. Smolin, Phys. Rev. Lett. 69, 237 (1992).
[2] C. Rovelli, L. Smolin, Phys. Rev. Lett.72, 446 (1994).
[3] C. Rovelli and L. Smolin, Phys. Rev. Lett. 61, 1155 (1988); Nucl. Phys. B133, 80 (1990).
[4] C. Rovelli, Class. Quant. Grav. 8, 1613 (1991).
[5] C. Rovelli, Class. Quant. Grav. 8, 297 (1991), 317 (1991); Phys. Rev. D42, 2638; D43, 442; D44, 1339 (1991); Nucl. Phys.

B405, 797 (1993).
[6] C.J. Isham, “Prima facie questions in quantum gravity”, Imperial/TP/93-94/1, and references therein.
[7] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986); Phys. Rev. D36, 1587 (1987).
[8] T. Jacobson, L. Smolin, Phys. Lett. B196, 39 (1987); Class. and Quant. Grav. 5, 583 (1988). J. Samuel, Pramāna-J Phys.
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2572 (1989). H.A. Morales-Técotl and G. Esposito, Preprint Trieste: SISSA-165/93/A.

[9] T.W.B. Kibble, J. Math. Phys. 2, 212 (1961). D.W. Sciama, in Recent Developments in General Relativity (Oxford:
Pergamon Press 1962).
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