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A Model of Modulated Diffusion. 
II. Numerical Results on Statistical Properties 
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We investigate numerically the statistical properties of a model of modulated 
diffusion for which we have already computed analytically the diffusion coef- 
ficient D. Our model is constructed by adding a deterministic or random noise 
to the frequency of an integrable isochronous system. We consider in particular 
the central limit theorem and the invariance principle and we show that they 
follow whenever D is positive and for any magnitude of the noise; we also 
investigate the asymptotic distribution in a case when D = 0. 
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1. I N T R O D U C T I O N  

In  refs. 1-3 we i n t roduced  and  s tudied  ana ly t ica l ly  a m o d e l  of  m o d u l a t e d  

diffusion; m o r e  precisely,  we cons ide red  an in tegrable  i s o c h r o n o u s  system 

whose  f requency  was successively pe r tu rbed  by de te rmin i s t i c  o r  pure ly  

r a n d o m  noises. W h a t  we c o m p u t e d  was the diffusion coefficient D for 

the ac t ion  var iab le  p rope r ly  r eno rma l i zed  on  the phase  space f2. As for 

the s t a n d a r d  mappings ,  D is the  coefficient  of  the d o m i n a n t  te rm in the 

a sympto t i c  e x p a n s i o n  of  the va r i ance  of  a pa r t i cu la r  s tochas t ic  process  
S, , (x) ,  x ~ g2, tha t  is, 

E ( S  2) = 2Dn(1 + o(1 )) (1.1) 
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where the expectat ion is taken with respect to the probabil i ty measure  p on 
t2. The process S,, is related to the evolution of the action variable in time: 
it is therefore interesting to investigate the statistical propert ies of a such a 
process. Among them we will consider in this paper  the central limit 
theorem (CLT)  and the invariance principle (IP). In order to establish a 
C L T  for the process S,  it is necessary that D be finite and different from 
zero; in this case a C L T  holds whenever, Yz ~ R, 

la xel-2; [E( f f i ) ] l /2S , , ( x )<z  ,,~ + , (2~)q7 5 ~ e-~ /2du  (1.2a) 

or, equivalently, 

I~ x E t 2 ; ( 2 D n ) m S , , ( x ) < z  , - + o ~ '  (2~ -oo 

A strong refinement of the C L T  is the so-called invariance principle, which 
consists in redefining the process SE,,1, 4 without changing its distribution, 
on a new probabil i ty space with s tandard Brownian mot ion (W(t),  t >t O) 
and states that  

S[nt] weakly 
(2Dn)m , ~  + , W(t) (1.3) 

A more  direct way to understand (1.3), which also gives the prescrip- 
tions to check it numerically, is that after a rescaling of the discrete time 
n--* [nt] and for /a -a lmost  all x~12,  the process St ,o(x) / (2Dn)  u2 is, as a 
function of t, approximate ly  distributed for n large as the path  up to time 
t = 1 of a Brownian particle (see refs. 4--7 and ref. 8 for applications of this 
idea). The possibility to check conditions (1.2) and (1.3) in our  cases relies 
on the structure of the process S,(x) ,  which, as we will show in Section 2, 
can be written as 

n - - I  

S,(x)  = ~ qj(0, ~) (1.4) 
j=o 

where x is now the couple (0, ~ ) e T  x B = t 2 ,  where T is the one-dimen-  
sional torus parametr ized by [0, 2h i ,  B is a compact  subset of  •, usually 
the unit interval or again the unit circle, and r b is an analytic observable 
on I2. We have already said that  our  model is obta ined by perturbing an 
integrable system: the per turbat ion is deterministic or  purely r andom and 

4 Here we denote by [y] the integer part of the real number y. 
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in both cases we equip ~2 with a probability measure p in such a way that 
the sequence of functions qj(8, ~) is a stochastic process on Q with the 
common distribution ~ (as we will see in Section 2, # has a product struc- 
ture, factorized on the spaces II- and B). Now it turns out that when the 
perturbation is deterministic, the stochastic process qj(0, ~) is stationary. 
This is not generally the case when the modulation is random. In the latter 
case the diffusion coefficient will not generally satisfy the asymptotic 
expression (1.1), although it is still given by 

D =  lim 1 E(S2) (1.5) 

We now return to the deterministic case because the statistical properties 
are, at least in principle, easier to understand. It will follow from Section 2 
that in this case 

qj(O, or)= g(TJ(O, or)) (1.6) 

where g is an analytic function of both its arguments. The mapping T has 
the structure of a skew system: 

{a ' =  TB(0t) 
T: 0' TA(0)+ef(a)  m o d [ 0 , 2 n [  (1.7) 

where TA is the irrational rotation, leaving invariant the Lebesgue measure 
~A, Ts is a smooth transformation of the unit interval or the unit circle, 
leaving invariant the probability measure Ps, f is a smooth function on B 
of order 1, and e is the perturbation parameter. The mapping T leaves 
invariant the product measure/~ =/~A X/tS, SO that, by (1.6), the process qj 
is stationary with respect to #, as anticipated before. The structure (1.4) 
of the process S, suggests that a CLT should follow from some sort of 
independence of the random variables r/j. We expect this is true whenever 
the strength of the perturbation increases, according to the well-known 
random phase approximationtg~: in this case the diffusion coefficient should 
converge to its quasilinear value, too. This last fact was effectively checked 
by us for almost all the modulations considered in ref. 1. What emerges 
from the numerical simulations presented in this paper is that also at 
intermediate values of e, for which the random variables r/j are surely not 
independent, a CLT is still valid. This means that some weak independence 
of the variables qj continues to persist and we guess this is a consequence 
of the ergodic properties of the mapping T, in particular of the factor TB. 
Before illustrating this point, we emphasize that T is constructed by 
coupling TB with a rotation and this makes very difficult to prove analyti- 
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cally a CLT even if TB satisfies strong Markov or Bernoulli properties 
(although for arbitrary aperiodic dynamical systems, including ergodic 
rotations of the circle, the existence of some particular observables satis- 
fying a CLT has been recently proved, c'~ When TB(~)=2ctmod[0,  1[ 
and e/2rc ~ ~ \Q ,  it is possible to show (~) that the skew system (12, T,#)  is 
mixing. We suspect that stronger properties hold, for example, exactness, 
which should guarantee those conditions of Rosenblatt (tp-mixing) or 
Ibragimov type sufficient to establish a CLT for the sequence r/~ + r/2 + . . . .  
Our guess is also supported by the computation of D itself: in fact the limit 
(1.5) is equivalent to the so-called discrete Green-Kubo formula: 

D = �89 + ~ E(~/or/j) (1.8) 
j = l  

The finiteness of the sum in (1.8) implies a fast decay of the correlation 
functions E(~/oqj), and this is just an indication of strong mixing properties 
of the system. As a completely different case, we will show that when TB 
is itself a rotation of the circle, then there is a large class of processes r/j for 
which the CLT is violated. In these cases we already proved in ref. 2 that 
the diffusion coefficient is zero, so that the variance of 3', is degenerate in 
the limit n ~ + ~ .  

The plan of the paper is the following: in Section 2 we recall the defini- 
tion and the main properties of our model; in Section 3 we illustrate the 
algorithms to check the CLT and we report the numerical results in the 
presence of diffusion: in this case we effectively show that a central limit 
theorem holds; we also look for a CLT when the transport is absent and 
D = 0 :  the limit (1.2) will recover, in this case, a sort of bimodal distribu- 
tion. Finally, in Section 4 we explain how to check the invariance principle 
and discuss the numerical results we found; the conclusions are in 
Section 5. 

2. A REVIEW OF THE M O D E L  

According to Section 2.1 of ref. 2 (hereafter referred to as Part I), we 
consider the modulated map on the cylinder (0, j ) e T  x R =  [0, 2n[ x ~: 

Mp: ~O,,+l=O,,+t.o+~f(ot,) mo d [0 ,2 ~ [  
t J , + ,  =J, + V(O,,) (2.1 

The noise is ef(ct,), w h e r e f i s  a smooth function of its argument and ~t, is 
defined in the following way: either it is a deterministic dynamical system 
generated by some transformation Ts acting on the space B of the initial 
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conditions Uo and leaving invariant the measure/aB, that is, ~,, := a,,(~o)= 
T~(~o), or it is a stochastic process a,,(~o) on B, where c% belongs to some 
probability space B (we still use the same letter), with probability measure 
PB (we sometimes drop the explicit dependence of c~,, on ~o). In both cases 
the strength of the perturbation is of order e: when the perturbation is 
small, our model should describe the transport in regions of slowly varying 
frequency; we return to this point in Section 5. It is convenient to describe 
the transport properties of Mp in terms of the new action J defined by 
Eq. (2.1.2) of Part I and consider the variation AJ,,+j given by (2.2.2) of 
Part I as the stochastic process S,, introduced in Section 1; the random 
variable qj(0o, ~o) on the space of initial data 0o, ~o is now given by the 
inner sum in (2.2.2) Part I and in the deterministic case it can be written 
also in the form (1.6). Still in the deterministic case, the quantity zJJ,,+~ can 
be viewed as an observable on the invariant set of the mapping (1.7), where 
TA is now the rotation T~(O)=O+oJmod[O,  2n[. All the arguments 
presented in the Introduction can therefore be translated to AJ,,+z. We 
now specialize the process u,,(~o) for the purposes of this paper, and recall 
the results found for the diffusion coefficient D of the corresponding 
process AJ n + i . 

(a) TB(c~ ) = 2cz mod[0,  1 [ l - ~[, which is a Markov map 
of the unit circle B I- ~ = - ,z ,  ~1- with respect to the Lebesgue measure 
/ [ lS= ]./L a n d f ( a )  = a ,  V~e [ - � 8 9  1 ~[. In this case the limit variance 0.z_ 2D 
exists independently of Jo according to formula (2.3.1) of Part I and a 
direct numerical computation also shows that 0"2> 0 whenever e # 0. 

(b) TB(~)=0.(cQ, where u =  {coi}i%_o~ belongs to the space A of 
biinfinite sequences at values in the set X =  {s~, s2 ..... SM}, S ~  R, 1 ~< i~< M, 
endowed with the discrete topology. The set of probabilities p { s j } - - p ,  
0 < p~< 1, Z~=I p~= 1 defines a measure/~ on A through /~ = Q oo /~, 
invariant with respect to the transformation 0. acting on A as the shift 
(0.~)~=~;+j. We take f (cQ=o%,  the projection of the word ~ onto the 
zeroth coordinate. The previous prescription is equivalent to introducing 
a random noise of type eo%, where { ~ , } , ~  is an i.i.d, stochastic process 
whose variables 0% take the real values s~,s 2 ..... SM with probabilities 
P~, P2,-.., PM, respectively. For M =  2 the limit variance can be written in 
a form independent of Jo, by setting Q, = pt exp(ikes~)+ P2 exp(ik~s,_): 

{ [ 2Qke'k~ ]~ 
a Z = R e  ~ IVkl 2 1 + - -  > 0  (2.2) 

k~o 1 - Qkeik'~ 

(c) TB(Ot)=~+p mod[0,  2n[,  with p/21re It~\Q, an irrational rota- 
tion, ergodic with respect to the" Lebesgue measure p L on •. The function 

822/76/3-4-15 
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f is chosen as f ( ~ ) = c o s  ~, V~e R. Owing to the persistence of invariant 
surfaces in the extended phase space (ct, O,j )e  [0, 1 [ x [0, D t [  x R, no 
diffusion in the action variable occurs, so that t r 2 -  - 0. 

(d) We finally consider a perturbation of stochastic type ect,,, where 
~,, is the realization of an i.i.d, real stochastic process ~,,(~to), Cto~ B, on 
some probability space (B,/.tB) and the distribution of/-to is absolutely con- 
tinuous with respect to the Lebesgue measure on R. The function f is 
simply the identity. The general expression for the finite and positive 
diffusion coefficient is specialized in Section 3 for two cases of  particular 
interest, the uniform distribution and the Gaussian one. 

3. CENTRAL LIMIT T H E O R E M  

In order to check the central limit property of our models we simply 
apply the definition and estimate, for large n ~ I~, the probability distribu- 
tion of the random variable 

J,, - Jo 1 " - '  
3 .(0,  ~) = 7 ~ - n  a -  x /~  c r./~o g(Ti(O'~)) (3.1) 

where a = (2D) 1/2 > 0 and (0, ~) ~ (2 = -g x B. 
Equivalently, on having defined a ]  > 0 as the variance of the random 

variable ( J , , -  Jo)/x/~, we can consider the stochastic process 

J,, - Jo H,,(O, :~) = ~ a,, (3.2) 

A simple calculation shows that, whenever ~,, > 0, Vn ~ ~,  and lira,, ~ +~.j 
z _ cr 2 > 0, the random variable &, converges in distribution to the normal O" n - -  

variable when n--+ + m  if and only if H,, satisfies the same property;  
however, as the variance of H .  is normalized to 1, we may expect that the 
convergence of H,, is faster than that of .~,,. 

The central limit theorem means that Via, b]  __c_ R there holds 

+~ (2r7) 1/2 e - ~'-'/-' d2 (3.3) 
n - -  [ a , b ]  

To check this we can choose an interval [ - c ,  c [  ~ R and divide it into a 
suitable number  of equal subintervals [ai, b~[, i= 1, 2 ..... N, b~=ai+ i, 
a l - -  - c ,  b u = c ;  for each interval [a~,bi [  we give an estimate of the 
measure p of the set: 

{ (0, or) ~ (2; a, ~< &,(0, ~) < b~} (3.4) 
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by means of Monte Carlo techniques, and compare it with the integral of 
the normal distribution on the same interval. Moreover, a piecewise 
constant fit of the probability distribution of E,, on the interval [ - c ,  c[ 
(at fixed n) can be simply written as 

p( { (O, e)E f2; a~ <~ ~,,(O, ot) < bi} ) 
P(Y)= L "~t,,,, ,~,t: (Y) 

i = I b i  - a i  ' 

(3.5) 

The .observable ~.(0, e) can be written in the form N.(0, e ) =  
n - - 1  '~ - j=o  g(Oj, OCj)/(~l/n a), where (Oj, o9) = TJ(O, o~), (0o, %) = (0, oc), and 

V k e i k ( w  + O) 
g(O, ct)= ~ eik ' ' -  1 [1 - -e  ik~fl~)] (3.6) 

k # O  

We distinguish some different cases according to the features of the fre- 
quency modulation, 121 as already mentioned in the previous section. 

Case (a). The system takes a form more suitable for computations by 
means of the change of variables f l=c t+  1/2, ~b=0/2rt, (~,fl)e [0, 1[ z, 
which leads to 

t / - - I  

~(~j, flj) (3.7) s,,(O, fl) = ~ -  
4 "  (7 ~J ~ 0 

with 

and, Yje N, 

V k  eik(~o + 2n4,} 

~(~b, f l )= • ~ - 1  [1 - e  'k~'p ,/2~] (3.8) 
k # O  

1 e (3 .9)  
T: ~ j=~ j_ ,+~-~  co-  + ~ f l j _ ,  moO[O,l[  

Because of the strong expansivity of Tn(fl)= 2fl mod[0, 1[, which gives 
rise to meaningless results after a few iterations, the numerical computation 
of the trajectory in the phase space I2 = [0, 1 [ 2 of an initial point (~b, fl) e/2 
cannot be performed directly and the use of symbolic dynamics is needed. 
If we want to compute the trajectory up to order n e N, the initial datum 
fie [0, 1[ can be represented in a suitable way by the finite sequence 
( h i ,  b 2 ..... b,,, b.+ ~ ..... b.,), where m ~ n  and f l = Z y ~ l  b/2-j  is the binary 
representation of the real number fle [0, 1 [. The action of Ts on fl is then 
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equivalent to the left shift on the sequence of bi and it is easy to find the 
following relationships for the n th iterate through T of the initial point 

p) E [0, I U: 

I m -- n 1 
Z 

J=' (3.10) 

~ , , = ~ + n ~ - ~  co -  +~-~ 2 ~J mod[O, 1E 
j=O 

~-~ n I n with p o = ~  a n d  z_.j=oflj=~.j=lbj+fln--fl. For numerical purposes a 
satisfactory precision can be obtained by setting m = n + 30. 

A Monte Carlo estimate of (3.4) requires a random generation of 
initial points (~b, ~) with uniform distribution in the unit square [0, 1 [2, 
which is equivalent to employing two independent random number gener- 
ators for / /~  [0, 1 [ and ~ ~ [0, 1 r; a uniform distribution of random points 
fl E [0, 1 [ can be easily achieved by assigning independently the random 
values 0, 1, with constant probability 1/2, to each bit b~, b2 ..... bm of the 
binary representation of ft. 

For simplicity we consider the potential V(O) = ~ sin 0, for which the 
function ~(~b, fl) turns out to be 

r - x/~ sin(to/2) 

and the limit variance can be easily computed. (2~ 
Figure ! shows the piecewise constant estimate of the probability dis- 

tribution p of E,,(~b,/~) at time n = 600 for r = (x/~ - 1 )/2 (the golden 
mean) and e =  16.137. For this value of ~ the diffusion coefficient D is 
significantly less than the quasilinear estimate 1. The probability distribu- 
tion is scanned over the interval [ - c ,  c[  = [ - 3 . 4 ,  3.4[, partitioned into 
200 subintervals of equal amplitude. The superposed, smooth curve is the 
normal distribution: the diagram suggests a good agreement between the 
two distributions, even for quite poor statistics (we sample the phase space 
[0, 1 [2 by 900,000 uniformly distributed random points only). 

An analogous conclusion can be deduced from Fig. 2, where the 
numerical distribution is represented for the case e = 100.123 over the inter- 
val [ - c ,  c[  = [ - 3 ,  3 E. With this choice of the coupling parameter e the 
diffusion coefficient turns out to be ~2~ close to the quasilinear estimate. 

Case (b). For simplicity we can confine ourselves to the case M =  2 
and consider the initial sequence c%= (COo, r co2,...), where coi~ {s,,s2} c R, 
V j ~ N u  {0}, and the symbols s,,s2 occur with probability Pt and P2, 
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Fig. 1. Probability distribution for the case of the Markov modulation 28 mod[0,  1[ after 
n = 600 iterations of the mapping Mp, with parameters co/2n = ( x / ~ -  I )/2 (the golden mean) 
and E = 16.137. The distribution is estimated over 200 bins of the interval [ - 3 . 4 ,  3.4[ by 
means of 900,000 random initial conditions. The normal distribution (smooth line) is super- 
posed. 

F'ig. 2. 

�9 3.2 3.2 

The same as in Fig. 1, with e = 100.123, on the interval [ - 3 ,  3[. The mapping Mp 
satisfies the random phase approximation. 
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Case (c). 
process 

respectively, p~ ,p2 E[O , l [ ,  p l + p 2 = l .  By setting (Oi,~j)=TJ(O,~), 
Vje I%1, ~j = (coj, r ~ .... ), the stochastic process to consider is then 

l n -  I 

Z,,(0, c 0 - - - U - -  )-" g(Oj, otj) (3.12) 
x / h a  . i =  0 

with the limit variance (2.2). For the particular case V(0)= x/~ sin 8 the 
function g takes the explicit form 

g(O, o~) = 1 ~  sin(o)/2) [c~  ( 0 + 2 + e f ( ' > ) - c ~  ( 0 + 2 ) ]  (3.13, 

Notice that, if ~0 = (o_) o, co), o.)z,...), then by definition f ( ~ , ) =  co,,, 'v'ne i~. 
The random choice--with uniform distribution--of the initial sequence ~0 
is therefore equivalent to a random, stochastically independent generation 
of the symbols ~o, o91 ..... o),,e {sl, sz}, provided that the values s) and sz 
occur with probabilities P t and Pz. 

The result of a numerical computation of the probability distribution 
for various choices of the parameters is shown in Fig. 3. 

By setting again V(O) = v/2 sin 0, we consider the stochastic 

1 n - -  1 

~ g(oj, ~j) (3.141 

with g(O, c~) as in (3.13). By means of perturbative techniques it is possib 
to prove (2) that the limit variance of (3.14), as n ---, +oo, is zero, so that v 

-4,2 4.2 

Fig. 3. Probability distribution for the case of the Bernoulli noise, after n = 600 iterations of 
M, ,  with parameters o)/2r~= (,v/5 - 1)/2 and e =  10.137. The distribution is estimated over 
200 bins of the interval [ - 4 ,  4[  by means of 950,000 random initial conditions. 
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1 
-I .O0000Ce-03 I .o000(~e-03 

Fig. 4. Probability distribution at time n = 1000 in the case of the quasiperiodic modulation. 
The parameters are co= 2n(x/'5-I)/2, p =2M4, e= 10.137. Estimated by means of 640,000 
initial conditions with 200 bins in the interval [ - 10 -s, 10-3[ ". 

Case (d). 
:onsider is 

cannot  expect that  a C L T  holds in this case. The probabi l i ty  d is t r ibut ion  
shown in Fig. 4 for the case ~ o = 2 n ( x / / 5 - 1 ) / 2 ,  p=2rc /4 ,  with e =  10.137, 
confirms that  there is no weak convergence to a normal  dis tr ibut ion.  
A more  interesting problem might consist in replacing (3.14) by the unit- 

~ ' -~  n - -  1 9 variance process ~j=o g(Oj, ~j)/a,, x//-n, where aT, > 0  is the variance of the 
~ n d o m  variable (3.14). Numer ica l  investigations suggest the existence of a 
'i?modal limit d is t r ibut ion for (3.14) as n ~  +oo. Such a dis t r ibut ion 
. ~llows from the project ion a long J of the invariant  surface suppor t ing  the 
~yilamics in the extended phase space (~, 0, j )  ~ [0, 1 [ x [0, 2~ [  x R. 

F o r  the potent ia l  V(O) = x /~  sin 0 the stochast ic  process to 

1 " -  | 

- ~=o g(Oj, otj) -'-,,(0o, %,  ~ ..... ~,,_ ~) x / ~ o  j (3.15) 

with g(O, or) given again by (3.13) and the limit variance a-" defined in terms 
of the diffusion coefficient as usual through a2 = 2D. 

Two cases of par t icular  interest have been investigated. Fi rs t  we con- 
sider the case of independent  r andom variables with uniform s dis t r ibut ion 
O(r-  I~ - al )/2r, for which the limit variance takes the form 121 

~  , I ' t / 3 , 0 ,  2 Isin(oJ/2)l 2 Re 1 - S f ( e ) - e ~ ' ~  - ~ ( e ) )  2 1 - eiT~ 

s Here 0 denotes the usual Heaviside step function. 
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0.42 

-5 

Fig. 5. Probability density at n = 600 for an i.i.d, random process, with uniform distribution 
O (r - I o t -a l ) / 2 r ,  ct =0.5, r=0.2.  Here to is again the golden mean, whereas e=  10.137. We 
took 1,100,000 initial points with 200 bins on the interval [ - 4 ,  4[. 

Fig. 6. Probability density after n = 10 steps on the interval [ - 3 ,  3[ for the case of an i.i.d. 
random process with Gaussian distribution of zero mean and standard deviation 1. Here 
e = 10.137, with 200 bins, and 4,000,000 initial conditions. 
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with Y'(e) = e *" sin(er)/er. Figure 5 illustrates the result of a Monte Carlo 
simulation performed for the value of the coupling parameter e = 10.137; 
the piecewise constant probability distribution agrees very well with the 
normal one. Another interesting situation arises when the i.i.d, random 
variables are Gaussian, with mean value a e R and standard deviation 
2 > 0. In this case the same expression (3.16) for the limit variance holds, 
with YC(e)=exp(iae--2%2/2). A good agreement with the normal law is 
achieved even by considering a small number of iterations of the perturbed 
mapping, as suggested by Fig. 6, n = I0. 

4. INVARIANCE PRINCIPLE 

The invariance principle, as illustrated in the Introduction, states the 
capability of the system to yield realizations of the process St,,o(x)/(2Dn) t/z, 
trajectories on the real line parametrized by the continuous time t ~ R+, 
with a probability distribution close to that of a Wiener process in the 
limit of large n ~ I~. In other words, a system for which an invariance 
principle holds can be viewed as a good "generator of Brownian motion." 
Therefore, it is quite reasonable to use realizations of the above process 
SE,,,](x)/(2Dn) ~/z in order to investigate the validity of an IP for the class 
of models described here; we simply have to check if an arbitrary trajectory 
of St,,](x)/(2Dn) '/2 can be considered as the result of a Brownian motion, 
that is, the realization of a Wiener process. To this end a very useful and 
standard technique t~2~ consists in the computation of the so-called power 
spectrum of the process. Among the advantages of such a method are the 
fast implementation and the possibility to obtain good results even by 
using a unique'realization of the process. Denoting by X(t), t e R  +, 
a realization of the process SE,,,](x)/(2Dn) ~/2 for a large, fixed n e I%1, and by 
X(t; 3) the restriction of X(t) up to time T > O, let us consider the Fourier 
transform 

F(v, r) := j" X(t) e-i2""'dt, v e R  (4.1) 
[O.r] 

The spectral density t~(v) of St,,,](x)/(2Dn) m can then be obtained by 
means of the relationship 

~(v)  = lim 1 IF(v; r)[ 2 (4.2) 

Good estimates of (4.2) can be achieved by taking the time r e  R + large 
enough and computing F(v; 3) by means of a fast Fourier transform algo- 
rithm. Whenever X(t) is the realization of a Wiener process the dependence 



982 Bazzani e t  al.  

0 2  3.02 

Fig. 7. Numerical estimate of the spectral density for the process S[,,](.v)/(2Dn) ~/2, in the 
case of the Markov noise 2/3 mod[0, I[. The parameters are the same as in Fig. 2. 

on v of the spectral density turns out to be, with probability one, of the 
form ~ ( v ) ~  1/v 2. This "l/v-" law" is usually considered as a typical feature 
of  Brownian motion. In Fig. 7 we show the result of  the above computa t ion  
applied to arbitrary realizations of the Markov process, case (a), but 
similar results are obtained for the other stochastic processes described in 
the previous sections for which a central limit theorem seems to hold; 
different initializations x ~ s have been taken. The bilogarithmic diagrams 
emphasize a power dependence of the spectral density ~ (v )  on the fre- 
quency v of  type 1/v'-, in accordance with the ]/v 2 law characteristic of the 
Wiener process. This result constitutes a good indication of the validity of 
an IP  for all the models considered here whenever the diffusion coefficient 
D is strictly positive. 

5. C O N C L U S I O N S  

In this paper we checked numerically the statistical properties of a 
model of modulated diffusion introduced by us in refs. 1-3; in particular, 
we investigated the central limit theorem and the invariance principle. As 
pointed out in ref. 3, our model describes the evolution of a Hamiitonian 
isochronous map near an invariant curve of given frequency whenever the 
variation of the frequency with the action is sufficiently small. The coupling 
of the action with the angle variable is replaced, in our model, by a deter- 
ministic or random perturbation of the frequency [see Eq. (2.1)]: what we 
get is therefore a sort of random standard map. In this light it becomes 
interesting to analyze the system in the whole range of the values of the 
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perturbation parameter  e. We did that analytically for the diffusion coef- 
ficient and we effectively observed all the typical behaviors of the usual 
standard maps: quasilinear approximation for large perturbation param- 
eters; existence of ballistic motion;  superlinear regime at intermediate e. 
The positivity of the diffusion coefficient is usually assumed as the principal 
indicator for the transport  in Hamiltonian maps and the other statistical 
properties are not generally investigated, notably the invariance principle, 
which permits one to verify the existence of a full set of trajectories close 
to the realizations of Brownian motion. The work presented here goes in 
this direction and gives two main indications for future developments: 

1. The numerical computat ions  are very reliable and accurate, even 
with relatively poor  statistics, and this encourages us to analyze more 
complicated models where the strong dependence of the random variables 
suggests asymptotic distributions other than the Gaussian one. 

2. When the diffusion coefficient D is positive, the CLT and the IP  
hold no matter what the perturbation is. As explained in the Introduction, 
we expect this is related to the character of the noises considered: 
nevertheless, a rigorous proof  seems very difficult to give. At the moment  

oV 
o 2 ~  

Fig. 8. Probability distribution after n = I00 iterations of the angle 0 by assuming the initial 
condition 0o=n and a stochastic modulation of normal random variables, with w / 2 n =  
(x/-5-1 )/2 and e=0.1. The histogram is computed by 50,000 realizations of the perturbing 
process and compared with the solution p(O, t) on the torus [0, 2n[ of the differential 
equation 3p/Ot + to Op/O0 = D 72p/630 2, where D = E(f2)/2 and p(O, O) = 5 ( 0 -  0o). 
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the only central limit property we are able to prove, on cases (a), (b), and 
(d), concerns the much simpler dynamics on the angular variable 0, as 
f o l l o w s  f r o m  

n - - I  

~o , ~ (5.1)  
K j= f (r  io distributionn_ +ce_ 

with ~ a normal random variable and K=[E(f2)]  ~/2. Of course, the 
convergence can be trivially deduced from standard CLT for i.i.d. 
stochastic processes (b) and (d), whereas it is less obvious for the Markov 
case (a)--see Fig. 8. Before concluding about the generality of our numeri- 
cal results, one should look at a nontrivial example of a weakly random 
standard map with positive D and non-Gaussian distribution. 
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