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A Model of Modulated Diffusion. 
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We introduce an integrable isochronous system and perturb its frdquency by an 
external~eterministic or purely random--noise. Under the perturbation the 
action variable evolves in time: the corresponding diffusion coefficient is exactly 
computed and its dependence on the magnitude of the perturbation is carefully 
investigated. Different behaviors are found and justified: the quasilinear 
approximation, the superlinear regime, and the ballistic motion. 

KEY WORDS: Modulated diffusion; standard mappings; random phase 
approximation. 

1. INTRODUCTION 

Transport  in chaotic regions of phase space is an open problem for 
Hamiltonian systems. For  a confined hot plasma, a beam in a magnetic lat- 
tice, or a spinning planet it is very likely the most  important  phenomenon 
which determines the lifetime of the system. It-81 The statistical properties 
of transport  are far from being understood, owing to the complexity and 
variety of topological structures in phase space: in the simplest case of 
two-dimensional symplectic mappings, invariant curves, cantori, chains of 
islands, and hyperbolic manifolds and their replicas under scale changes 
coexist and make the patterns of transport  highly complex. Intensive 
investigations have been carried out for two-dimensional systems such as 
smooth symplectic mappings with the twist property (Chir ikov-Greene 
standard map),  but a complete description is available only for a class of 
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almost hyperbolic piecewise linear mappings of the torus lifted to the 
cylinder,17 ~2~ whose behavior is very close to billiards, c~3 ~6) In fact in these 
cases the statistical properties (decay of correlations, central limit theorem, 
and invariance principle) are provided by the construction of a (possibly 
infinite) Markov partition which allows one to use the powerful tool of 
symbolic dynamics or, more generally, of the theory of the denumerable 
Markov chains and the Perron-Frobenius theory. (jT'~sl Here we propose a 
model which gives a description of the local diffusion properties of a 
symplectic map when an external modulation is introduced. Such a model 
is physically motivated by the dynamics of a beam whose linear frequency 
is modulated either periodically or stochastically owing to low Fourier 
components or noisy fluctuations of the current or by the coupling with 
the hyperbolic component of another degree of freedom. The heating of a 
plasma by an electromagnetic wave seems also to give rise to a similar 
description locally in phase space. Finally the Arnord diffusion of the 
spin-orbit coupling in the motion of a planet has its root in the coupling 
of a hyperbolic degree of freedom with a.regular integrable motion. (]9-2~) 
To this end we have investigated four types of modulations~22"23)'4: 

(i) The stochastic modulation given by an i.i.d, random process 
whose distribution is absolutely continuous with respect to the 
Lebesgue measure on R. 

(ii) The Bernoulli shift on a space of symbols of finite cardinality. 

(iii) The Markov map T(ct)=2ct mod[0, 1 [ - � 8 9  cte [ - � 8 9  �89 

(iv) A periodic or quasiperiodic modulation. 

In all these models analytical solutions are found for the diffusion coef- 
ficient defined as the limit of the mean square deviation of the action 
( j , , - j o )  2 averaged on the initial angle and the measure space for the 
process divided by 2n, namely 

D =  lim 1 - E ( ( j , - j 0 ) 2  ) 
n ~  + o o  

We will actually use a slightly different definition, which is nevertheless 
equivalent to that given before; we will also show that the diffusion coef- 
ficient just defined is independent of Jo and this explains why we dropped 
the dependence on the initial action. The behavior of the process (iv) is 
distinct from the others: indeed, if a nonresonance Diophantine condition is 
satisfied by the frequencies, the existence of two-dimensional tori T:  for the 

4 The same perturbations but stochastic ones are also considered in the recent investigation 
of a quantum-like model, t24~ 
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associated autonomous volume-preserving map is a topological barrier to 
diffusion, and D = 0. In all the other cases, depending upon some technical 
conditions which will be discussed later, the diffusion coefficient exists, can 
be expressed in a finite form, and has the following asymptotic behavior. 
We also produce an example where for large values of the perturbation 
parameter ~, the diffusion coefficient does not converge to its quasilinear 
estimate. Instead, for all the other models, when e--* ~ the quasilinear 
value is obtained, which corresponds to the random phase approximation 
of the angles. For intermediate values of e the behavior of D sharply 
depends on the process. In particular D can be larger than the quasilinear 
value and exhibit monotonic or oscillatory approach to the asymptotic 
limits. Such behaviors are indeed observed in numerical simulations of 
Lagrangian diffusion of test particles in a plasma in the so-called electro- 
static model, t25~ For small modulation amplitudes the diffusion coefficient 
turns out to behave as e 2 as e ~ 0. We also produce an example where the 
diffusion coefficient is infinite, due to the ballistic motion of the action 
variable. 

In the second part of this work t261 the complete statistical properties 
are explored in order to prove the possible existence of a central limit 
theorem and invariance principle. The plan of the paper is the following: 
in Section 2 we present the class of models we deal with and state the 
principal results. The proof for the main result is reported in Section 3, 
whereas Section 4 is devoted to comments and conclusions. 

2. T H E  M O D E L  A N D  S T A T E M E N T  OF THE RESULTS 

2.1. The  M o d e l  

We first introduce an integrable area-preserving map on the cylinder 
{(O,j)e'l1-1 x l~}, where, with abuse of language, we put T ' =  [0, 2n[ the 
parametrization of the torus: 

{O ' = O + c o  mod[O, 2n[ (2.1.1) 
M: j ' = j +  V(O) 

where V(O) is an analytic periodic function of period 2n and zero mean, 
and o9/2n is a Diolihantine number. The motion takes place on invariant 
curves characterized by the same rotation number co; these invariant 
curves will be parametrized by the equation J =  G(O, j), Je  R. Starting in 
Section 2.2, it will be convenient to work with the coordinates (0, J): the 
change of variable is obtained by a straightforward calculation, which uses 
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the exponential decay of the Fourier coefficients Vk and the Diophantine 
hypothesis on the rotation number 09/2n: 

k ~  + c o  I 7  

"KT' " k eikO (2.1.2) J = G ( O , j ) = j - F ( O ) = j -  z., eik-~---_l 
k = - - c o  

The system (2.1.1) is clearly an approximation of those anisochronous 
Hamiltonian systems where the frequency varies adiabatically with the 
action in some region S of the phase space. 

We now introduce a perturbation in the evolution of the 0 variable 
that will be of two types: deterministic or purely stochastic. Numerical 
simulations suggest that the behavior of these perturbed models is quite 
similar to that of more complex weakly anisochronous systems. 

2.1.1. Determin is t ic  Per turbat ion.  In this case we couple the 
map M with another transformation ~ ' =  T(ct) which will be defined later 
in such a way that our original system is replaced by 

{ ~t'= T(ct) 

Mp: O'=O+~o+f(ot)e mod[0,  2hi  (2.1.3) 

j ' = j +  V(O) 

where from now on e is a real number different from zero. 
The mapping T and the function f will be chosen in one of the 

following forms: 

1. T(0t)=2ctmod[0, 1 [ - � 8 9  a ~ [ _ � 8 9  5[, which is a Markovian map 
of the unit circle with respect to the Lebesgue measure /aL; and f(a)=<x, 
W ~ [  ~ - ~ ,  5[, periodically continued with period 1. 

0~ co 2. T(~t)=a(ct), where ~ =  { , } . i - -~  belongs to the space A of bi- 
infinite sequences at values in the set X={s~ ..... sN}, sieR, l<<,i<~N, 
endowed with the discrete topology. The set of probabilities p{si} = p~, 0 < 
pi < 1, Y~= ~ pg = 1, defines a measure/~ on A through 

co 

/~= @ p (2.1.4) 

This measure is invariant with respect to the transformation a acting 
on A as the shift (act)i = ct,.+ 1. The shift automorphism a with the invariant 
measure ~ is called a Bernoulli automorphism on the probability space 
(A, ~,4), where NA is the Borel a-algebra on A. The function f in this case 
is f ( c t )=  Cto, the projection of the word ~t onto the zeroth coordinate. 
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3. T(ct) = ~ + p mod[0,  2n[, with p/2n e R\Q,  an irrational rotation, 
ergodic with respect to the Lebesgue measure pL on R. The function f is 
chosen as f(a)=o:-n, V ~  [0, 2hi  and e~Z\{0} .  

4. The transformation is the same as that of Case 3, but the function 
f (~)  is an analytic function in a complex strip IIm ct] < A=. 

2.1.2.  S t o c h a s t i c  P e r t u r b a t i o n .  We introduce the perturbation 
of stochastic type by replacing at each step n~ N the unperturbed fre- 
quency co with co + e~t,,, where ~,, is the realization of a stochastic process. 
In particular we choose ~,,(~), r ~ 12, an i.i.d, real random process on some 
probability space (f2, h a ,  pa)  and the distribution of ~ta is absolutely con- 
tinuous with respect to the Lebesgue measure on R. Note that the Case 2 
of the deterministic perturbations is a particular case of the stochastic one 
with r an element of the space A, a,,(~) the nth coordinate of ~, but with 
an atomic distribution given by the measure (2.1.4). Corresponding to this 
perturbation, the map at the nth iterate step assumes the form 

' 0 , , +  t = 0,,  + 09 + ~: t , , (~)  m o d [ O ,  2n[ 
Mp: I j , ,+, = j , , +  V(O,,), n~O (2.1.5) 

We are also interested in the behavior of the mapping Mp for large 
and we will show that for such values the statistical properties of Mp 
recover those of the standard map in the region of large values of the 
perturbation parameter, say K. We recall that the evolution of the angle 
variable in the standard map for large K is supposed to be independent of 
the action j. This hypothesis, the so-called random phase approximation, 
can be put on a rigorous basis for the sawtooth map. c7-1~ In our model the 
influence of j on the angle is simulated by the stochastic process ect,, and 
is not trivial in the sense that the random variables entering the definition 
of the diffusion coefficient (see later) will be, in general, nonindependent, 
which is precisely what happens for the standard map (we come back to 
this point in Section 2.2). 

2.2.  The  D i f f u s i o n  C o e f f i c i e n t  

The diffusion coefficient we are going to introduce is defined in terms 
of the variation of the integral of motion J under perturbation rather 
than in terms of tile variation of the original action j. We first set some 
useful notations to unify the various modulations quoted in the preceding 
section. Each perturbation acts on a probability space ~ = (I2, .~a, pa)  as 
a stochastic or deterministic process: we denote it by ~,(~), ~eI2,  n>~0, 
where ~ must be thought of as the realization of the process in the 
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stochastic case or the initial value in the iteratiori of the dynamical system 
in the deterministic case) We then call # - =  (T z, ~'L,/aL) the probability 
space constituted by the torus 1" z carrying the Borel a-algebra ~L and the 
Lebesgue measure PL: it will be the space of the initial angles 0o. If the 
perturbation is absent ( e=0) ,  the value of J given by (2.1.2) is constant 
under iteration, that is, 

k = + ~  Vk e ik~ (2.2.1) 
de f  J,,+l = J ( O , + l , J , , + l )  def. 

= J n + l - -  Z e i k~  1 

If we now perturb the frequency according to (2.1.3) or (2.1.5), the 
left-hand side of (2.2.1) will generally change and this can be geometrically 
interpreted as a jump between different horizontal curves J =  const on the 
cylinder parametrized by the coordinates (0, J), which are the invariant 
curves of the unperturbed system. A straightforward iteration of Eq. (2.1.2) 
gives for the variation of J ,  in the case (a) the following expression: 

J , , + l - J o  

m = O  k =  --c~o e i k w - -  1 

x [e ik`(:('-~)+:('o)+ ' + : ( " - ' ) ) - e  ~k~(:('-')+:('o)+ ' +/('-))] (2.2.2) 

where ~_ ~ := 0 and f ( ~ _ ,  ) := 0 are introduced to simplify future notations. 
The same expression also holds in the stochastic case (b) by taking the 
identity as the function f .  If we keep Jo fixed, the process (J ,+ t - J o )  is well 
defined on the product space ~ • #-; we denote with E(.)  the expectation 
with respect to the product measure/z a x/aL. We are now ready to define 
the diffusion coefficient as the limit, if it exists: 

E((J,, + t - J o )  2) 
D ( J o ) =  lim (2.2.3) 

. ~  +~ 2(n+  1) 

It has to be pointed out that in the case (b) of the stochastic perturbation 
the analytical estimate of the diffusion coefficient is the same if one con- 
siders the true action j:  

D ( j o ) =  lim E ( ( j , + ~ - j o )  2) (2.2.4) 
, , -  +~ 2(n + 1 ) 

Nevertheless the choice of J seems to be very natural, especially if one is 
concerned with not only the diffusion coefficient itself but also the limit dis- 

5 We often write ~. instead of a.(r when no confusion should arise. 
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tribution. Numerical  simulations show that the distribution of J converges 
to a Gauss ian  much faster than the distribution of j, even if the limit 
variance tends to the same value. The same occurrence is shown by 
numerical simulations for more complex weakly anisochronous systems. 

The main result of this paper  is the following: 

2.3.  M a i n  R e s u l t  

1. For  the mapping  T(c t )=2c tmod[0 ,  1 [ - � 8 9  ct~ [ - � 8 9  l 5[, the diffu- 
sion coefficient D(Jo) exists and is independent of Jo for e e I~; in particular, 
for e ~ 0 it is given by 

1 k =  + ~ r  

D(Jo) = ~  k= - ~  I vkl2 

k =  +o:. ,  + a c  

+ ~ '  IVkl 2 ~ c o s [ k ~ o ( r + l ) ]  
k =  - - c o  r = 0  

r ,r, ( , )  sm Eke(1 -- 1/2 ) - -  e _ 
x _Tk-~[_-i-/~--i- ~ l l c o s ~ k  1 (2.3.1) 

2 / ! j = l  

2. For  the Bernoulli au tomorph i sm T(ct) = a(ct), with states s~ ..... SN, 
S~eR, i =  1 ..... N, and nonnegative probabilit ies p, ..... PN, we distinguish 
two cases: 

(i) I f37,  u > 0  such that Vk~2e\{0} 

N " 2 ke -.1 
j~= pjpj, szn -~ ( s j - s j , )  ~<71kl ~ (2.3.2) 

j ,  I 
j ' < j  

the diffusion coefficient D(Jo) exists, is positive, independent of Jo, and 
given by 

{k= +,~ --'--- [~ Q_keik~l ~ 
D(Jo) = Re ~ '  IVkl 2 § (2.3.3) 

k co 1 -- Okeik"~ 

where we have set Qk = ZT= t Pj eik~'~. 
Moreover ,  denoting by D(Oo, Jo) the diffusion coefficient defined by 

taking the expectation of the process (J,,+ ~ - J o) 2 in (2.2.3) with respect to 
the measure /~L only, we have that D(0o, Jo) = D(Jo), which is therefore 
independent of 0o and Jo. 

(ii) If 3q~, q2 ..... qN, h, I ~ 7/, with h, 1 ~ 0, such that  esj + oJ = (2n/h) qj, 
Vj= 1, 2 ..... N and Vh~#:0, then the diffusion coefficient D(Jo) is infinite. 
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3. When T(~)=c~+pmod[0,27t[ ,  f ( ~ ) = ~ z - n  V ~ [ 0 , 2 r t [ ,  and 
s~7]\{0}, the diffusion coefficient D(Jo) coincides with its quasilinear 
value: 

k = + z o  

D(Jo) = Dql a~r l = ~ ~ '  [gkl 2 (2.3.4) 
k =  - - r ~  

. 

following hypotheses: 

(i) (o~, p) satisfy the Brjuno condition Izvl 

lim log r/,...........~, = 0 
, , -  ~ m 

where q,,, is defined according to 

q,,,= min [e ilh'+kp)- II, 
Ikl  + Ih l  < ~ m  

For T(~)=c~+pmod[0,2rc[  and f ( ~ ) = c o s ~ ,  we assume the 

(2.3.5) 

(h, k) ~ 7]-'\{(0, 0)} (2.3.6) 

(ii) The potential V(O) is a periodic analytic function in the complex 
strip IIm 01 </3 with vanishing mean and in this domain is bounded by 
I V(0)l ~ C'. 

Then diffusion coefficient is zero for any value of ~. 

5. In the case of the real random process ~,,(~), on the probability 
space (O, ~'a,/~a), with the distribution kta absolutely continuous with 
respect to the Lebesgue measure, the diffusion coefficient D(Jo) exists, is 
positive, is independent of Jo, and coincides with D(Oo, Jo) for any 
0o ~ [0, 2rt[ and any e ~ ~. The expression turns out to be 

k= + ~  I Vkl 2 
D(Oo, Jo )=D(Jo)=  ~ '  leik,O_l] 2 

x Re [1 - X ( s k ) - e  ik'~ [1 - ~r(ek)]21 i 2 S e ~ d  (2.3.7) 

where Y'(z) is the characteristic function of the probability measure Va, 
given by 

Y['(z) de=r iaei-"'ir dPa(r V z ~ R  (2.3.8) 

and independent on m e N. 
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In Case 5 the positivity of the diffusion coefficient can be proved in a 
rigorous way by using (2.3.7) and noting that, under the conditions and 
with the notations of the Main Result, VeeR\{0}  and VkeT/\{0} the 
following equality holds: 

ReIl_YC(ek)_e,k,o[l-O~(ek)]2 ] - .  2kco 1-,o~'(ek), 2 
1 S S ~  = z s m  -~- ii_eik,oX(ek)l 2 (2.3.9) 

In an analogous way we prove positivity for the Bernoulli modulation 
[Case 2(i)], whereas Case 3 is trivial. As for part 1, there is no analytical 
result, but nevertheless we can give strong numerical evidence for positivity 
by computing the partial sum of the series: 

def 1 + ~ M~(e;k, aJ) = ~ +  ~ cos[ka~(r + 1)] sin �89 - 1/2 r+ ' )  
r=o �89 - 1/2 r+ 1) 

1 (2.3.10) • cos~k - ~  
j = l  

with fixed k ~ E \ { 0 } .  A simple analytical estimate of the remainder for a 
given truncation order allows us to state exactly the positivity of the limit 
(2.3.10) and therefore of the diffusion coefficient D(Jo), provided that the 
assigned value of k corresponds to a nonvanishing Fourier component of 
the potential V(O) (Vk= V_k~0) .  TWO thousand numerical trials have 
been performed for randomly generated values of the perturbation 
parameter e~ ]0 ,  100] and of the index k ~ ] 0 ,  1000], by taking as a 

0.85 

11o 

Fig. 1. The limit Ml(e; k, w) as a function of the perturbation parameter e > 0 for k = 1. For 
~ >> 0, the term is very close to + 1/2, in accordance with the quasilinear estimate. 
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-1 
"2.3 

Fig. 2. The limit M,(e; k, to) as a function of the perturbation parameter E > 0 for k = 1. The 
bilogarithmic diagram shows that for e ~ 0 the dependence on e is quadratic. 

D i o p h a n t i n e  f r e q u e n c y  co/27r the  c lass ical  g o l d e n  m e a n .  F o r  m o s t  of  the  

t r ia ls  the  a b o v e  pos i t i v i ty  tes t  t u r n s  o u t  to  be  sa t is f ied w i t h  a t r u n c a t i o n  

o r d e r  in  (2.3.10) of  s o m e  h u n d r e d s .  O n l y  for  s o m e  p a r t i c u l a r  cho ices  

of  e a n d  k ( in  p a r t i c u l a r  for  e ~ 0, w h e r e  the  a n a l y t i c a l  e s t i m a t e  of  the  

r e m a i n d e r  does  n o t  c o n v e r g e  very  fast  to  ze ro  by  i n c r e a s i n g  the  o r d e r  of  

0 0.03 

Fig. 3. The limit M~(e; k, co) as a function of the parameter t > 0 for k = I. Smaller values 
than those in Fig. 2 are considered. Truncation errors in the computation of M~(e;k,w) 
are analytically estimated tobe less than 10 -6, in agreement with the parabolic fit. The result 
confirms the quadratic dependence on e suggested by Fig. I. 
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Fig. 4. The limit M~(e; k, ~) as a function of the parameter  e > 0 for k = 1. For  e >> 0, even 
if the value is very close to + 1/2, osci l la t ions of decaying ampl i tude  persist. 

t runcation) we need to consider a larger number  of terms (i.e., ~ 10 5) in 
order to verify positivity, and no ambiguous case occurs. 

By the same method we have obtained the graphs in Figs. 1--4, show- 
ing the behavior of  the limit Mr(e; k, 09) as a function of the perturbation 
parameter e > 0  for k = 1. For  e = 0 the dependence on ~ is quadratic, 
whereas in the opposite case 151 >>0 the term Ml(e;k, co) is very close to 
+ 1/2, in accordance with the quasilinear estimate. 

Even though we do not illustrate the proof  here, the latter property 
can be showed analytically, so that our  model satisfies the random phase 
approximation. 

A rigorous proof  of the convergence to zero of Ml(e; k, 09) for e --* 0 
can also be given. 

2.4. Ergodic Properties 

In the case of deterministic processes, the quantity 3 " . - J o  can be 
viewed as an observable on the invariant set of  the dynamical system 
F: T ~ x 12 onto itself, defined by 

{~ ' =  T(~), ~ t 2  
F: O' O+oJ+ef(ot) m o d [ 0 , 2 r t [  (2.4.1) 
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It is easily seen that the dynamical system F is a skew product over T, so 
that it preserves the product measure/z L x/~a. t2s) This measure is therefore 
the natural one to take the expectation of the process (J ,  -Jo)2.  We now set 

n - -  1 
clef 

/IJn = J , - - Jo  = ~. qt(Oo, r (2.4.2) 
1~0  

where rlt is for the deterministic perturbations considered, a process on 
~1 x I2 of a very complicated form, but of zero mean with respect to the 
product measure/~L X/~a. Moreover, the invariance of this measure makes 
the process ql stationary. Note that the inner sum in (2.2.2) gives the explicit 
form of this process, but we will never use this fact in the following. If one 
proves that ~y~o IE(qo, qj)l < +m,  then it is easy to see that the diffusion 
coefficient exists and can be expressed in the following form (the discrete 
version of the Green-Kubo formula129)): 

D=E(qo2)+2 ~ E(qo, rb-) (2.4.3) 
j = l  

The existence and the positivity of D is a necessary condition for estab- 
lishing stronger statistical properties of the system, for example, the central 
limit theorem for the stochastic process defined by 

zlJ, 1 , -  l 
iDn)U2 (Dn)U2 ~ qj(0o, a), n~>0 (2.4.4) 

j=O 

or the Donsker invariance principle, ~191 which consists in redefining the 
process ztJ[, o, t e [0, l ] ,  without changing its distribution, on a new prob- 
ability space together with standard Brownian motion (W(t), t>~O) and 
shows that AJt,,,I/(Dn) I/2 converges weakly to W(t) when n ~ +o0. These 
questions are numerically investigated in the second part of this work. t26~ 
One also expects the existence and the positivity of the diffusion coefficient 
for the analytic observable J to be related to the properties of ergodicity, 
weak mixing, and, in particular, mixing of the measure /aLXpa. Such 
properties can actually be proved whenever T(a )=  2a mod[0,  1 [ -  �89 ~e  
[ - � 8 9  �89 and only partially when T(ct) is the irrational rotation of the 
circle. However, no one of those properties is sufficient to conclude that 
the random variables ~b(0o, c~) are (/z L xp~)-independent. 

T h e o r e m  1. (3~ For the case T(~)=2~mod[0 ,  1 [ - � 8 9  c~  [ - � 8 9  �89 
we have that the mapping F is trivially conjugated by means of the affine 
transformation (x, y) = (g + 1/2, O/2n) with the map 

F': ~x',= 2x mod[0, 1 [- 
[ y  = y + o 9  + e ' x m o d [ 0 ,  I [  (2.4.5) 



Modulated Diffusion. Analytical Results 941 

where the parameters co' and e' are linear functions of the previous ones 
w'=(1/2n)(oo-e/2), e'=e/2n. Moreover, the mapping F '  satisfies the 
following properties with respect to the Lebesgue measure on T2: 

(i) F'  is mixing i f fe '~R\Q.  

(ii) F'  is weakly mixing iff it is mixing. 

(iii) F'  is ergodic and not mixing iff e'E Q and a~'e R\Q. 

(iv) F'  is not ergodic i f f e ' e Q  and oo'eQ. �9 

Actually we also guess that F '  is exact when the mixing property holds. 
The proof of Theorem 1 is not immediate; instead what is easy to 

prove is that F '  has positive Kolmogorov entropy, whose value is log 2 
(the result follows from a theorem of Abramov and Rokhlint3L3zl). 

In the case of the irrational rotation T(c t )=c t+pmod[0 ,2n[  the 
ergodicity of the mapping F easily follows when p ~ R\Q and e e 7/ by 
adapting the proof of ergodicity for skew translations of the torust28); the 
latter result can be slightly generalized, as stated in the following theorem, 
whose proof follows from an argument due to Anzai. "~3) 

Theorem 2. For Case 3, T ( ~ ) = a + p  mod[0, 2n[, f ( ~ ( ) = a - r t ,  the 
map F can be conjugated, by means of a simple scaling, with the map 

p: ~ x ' = x + p '  mod[O, 1[ (2.4.6) 
~ y '= y +og' + dx modEO, l[ 

with parameters p ' =  p/2rt, co'= oo/2rr- e/2 and e '=  e. 
We have that: 

(i) For e ' = 0  the mapping P is ergodic with respect to the 
Lebesgue measure on ~-~ = [0, 1 [ x [0, 1 [ iff the frequencies p' and co' are 
rationally independent. 

(ii) For e '~Q\{0} ,  F i s  ergodic. 

(iii) If 3e'~ R\Q such that P is nonergodic, then rose R and g= 
a/b+c/d.e', a, b, c, d~7/\{0} the mapping 

~x',=x+p' mod[0, 1[ (2.4.7) 
F: (Y = y + o S + g x m o d [ 0 ,  1[ 

is ergodic. 

Moreover, if g=c/d.e, c, d~ 7/\{0}, then P is ergodic whenever the 
frequencies p' and -coo + do3 are rationally independent. �9 

822/76/3-4-13 
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3. PROOF OF THE M A I N  RESULT 2.3 

3.0. 

( J , + ~ - J o )  2. We use here the notations 
define the following quantities: 

-1 

Preliminaries 

We first give an expression for the expectation value of the process 
introduced in Section 2.2 and 

(i) Vbe{-1,0,1,2,...}: Sb({)==Z.~ where we set 
=0.  

(ii) Va, b~ { -  1, 0, 1, 2,...}: 

ff2 de_.~f ~G(b+ 1, a;ks) if b<a (3.0.1) 
e i k c ( S a ( r  - S b ( r  d#a(() [G(b + 1, b; ke) dr 1 if b = a 

A lengthy calculation shows that 

E((J. +, - J o )  2) 

k=+co f = y '  IVkl 2 
k=_oolei~Y,--]lz2Re (n+ 1)-- G(m,m;k~) 

r t 1 =  O 

n - -  d 

+ ~ eik '~ 
d=l m'=0 

-- G(m', m' + d; k~) + G(m' + 1, m' + d; ks)]} (3.0.2) 

which can also be rewritten in the form 

E((J. + l - J o )  2) 

k~,~ iVkl ~ { 
k = -~  le'~':' -----11 z 2 Re (n + 1 )[1 -- G(0, 0; ks)] 

+ a=l ~ e'k"a(n + I -- d)[2G(0, d -  1; k e ) -  G(0, d -  2; k s ) -  G(0, d; k , ) ]}  

(3.0.3) 

The proof is easily achieved by observing that the exponential decay 
of the Fourier coefficients Vk allows one to apply Lebesgue's dominated 
convergence theorem to the expectation of the process given by (2.2.2), and 
using stationarity--which comes from the invariance of the measure #a in 
the deterministic case. 
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3.1. Proof of Part 1 

We now specialize to the mapping c%(~)=T"(~)=2"~mod[0,  1[, 
where r e [0, 1[. We will show that the mapping T(r 2r mod[0, 1 [ -  ~, 

~ [ -  �89 ~[, leads essentially to the same result apart from a phase factor 
and a correction of the unperturbed rotation number co. For simplicity of 
notations, we set T =  T and we will return to the true mapping T in the 
beginning of Appendix A. 

The integral in definition (3.0.1) can be performed in an explicit way 
and reduced to an algebraic expression, according to the result stated in 
the following Step 1. 

S t e p  1. Vm = 0, 1, 2 .... and Vke ~ R, the following relations hold: 

e 2ike(l - 2 - " - I ) - -  l 2~,~ i 

L eik, t~Ul - j/2"] (3.1.1) 6(0,  m; j=o  

and 

sin �89 - 2 - " -  l) e ;k'u" + 11/2] 
G(O, m; ke)= Ti~-(~-_-~---s-~-s-7) 

x ml2II cos [--~ (1 - 1 ) ]  (3.1.2) 
j = 0  

where the function 6,,(j) is defined in terms of the binary representation of 
the integer j ~  {0, 1 ..... 2" - 1 }: j =  ET'__-o ~ ai2', a ie  {0, 1 }, through &,,(j) de=r 

" - - 1  
~--~i= 0 ai"  �9 

Proof. We start by observing that 

z ~ ,  fu+,vr" 
G(O,m;ke)= e ;k'tr + nr "+r ' c~d~  (3.1.3) 

j = 0 "J/2m 

Then one can show by induction that for each fixed j e  {0, 1 ..... 2" - 1 } and 
VCE [j/2",  ( j +  1)/2"[ it must be that Vs= 1, 2 ..... m, 

S - - I  

TS(r - y '  a,,,+r_s2re [0, 1[ (3.1.4) 
r = O  

Substituting the iterate of ~ just computed in the argument of the exponen- 
tial in (3.1.3) and rearranging the indices in the sums, we get 

2 m -  1 ( j +  1) /2  m 

G(O,m;ke)= ~ eik~(6"(Y)-2J) f e'k~c2"*'-lJC d~ (3.1.5) 
j = 0 ~jl2ra 

which gives Eq. (3.1.1) after having performed the integrations. 



944 Bazzani e t  al.  

As for Eq. (3.1.2), we can simply deduce it from the previous one by 
proving Vine 1~ u {0} and Vkee R the identity 

2 m -  1 

e ik~['~'' 'Jl-j/2"] = 21- f i  (1 + e ik~ l̀ -U2,,) (3.1.6) 
j = o  j = o  

The latter relationship easily follows by induction by splitting odd and 
even terms in the left-hand side of (3.1.6) and using the trivial identities 

6,,+ ,(2k') = 6,,+ ,(k') = 6,,(k') 

6,,+1(2k' + 1) = 6,,+ ~(2k') + 1 = 1 + 6,,+ ~(k') 

Vne[~ w {0} and Vk'=0, 1 ..... 2 " - 1  

Indeed suppose that (3.1.6) holds for m=ne ~ and write 

~ exp ik~ 6,,+j(j)- 
j=O 

= 2 e• ik~ 6,,+,(2j') 2, §  
j ' = O  

+ exp ikt 6.+1(2j'+1 ) 2 j ' + l ] ~  -~ - ,  j j  (3.1.7) 
j ' = O  

We have then, for the right-hand side of the previous identity 

y. exp ike 6,,(2j')- 
j ' = O  

2~--, { (j, ~ ) }  
+j~"=oeXp ike[l +6.(j ' )]-  ~-g+ 

= ; ~ i  exp {ike [6,(2j ' ) -J~,]}-{1 +exp Iike ( 1 -  2,~1+ t)3} 

(3.1.8) 
and finally 

~jO0 {l +exp like ( 1 - ~ ) ] } .  {1 +exp like ( 1 -  2.1-~)]} 

~"+' (';__o ~ + ex, [,~ (1 ~)]}- ,~.1.9, 
As (3.1.6) trivially holds for m = 0, the result follows by induction. �9 
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The previous estimates allow us to give the following representation of 
the diffusion coefficient. 

Step 2. For any e ~  the limit (2.2.3) defining the diffusion coef- 
ficient is independent of Jo and can be written in the form 

where 

O' = t! 

E ( ( J , , + l - J o )  2) 1 k=+~ 
D(Jo) = lim 2k ~ '  [VklZ+ lim D~, (3.1.10) 

ii  

Y" le~ZT;,o_--] 12 4 sin k = - ~  n + l  

In-- 1 11 

• Re ~=oG(O,r;k~)eik'~ [ ( n - - r )  s i n ( - ~ )  

(3.1.11) 

In particular the diffusion coefficient D(Jo) exists if and only if 
lim,,_ +~ D'~ is defined. 

Proof. Starting from (3.0.3), by a simple manipulation we find 

v.((j,, + , - j o ) )  2 
2(n+ 1) 

k=+~ { i e~k,O,,G(O,n;ke)}+D,, = ~, IVkl 2 n eiko , 
k = _o~ le"Z~--~-- -112Re l - n - ~  nq-1 

(3.1.12) 

Since the coefficients G(0, r; ke) are bounded by 1, we get 

IVkl 2 { n e i k o ~ l e ~ k , O . G ( O , n ; k e ) }  
[ e'Z"; ~ -1 ] 2Re 1 - t-~--I - n +----i 

I Vkl' ~<3 (3.1.13) 
le ik" - II 2 

so that the limit for n ~ +oo of the first sum in (3.1.12) exists and equals 

~. Z' iv~i'- 
k= --o'3 

which proves the result. �9 

S t e p  3. We now check the existence of D '= l im, ,_  +oo D',,. Using 
the expression (3.1.2) for the coefficient G(0, r; e) and separating the terms 
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( n - r )  sin(ko)/2) and i cos(ko)/2) within brackets in (3.1.11), this last limit 
can be written as 

D ' =  lim B~(n)+ lim B2(n) (3.1.14) 

where 

and 

c*= +~ iVkl 2 1 2 4 s i n ( ~ ) . i c o s ( ~ . ~  ) Bl(n )= Re ~ ~.' leikO,_ l 

1 ,,~1 sin ke(1 - 2 - r -  I ) • 

x exp Like T + ikco(r + 1) �9 ~ cos j=O 
(3.1.15a) 

B2(n) = ~ ,  LVkl 2 1 
k = - ~  leik2'-- -112 4 sin2 " n + l  

{"-~i sin ke(1 - 2 - ' -  l) 
x Re ( n - r )  k e ( l _ 2 _ r _ l  ) 

r 

I- r+l )] j=if.lo cos [~e (1 1)] } x e x p L i k e - - - ~ + i k ~ ( r + l  �9 

(3.1.15b) 

It is easy to show that the limit of B~(n) always exists and takes the value 
zero. In fact, the term within the sum over k can be easily bounded by 
4(I Vkle/le ik'~ 112), so that we can interchange the limit into the sum; we 
simply have now to discuss the existence of this last limit. To this end we 
distinguish two cases: 

(i) ker The summand of Bl(n) can be bounded from above by 

I Vkl z n 1_ 
- -  k ~  1 -  (3.1.16) 4 leik,o - ll2n + 1 n ~=oj=o 

Then we have 

lim I:I c o s k - ~ ( 1 - ~ )  = 0  
r~ +~j=o 2 

which, by Ceshro, immediately implies the result. 

(3.1.17) 
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(ii) k e = 2 n q ,  q e Z .  The summand of B~(n).can be bounded by 

n - - I  
I Vd 2 1 n 1 ~, ls in(nq2_r)l  (3.1.18) 

4 le;i,~ , -  -112 2nq n +  1 n r=O 

But clearly lim~_ +~ Is in(nq2- ' ) /=  0, which allows us to apply the Cesfiro 
argument and gives the result. 

As for the limit of B2(n), we have the following: 

Proposit ion 1. Ve/2xeR\{0}: 

k = + ~ +.-,~ sin �89 1 - 2 - - r - -  |) 
lim B2(n)= ~ '  Iv,12L Tk--~?5]-:-;:~ 

I 1 ~  +00  k =  --o0 r = O  2 

x cos kog(r+ 1). cos 1 -~-~ (3.1.19) 
j = O  

The proof consists in an application of Lebesgue's dominated con- 
vergence theorem. The main difficulty is to bound the summand in B2(n) 
by a convergent series in k e  Z, uniformly on n e  [~; this follows from a 
suitable resummation. Such a resummation is possible because of the very 
fast convergence of the cosine argument in the iterated products of 
(3.1.15a) and (3.1.15b), which allows us to replace those products by 
powers of cos(ke/2)  for large r ~ ~. The required bound is then obtained by 
applying Abel's inequality, which leads to the computation of a simple 
geometric series. In the latter, small denominators are treated by means of 
the Diophantine condition on ~o/2n and using the exponential decay of the 
Fourier coefficients Vk. The detailed proof is quite lengthy and is deferred 
to Appendix A. 

3.2. Proof  of Part  2 

With the notations given in the statement of the Main Result in 
Section 2, we can write the function G defined in (3.0.1) as 

G(O, r; ke)  = f A eik~f~=~+ /~l=~l+ "'" + /~'~=1~1 df~(~t) (3.2.1) 

which, for the properties of the measure fi, can be easily written as 

G(O, r; ke) = e ~k'/~'~ dfi(~t) = Pie ik"~ (3.2.2) 
1 
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Setting Qk = Z T = j  Pj e'k~',, we find that the limit (2.2.3), if it exists, is equal 
to 

E( ( J ,  + l - J o )  2) 
lim 

, , - + ~  2 ( n +  1) 

k =  -boo IV~l ~ k w  
= lim ~ '  [ei~,o--] 12 4 s in-  ~ - 

t l ~  -boo k ~  _ ~  

x Re | n - - ~  r_~O Q~§ Je~k'~ § ~ (,7 -- r) sin + i cos 

(3.2.3) 

where, of course, [Qk[ ~< 1. 
We recall R(n)  the sum in the real part of (3.2.3); it can be rewritten 

a s  

R ( n ) =  ~ (ake~k'~ "§ n s i n - ~ - - + i c o s - ~ -  
r = O  

koJ n- I  
- sin--~-, r ~-o (Qke ik" ) r+ '  r (3.2.4) 

The sum can be computed explicitly and gives 

kr Qkei~, o 1 ko9 Qi, eik,o (Qkeik"~) "+l  
R (n )  = sin --~-. 1 - Qke  ik~ n + sin --~-- ( ~ Z  Qke~-~ko~) ---2 

ko~ ~k,o 1 - (Q~eik'~ " 
+ i c o s - - - f - . Q k e  1 - Q k e  ~k'~ 

kco (Qkei~'~ 2 
- sin --~-. (1 - Qkeik'~ 2 (3.2.5a) 

whenever Qkei~'~ 1, and 

n(n + l ) . k~o k w  
R(n)  = 2 sm -~- + in cos -~- (3.2.5b) 

in the case Q,e~*'o = 1. 
The computat ion of the limit (3.2,3) is now quite simple and we defer 

it to Appendix B. 
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3.3. Proof  of Part  3 

The proof of part 3 follows in a straightforward way by observing 
that, for T ( o t ) = c t + p m o d [ 0 , 2 n [ ,  with p/2neR\Q,  e e Z \ { 0 } ,  and 
f(00 = �9 - rr, V~ e [0, 2n[, we have 

G(O,m;k~)=f eik~'lf(=)+f(rt~)+"'+ftr'~)~)dl~L(~)=6,,,+LO (3.3.1) 
[O.2n[ 

Vm >~0, with the definition G(0, - 1 ;  ke)=  1. As a consequence, we get 

E((J"+'-J~ *= +~ IV*12 ( n ) 
= Y" [eik,~_ljZ 1 -n - - -~coskco  (3.3.2) 

2 (n+  I) k = - ~  

which converges to the quasilinear estimate of the diffusion coefficient as 
r t - -*  -+- oO. 

3.4. Proof  of Part  4 

We now prove in detail part 4 of the Main Result. 
For simplicity we will give an explicit proof for f(~t)= cos ct, since the 

generic case does not present any further difficulty. Let us consider the 
perturbed map Mp rewritten in the form (2.1.5), for an arbitrary e ~ R\{0}: 

f0 , ,=0 , ,_ l  +~o+ect,,(~) mod[0, 2~z[ 
Mp: ~ ( I ,  = I,,_ 1 + V(O,,) 

(3.4.1) 

where the perturbation is given according to ~,,(~)= cos(~ + np), ~ ~-~1. 
Assume that (~o, p) satisfy conditions (2.3.5), (2.3.6), and that the potential 
V(O) is a periodic analytic function in the complex strip [Im01<fl,  
bounded by I V(0)I ~< C' and with vanishing mean. 

We want to show that the diffusion coefficient is zero for any value of 
e, since there are topological barriers for the action diffusion in the phase 
space. 

By introducing an auxiliary angle ~, we can write the map (3.4.1) in 
the form 

r = ~ + p rood[O, 2~]- 

O'=O+w+ecos~b modE0, 27r[ [(~b, 0, I) ~ T-' x R] (3.4.2) 

/ '  = / +  v(o) 

and it is straightforward to see that the map (3.4.2) has an integral 
invariant: 

d2= I dO ^ d(~ (3.4.3) 
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First we change the angle 0 by introducing a new angle O according to 
0 = O + eu(~), such that the map (3.4.2) reads 

~ ' = ~ + p  

O' = O + co [(~, O, I) ~ ~-2 x R]  (3.4.4) 

r = 1 +  v(o+~u(~))=y+ w(o,~) 

The following lemma holds: 

I . e m m a  1. The function u(~) is explicitly given by 

I sin(r - p/2) 
u(~) - (3.4.5) 

2 sin(p/2) 

and the new potential W(O, fh) is a periodic analytic function in the 
complex strip: 

IIm OI < d and IIm ~l < A (3.4.6) 

with vanishing mean, for a suitable choice of A > 0. Moreover, in the latter 
domain the potential is bounded by I W(O, ~)1 <~ C'. 

ProoL It is straightforward to verify that u(~) satisfies the homologi- 
cal equation: 

u(~ + p) - u(~) = cos ~ (3.4.7) 

which can be solved since p/2n is irrational by the hypothesis 1 by providing 
a Fourier expansion and Eq. (3.4.5) is the unique solution with vanishing 
mean. By definition the new potential W is analytic in the domain 
llm O + ~u(~)l < fl; then by using the explicit form of the solution u we can 
choose A according to the equation 

2(fl - A ) sin(p/2) 
sinh d = (3.4.8) 

One can easily see that a nonzero solution ,J exists for any value of e. 
Finally we observe that the map (3.4.4) has an integral invariant of the 
form D2 = I dO ^ d(~, obtained by transforming (3.4.3). Then if we integrate 
D 2 on the closed surface I =  const we are lead to 

It I d O  ^ dd~ = Jt ( I+  W(O, q~)) dO ^ dq~ 
P 

I s!  

so that the mean value of the potential W vanishes. �9 

(3.4.9) 
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Remark. In the case of a general analytic function f(ct), we have to 
consider the whole Fourier expansion of f(0t) in the r.h.s, of Eq. (3.4.7); 
then the existence of an analytic solution is guaranteed by Brjuno's condi- 
tion (2.3.5). 

In order to prove the existence of topological barriers for the action 
diffusion of the initial map (3.4.1), we shall prove that the phase space of 
the map (3.4.4) is completely foliated by analytical invariant surfaces; 
indeed the projections of these surfaces on the initial space (0, I) provide 
bounded invariant sets for the dynamics of the map (3.4.1). Let us intro- 
duce the new action J according to I=J+v(O,  (b), where v(O, O) is a 
periodic analytic function of vanishing mean, such that J is a first integral 
of motion of the map (3.4.4). Then it is straightforward to see that v has 
to satisfy the homological equation 

o(o +to, r p)-v(o,  r w(o, r (3.4.10) 

so that, by expanding in the Fourier basis, the solution v can be formally 
written according to 

Wh.k e,hO+kr (3.4.11) 
v(O, q~)= ~ e i~h'~ 1 

(h,k)~(O,O) 

Since the potential W(O, O) is analytic in the strip (3.4.6), we can estimate 
the Fourier coefficients according to I Wh.kl <~Ce -t~h~§ The series 
(3.4.11) will be absolutely convergent in the strip (3.4.6) if the series 

e-m~(m--k 1) (3.4.12) 
rn~>l ?]rn 

is convergent. By using the Hadamard criterion, we obtain the condition 

2im ( e-m'~(m + ~/,. _ \ ~ 1)) < 1 (3.4.13) 

but by using the Brjuno condition (2.3.5) we have lim,,_o~ (qm) -~/'~= 1, 
SO that Eq. (3.4.13) is always satisfied since ea>l  for any d > 0 .  This 
completes the proof of the Main Result, part 4. �9 

Remark. An analogous proof for the existence of topological barriers 
to the diffusion can be given for any analytic quasiperiodic modulation 
f(cq ..... eta) assuming a Brjuno condition for the frequencies (to, p~ ..... Pa). 
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3.5. Proof of Part 5 

We start by considering the variance of the process J,, + ~ - Jo given by 
(3.0.2) in Section 3. We first recall some notations: 

b 
Sb(r de~f ~ (Xn(~) VD e {-- l, 0,...}, o~_1 = 0  (3.5.1) 

where ~,,(~), r  is an i.i.d, real random process on some probability 
space (12, ~ , / ~ a )  and the distribution of #a  is absolutely continuous with 
respect to the Lebesgue measure on R. The expectation E is taken with 
respect to #a ,  and by X(ek)  we denote the characteristic function 

S ( z )  ,Je=r fa ei"~"~r d!a_Q(~) 

which is independent of n since the process is identically distributed. For  
any a > b the function G now takes the form 

G(b + 1, a; ke) d_,__r E[eik,:csolr s~lr = f ( e k ) " -  b (3.5.2) 

A straightforward manipulation allows to rewrite the expression (3.0.2) as 

E((J,, + 1 - J o )  2) 
2 ( n +  1) 

=k=+~ '  ~Vk[ 2 1 { 2 ( n + l ) [ 1 - - R e . ~ ( e k ) ]  
k = - ~  e;- - ] 1 2 2 ( n + 1 )  

+ 2 e i k a ' f 2 X ( e k ) -  9f(ek) 2 - 1 ] n - (n + 1) eikc~ + [e;k~ "+ 1] 

(3.5.3) 

For  e S 0  (e = 0 being trivial) the limit for n--* +oo of the argument in the 
sum (3.5.3), which we call P(n), exists and is equal to 

lim 
[Vk[2 { 

P(n) = [e;k,,,_ 112 Re 1 - ,~(ek) .+ 
eik'~ 2~f(ek) -- 5f(ek) 2 - 1 ] ] 

1 -- eikc~ 

(3.5.4) 

as, of course, ~(ek)eik~ 1, Vk~Z\{0} .  Moreover,  it is easy to prove that 

IP(n)[ <~,e,..k__l[2 [1 _ i~(sk)[]2 (3.5.5) 
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We show that the previous bound (3.5.5) is summable in k ~ 7/\{0}. To this 
end, notice that Vz ~ I~ the characteristic function Y'(z) is the Fourier trans- 
form of a density p e L~(R); therefore, by the Riemann-Lebesgue theorem 
it is continuous and lim:_ +oo X(z)=  lim . . . .  5f(z) = 0. As a consequence 
there exists n~eN such that VkeT/\{0}, Ikl>~n~, one has lSF(ek)l~<�89 
and 1 /{1-  [Y'(ek)l}<~2. Furthermore (see Lukacs, 134) p. 16) since the 
distribution of the density p 

F(x) dcd I p(r d~ (3.5.6) 
[ - ~ . x ]  

is continuous in R (by Lebesgue), it cannot be of lattice type (such a dis- 
tribution being characterized by equally spaced discontinuities in R). Then 
lY'(z)l < 1, Vz~ I~\{0}, and for k~7/\{0}, IkI <n~, we can write 

lY'(ek)l ~< Sup lY'(z)[ ~r p~ < 1 (3.5.7) 
: E  [IEI.,,, I~1] ~ [ - n ~  l e . h -  It-I] 

i.e., 1/{1-1X(ek)l}<~l/(l-p,). Denoting by M, the finite expression 
Sup{I/(1-p~.; 2}, we obtain for the upper bound (3.5.5) 

]V,t 2 
IP(n)l ~< le,k,,,_ 112 2(1 +4M~) (3.5.8) 

clearly summable in k e 7/\{0} because of the exponential decay of I Vkl and 
the Diophantine hypothesis on o9/2n. We can finally apply the Lebesgue 
theorem and get 

k=+o~ iVkl2 f eiko,[2y'(ek)_X(ek)2_l]} 
O(Jo)=Re __~'_~ le~,,O_l[2 1 - f f ' ( ek )+  i ~  ~ 

(3.5.9) 

which is obviously independent of Jo, so that we call it simply D in the 
following. 

4. C O M M E N T S  AND CONCLUSIONS 

The graphs in Figs. 1-4 illustrate the typical behavior of the diffusion 
coefficient as a function of the coupling parameter e in the case of the 
Markov modulation. Analogous computations can be performed for all the 
other classes of noise and lead essentially to the same portrait: the diffusion 
coefficient is a continuous function of e, vanishes at e = 0, and tends to its 
quasilinear estimate D q l  in the limit e ~ +oo. In an intermediate range of 
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Fig. 5. The same as in Fig. 1, for the case of a Gauss distribution with variance I and 
various choices of the mean a. 

e the coefficient shows osci l la t ions  a n d  can  be qui te  far f rom the corre-  
s p o n d i n g  quas i l inear  value. Even if the previous  t rend  seems to be qui te  
general,  it is also possible  to show some s i tua t ions  where a different 
behav io r  occurs (Figs. 5 a n d  6). In  par t icular ,  we have a l ready  m e n t i o n e d  
in Sect ion 3.2, case (ii), tha t  for a Bernoul l i  noise  there exist choices of the 

a.1.5 

/ / 
Fig. 6. The same as in Fig. 1, for a Bernoulli modulation with s ~ = - 1 ,  s2= +1, and 
statistical weights p t = p 2 =  1/2. The oscillating regime indicates that the random phase 
approximation fails. 
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parameters of the map for which the diffusion coefficient is singular; these 
singularities admit an interesting physical interpretation, as a linear varia- 
tion in time of the action variable (ballistic motion), c22"35"23~ Anyway, 
according to Proposition BI of Appendix B, the hypothesis (i) holds with 
probability one for a random choice of parameters, so that item (ii) actually 
describes a completely exceptional situation. It is also to be pointed out 
(see Fig. 6) that for any choice of the parameters the model with the 
Bernoulli modulation violates the random phase approximation in the 
sense that for large values of the perturbation parameter e the diffusion 
coefficient does not tend to its quasilinear part. This is evident by looking 
at formula (2.3.3): in fact, due to the structure of the coefficient Qk, the 
limit of D(Jo) does not exist when e ~ +oo. Finally, we want to emphasize 
that with both Bernoulli and stochastic modulations the same expressions 
for the diffusion coefficient--(2.3.3) and (2.3.7), respectively--hold even if 
we do not average with respect to the angle variable and take any value for 
the initial angle (see ref. 35 for a complete proof). 

For the sake of completeness we specialize the result on the stochastic 
noise to the Gauss and the uniform distribution, respectively. In the case 
of a Gauss distribution with mean a and standard deviation 0.>0 the 
diffusion coefficient is given by (3.5.9) with the characteristic function 

0-2 ~(ek) =exp (iake---f k2e 2) (4.1) 

For the uniform distribution the density is 

p(ct)de~{lo/(2r ) ifif I~ > r  (4.2) 

and the characteristic function reads 

sin ker 
Y[ ( ek ) = e ik~a - -  (4.3) 

ker 

Figure 5 shows that for the Gauss distribution the diffusion coefficient 
converges to the quasilinear estimate as e ~ +oo, but in a different way 
according to the mean value a of the distribution itself. In particular the 
convergence is monotonic for a = 0 ,  whereas when a4=0 an oscillating 
behavior arises with regions of superlinear regime. As outlined in Sec- 
tion 2.5, we remark that existence and positivity of the diffusion coefficient 
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represent a first step in the investigation of stronger statistical properties 
of the model--central limit theorem, Donsker's invariance principle. 
A numerical analysis of these properties is the subject of a further paper. ~261 

A P P E N D I X  A. PROOF OF PROPOSIT ION 1 

Before giving the proof of the existence of the limit of B2(n), we must 
return to the true map T(~)=2r  mod[0, 1 [ - � 8 9  ~ [ - � 8 9  �89 It is easy to 
see that the integrals (3.1.3) defining the function G(0, m;ke) computed 
with the true map are given by 

~ l i2  e ikar + r l r  ... + r ' l r  d#a(~) 
J 

- 1/2 

. . . .  ' 

(A.1) - ' - - - )  11 [_~-\ ~-7)_J 

The similarity of the new expression of G(0, m; ke) with respect to the 
previous one is due to the fact that the dynamical systems 7" on [0, 1 [ and 
T on [ -  �89 �89 are trivially conjugated by a simple translation on R. 

Consequently, B2(n) now takes the form 

k=+~. 1 " - '  s i n � 8 9  l) 
n2(n)= ~ '  IVkl2n~--~ )-'. (n-r)  � 8 9  

k =  - - ~ ,  r = 0  

x cos[k~o(r+ 1)] .  cos - -  1 -  (A.2) 
j = 0  

whereas B~(n) is again zero and the quasilinear estimate Dq~ of the diffusion 
coefficient does not change. From now on we refer to B2(n) as given by 
(A.2). 

To check the existence of the limit of B2(n) we will distinguish two 
cases: 

(i) el2neR\Q. 
(ii) el2n~Q. 

Case (i). We now consider the case of e/2n ~ R\Q. The proof consists 
in an application of Lebesgue's dominated convergence theorem. The main 
difficulty is to bound the summand in (A.2) by a convergent series in 
k~Z, uniformly on n e N ;  a nontrivial resummation allows to get such a 
bound by using the exponential decay of the Fourier coefficients and the 
Diophantine hypothesis on the rotation number o9/2n: 



Modu la ted  Diffusion. Analytical Results 957 

ii 2 1 ".s, l s i n � 8 9  s intke 
IB2(n)l~ < " k "~--~,.~o (n-r)  T~(e(~-_-~-;=i; �89 

I x c o s k ~  1 1 1 
j=o n + l  

r+, ( , )  
x ~o(n-r)  coskco(r+l).I-I cos2k 1--~ 

r j = O  

sin �89 
x ~ (A.3) 

By applying the mean value theorem to the difference in the absolute value 
in the first sum, we get a bound of type Mke2-"-2. Consequently the first 
sum in (A.3) admits the upper bound Mak IVk12/2, which is uniform in 
n ~ ~ and integrable in k E Z\{0}. Omitting the factor I Vkl 2, we find that 
the second sum in (A.3), which we call B3(n), is bounded by 

B3(F/ )~-~-  i- E (n--r)cos[kco(r+l)]. 1-I c o s ~ k  l - -  
r=O j = l  

sin �89 
x ~ (A.4) 

Set 

= -~- mod[0, n[ (A.5) 

and introduce the distance from the set n77 given by 

(k  2 Z)  der f { { ~ }  {~'~}} dist ; n = In , ~ -  (A.6) 

which is surely positive Vk ~ 1~. 
We look for an index j(k)61~ such that Vjs t~, j>j(k), 

l k e l  ( k e )  
-. < ~ dist 2 2 j -~--; 7r7/ (A.7) 

A simple calculation shows that a possible choice is given by 

do, F k /2 l 
](k) = 1 log 2 log Ldist(~- ~ nZ)J (A.8) 

822/76/3-4-14 
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Therefore Vj~ N, j > j ( k ) ,  we have 

1 (--~;rtZ) (A.9) dist ( ~  (1 - 1 )  ; rcZ) ~> ~ dist 

Splitting the sum (A.4) over the intervals [0,](k)]  and [ j ( k ) +  1, n - 1 ] ,  
we can bound (A.4) as 

sin �89 sin �89 
B~(n)~ �89 U(k)+l ]+  �89 

,,gl n - r e 1 
f f i) tk)+ln+iCos[k( 'o(r+l)] I-] cosk~  I 

r j = j ( k }  + 1 

(A.10) 

By the very definition of j(k) we have that Ve/27t irrational and Vje I~, 
j >  j(k), 

sgn [cos k 2 (1 - 1 ) 1  = sgn (cos k 2)  (A.11, 

We now introduce the following notation Vr ~ 1~, ](k ) + 1 <~ r <~ n - 1 : 

f~ a~d I-[ k ~ 1 - (A.12) 
j =j (k)  + I 

and 

I ~ I r + I  d~_r n -- r cos[kco(r + 1 )] .  sgn cos ~ k (A.13) 
ar n +  1 

Since V r = j ( k ) + l  ..... n - 2  we clearly have 0 < f r + l ~ < f r ,  by applying 
Abel's inequality, ~36~ we find that the sum in (A.10) admits the bound 

n- - I  ' f r  E a~ ~<A- f),k,+, (A.14) 
r =)(k) + I 

where 

A = Sup [ a ) t k ) + l  + "'" +a , I  
se {)(k) + I...., n-- I} 

Since f~kl+ I ~ 1, we have 

n - I  

j~  a , . f ,  <~A 
r =  ~+1 
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and, moreover, Vs=j(k)+ 1 ..... n -  I, 

~rRe f jt~k n--r I ( e )] r+ ar e ik~ sgn cos ~ k 
r = j l k ) + l  r =  ) + 1  r / + l  

= Re {[e;kO~ (sgn cos 2 k ) ] "  1 
n + l  

• 2 x"--r 
L-r = ) ( k  ) + I x = e- ik~ s g n  cos(c.k/2) ] 

A standard derivation of the geometric series 
immediately (A.15) and consequently (A.4) as 

1} 

(A.15) 

allows us to bound 

(A.16) 

sin �89 sin �89 
B3(n)< �89 [.](k) + 1] +4  �89 

x l l - - e - ' k ~ ' ( s g n c o s 2 k )  -2 

Note that in the case n<~j(k) the bound is simply given by the first 
term is (A.16). We have thus proved that the bound is uniform in ne l l .  
Concerning the summability in k~ 2~\{0}, we first observe that thanks to 
the further factor I Vkl 2, the bound 

(A.17) 

sin �89 
I [ ] (k) + 1] 

4 
k, dist(ke/2; 

x dist ( 2 .  l t Z ) . ,  sindist(ke/2;~___Z)dist(ke/2; ~Z) " 1 +  

enables us to apply Lebesgue's dominated convergence theorem. For the 
term in co we have 

1 ( ) (  II-e-ik~l-2 
13 2 = e - i k c a  I - 2  - e  -ie~ sgn cos ~ k I I+  

if sgn cos �89 1 
if sgn cos �89 -1 

(A.18) 

I rr 2 I 

le ik~ - 11-2_ 4 sin2(kco/2) ~< 16 {kco/2} 2 (A.19) 

After having set {x} ~r x mod[-n/2, n/2[, we have 
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But for a suitable m e 77 (depending on k), one has 

I_~_t-2 = ~.~__ rcrn -2 1 co m -2 
- ~ k  ~ I ~ - k -  

1 72ok2(~,o - II (A.20) 
~< re-" i 

where 7,o>0 and /~,o>~2 are the parameters defining the Diophantine 
character of the frequency ~o/2n. 

Hence 
i ,2 1.2(~,~- i i  ( A . 2 1 )  le ik'~ - 11-2 ~< ~e,o,, 

In a similar way we get 

lei*~'+ 11-2 ~4- -p ~- 2 . ,  yr - 1) 

and finally, since P,o >/2, 

1 - e  -ik'~ sgn cos~k  ~.~'dl~'o-2~'21r2(p~-l)-, r o ~  (A.22) 

which is surely summable when multiplied by I Vkl2 I(sin ~ek)/( �89 which 
concludes the proof of case (i). 

Case (ii). Let e/2n e Q, e = p/q,  p e Z\{0}, and q e N. The crucial point 
is again the estimate of (A.2), which, after the position k = l q + m ,  with 
l eY and me  {0, 1, 2 ..... q - 1 } ,  can be written as 

+~ q - '  2 1 "~ '  r)i+__i~ii [ + m ) r t p (  1 ) ]  E E I V,q+ml ~--~  ( n -  cos (lq 1 -  
I = - - c ~  m = O  r = O  = q 

sin [n (p /q ) ( l q  + m)(1 - 2 - ' -  1)] 
x cos[(r + 1 ) ( l q + m ) w ]  r c (p / q ) ( l q+m) (1  - 2  - ' - t )  (A.23) 

We now proceed to an estimation, uniform in n e 1~ and summable in 1 �9 7], 
of each of the terms in the sum Z~,z ,  which we simply call ~t(n). 

In this last term we separate the contributions for m = 0 and m > 0 in 
the corresponding sum, thus obtaining 

tpt(n) <~ ~l.o(n) + ~b l, l(n) (A.24) 

The term q'~.o(n) is easily seen to be bounded for above by 21V~ql z, while 

q--' ~ rl~.iI I p ( q )  11 qJ~.dn)<~ ~ IVtq+.,I 2 cos nm - r tp  l +  (A.25) 
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Notice that Vm = 1, 2 ..... q -  1 and Vl�9 7', 3](m;/)~ r~/vj>j(m; l): 

l 1 dist (~m p ; rt7/) (A.26) 

It is then possible to choose a suitable ](m; 1) for which Vie 7/, Vj > ](m; 1), 
and independently on m = 1, 2 ..... q -  1, 

m 1 cos [ m'q p (, + q) 
(A.27) 

Sup ] ( m ; l ) ~ l + + l o g [ r c [ p I ( l l l + l ) ] ~ r ] ( l ) <  +oo 
m =  1,..., q - -  1 

and 

sd~---r Sup Sup cos ~zrn + ~ d i s t  rcm ;lt7/ ; 
m = I, . . . ,  q - -  1 

p 1 
c o s [ r C m q - - ~ d i s t ( T t m P ; ~ z ) ] } < l  (A.28) 

and independent of l �9 7/. Using the previous inequalities, we can immediately 
bound ~b/,l(n ) as 

q,,.,(n)<<. ~ IVy.+.,[ 2 j ( l ) + l + S  2 (A.29) 
m = l  

which allows us to bound ~O/(n) as 

I~',(n)l ~<2 Igq/12 + 1 + 1 _ ~ +  1 + - -  

q - - I  

x y '  IVl~+.,I  2 
I n =  1 

log~zlpl ~ ] 
log2 + log(I/I + 1) 

(A.30) 

clearly summable in l e Z  because of the exponential decay of I V~+.,I 2. 
We have now to check the existence of the limit n --* ov of ~b~(n). As in the 
irrational case, we define the two quantities 

[ ( 1)1 cp,(n)= H cos (lq+m)n p- l- 
. =o j=o  q 

sin[ n(p/q )( lq + m )( 1 - 2 --r-- 1) ] 
• rc(p/q)(lq+m)(1 --2 - r - l )  cos[(r  + 1)(lq+m)og] 
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1 " - '  r+' I p (  1 ) ]  ~o2(n)=n+ I ~or,__IJoCOS (lq+m)n 1 - ~  
r =  . ~  

sin[n(p/q)(lq + m)(1 - 2-~-  i)] 
x n(p/q)(lq+m)(1 - 2  -~- l )  cos[(r + l)(lq+m)tn] 

(A.31) 

If the limits n--* + ~  of the above expressions exist, then l im._ +~ ~ ( n )  
will exist in turn and take the form 

q - I  

lim ~Ot(n)= ~ IV~o+.,I2[ lim t p l ( n ) - l i m  q~2(n)] (A.32) 
t t ~  + o 0  m = O  t l ~  + o f )  t l ~  +c~o 

l im,~ +o~ tp~(n) trivially exists for m =  1,2, . . . ,q-1,  since the series is 
absolutely convergent by the ratio test. The case m = 0 can be treated quite 
similarly, as 

sin [ ( 1)1 
n r=0 \ 2r+ 'J  j=o 

(A.33) 

where the ratio test applied to the sine term ensures convergence. 
As for the l im,~ +~ ~o2(n), we again distinguish the cases m =  

1, 2 ..... q - 1  and m = 0. In the first case we have the following bound for 
the summand in q~2(n): 

r 1-I cos (lq+rn)rr p j=o q 1 -  (A.34) 

which converges to zero as r---, +oo, so that 
l im,_ § q~2(n)= 0 follows from Cesfiro's theorem. 

For m = 0 the limit can be rewritten in the form 

the existence of 

1 "~ '  ( - 1 )  pt+' sin(rtpl/2 r+~) 
,,-lim+~ , +  1,.= o2_, ~ '~1  - 1/--~ i)  

x c o s [ ( r +  l)ogq/]. 1--I cos rcpl 1 -  
j=O 

and noting that the sum admits an upper bound uniform in n ~ I%1, 

2 "~' sin(rcpl/2 ~+') lrcp/l<2 ~ r~_i+~< +co 
Inpll ~=o r ~ a  ~ r=o 

we easily deduce that l im,~ +o~ q~2(n)=0. �9 

(A.35) 

(A.36) 
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A P P E N D I X  B. PROOF OF PART 2 OF THE M A I N  RESULT 

For the existence of the limit (3.2.3) we distinguish two cases, 
according to the statement of part 2 of the Main Result. 

Case (i). It is easy to verify that Vke~:\{0} we can write the identity 

N . 2k e 
1 - 1 Q k l 2 = 4  ~ p j p j .  s m  -~-(sj-sj . )  (B.1) 

j , j ' = l  
j ' < j  

On the other hand, as IQ~l ~< 1, we easily have 

N ~ ke  
I Q k - e - i k ~ ' l > ~ 2  ~ ,  p j p / s i n ' - ~ ( s j - s / )  (B.2) 

j , j '=  1 
j ' < j  

According to the hypothesis (2.3.2), we can write then 

IOk -e- ik~ �89 lkl ~, Vk e Z\  {0} (B.3) 

The previous bound allows us to prove the existence of the diffusion coef- 
ficient. Indeed the expression (3.2.3) is equivalent to 

lim n k = +,oc ~ akeikOJ 
Z I Vkl 2 Re 

. ~ + ~  n + 1 k = - ~  [ 1 - -  Q k e i k ' ~  

+ lim 1 k=+,~y, IVkl2Re ~'(Qkeik~176 
n ~ + ~ n q - 1  k = _  ~ [ ( l - - Q k e i k C ~  2 

+ c ~  "iQke'k~ 1---(Qkeikr176 - -  Q k e  ik~ J (B.4) 

and as the second series admits the upper bound 

[ cot ( ) ] ~ '  Igk] 2 .[l_akeikO~12+ ii_~ke;k,o I (B.5) 

which is convergent because of the Diophantine hypothesis on w/2n and of 
the previous result (B.3) about I 1 -  Q k e i k ~ l ,  we obtain 

lim E((:/,,+ l - -J0)  2) 
, -  +~ 2(n+ 1) 

[ ,'<= + ~  k = +o~ f Qkeik.o~ 
= -  ~ '  IVkl-'+ ~ '  IVkl2Re,[ ~ �9 (B.6) 

2 k = - ~  k = - ~  1 --  Qke i k '~J  
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There is no difficulty in proving that the condition (2.3.2) is satisfied with 
probability one in the sense specified by the following: 

P r o p o s i t i o n  B1. The condition (2.3.2) is surely satisfied if at least 
one of the terms 

s 
2---~(sj-s/), j , j ' = l , 2  ..... N with j > j '  (B.7) 

is Diophantine. In such a case the choice of the statistical weights 
Pt ..... p,v~ ]0, 11- is completely irrelevant. 

The Lebesgue measure of the set of points g=((e/2n)st ..... 
(e/2n) sN)e R N, such that all of the terms (B.7) are not Diophantine, is 
ze ro .  

Case (ii). First we give the following lemma. 

I . emma B2. The following propositions are equivalent: 

(a) 3keZ\{0}  such that Q,e ik~~ 1. 

(b) qql, q2 ..... qNeZ and k e Z \ { 0 }  such that, Vj= 1, 2 ..... N, 

2~ ~sj=~ qj-oJ (B.8) 

Proof. Let us suppose there is keT/\{0} such that Qke ik'~ = 1. By the 
definition of Qk and the normalization of the measure, the condition 
IQkl2= 1 is equivalent to 

N N ke 
pjp/[cosk~(s j -s j , )7-1]= ~ pjp/s in2--~(sj-s j . )=O (B.9) 

j , j ' = l  j , j ' ~ t  
j ' < j  

Owing to the positivity of the parameters Pt, P2,..., PN, it is clear that the 
previous relationship can be satisfied if and only if 

k~ 
sin -:- ( s j -  sj.) = 0, Vj, j ' =  1, 2 ..... N, j ' < j  (B.10) 

g 

i.e., Vj, j '  = 1, 2 ..... N , j ' < j :  

k~ 
-~- (sj-- s/) = rcmj, j. (B.11) 

where mj.j, e7/\{0} as, by definition, ker and all the sj are distinct. In 
this regard notice that the identity (B.I 1) immediately applies also to the 
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case j =  j ' ,  by assuming my.j= O, and to j '  > j ,  by setting m j . / =  -m/.y. 
Returning to the initial equation, we obtain 

N 

1= Qke ikc~ Z PJ eikesj+ik~ (B. 12) 
j=l 

and by multiplying by exp(-ikesj,), with j ' e  {1, 2 ..... N} fixed, we deduce 

N 

exp(-ikesj,)= ~, pjexp[ike(sj-s/)+ikw]=exp(iko~) (B.13) 
j=l 

Therefore, with k#=0, there exists qj, eZ such that og+es/=(2n/k)qj,, 
which proves the implication ( a ) ~  (b), by the arbitrariness of j ' e  
{1,2 ..... N}. 

Conversely, suppose that 3qt, q2 ..... que  Z and k e Z\{0} such that 

2n 
esj=---k-qj-co Vj= 1, 2 ..... N (B.14) 

where, denoting by GCD the greatest common divisor, we can surely 
assume that 

GCD{k; GCD{q,,  q2,-.-, qu}} = 1 (B.15) 

We have then, 

that 
Vh {h Z\{0}/h = gl, Z\{0} } 

N N 
Qheih'~ ~ pjeU'"J+ih~ ~ pie ih(2n/k)qj= 1 (B.16) 

j ~ l  j = l  

Moreover, because of (B.15), the values of h e Z\{0} for which Qhe ih~ = 1 
are only those of the set V,o. As a conclusion, (b) ~ (a) and the lemma is 
proved. �9 

Owing to the previous result, a straightforward calculation shows that 
whenever the hypotheses of case (ii) occur, Eq. (3.2.5b) is satisfied. This 
implies the divergence of the diffusion coefficient, limit (3.2.3), which 
completes the proof. 
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