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-1. AVERTISSEMENT

Ce polycopié est une version encore trés préliminaire et incom-
pléte. Il vous est fourni comme aide pour la préparation de I’exa-
men, dans l’idée qu’il est préférable d’avoir des notes de cours
plutét que rien.

Nous tenons cependant a avertir le lecteur qu’il contient stre-
ment de nombreuses fautes de frappe, et probablement un certain
nombre d’erreurs et d’imprécisions mathématiques.

Nous sommes intéressés par toutes les remarques du lecteur étu-
diant : fautes de frappes, erreurs diverses ainsi que par votre opi-
nion sur ce polycopié. Si un passage vous semble incompréhensible,
ou au contraire s’il vous éclaire, nous aimerions bien le savoir, pour
pouvoir améliorer ce texte pour les cours suivants. N’hésitez pas a
nous communiquer vos suggestions.

Les étudiants qui nous auront remis des listes de fautes de frappe,
et des remarques pertinentes sur le polycopié, pourront prétendre
a un bonus dans la note finale.

Tous nos remerciements aux étudiants suivants de ’année 2000-01 pour leur
lecture assidue de ce polycopié

ACHKAR José (MIAS)

LECONTE Sylvain (SM)

PETTINATO Aurélie (MIAS)



4 P. ARNOUX, S. LAZZARINI

0. INTRODUCTION

Résumé : Dans ce chapitre, on donne quelques exemples simples (formule
fondamentale de analyse élémentaire, exemples de flux discrets ou pour
des fluides incompressibles) ot I'on voit une relation entre une somme
prise sur un domaine, et une somme prise sur le bord de ce domaine.

On énonce ensuite la formule de Stokes, et on explique le plan du livre,
dont le but est de comprendre cette formule et de pouvoir 'appliquer sur
des exemples explicites.

0.1. La formule fondamentale de 1’analyse. La formule la plus importante de
I’analyse élémentaire est probablement celle qui relie la dérivée et l'intégrale :

b
/ (e dt = 1) - f(a)

Comme c’est cette formule qu’on utilise souvent pour calculer les intégrales, en
passant par la recherche d’une primitive, on a tendance & la trouver naturelle, en
oubliant son caractére étonnant, puisque les définitions de la dérivée (pente de la
tangente & la courbe) et de l'intégrale (aire de la surface comprise entre la courbe
et 'axe des abscisses) sont au départ tout-a-fait distinctes.

f(®)

f(a)

F1a. 1. Une représentation géométrique de la formule

Une propriété importante de cette formule est qu’elle relie une donnée sur un
intervalle [a,b], et une donnée sur le bord de cet intervalle. On peut en donner
différents exemples physiques :

a) vitesse et position : on peut relier la vitesse sur un intervalle de temps, et
la différence de position a instant initial et & 'instant final. Remarque : on peut
prendre pour f une fonction de [a, b] dans R, mais aussi une fonction de [a, b] dans
R? ou R3, & condition de prendre aussi une vitesse vectorielle; ce sera une des
généralisations que nous donnerons ultérieurement.

b) gradient de température : ici, f représente, par exemple, la température le
long d’un fil métallique, et sa dérivée représente la variation de température.

c) gradient de potentiel : ici, f représente le potentiel électrique le long d’un
conducteur, et f' le gradient de potentiel (différence de potentiel par unité de lon-
gueur).

d) densité et poids : si f' représente la densité d’une barre en fonction de la
position, f(b) — f(a) représente le poids total de la barre.
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Tl est intéressant de remarquer que, dans tous ces exemples, f et f' sont ex-
primées dans des unités différentes; en particulier, un changement de paramétrage
de l'intervalle [a,b] modifiera la valeur de f’, pas celle de f (le changement de
paramétrage le plus fréquent, mais pas le seul, est le changement d’unité). Dans
Pexemple b), si 'on mesure le fil en cm au lieu de métres, la valeur de f n’est pas
modifiée, mais la valeur de f’ I’est. De méme, dans 'exemple d), le poids total de
la barre ne dépend pas de I'unité de longueur choisie, mais il n’en est pas de méme
de la densité : on n’obtient pas le méme chiffre selon qu’on ’exprime en g/m ou en
g/cm. On verra plus tard que f et f' (qu’on écrira plutot f'(z) dz) sont des objets
mathématiques différents.

0.2. Quelques généralisations possibles. On voudrait généraliser cette formule,
et en particulier, le faire & plusieurs dimensions, au lieu de se restreindre seulement
4 un intervalle. Voici un exemple trés simple :

Si l’on veut connaitre la population contenue dans un édifice public (par exemple
un musée), supposé vide au début de la journée, il suffit de connaitre le flux d’entrée-
sortie aux portes de cet édifice (c’est d’ailleurs la méthode utilisée, au moyen d’un
portillon automatique, dans certains édifices qui doivent respecter des normes de sé-
curité). Comme dans le cas précédent, on a une relation entre une quantité mesurée
sur un ensemble, et une quantité mesurée sur le bord de cet ensemble. Remarquez
bien que cela ne fonctionne qu’a cause d’une hypothése implicite de conservation
de la quantité : si des gens disparaissent & U'intérieur de ’édifice (spectateur frappé
de crise cardiaque...) ou §’ils apparaissent, on n’a plus de relation simple entre le
flux d’entrée-sortie et la population interne. Un exemple ot cela se produit est celui
d’une maternité, ou la population est plus élevée que le comptage des personnes
entrées ne le laisserait prévoir! un exemple plus sérieux est celui de ’évolution de
la population d’un pays : la comptabilité des passages aux frontiéres ne permet pas
4 elle seule, & long terme, de savoir ’évolution de la population.

Fic. 2. Le flux aux portes d’un édifice

On n’a ici qu'un exemple “discret” : il n’y a qu’un nombre fini de sorties. Un
modéle physique proche est donné par ’étude de la mécanique des fluides; si ’on
considére un tuyau rempli d’eau, on peut distinguer une portion du tuyau, for-
mant un cylindre avec deux faces d’entrée-sortie. L’eau étant incompressible, le
flux d’entrée & travers la premiére face est toujours égal au flux de sortie & travers
la seconde. Si I’on suppose la vitesse constante sur chaque face, le flux & travers
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cette face est égal au produit de la vitesse par l’aire. On en déduit en particulier
que, plus laire est petite, plus la vitesse doit étre grande. C’est 14 une constatation
que ’'on peut aussi faire sur les autoroutes : un rétrécissement provoque souvent un
embouteillage, mais I’embouteillage se produit en général avant le rétrécissement,
14 ou il reste plusieurs voies ; quand on arrive & 'endroit o1 il n’y a qu’une voie, on
constate en général que la vitesse augmente.

T~

FiG. 3. Un exemple en mécanique des fluides

Un modeéle physique réaliste dans la moindre des situations imposerait de prendre
une frontiére continue, et d’évaluer le "flux" (& préciser plus tard!) & travers cette
frontiére ; on pourrait, par exemple, relier I’évolution d’une quantité de gaz dans une
boule (ou un volume quelconque) et le flux de gaz & travers la sphére qui borde cette
boule. On voit que ce flux devra étre calculé par une intégrale, et que ’on sera ainsi
conduit & écrire ’égalité de deux intégrales, 'une sur une boule, et 'autre sur une
sphére. De telles considérations permettent par exemple facilement de montrer que
la puissance, en W/m?, rayonnée par une source thermique ou lumineuse décroit en
1/7? si elle est dispersée de maniére isotrope dans toutes les directions ; par contre,
Pénergie d’une vague issue d’un point (obtenue par exemple en lancant un caillou
dans l'eau) décroit en 1/r.

0.3. Le but de ce cours. Le but de ce cours est de montrer une formule qui
contient les exemples précédents, la formule de Stokes :

/dw:/ w
K oK

A ce stade, il est impossible d’expliquer complétement cette formule. Disons
seulement que K est une région de dimension p (c’est-a-dire un fil, une plaque, ou
un volume, suivant que p = 1,2 ou 3) dans ’espace ou le plan, et que 0K est le bord
de K, donc une région de dimension p — 1 (le bord d’un segment est constitué de
2 points, le bord d’une surface par un segment, etc...). La formule propose 1’égalité
de deux intégrales, 'une prise sur K, 'autre sur son bord. Le but du cours est
d’expliquer ce qu’est w, comment on peut le dériver pour obtenir dw, et comment
on peut en calculer ’intégrale sur un ensemble convenable.

L’intérét de cette formule est de regrouper en une seule plusieurs formules clas-
siques de mathématiques trés utilisées en physique ; en particulier, on regroupe des
formules sur la droite (formule fondamentale de I’analyse, ex. 1), sur le plan (for-
mule de Green-Riemann, mi XIXéme, voir ci-dessous), et dans I’espace (formule
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de Gauss-Ostrogradsky, pour un volume et la surface qui le borde, début XIXéme,
et formule de Stokes, pour une surface dans R® et la courbe qui la borde, donnée
pour la premiére fois dans un texte d’examen d’une université anglaise, vers 1880) ;
en fait, on pourrait énoncer la formule de Stokes pour une région & p dimensions
d’un espace & n dimensions; durant tout le cours, rassurez-vous, on se contentera,
des exemples utiles pour la physique, c’est-a-dire la dimension 2 et 3 (quoique la
dimension 4, correspondant & ’espace temps, puisse aussi étre utile en physique, en
particulier en électromagétisme).

Nous essaierons de montrer tout au long du cours que ce point de vue permet
de résumer en quelques mécanismes simples, utilisables par tout étudiant qui sait
calculer des dérivées et des primitives de fonctions d’une variable réelle, plusieurs
opérations d’un abord assez compliqué.

Le plan du cours est le suivant :

Les trois premiers chapitres forment des préliminaires : définition et calcul des
intégrales multiples, théoréme de changement de variable, définition et étude des
courbes et des surfaces paramétrées ; c’est ce dont on a besoin pour pouvoir définir
un domaine de dimension p dans R™ et son bord, et calculer une intégrale sur ce
domaine (penser au flux d'un courant & travers une surface de R?®, ou & la masse
d’une calotte sphérique de densité variable pour avoir des exemples physiques de
telles intégrales)

Le chapitre 4 définit ’objet fondamental de ce cours : les formes différentielles
de degré p dans R™. Les chapitres 5 & 7 définissent les principales opérations sur
ces formes différentielles : image réciproque par une application différentiable, déri-
vation extérieure, et intégration sur un domaine de dimension adaptée (pour cette
derniére définition, on commence par I'intégration d’une forme de degré n dans R,
ce qui consiste simplement & l'intégrale ordinaire d’une fonction, et on raméne le
cas général A celui-1a en prenant ’image réciproque par un paramétrage convenable
du domaine d’intégration, ce qui utilise les chapitres 3 et 5).

Enfin, le chapitre 8, but de ce cours, donne la formule de Stokes et certaines de
ses applications.

A retenir : Se rappeler de la formule de Stokes, qui sert de fil

conducteur au cours de ce polycopié, et retenir les différents
exemples donnés.
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1. INTEGRALES MULTIPLES (DEFINITION ET CALCUL)

Résumé : Aprés un rappel sur la définition et les propriétés de l'intégrale
simple, on consacre deux sections & définir l'intégrale d’une fonction de
deux variables, d’abord sur un rectangle, puis sur un domaine quarrable.
On montre ensuite que la valeur de l’intégrale double peut étre obtenue en
calculant successivement deux intégrales simples (Théoréme de Fubini),
ce qui, dans les bons cas, fournit un moyen effectif de calcul. Une derniére
section explique comment généraliser au cas de 3 variables ou plus, ce
qui ne pose pas de grandes difficultés quand on a compris le cas de deux
variables.

1.1. Intégrale simple (rappel). Rappelons simplement que I'intégrale simple de
la fonction f entre les points a et b est ’aire, comptée algébriquement, de la surface
comprise entre I’axe des abscisses, la courbe y = f(x) et les droites verticales z = a
et x =b.

Dans le cas ot la fonction est constante, de valeur K, la valeur de l’intégrale est
donc bien évidemment K (b — a); de 13, on passe facilement au cas d’une fonction
en escalier, en découpant 'intervalle en un nombre fini de morceaux.

Fic. 4. L’intégrale d’une fonction en escalier

Il est beaucoup moins évident de le faire pour une fonction générale ; I’idée est
d’approximer au-dessus et au-dessous par des fonctions en escalier, et de passer &
la limite si c’est possible, en encadrant la fonction donnée par deux fonctions en
escalier qui différent de moins de . On montre, et nous ne le ferons pas ici, que cela
marche pour toute fonction continue sur un intervalle fermé et borné :

Théoréme 1. (non évident, et non démontré) : toute fonction continue sur un
intervalle fermé et borné est intégrable.

L’intégrale d’une fonction continue a quelques propriétés simples : si I'on fixe
lintervalle [a,b], et que l'on pose I(f) = f: f(z) dz, intégrale posséde les deux
propriétés suivantes :
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T e

]

Y

a b

Fic. 5. L’approximation de I'intégrale d’une fonction continue par
des fonctions en escalier

e Linéarité : I(f +g) = I(f) + I(g) et I(\f) = XI(f).

e Positivité : si f est positive, alors I(f) > 0.

Ces propriétés sont élémentaires, mais souvent fort utiles en pratique, et elles
seront encore valides pour les intégrales multiples.

Une autre propriété est la relation de Chasles (additivité par rapport au do-

maine) :
/abf(:c)d:c+/bcf(:c)da:=/acf(:c)dm

qui est évidemment vraie si a < b < ¢, et qui reste vraie dans le cas général si ’on
pose par définition [,* f(z)dx = — f: f(z) da.

On veut généraliser a4 2 dimensions; cela se complique parce que : la
fonction a deux variables, mais aussi parce que le domaine sur lequel on
intégre est plus compliqué qu’un intervalle. Le plus simple est de rem-
placer l’intervalle par un rectangle, mais ce n’est pas toujours suffisant,
il faut bien au moins avoir des cercles. On va commencer par le plus
simple, puis on va généraliser

1.2. Intégrale d’une fonction de deux variables sur un rectangle. On cherche
donc & généraliser & 2 dimensions, pour une fonction f(z,y) de 2 variables (par
exemple, (z,y) — 22 + 2zy, ou (x,y) — cos(zy)). On va d’abord essayer d’inté-
grer sur un rectangleR défini par a < £ < b, ¢ < y < d (voir figure 6). On veut
garder les mémes propriétés : linéarité, positivité, et on voudrait que l'intégrale
f f rf (x,y) dx dy représente le volume sous le graphe de la fonction. On voit donc
que, pour une fonction constante, I'intégrale doit étre K (b — a)(c — d). On a envie,
comme avant, de passer & des fonctions constantes par morceaux.

On procéde en 3 étapes, que nous donnons briévement, :

Etape 1 : subdivision d’un rectangle R : on coupe le rectangle en tranches ver-
ticales et horizontales, ce qui le découpe en sous-rectangles de petite taille.
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z

F1G. 6. Intégration sur un domaine rectangulaire

Etape 2 : On intégre des fonctions en escalier sur ces rectangles, ce qui est possible
par la formule ci-dessus; on définit ainsi [}, f(z,y) dz dy pour une telle fonction.

Etape 3 : une fonction f définie sur un rectangle est intégrable si, pour tout
€ > 0, on peut trouver deux fonctions en escalier g et h telles que g < f < h et
[[ h(z,y)dzdy — [ g(z,y)dzdy < e.

Dans ce cas, on a :

sup // g(z,y) dz dy = inf // h(z,y) dx dy
g<fJJR k>fJJR

La valeur commune est I'intégrale de f, que on notera aussi [, rf(x,y)drdy
(remarque : il existe des fonctions qui ne peuvent pas étre encadrées par deux

fonctions en escalier proches; ces fonctions trés irréguliéres n’ont pas d’intégrale,

mais on n’en rencontrera pas ici, en particulier & cause du théoréme suivant).

Théoréme 2. (non évident, et non démontré) toute fonction continue sur un rec-
tangle est intégrable.

1.3. Domaines quarrables, aire d’'un domaine quarrable. Un domaine K
borné du plan est toujours contenu dans un rectangle R bien choisi (il suffit de
prendre le rectangle assez grand). Si f est une fonction définie sur K, on peut
étendre f en une fonction fg définie sur R en posant : fx (z,y) = f(z,y) si (z,y) €
K, f(z,y) = 0 sinon.

On pourrait alors définir I’intégrale de f sur K comme l’intégrale de fg sur R. On
montre facilement que cela ne dépend pas du rectangle choisi, mais il n’est pas clair
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que l'intégrale soit bien définie : méme si f est continue sur K, il est probable que
f n’est pas continue sur R. Pour avoir un exemple, on peut considérer la fonction
f définie sur I’ensemble des points & coordonnées dans Q, et qui vaut 1 sur cet
ensemble. Comme f est constante, elle est évidemment continue, et pourtant fgr
n’est continue nulle part, et n’est pas intégrable au sens ci-dessus!

En fait, pour que l'intégrale soit bien définie, il faut que le domaine K soit assez
“régulier” ; d’ou la définition suivante, qui est exactement ce dont on a besoin :

Définition 1. On dit que le domaine K est quarrable si, pour tout € strictement
positif, il existe un domaine K; fait de petits rectangles de cotés paralléles aux
axes, et un domaine K, fait de petits rectangles de cotés paralléles aux axes, tels
que K7 C K C K», et que laire de K» — K7 soit inférieure 3 e.

K

Y

Fi1G. 7. Un exemple de domaine quarrable

Si K est quarrable, il a une aire bien définie, qui est la limite commune des aires
de K7 et K5 quand € tend vers 0.

On peut donner la méme définition en dimension 3 (avec des parallélépipédes de
cotés paralléles aux axes), ou en dimension quelconque (on ne parle d’aire qu’en
dimension 2 ; en dimension 3, on parle de volume, et en dimension quelconque, on
parle de mesure)

Remarque importante : tous les domaines que vous serez amenés & rencontrer
seront quarrables. Il est trés difficile de donner un exemple de domaine non quar-
rable ; en fait, si 'on prend une définition légérement différente, on peut définir les
ensembles mesurables, ce qui est une généralisation de quarrable, et on montre
(c’est trés dur) qu’il est possible de prendre pour axiome 'axziome de Solovay : dans
R™, tous les ensembles sont mesurables.

On pourrait, aprés cette remarque, se demander pourquoi j’ai passé une section
& définir les ensembles quarrables, si tous les ensembles que ’on rencontrera sont
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tous quarrables. Il y a & cela trois raisons : d’abord, pour insister sur le fait que
le domaine d’intégration est un élément trés important d’une intégrale multiple.
Ensuite, parce que la définition méme d’un domaine quarrable améne & réfléchir
sur ce que c’est que 'aire d’'un domaine, et comment ¢a se calcule. Enfin, et peut-
étre surtout, parce que ce polycopié risque d’étre lu par certains de nos collégues,
qui considéreraient comme une faute professionnelle que nous ne parlions pas de
la question de la quarrabilité (il y a certainement déja beaucoup d’autres fautes
professionnelles dans ce texte!)

1.4. Intégrale sur un domaine quarrable. On peut remplacer le domaine quar-
rable par une réunion de rectangles, intégrer la fonction sur ces rectangles, pour
obtenir une approximation de l’intégrale; alternativement, on peut comme on I’a
proposé ci-dessus étendre la fonction par 0 hors du domaine. Quelle que soit la
méthode utilisée, on a le théoréme suivant :

Théoréme 3. (admis) Une fonction continue sur un domaine quarrable est inté-
grable.

1.5. Calcul effectif des intégrales. Les parties précédentes nous ont dit ce qu’est
une intégrale, et quand elle existe ; mais on ne sait pas encore la calculer. Une pre-
miére approche serait d’encadrer par des fonctions en escalier ; une autre méthode
classique (et effectivement utilisée en calcul numérique) est de prendre les valeurs
de la fonction en certains points (sommes de Darboux) : voir la figure ci-dessous.
Mais, dans les exemples que nous rencontrerons, il y a des méthodes plus utiles.

Fic. 8. Calcul effectif d’une intégrale

Calcul effectif sur un rectangle : on peut décomposer le rectangle en tranches
fines, sur lesquelles on se raméne & une intégrale simple (principe de Cavalieri) ; cela
marche par le théoréme suivant (Trés important) :

Théoréme 4. (Fubini)

//[a’b]x[c’d]f(w,y) dr dy = /ab (/cdf(x,y)dy) dr = /cd (/abf(x,y)dac) dy
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Calcul effectif sur un domaine plus général : On suppose le domaine K
de la forme a < z < b, hi(z) <y < ha(z). On a alors la modification suivante du
théoréme de Fubini :

Théoréme 5. (Fubini, bis)

J[ s@n iy~ [ b ( / }:::)f(w,y)dy> dz

Naturellement, si le domaine peut se mettre sous la forme ¢ < y < d, g1(y) <
z < g2(y), il existe une formule analogue, en échangeant x et y, que nous laissons
au lecteur le soin d’écrire.

1.6. Intégrales triples. On peut tout refaire pareil, sauf que c’est plus long &
écrire : on prend des cubes, on calcule des volumes, on définit des domaines cubables,
etc... Le point essentiel est que de la méme fagon , les fonctions continues sur des
domaines cubables sont intégrables, et surtout, que les intégrales triples peuvent
se calculer par trois intégrations simples successives, avec des bornes constantes si
I’on intégre sur un parallélépipéde aux cotés paralléles aux axes, et variables dans
le cas général, comme on I’a vu ci-dessus.

Les dimensions supérieures & 3 (qui peuvent arriver dans un probléme, si on a
par exemple & considérer la position de deux points, ou une position et une vitesse)
se traitent de la méme facon; il n’y a pas de difficultés théoriques supplémentaires,
méme si, bien sir, les calculs peuvent devenir formidables.

Exercice final, pour préparer le chapitre 3 : calculer, par tout moyen & votre goit
(géométrie élémentaire, intégration, algébre...) aire du parallélogramme délimité
par les vecteurs (a,b) et (c,d) dans R?, puis le volume du parallélépipéde délimité
par (a,b,c), (d,e, f), (g,h,%) (suggestion : pour calculer l'aire du parallélogramme
sur 4 = (a,b) et ¥ = (¢,d), on pourra étudier la fonction A(,¥) qui donne laire
(positive ou négative) du parallélogramme orienté défini par @ et ¥ pris dans cet
ordre, en s’inspirant de la figure ci-dessous.

A retenir : 1l est essentiel de connaitre le théoréme de Fubini, et
la technique de calcul des intégrales doubles ou triples par cal-
cul successif d’intégrales simples (dont les bornes et la fonction,
peuvent dépendre d’un parameétre). Il faut d’abord connaitre le
théoréme, puis le pratiquer sur de nombreux exercices. Rappelez-
vous que le domaine d’intégration joue un réle dans le calcul,
il faut donc pouvoir caractériser le domaine par des inégalités ;
la plupart des intégrales doubles n’ont pas pour domaine un
rectangle paralléle aux axes!

Si vous savez calculer une intégrale double ou triple, ce qui
correspond au contenu des sections 5 et 6, il est utile de ré-
fléchir sur la définition méme de l’intervalle, en essayant de
comprendre pourquoi on a fabriqué le symbole [ a partir du
symbole )  en considérant l’intégrale comme la limite de la
somme d’un trés grand nombre de termes trés petits.
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F1G. 9. Propriétés de I’aire du parallélogramme

2. INTEGRALES MULTIPLES (CHANGEMENT DE VARIABLES)

Résumé : Ce chapitre est consacré aux éléments nécessaires pour effectuer
un changement de variables dans une intégrale multiple.

On définit donc d’abord le déterminant d’un systéme de vecteurs, en
donnant une motivation géométrique, puis une définition algébrique. On
définit ensuite le déterminant d’une application linéaire, et on interpréte
ce déterminant comme le facteur par lequel cette application linéaire
modifie le volume.

On définit la différentielle d’'une application en un point comme ’ap-
plication linéaire tangente, et la matrice jacobienne comme la matrice
de cette application linéaire tangente, et on montre comment calculer
effectivement cette matrice jacobienne. On définit le jacobien comme le
déterminant de la matrice jacobienne, et on interpréte ce jacobien comme
le facteur par lequel application distord le volume au point considéré.

On peut alors, dans la section 4, énoncer la formule de changement
de variable dans les intégrales simples, et dans la section 5 (sans preuve)
la formule de changement de variables dans les intégrales multiples, qui
fait agir la valeur absolue du jacobien.

cas U colinéaire & @

2.1. Déterminant, volume du parallélogramme et du parallélépipéde. Re-
prenons I’exercice qui termine le chapitre 1.

On veut calculer aire du parallélogramme engendré par les deux vecteurs @ =

(a,b) et T = (c,d). On peut le faire géométriquement, par |G| - |0] - sin @, o ¢ est
I’angle entre les deux vecteurs. On peut calculer le sinus & partir du cosinus, et le
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cosinus & partir du produit scalaire, par exemple. Le calcul donne |ad — be|. On peut
aussi essayer de calculer cette surface par une intégrale.

On peut essayer de calculer de la méme fagon le volume du parallélépipede
construit sur les trois vecteurs @, ¥, w. Le calcul est faisable : I'idée est de cal-
culer un vecteur de norme 1 orthogonal aux deux premiers, et de faire son produit
scalaire avec le troisiéme, pour définir la “hauteur" du parallélépipéde.

On peut préférer une méthode moins calculatoire : notons A(#, ¥) laire (concept
non vraiment défini) du parallélogramme sur @,7’; quelles sont les propriétés que
devraient avoir une telle fonction A ? Elles sont suggérées par la figure 9 :

e elle est certainement continue (sinon, on ne pourrait la mesurer).

e elle est linéaire par rapport & chaque variable, car on voit bien sur la figure

que A(AiE,T) = AA(4, D) et que A(idy + U, V) = A(dy, D) + A(ds, D)

e elle vérifie la propriété A(w@, @) = 0 pour tout vecteur.

e enfin, il est raisonnable de poser A(7,;) = 1 (aire unité)

Cela entraine des propriétés remarquables ; par exemple, de A(@ + 0,4+ ¢) =0 et
de la linéarité, on déduit facilement A(7, @) = —A(4,¥) (on dit que cette fonction
de deux variables est alternée). En fait, on montre sans difficultés que ces conditions
déterminent complétement la fonction A : & proportionnalité prés, il existe sur R2
une seule forme bilinéaire alternée.

Avec ces propriétés, on refait facilement le calcul ci-dessus, et on trouve tout de
suite le résultat.

Remarquons que l’on retrouverait aussi le méme résultat en prenant pour aire du
parallélogramme engendré par deux vecteurs horizontaux la coordonnée verticale
du produit vectoriel ; ce n’est pas un hasard, car on vérifie facilement que cette
composante vérifie exactement les propriétés ci-dessus, et cela peut fournir une
régle mnémotechnique simple pour se rappeler la formule.

Remarque : pour que ¢a marche bien, il faut une aire algébrique, et non géomé-
trique (on doit tenir compte de l'orientation).

On trouve de méme le volume du parallélépipéde par cette méthode (faire le
calcul : il y aura 6 produits de 3 termes, 3 produits avec le signe +, et 3 produits
avec le signe —). Il existe de nombreux moyens mnémotechniques de retenir ces trois
produits; il est rentable & long terme de passer tout de suite du temps & trouver le
moyen que vous retenez le mieux.

Ces formules se généralisent sans grande difficulté a la dimension 7 ; il existe une
formule explicite utilisant les permutations, et la signature d’une permutation, mais
nous n’en aurons pas besoin dans ce cours (la signature d’une permutation vaut +1
si la permutation est engendrée par un nombre pair d’échanges de deux éléments,
et —1 sinon).

2.2. Applications linéaires, déterminants et changements de volume. Dans
cette partie, on va aller trés vite. On ne considérera que des applications linéaires
d’un espace dans un espace de méme dimension.

Rappelons qu’une application linéaire de R? dans R? est une application du type
(z,y) — (az + cy,bx + dy) qui ne contient que des polynomes du premier degré
sans terme constant ; une telle application se caractérise par la propriété (linéarité)
@+ pd) = Mf(@) + pf (D).

On peut toujours considérer un systéme de 2 équations du premier degré i 2
inconnues comme donné par une telle application, et c’est dans ce cadre (issu de
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plein de problémes pratiques) que 1’on a pour la premiére fois rencontré des déter-
minants (Cramer, 18&me siécle) ; en particulier, la condition pour qu’un systéme de
n équations i n inconnues posséde une solution et une seule est que son déterminant
soit non nul.

Si 'on veut comprendre comment une telle application change les volumes, on
est conduit & calculer le déterminant du tableau de nombre (matrice) donné par les
images des vecteurs de base. On travaille d’abord en considérant le carré de base,
puis, par approximation, pour un domaine quarrable quelconque, approximé par
une réunion de petits carrés.

Par exemple, supposons que nous voulions calculer ’aire du domaine délimité par
Iellipse d’équation x? /a®+y?/b?> = 1. On peut calculer cette aire par un calcul d’in-
tégrale un peu pénible (et qui nécessitera finalement un changement de variable) ;
on peut aussi remarquer que ’application (z,y) — (az, by), qui est évidemment de
déterminant ab, envoie le disque de rayon 1 et de centre 0 sur le domaine considéré ;
comme on sait depuis le CM2 que Paire de ce disque est 7, on en déduit que l'aire
de l'intérieur de l’ellipse est wab.

0,1) (0,)
(z,y) = (az,by)

F1G. 10. L’aire de lellipse

2.3. Approximation d’une application non-linéaire par une application
linéaire : matrice jacobienne, jacobien. On voudrait faire la méme chose pour
une application quelconque, plus forcément linéaire : par exemple pour ’application
des coordonnées polaires (r,0) — (rcosf,rsinf). Un raisonnement géométrique,
ou physique, permet de conjecturer que le coefficient de changement de volume
est proportionnel & r (voir figure 11, représentant cette application; on voit que
les droites horizontales sont envoyées, en préservant la longueur, sur des droites
passant par ’origine, alors que les segments verticaux de longueur 27 sont envoyés
sur des cercles de longueur 27r).

Bien entendu, dans ce cas, le coefficient de changement de volume n’a plus de
raison d’étre constant, il dépend du point considéré.

L’idée est de remplacer, en un point donné, une application par une application
linéaire qui lui est proche au voisinage de ce point ; cette application, en un point
fixé, est ce qu’on appelle I’application linéaire tangente au point considérée, ou
encore la différentielle en ce point.

Attention & une confusion fréquente : si ’on change de point, ’application linéaire
tangente change aussi (de méme que, pour une fonction d’une variable réelle, la

(1,0) (a,0)



METHODES MATHEMATIQUES POUR LA PHYSIQUE I ~-DEUG SM-1 ET MIAS-1- LA FORMULE DE STOKES$7

dérivée n’a pas de raison d’étre constante, sauf pour une application affine du type
z — az + b). On peut donc considérer I’application qui, & chaque point, associe
I’application linéaire tangente en ce point; c’est ce qu’on appelle la différentielle
(sous-entendu : globale, et non plus en un point fixé) de la fonction. Quand on
parle de différentielle, il faut toujours savoir si c’est en un point fixé (et c’est alors
une application linéaire) ou si c’est la différentielle globale (qui n’a pas de raison
d’atre linéaire).

Un exemple : si 'on considére I’application x — 23, la différentielle au point 1
est Papplication h — 3h; plus généralement, la différentielle au point x est ’ap-
plication h +— 3z%h, dont on vérifie qu’elle est linéaire (z est constant, c’est h la
variable). Par contre, 'application différentielle globale est I’application qui & x
associe I’application h — 3z2h; c’est maintenant x la variable, et cette application
n’est pas linéaire!

Définition 2. Soit ® : R? — R? (u,v) — (z(u,v),y(u,v)). On appelle matrice
jacobienne de ® la matrice

or Oz
ou v
dy Oy
du v

Définition 3. On appelle jacobien de ® le déterminant de sa matrice jacobienne.

Le jacobien décrit de quelle fagon I’application considérée dilate les volumes. 11
y a deux applications principales :
e sile jacobien est non nul en un point, ’application est localement une bijection.
e la formule de changement de variables, & laquelle est consacrée les deux para-
graphes qui suivent.

2.4. Le changement de variable en dimension 1. On connait la formule de
dérivation d’une fonction composée :

(r,0) — (rcos,rsinf)
2m

polN
T
|
|
|

Fi1G. 11. Le changement de variables en coordonnées polaires
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(Fog)(t)=Fo¢t)¢t)
Si ’on pose F' = f, on en déduit que, si toutes les fonctions considérées sont

assez "bonnes" (disons, de classe C!, c’est-a-dire dérivables et & dérivée continue,
ce qui sera toujours le cas ici), on a (formule de changement de variable) :

b ¢(b)
/ ()6 (t) dt = / /(@) de
a ¢(‘1)

Cette formule se vérifie immédiatement, puisque les deux intégrales, par la for-
mule fondamental du calcul différentiel et intégral, valent F(4(b)) — F(¢(a)).

Si ¢ est une bijection sur le domaine considéré, on peut définir ¢—!, application
réciproque ; dans ce cas, on préfére souvent écrire :

¢~ (d) d
L., femswa= [ jee
¢~ 1(c c
Ce qui est plus commode, car intégrale de droite est du type que l’on ren-
contre habituellement, et on la remplace par celle de gauche, pour une fonction ¢
convenable. On posera également x = ¢(t) et dz = ¢'(t)dt.

Exemple : pour calculer fol V1 — 22 (qui donne I’aire d’un quart de disque ; voyez-
vous pourquoi ?), on fait le changement de variables z = sinf. Comme sin=*(0) = 0
et sin"'(1) = 7/2, et que, sur [0,7/2], ona /1 — sin® § = cos 6, on se trouve ramené
3 calculer fow/ % cos? 0df, qui vaut /4.

Attention! il y a trois points & vérifier quand on change de variable : la variable
elle-méme, le symbole d’intégration (dz), et les bornes du domaine d’intégration.

Remarque : il n’est pas évident de donner une interprétation physique de la
formule de changement de variables. On peut cependant essayer de la facon sui-
vante : supposons que l'on veuille mesurer la température moyenne le long d’un
segment de route de 100 kilométres. Il suffit de promener le long de la route, &
vitesse constante, un thermomeétre enregistreur qui prend des mesures & intervalle
régulier. En fait, si T(z) est la température au point z, ce que ’on veut calculer,
c’est juste 1/100 f0100 T(x) dz. Sil’on se promeéne & 100km /h, on parameétre la route
par le temps, avec x = 100t (si la distance est exprimée en km, et le temps en heure,
et on vérifiera que la température moyenne est maintenant fol T(t) dt. Si par contre
on parcourt les premiers 50 kilomeétres & 150 km /h, ce qui prend 20 minutes, et les
derniers 50 km & 75km /h, ce qui prend 40 minutes, on a aussi parcouru le chemin
en une heure; mais si ’enregistreur a continué a prendre ses mesures & intervalles
constant, il a pris 2 fois plus de mesures dans la deuxiéme moitié de la route, ce qui
fausse complétement le résultat! il faut donc prendre autant de mesures dans les
20 premiéres minutes que dans les 40 derniéres; un petit calcul montre qu’il faut
appliquer un coefficent 1,5 au debut, et 0,75 & la fin : c’est le terme en f'(t) dt du
changement de variable.

Remarque : comment définir fba f(x)dx? Il y a deux fagons raisonnables de le
faire :

e une fagon "géométrique", par exemple si I’on considére f comme une densité,

et l'intégrale comme la masse totale; dans ce cas, un changement du sens de
parcours ne devrait pas modifier le résultat, mais alors, il faudrait mettre une
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valeur absolue dans la formule de changement de variable, car le changement
z — —x ne devrait pas modifier le résultat. De plus, la formule d’addition des
domaines ne serait plus valable. En fait, on pourrait le faire, mais il faudrait
changer toutes nos habitudes.

e une fagon "algébrique" : on pose [, f(z)dz = —fab f(z)dz. Cest le méme
genre de chose que I’on a été conduit & faire pour la mesure algébrique des
volumes, et cela rend les calculs bien plus commodes. C’est de plus physique-
ment justifié pour des calculs tels que celui d’une différence de hauteur, de
potentiel, ou d’énergie.

En dimension 1, on utilise toujours la définition algébrique. Si nous insistons
sur ce point, c’est que la situation est bien moins claire en dimension 2 ou plus;
nous allons voir qu’en fait, pour les intégrales multiples en dimension supérieure, on
utilise toujours une définition géométrique, donc une valeur absolue apparait dans
le changement de variables, car 'intégrale d’une fonction positive doit toujours étre
positive. On arrivera plus tard & généraliser l'idée "algébrique", par 1'usage des
formes différentielles; c’est plus difficile, mais c’est bien plus beau.

2.5. Le changement de variables en dimension 2 et plus. Donnons d’abord
la formule : soit ¢ une bijection de ¢~ (K) dans K, et soit J, son jacobien; on a :

[ Sydsdy = [ 0l 0) ()| dude
K 41 (K)

1l est hors de question de prouver réellement cette formule, mais on peut donner
un idée de la raison pour laquelle elle marche (aire d’un domaine infinitésimal).

Exemple : coordonnées polaires, cylindriques, sphériques : je laisse au lecteur
le soin de retrouver les formules de ces changements de variables (voir les feuilles
d’exercices) et de calculer leur jacobien.

Exemple d’utilisation : aire du disque, volume de la boule.

A retenir : Bien évidemment, la seule chose a retenir de ce cha-
pitre est la formule de changement de variables, avec les trois
modifications a effectuer dans l’intégrale : sur les variables, sur
le symbole d’intégration dzdy remplacé par |J4|dudv, et sur le
domaine. Mais pour pouvoir effectuer ce changement de va-
riables, il faut, sauf si on le connait par coeur (cas de coor-
données polaires, cylindriques et sphériques) étre capable de
calculer un jacobien, ce qui impose d’étre capable de calculer
la différentielle d’une fonction, et de savoir calculer un déter-
minant.

De toute fagon, ces connaissances, en particulier le calcul de
la différentielle, seront indispensables plus tard (chapitre 6),
autant s’y mettre tout de suite...
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3. CHEMINS PARAMETRES ET NAPPES PARAMETREES

Résumé : Dans ce chapitre, on définit ce qu’est une courbe paramétrée
dans R? et R?, et une surface paramétrée dans R®, ou plus généralement
une nappe paramétrée de dimension p de R”.

On explique ce qu’est une orientation d’une nappe paramétrée, on
mentionne le probléme de Porientabilité d’une surface (ruban de Moe-
bius), et on explique comment on peut donner une orientation naturelle
au bord d’une nappe orientée.

3.1. Courbes paramétrées dans le plan et I’espace.

Définition 4. On appelle chemin (ou courbe) paramétré(e) dans R? (resp. R®) une
application différentiable définie sur un intervalle [a,b] et & valeur dans R? (resp.
R3).

Un chemin paramétré dans le plan pourra donc s’écrire sous la forme

v:la,b] = Rt (t) = (2(t),y(8))-

Il est important, quand on écrit ce genre de formule, de bien comprendre dans
quel ensemble se trouve chacun des objets que 'on manipule : v est une fonction
de R dans R2, v(t) est un point de R?, qui a deux coordonnées z(t) et y(t), ce qui
sous-entend que x et y ne sont pas, dans le cadre de cet énoncé, des nombres réels,
mais des fonctions z : [a,b] = R ¢t~ z(t).

Le vecteur tangent & la courbe, qui est souvent utile, est le vecteur v'(t) =

(@'(t),y'(?))-
3.2. Surfaces paramétrées dans 1’espace.

Définition 5. On appelle surface paramétrée dans R® une application différentiable
définie sur un domaine de R? et & valeur dans R®.

Il faudrait définir plus précisément ce qu’est un “domaine” de R?, mais cela
nous entrainerait dans de grosses difficultés; en pratique, les surfaces que nous
considérerons seront paramétrées par un domaine simple : rectangle, disque, secteur,
ou le plan tout entier.

Un exemple particuliérement simple de surface est le graphe d’une fonction, par
exemple la fonction 22 + y2, qui décrit le paraboloide de révolution :

R =R (2,9~ (z,y,2° +97).
Un exemple plus complexe est donné par le paramétrage usuel (en physique) de
la sphére unité (de rayon 1) :

®:[0,7] x [0,27] = R® (8, ¢) — (sin b cos ¢, sin § sin ¢, cos 0)
Ou encore le paramétrage usuel en géographie par la longitude et la latitude :

®:[0,27] x [-7/2,7/2] = R® (#,6) — (cos@ cos ¢,cos B sin ¢, sin §).

Remarquons que, pour une surface, il n’y a pas qu’un vecteur tangent, il y a
(tout du moins aux points assez réguliers) un plan tangent, engendré par deux
vecteurs tangents, donnés par les dérivées partielles par rapport aux coordonnées.
En pratique, ces deux vecteurs tangents sont donnés par les colonnes de la matrice
jacobienne.
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3.3. Nappes paramétrées de dimension p dans R".

Définition 6. De facon plus générale, on appelle nappe paramétrée de dimension p
de R™ une application différentiable (de différentielle non dégénérée) d’un domaine
de RP, & valeurs dans R”. Le domaine de dimension p de R” (non paramétré) est
I'image de I’application.

En pratique, nous n’aurons pas ’occasion d’utiliser dans ce cours de nappe de
dimension plus grande que 2 (courbes et surfaces) & l’exception des volumes de
R3, qui sont paramétrés de facon évidente par eux-mémes, et pour lesquels cette
deéfinition ne sert & rien; elle pourrait par contre étre utile dans R*, qui est utilisé
en relativité.

A

F1G. 12. Le paramétrage physique de la sphére unité

FiGc. 13. Le paramétrage géographique de la sphére
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3.4. Bord d’une nappe paramétrée. Nous ne donnerons pas de définition for-
melle du bord d’une nappe paramétrée, l'intuition est suffisante pour faire tous les
exercices, et toute définition rigoureuse conduit & un formalisme assez délicat qui
sort de 'objectif de ce cours.

Nous ferons seulement une remarque : le bord 0K de K peut étre vide (cas de la
sphére), mais sinon on a dimension(K )=dimension(6K)+1 : le bord d’une courbe
non fermée (ouverte) est formé de deux points, le bord d’une surface est formé de
courbes, etc...

3.5. Orientation d’un espace vectoriel. Sinous considérons un espace vectoriel
de dimension finie (disons R? ou R?), et deux bases de cet espace, on sait qu’il existe
une et une seule application linéaire qui envoie la premiére base sur la seconde.

Définition 7. On dit que deux bases de R™ ont méme orientation si ’application
linéaire qui passe de 'une & 'autre a un déterminant positif ; dans le cas contraire,
on dit qu’elles ont une orientation opposée.

C’est un bon exercice d’algébre linéaire de montrer le théoréme suivant :

Théoréme 6. la relation “avoir méme orientation” est une relation d’équivalence
sur l’ensemble des bases de R", qui posséde exactement deux classes d’équivalence.

Démonstration. Ce théoréme repose sur les deux faits suivants : si f et g sont
deux applications linéaires bijectives de R™ dans lui-méme, alors det(f o g) =
det f.det g, et det f~1 =1/det f O

Par définition, orienter I’espace, ¢’est choisir une des deux classes d’équivalence
comme étant ’ensemble des bases orientées positivement. C’est un choix conven-
tionnel(“sens inverse des aiguilles d’'une montre” dans le plan, choix de la droite ou
de la gauche dans ’espace) ; il n’existe pas de raison de choisir comme orientation
positive une des deux classes plutdt qu’une autre, mais certains phénomeénes phy-
siques (“bonhomme d’Ampére”) sont liés 4 une orientation particuliére de Iespace.

Remarquez que si (€1, &, . . ., €,) est une base de R”, alors (&3, €1, . ..,€y,) : Vordre
dans lequel on énumére une base est fondamental pour l'orientation, et en toute
rigueur il aurait fallu, ce que nous avons déja sous entendu plus haut, parler de
“bases ordonnées” de R”.

3.6. Orientation d’une nappe paramétrée.

Définition 8. Orienter une nappe paramétrée, c’est choisir une orientation en tout
point de ’espace tangent, de facon continue.

Ce n’est pas toujours possible, comme le montre la figure ci-dessous :

Le ruban de Md&bius posséde une foule de qualités interessantes, toutes dues & sa
non-orientabilité : il n’a qu’un seul coté (on peut le peindre sur les deux faces sans
jamais lever le pinceau), si on le découpe suivant la longueur avec des ciseaux (en
suivant la courbe pointillée sur la figure), on n’obtient qu’un seul morceau, etc...

Cependant, toutes les surfaces que nous rencontrerons dans ce cours sont orien-
tables; il ne serait pas possible de travailler sur une surface non orientable (en
particulier, cela n’a pas de sens de calculer un flux & travers une surface non orien-
table, car on ne peut pas définir de fagon cohérente une direction sortante.
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3.7. Orientation induite sur le bord. Soit K une nappe paramétrée orientée de
dimension p, et K son bord. Soit @ un point du bord. Alors, ’espace F' tangent
a4 0K en (@ est un sous-espace de dimension p — 1 de l'espace E tangent & K en
Q. Soit 7 un vecteur de E qui n’est pas dans F, et qui est dirigé vers Pextérieur
(vecteur sortant). Une base (€1,...,8p—1) de F est dite positivement orientée ou
base directe (pour orientation choisie sur E) si la base (,€1,...,€p,_1) est une
base positivement orientée de E.

En pratique, nous aurons uniquement & choisir ’orientation du bord d’une surface
ou d’un volume ; pour 'orientation du bord d’une surface, on se raméne & la régle
bien connue “laisser la surface sur sa gauche lorsqu’on parcourt le bord”, c’est un
peu plus compliqué pour le bord d’un volume; la régle est résumée dans le dessin
ci-dessous :

A retenir : 11 faut savoir reconnaitre une courbe et une surface, et
savoir trouver un paramétrage d’une courbe ou d’une surface
définie de fagon géométrique. Il est aussi important pour la

Fi1G. 14. Le ruban de Mobius

FiG. 15. L’orientation du bord pour les surfaces et les volumes
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suite de savoir trouver l’orientation canonique du bord d’une
surface orientée.
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4. FORMES DIFFERENTIELLES DE DEGRE p DANS R”

Résumé : On définit de fagon formelle les formes différentielles de degré
p dans R™. On donne des exemples pour diverses valeurs de p et n (en
particulier, la différentielle d’une fonction est une forme de degré 1).

On définit le produit extérieur de deux formes de degrés respectifs p et
q, qui est une forme de degré p+ q. On donne les régles de manipulation
du produit extérieur ; en particulier, de A dy = —dy A dx, ce qui entraine
que dz A dxz = 0. Une conséquence importante est que dans R”, toute
forme de degré supérieur a n est nulle.

4.1. Formes différentielles en coordonnées : Définition, exemples.

Définition 9. On considére ’espace R™, muni des coordonnées (x1,xa,...,%y).
On appelle forme différentielle de degré p dans R™ une somme d’un nombre fini de
termes du type fi,....i, (®1,...,2n) dzsy, A ... Adx;,

Cette définition est purement formelle : nous n’avons défini qu’une notation, et
introduit sans dire ce qu’ils recouvrent les termes dz;. On peut donner un sens plus
précis, mais cela nous entrainerait trop loin. Nous allons d’abord donner quelques
exemples, puis voir comment on peut manipuler ces formes, et en particulier quelles
sont les régles qui gouvernent ’usage du produit extérieur A ; elles sont assez sem-
blables, comme la notation I’indique, aux régles d’usage du produit vectoriel usuel.

Tout d’abord, une forme de degré 0 n’est rien d’autre qu’une fonction f : R* —
R (z1,---,2n) = f(z1,---,Tpn)-

Une forme de degré 1 est une somme de termes de la forme f;(z1,...,2,) dz;;
en dimension 1, ou il n’y a qu’une variable z, elle est de la forme f(x)dz. En
dimension 2, avec deux variables habituellement appelées = et y, elle est de la
forme f(z,y) dz + g(z,y) dy.

De maniére générale, on voit qu’une forme différentielle de degré 1 dans R™ est
complétement déterminée par n fonctions (les coefficients de du;).

Un cas particulier de forme de degré 1 est donné par la différentielle d’une fonc-
tion : si f est une fonction sur R”, alors

df = Bo; dw;
=0

est une forme de degré 1; nous verrons au chapitre 6 une généralisation de cette
construction.

4.2. Produit extérieur : régles d’usage. Nous n’avons pas encore défini les
régles qui régissent le produit extérieur; il y en a deux :

e le produit extérieur est associatif ; c’est pour cela que nous n’avons pas besoin

de parenthése pour dz A dy A dz, qui vaut (dz A dy) A dz ou dz A (dy A dz)

e le produit extérieur est antisymétrique : dx A dy = —dy A dz

Attention! De la derniére régle, on déduit que dz Adx Ady = dz Ady ANdz; en
effet, pour faire passer le dz devant, il faut faire commuter deux fois, ce qui rétablit
le signe de départ !

Une conséquence trés importante de I’antisymétrie est le théoréme suivant :

Théoréme 7. on a :dr ANdx =0

En effet, on doit avoir, en échangeant les deux termes, dx A de = —dx A dz, d’ou
le résultat.
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Une conséquence est que, si dans un produit dz;, A ... A dw;,, deux des termes
sont identiques, alors, en faisant commuter, on peut les mettre I’'un & c6té de 'autre,
et le produit est nul; pour que le produit soit non nul, il faut que tous les termes
soient distincts. Ceci n’est possible que §’il y a au plus n termes, d’oul le résultat :

Théoréme 8. Dans R™, toute forme de degré p > n est nulle.

4.3. Produit extérieur de deux formes différentielles. De facon plus générale,
on peut définir le produit extérieur de deux formes « et w; il suffit de le définir
pour 2 termes, et d’étendre par distributivité.

Définition 10. Soient o = f(21,...,%,) dzy, A. .. Adx;, et w = g(x1,...,2T,) dzj A
... Adzj, deux formes différentielles de degré respectif p et ¢q. Le produit extérieur
de « et w, prises dans cet ordre, est a Aw = f(z1,...,2n)g(T1,. .., Zpn)dzi; Aot A
dz;, Ndzj, A... Ndzxj, , qui est une forme de degré p + q

La régle d’antisymétrie s’étend de la facon suivante :

Théoréme 9. si a et w sont deux formes différentielles de degré respectif p et q,
ona:ahw=(-1PwAa.

4.4. Forme canonique d’une forme de degré 2 ou 3 dans R? ou R®. Dans
R?, on a deux variables z et y ; puisque dz Ady = —dy A dz, on peut mettre dz A dy
en facteur, et on voit que toute forme de degré 2 dans R? peut s’écrire sous la forme
f(z,y)dz A dy.

De méme dans R3, un calcul un peu plus compliqué montre que toute forme de
degré 3 peut s’écrire sous la forme f(z,y,z)dx A dy A dz.

C’est un résultat général : dans R”, toute forme de degré n est entiérement
déterminée par une seule fonction.

On a donc complétement décrit les formes différentielles dans R2 : en degré 0, ce
sont des fonctions, en degré 1, elles sont déterminées par 2 fonctions, en degré 2,
elles sont déterminées par une seule fonction, en degré plus grand, elles sont nulles.

Dans R?, il reste & considérer les formes de degré 2 ; un calcul simple montre que
ces formes peuvent toujours se mettre sous la forme A(z,y, 2)dyAdz+ B(z,y,z)dzA
dx + C(z,y,z)dz A dy, et on voit qu’une telle forme est complétement déterminée
par les 3 fonctions A, B,C.

En résumé, dans R®, les formes de degré 0 et 3 sont définies par une seule
fonction, les formes de degré 1 et 2 sont définies par 3 fonctions, et les formes de
degré supérieur & 3 sont nulles.

4.5. Forme canonique d’une forme différentielle de degré p en dimension
quelconque. Si 'on regarde le nombre de fonction nécessaire pour déterminer
une forme dans R", on voit que, pour les petites dimensions, on trouve le tableau
suivant :

11

1 2 1

1 3 3 1

Ceci devrait vous rappeler quelque chose : c¢’est le début du triangle de Pascal,

qui donne les coefficients du binéme. Effectivement, on peut montrer que, pour

définir une forme de degré p dans R, il faut CE fonctions, ce qui permet de retenir
facilement les valeurs ci-dessus.
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A retenir Il faut connaitre la définition d’une forme différen-
tielle, savoir reconnaitre le degré d’une forme, et savoir mani-
puler le produit extérieur.

Il faut retenir, et savoir manipuler, ’antisymétrie du produit
extérieur (régles dz Ady = —dy Adz et dz A dx =0).

Il faut savoir que toute forme de degré supérieur a n dans
R™ est nulle, ce qui simplifie souvent les calculs.

Il faut savoir qu’une forme de degré 0 est une fonction,
qu’une forme de degré n dans R" est entiérement déterminée
par une fonction, et qu’une forme de degré 1 ou n— 1 dans R"
est entiérement déterminée en coordonnées par n fonctions;
ces cas recouvrent tous ceux qu’on aura a traiter en pratique,
le premier cas non couvert par cette régle étant celui d’une
forme de degré 2 dans R*, que nous ne rencontrerons pas dans
ce cours.
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5. IMAGE RECIPROQUE D’UNE FORME DIFFERENTIELLE DE DEGRE p PAR UNE
APPLICATION DIFFERENTIABLE

Résumé : On montre comment calculer explicitement 'image réciproque
d’une forme différentielle par une application différentiable, ce qui est
particuliérement utile pour étudier la restriction d’une forme différentielle
a une nappe paramétrée.

5.1. Image réciproque d’une forme par une application différentiable.
Etant donnée une application différentiable ¢ de R? dans R", et une forme « de
degré q dans R™, on peut définir 'image réciproque de a par ¢; c’est une forme de
degré ¢ dans R?, notée ¢*(a). On donne seulement le mode de calcul :

Si l'on prend des coordonnées (z1,...,2,) sur R™, et (y1,...,yp) dans RP, on
peut définir ¢ par des fonctions z;(y1,-..,¥p). On obtient I'image réciproque en
remplagant dz; par }_; gzj dy;.

1l est clair sur cette expression que cette opération ne change pas le degré de la
forme.

Remarquons en particulier, car c’est le cas qui sert le plus souvent en pratique,
que si a est de degré p, et si ¢ : RP — R™ est une nappe paramétrée de dimension p
dans R™, alors ¢*(«) est une forme de degré p dans R?, donc elle est complétement
déterminée par une seule fonction, comme on I’a vu dans le chapitre précédent.

A retenir :Il faut étre capable de calculer explicitement 1’image
réciproque d’une forme par une application différentiable

(s 4p) 2 (@Y1, U)o Ta Y1y -5 Yp)),
ce qui se fait en remplacant dans ’expression de la forme z;
par sa valeur z;(y1,...,¥yp), et dz; par la 1-forme différentielle
dz;(y1,.-.,yp). Cette opération ne change pas le degré de la
forme.
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6. DERIVATION EXTERIEURE

Résumé : On explique comment calculer la différentielle extérieure dw
d’une forme w de degré p. dw est une forme de degré p + 1.

On montre la formule d od = 0.

6.1. Définition de la dérivation extérieure. Pour définir la dérivation exté-
rieure d’une forme différentielle w, il suffit de définir la dérivation d’un terme, et
d’étendre par linéarité ; la dérivée extérieure d’un terme se définit de la fagon sui-
vante :

Définition 11. La dérivée de w = f(x1,...,2,) dxs, A... Adz;, est

dw = ﬁd;t:j ANdzi, A ... ANdx;,
r ij

Remarquons d’abord que, d’aprés cette formule, la dérivée extérieure d’une forme
de degré p est une forme de degré p + 1; en particulier, la dérivée extérieure d’une
forme de degré maximum n est toujours nulle.

Une autre remarque est que la dérivée extérieure d’une forme de degré 0, c’est-
a-dire d’une fonction f, n’est rien d’autre que sa différentielle df = y g—; dx;.

Si l’on sait calculer des dérivées partielles (ce qui demande simplement de savoir
dériver des fonctions usuelles) et manipuler le produit extérieur, le calcul de la
dérivée extérieure d’une forme donnée ne présente aucune difficulté.

6.2. Propriétés fondamentales de la dérivation extérieure.

Théoréme 10. dod = 0. Autrement dit, si l’'on prend deuz fois de suite la dérivée
extérieure d’une forme différentielle, on obtient toujours 0.

C’est un bon exercice de vérifier cette propriété sur des formes différentielles
données : on a automatiquement la correction de ’exercice, puisqu’on doit trouver
0 a la fin.

On peut facilement prouver ce théoréme dans le cas d’une forme de degré 0, c’est-
a~dire une fonction f; un petit calcul montre que la nullité de ddf est équivalente
au fait que

*f *f

8351-6%- h a.CL'j 6.2;‘1

ce qui est toujours vrai pour une fonction de classe C? (théoréme de Schwarz).

Théoréme 11. Si o et w sont deux formes différentielles de degré respectif p et g,
ona:dlaAw)=daAw+ (-1)Pa A dw.

6.3. Interprétation vectorielle de la dérivation extérieure. On a vu dans
les feuilles d’exercice que, dans R?, les formes de degré 0 et 3 correspondent & des
fonctions, tandis que les formes de degré 1 et 2, qui sont déterminées par trois
fonctions, correspondent & des champs de vecteurs.

Au champs de vecteurs de coordonnées (A4, B, C) (ou A4, B, C sont trois fonctions
de R® dans R) on fait correspondre, s’il s’agit de calculer une circulation, la 1-
forme A dx + B dy + C dz ; pour calculer un flux, on lui fait correspondre la 2-forme
AdyANdz+ Bdz ANdx + Cdx A dy.
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On peut ainsi, suivant les degrés, faire correspondre & la dérivation extérieure
des opérations sur les fonctions et les champs de vecteurs. A la dérivation exté-
rieure d’une fonction, qui donne une 1-forme, correspond une opération qui, & une
fonction, fait correspondre un champ de vecteurs : c’est le gradient. A la dérivation
extérieure d’une 1-forme, qui donne une 2-forme, correspond une opération qui, a
un champ de vecteurs, associe un autre champ de vecteurs ; c’est le rotationnel. En-
fin, & la dérivation extérieure d’une 2-forme, qui donne une 3-forme, correspond une
opération qui, & un champ de vecteurs, associe une fonction : c’est la divergence.

La formule d o d = 0 correspond ainsi & deux formules classiques : rat(gr_éd) =0
et div(rot) = 0.

A retenir : Il faut savoir, ce qui est facile, calculer explicitement
la dérivée extérieure d’une forme différentielle donnée.

Il faut savoir que la dérivation extérieure augmente le degré
de 1, et que le carré de la dérivation extérieur est toujours nul :
si on prend deux fois de suite la dérivée extérieure d’une forme
différentielle, quelle que soit la forme, on trouve 0

Il faut retenir, & cause de leurs nombreuses applications en
physique, les interprétations en termes de champs de vecteurs
des formes différentielles et de la dérivation extérieure.
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7. INTEGRATION DES FORMES DIFFERENTIELLES

Résumé : Une forme différentielle de degré p peut étre intégrée sur une
nappe paramétrée de degré p. On explique comment le faire dans le cas
de degré maximum n, ou cela revient a une intégrale multiple ordinaire,
puis comment faire dans le cas général, en prenant I'image réciproque de
la forme par le paramétrage de la nappe, ce qui nous raméne 3 une forme
de degré p sur un domaine de RP; et donc au cas précédent.

7.1. Intégration d’une forme différentielle de degré 2 dans R?.

Définition 12. Soit w une forme de degré 2 sur R? ; posons w = f(z,y) dz A dy.
Soit K une région bornée de R?. L’intégrale de w sur K, notée || x W, est le nombre

Jx fz,y) dz dy.

A remarquer que l’ordre des coordonnées est important pour le signe de 'inté-
grale : c’est le probléme de ’orientation.

7.2. Intégration d’une forme de degré maximum dans R". De la méme
fagon que dans la section précédente, on se raméne a lintégration d’une fonction,
en retirant les A. Autrement dit, si K est un sous-ensemble de dimension maximale
de R", et si w = f(x1,...,%,) dx1 A ... Adz, est une forme de degré n, alors, par

définition :
/w:/.../ flz1,...,2p)dey ... day
K K

7.3. Intégration d’une forme de degré 1 sur un chemin. Exemple de R? :
on paramétre le chemin en v(t) = (z(t),y(¢)), et on remplace dzx par z'(t) dt et dy
par y'(t) dt.

On voit que le résultat obtenu ne dépend que de la forme donnée et du che-
min orienté, mais que pour le calcul effectif, le paramétrage est indispensable; ce
paramétrage permet de se ramener 3 intégrer une 1-forme sur R.

On va généraliser aux formes de degré p; on les intégre sur un domaine de
dimension p, qu’il faut paramétrer par un domaine de R?, sur lequel on raméne la
forme pour l'intégrer, comme on I’a fait ci-dessus. On utilise donc tous les outils que
’on a défini dans les chapitres précédents : paramétrage d’un domaine de dimension
p de R™, image réciproque d’une forme par une application différentiable, et pour
finir, intégrale d’une forme de degré p sur un domaine de RP.

7.4. Intégration d’une forme de degré p sur un sous-ensemble de dimen-
sion p de R". Les formes différentielles de degré p sont faites pour étre intégrées
sur des ensembles de dimension p. On vient de voir que les formes différentielles de
degré 1 s’intégrent sur des chemins. De maniére analogue, on paramétre le sous-
ensemble de dimension p par un domaine de RP, et on prend I’image réciproque de
la forme. On obtient une forme de degré p sur un domaine de RP, on peut donc
intégrer comme dans la premiére section. On a le théoréme non évident suivant :

Théoréme 12. Soit K un domaine orientable de dimension p de R", et soit o une
forme de degré p. Soit ¢ : B C RP — K un paramétrage qui respecte l’orientation.
On appelle intégrale de o sur K, et on note fK a, Uintégrale de ¢*a sur B. Cette
intégrale ne dépend pas du paramétrage ¢ choisi.
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Il est hors de question de démontrer ce théoréme ; en dimension 1, c’est le théo-
réme de changement de variable.

7.5. Exemples : travail, flux. On vient de voir qu’une forme de degré p s’intégre
sur une nappe de dimension p. En particulier, une fonction s’intégre sur un domaine
de dimension 0, c’est—dire sur un point : intégrer f au point p, c’est simplement
calculer f(p)!

Passons a quelque chose de moins trivial : une forme de degré 1 dans R® s’intégre
sur une courbe ; comme on a vu précédemment, cette forme correspond & un champ
de vecteurs, et intégrer la forme sur la courbe correspond exactement & calculer la
circulation du champ de vecteur le long de la courbe.

Une forme de degré 2, elle, s’intégre sur une surface; elle correspond aussi & un
champ de vecteur, mais ce que I’on calcule maintenant, c’est le flux de ce champ de
vecteur & travers la surface.

A retenir : Le fait qu’une forme différentielle de degré p s’intégre
sur un ensemble de dimension p. Cela n’a pas de sens d’intégrer
une forme de degré 2 sur une courbe.

La méthode pour calculer explicitement une telle intégrale :
paramétrer explicitement le domaine, prendre ’image réciproque
de la forme et se ramener a une intégrale multiple.
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8. FORMULE DE STOKES

Résumé : On énonce la formule de Stokes; on en donne différents cas
suivant les valeurs de p et ¢, et on amorce la preuve dans le cas le plus
simple.

On tire quelques conséquences et extensions de la formule de Stokes
(théoréme de Poincaré, intégration d’une forme fermée sur le bord d’un
domaine, et d’une forme exacte sur un domaine sans bord)

8.1. La formule de Stokes : énoncé. Nous en savons maintenant assez pour
énoncer la formule générale de Stokes :

Théoréme 13. Soit o une forme différentielle de degré p dans R", et K un do-
maine orienté de dimension p+1 dans R™. On note OK le bord orienté de K (c’est
un domaine de dimension p); on a :

/da:/ «
K oK

Nous avons appris dans les chapitres précédents ce qu’est a (forme différentielle
de degré p sur R"), comment on calcule da, et comment on peut intégrer a sur un
domaine de dimension p (on paramétre le domaine par un ouvert de R? et on prend
I'image réciproque de la forme a par le paramétrage en question, on obtient ainsi
une forme de degré p sur R?, que l'on peut intégrer en se ramenant 3 l'intégration
d’ une fonction).

Rappelons que lorientation du bord est obtenue en prenant un vecteur tangent
a4 K qui pointe vers l'extérieur, et en décidant que toute base de ’espace tangent
au bord qui compléte ce vecteur en une base positive de I’espace tangent est une
base positive de ’espace tangent au bord (voir le chapitre 3). Donnons tout de suite
deux corollaires importants :

Corollaire 1. L’ntégrale sur un domaine sans bord de la dérivée d’une forme
différentielle est nulle.

En effet, si 0K est vide (cas par exemple de la sphére), on a f g da = f(b a=0.

Corollaire 2. si une forme est de dérivée nulle, son intégrale sur le bord d’un
domaine est toujours nulle.

Méme raisonnement.
On reverra plus tard ces corollaires, qui admettent des prolongements considé-
rables.

8.2. Un cas trivial : la formule du gradient. Le cas le plus simple est celui oul
la forme est d’ordre 0, c’est-a-dire que c’est une fonction f; la dérivée da est donc
dans ce cas la différentielle df. Le domaine K doit étre de dimension 1 : c’est donc
un chemin orienté, et son bord est constitué de deux points.

On peut encore simplifier, en supposant que tout se passe dans R. Dans ce cas,
le chemin orienté est un intervalle [a, b], dont le bord est b, —a.

On a alors [, f = f(b) — f(a), et df = f'(t)dt, donc [, df = fab f'(t) dt; dans

ce cas, le théoréme se réduit & la formule bien connue :

b
/ f(t)dt = f(b) - f(a)
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Remarquez que cette formule n’est pas évidente : si I’on regarde uniquement la
définition (surface sous la courbe, tangente & la courbe), il n’est pas clair concep-
tuellement que l'intégration soit la procédure inverse de la dérivation.

Si 'on se place dans R", les choses deviennent plus compliquées. Prenons n =
2, cela marche de fagon semblable en dimension plus grande. On a une fonction
f: (z,y) = f(z,y) de deux variables, de différentielle df = 4L dz + g—i dy, et un
chemin v : [a,b] — R?, t — (z(t),y(t)), de bord (—v(a),~(b))

On a alors [, f = f(v(b)) — f(v(a)).

Pour Pautre intégrale, il faut un peu plus calculer : on paramétre le chemin par
[a,b], et on tire la forme df en arriére par le paramétrage ; au point y(t), la forme
différentielle obtenue est %(m(t),y(t)) dx + g—’yc(a:(t),y(t)) dy ;Vapplication linéaire
tangente & v est Papplication h — ~/(t).h = (2'(t).h,y'(t).h) ; 'image réciproque

de la forme par application linéaire tangente est la forme gﬁ(x(t),y(t))w’ (t)dt +

g—i(w(t), y(t))y' (t) dt (attention, nous sommes en dimension 1, il n’y a donc que dt!
I'image réciproque de dy par v est y'(t) dt.

La forme obtenue est donc : ( 5 (o(), y(#)a'(t) + 3 (a(t), y()y' (1)) dt; il west
pas trés difficile de vérifier qu’il s’agit 14 de la différentielle de la fonction f o 7,
fonction d’une variable : t — f(z(t),y(t)). Notre formule, aprés changement de
variable, se réduit donc & la précédente.

Une autre maniére de I'exprimer : la circulation du gradient d’une fonction le
long d’un chemin est égale & la différence des valeurs de la fonction entre 'extrémité
et origine du chemin.

Remarquons que, pour qu’une 1-forme soit un gradient, il est nécessaire que sa
différentielle extérieure soit nulle; on peut montrer (théoréme de Poincaré) que
c’est aussi suffisant quand on est dans R™, ou plus généralement dans un domaine
convexe.

8.3. Un cas particulier : la formule de Green Riemann ; idée de la preuve.
Nous supposons maintenant le cas suivant : o est une 1-forme dans R?, K est un
domaine du plan dont le bord est une courbe v, orientée pour laisser K & sa gauche.

On peut donc poser a = Pdx + Qdy, ou P et @) sont deux fonctions de 2 va-
riables ; au point (z,y), la forme différentielle a définit la forme linéaire P(z,y) dz +
Q(z,y) dy.

On calcule facilement la dérivée da, qui est une 2-forme dans R?, donc déterminée
par une seule fonction. On a :

do — (8Q oP

On va supposer que a = @ dy, 'autre composante s’étudie de la méme facon.
On va aussi supposer que le domaine K est le carré [a,b] x [¢,d]; c’est un travail
purement technique, quoique difficile, de montrer que, si I’on sait montrer la formule
sur un carré, on peut toujours passer 3 la limite, et la montrer pour un domaine K
régulier quelconque.

On a donc, d’un coté,
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Q Q 4t o
da = / —dx ANd =// —dxd =/ / —(x,y)dzd
/K K Ox Y [a,b] X[c,d] Oz Y c Ja 6.73( y) Y

d
- / Q,y) — Qa,y) dy

otl le seul pas important est de remarquer que, pour y fixé, on a f; %(x, y)dx =
Q(b,y) — Q(a,y), ce qui est simplement la formule du gradient en dimension 1.

Il reste & paramétrer le chemin ; on peut le faire en 4 morceaux, le premier est
t — (a+t(b—a),c),le second est t — (b, c+t(d—c)), le troisiéme t — (b+t(a—b),d),
et le dernier t — (a,d+t(c—d)) (on a paramétré les 4 morceaux sur [0, 1], on pourrait
en se fatiguant tout faire sur [0, 4]).

On vérifie facilement que l'intégrale de la forme @) dy est nulle sur le premier et
le troisiéme morceau, car ’image réciproque de la forme est nulle. Sur le second
morceau, l'intégrale est fcd Q(b,y) dy, et sur le quatriéme, elle est fdc Q(a,y)dy; en
tenant compte de 'orientation du chemin, on retrouve bien la formule précédente.

8.4. Une application de la formule de Green Riemann : le calcul des
surfaces, et ’aire de la boucle du folium de Descartes. Pour calculer Iaire
de K dans R?, on intégre la fonction 1 sur K, ou, ce qui revient au méme, la forme
dzx A dy; cette forme est la dérivée de x dy ou de —y dx, d’ou le résultat :

Théoréme 14. Si K est un domaine de R? dont le bord est un arc régulier v, Uaire
A de K est donnée par :

1
A:/:cdy:/—yd:c:—/(xdy—ydx)
v 2! 2/

Par exemple, on considére la courbe 2® + y3 = 3yz (folium de Descartes) ; elle
contient une boucle, dont il semble a priori trés difficile de calculer Paire.

On commence par paramétrer la courbe, en regardant en quel point, pour ¢ fixé,
la droite y = tz la recoupe (autrement dit, on paramétre par t = y/z); on trouve
une équation du 3eme degré qui admet 0 comme racine double, il reste une racine
simple z = 3t/(1 + t3), et y = 3t2/(1 + t3) : voila le paramétrage cherché. Le bord
de la boucle est obtenu pour ¢ entre 0 et +o00; on utilise la troisiéme formule, en
remplacant = et y par leur valeur :

A = 1/(wdy—ydav)
2/,

_ 1= oy ) _1/“’ 3t 6t—3t* 3t 3-—6t°
— 2/0 (z(®)y'(t) y(t):z:(t))dt_2 i <1+t3(1+t3)2 T BT AR dt

_ §/°°37t2dt_§ I O R
2y (@42 2(1+83), 2

En remarquant que z dy — y dr = z d(xt) — xt dv = 22 dt, on passe directement & la
derniére ligne du calcul en évitant des calculs intermédiaires sources d’erreurs.

8.5. Les formules classiques. Dans une prochaine édition du polycopié, on trou-
vera ici les formules classiques, que je n’ai pas eu le temps de présenter correctement ;
je laisse au lecteur studieux un peu de place pour les énoncer lui-méme :
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8.6. Formes différentielles exactes et fermées. On se pose souvent en physique
la question de savoir si un champ de vecteurs dérive d’'un potentiel scalaire, au
moyen du gradient (tel le champ électrique), ou d’un potentiel vecteur, au moyen
du rotationnel (cas du champ magnétique). Un tel potentiel n’est pas évident a
trouver, en particulier dans le cas du potentiel vecteur ; si ’on pose le probléme en
terme de formes différentielles, on voit que I'on n’a affaire qu’a un seul probléme :
étant donné une forme w(de degré 1 ou 2, dans les cas qui nous intéressent), existe-
t-il une forme « telle que w = da.

Les définitions et résultats qui suivent apportent la réponse a ce probléme.

On dit qu’une forme différentielle o est exacte s’il existe une forme différentielle
w telle que a = dw ; on dit que « est une forme fermée si da = 0. Les propriétés de
la dérivation extérieure (d o d = 0) entrainent aussitot :

Proposition 1. Toute forme différentielle exacte est fermée
Il y a une réciproque partielle :

Théoréme 15. Sur un domaine conveze, toute forme différentielle fermée est
ezacte.

Sur des domaines avec des trous (par exemple, R? privé de I’origine, ou R® privé
de 'axe OZ, ce n’est plus vrai; cela pourrait sembler anecdotique, mais c’est en
réalité fondamental : exemple du champ créé par un fil électrique, en df, qui n’admet
pas de primitive.

On remarquera une dualité entre les formes et les domaines :

On dit qu’un domaine borné est un cycle s’il n’a pas de bord, et que c’est un
bord s’il est le bord d’un autre domaine borné. On constate facilement (mais on ne
le démontre pas facilement!) :

Proposition 2. Tout bord est un cycle
Théoréme 16. Dans un domaine convexe, tout cycle est un bord

C’est faux,par exemple, dans le plan privé d’un point.

Si on a une p-forme différentielle o, et un domaine K de dimension p, on pose
<a,K >= | Kk @; c’est un peu comme un produit scalaire. Les théorémes que
I’on avait écrit plus haut se réécrivent facilement dans ce langage, de fagon trés
symétrique :

Théoréme 17. Une forme fermée s’annule sur les bords ; une forme exacte s’an-
nule sur les cycles.

En particulier, on dit que deux cycles K et K5 sont homologues si leur différence
(c’est-a~dire la réunion de Kj, et du cycle Ks muni de 'orientation opposée) est
un bord; il est alors facile de montrer que si a est une forme fermée, elle prend la
méme valeur sur deux cycles homologues.

A retenir : La formule de Stokes résume les différents cas parti-
culiers classiques (formule du gradient -Newton-Leibniz, du ro-
tationnel —Green-Riemann ou Stokes, de la divergence —Gauss-
Ostrogradsky).

Les formes exactes et fermées, leurs propriétés de base, le
théoréme de Poincaré



