Stochastic Processes and their Applications 179 (2025) 104511

Contents lists available at ScienceDirect - sgoch:st.:
processes
and their
applications

Stochastic Processes and their Applications e
journal homepage: www.elsevier.com/locate/spa ==

Compound Poisson distributions for random dynamical systems
using probabilistic approximations

Lucas Amorim ®", Nicolai Haydn ¢, Sandro Vaienti ¢-*

a University of Porto, Mathematics Department, Center for Mathematics, Porto, Portugal

b Université de Toulon, CPT, Marseille, France

¢ Mathematics Department, USC, Los Angeles, 90089-2532, United States of America

d Aix Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, Marseille, France

ABSTRACT

We obtain quenched hitting distributions to be compound Poissonian for a certain class of random dynamical systems. The theory is general and
designed to accommodate non-uniformly expanding behavior and targets that do not overlap much with the region where uniformity breaks.
Based on annealed and quenched polynomial decay of correlations, our quenched result adopts annealed Kac-type time-normalization and finds
limits to be noise-independent. The technique involves a probabilistic block-approximation where the quenched hit-counting function up to
annealed Kac-normalized time is split into equally sized blocks which are mimicked by an independency of random variables distributed just like
each of them. The theory is made operational due to a result that allows certain hitting quantities to be recovered from return quantities. Our
application is to a class of random piecewise expanding one-dimensional systems, casting new light on the well-known deterministic dichotomy
between periodic and aperiodic points, their usual extremal index formula EI = 1 - 1/JT?(x,), and recovering the Polya-Aeppli case for general
Bernoulli-driven systems, but distinct behavior otherwise.

1. Introduction

Limiting hitting distributions and hitting time statistics of dynamical systems, together with their return counterparts, and the
related quantitative recurrence questions, have a long history of investigation. This investigation remains active and in the last
few years has advanced in many different directions, such as more elaborate targets, non-uniformly hyperbolic behavior, random
systems, and connections to extreme behavior, both in theory and real-life applications.

In the deterministic case, the canonical picture is presented for uniformly hyperbolic or expanding systems with singleton targets
and Kac-type normalization, where a dichotomy occurs: either the target consists of a non-periodic generic point and the limit
behavior is pure Poisson (see e.g., [1-6]), or the target consists of a periodic point and the limit behavior is Polya—Aeppli (see
e.g., [3,7-10]). The so-called extremal index (EI) can summarize both cases: in the pure Poisson case EI = 1, whereas in the
Polya-Aeppli case EI =1—-1/JT?(xy) € (0, 1).

A direction of generalization found in the literature is to consider different types of targets, not limited to singletons. In general,
this situation exhibits limiting hitting distributions in the compound Poisson class, which includes, but is not limited to, the pure
Poisson and Polya-Aeppli cases. This can be seen most simply in the case of finite targets with pieces of orbits [11-13], but more
complicated situations were also studied, such as countable sets [14], submanifolds [15,16] and fractal sets [17-19]. More abstract
approaches to such general target sets were developed in [20,21].

Another main direction of generalization is to handle non-uniformly expanding behavior. Many contributions have been given
in the literature, such as [8,12,20-22]. We emphasize that the relation between the target position and the position of the neutral
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fixed points of such maps plays a major role, because, when they intersect, strong dependence/recurrence around the target occurs,
requiring special normalization as to find non-trivial limiting distributions (see, e.g, [22]).

Finally, the theory has also been generalized to the realm of random dynamical systems, see, for example [23-28] and, very
recently, [29]. Compound Poissonian quenched hitting distributions were also shown in [29] with the spectral method. Despite
their applications being similar to ours, the main differences are that their theory needs quenched exponential decay of correlations
(but a merely ergodic driving), and their time-normalization is quenched.

From an applied perspective, the annealed time-normalization adopted here says that the experimenter will pre-determine the
watch time of his experiment (regardless of the revealed noise realization), by using an expected measurement of the small vicinity
of the random target he is dealing with.

On the other hand, the quenched time-normalization says that the experimenter will not pre-determine (deterministically) how
long to watch the experiment, but will get informed about the complete noise realization (at least until its remote past) and use it
to then determine the desired watch time.

We now discuss the contributions of this work and some of its features.

We show that quenched hitting distributions are compound Poissonian for a certain class of random dynamical systems, using
a probabilistic block-approximation approach and generalizing the deterministic theory developed in [21] after the approach
introduced in [30]. This is the content of Theorem 2.2, our main result.

The probabilistic block-approximation (Theorem 3.1) splits the quenched hit-counting function up to annealed-Kac-normalized
into equally sized blocks which are mimicked by an independency of random variables distributed just like each of them. The said
approximation goes for any given noise realization » and w-dependent leading terms and errors appear. Both of them are tamed by
an almost sure convergence statement (Lemma 4.3) based on a Borel-Cantelli argument, which allows for the quenched result to
hold.

The limiting compound Poisson distribution, revealed by the asymptotics of the aforementioned leading terms, and its underlying
multiplicity distribution are characterized by a set of hitting quantities (4,’s), which are transparently expressed in terms of the
asymptotics of the dynamics, its invariant measure and the target. Hitting quantities are introduced in Section 2.3

The theory is made operational due to Theorem 2.1, which allows for the latter hitting quantities to be recovered from a set of
return quantities (a,’s). Return quantities are introduced in Section 2.3. The advantage here is that the return quantities are easier
to calculate in concrete examples.

Moreover, our theory is based on a mild set of hypotheses, introduced in Section 2.4, designed to accommodate non-uniformly
expanding behavior (with polynomial decay) and general targets that do not overlap much with the region where uniformity breaks
and that presents well-defined return quantities.

Our assumptions on the quasi-invariant family of measures do not consider their absolute continuity with respect to the Lebesgue
measure, but regularity in a dimensional sense.

A drawback of our approach is that results are just along sufficiently fast shrinking neighborhoods of the target set. This is
intimately connected with the use of a Borel-Cantelli argument well-adapted to the annealed time normalization and annealed
decay of correlations.

We conclude with an application to a class of random piecewise expanding one-dimensional systems, casting new light on the
well-known deterministic dichotomy between periodic and aperiodic points, their typical extremal index formula EI =1-1/JT?({),
and recovering the geometric case for general Bernoulli-driven systems, but distinct behavior otherwise. See Section 7.

2. Assumptions and main results
2.1. General setup

Consider M and 2 complete separable metric spaces, equipped with their Borelian cs-algebras %,, and %,, and (6,P) a
measurably-invertible ergodic system on (2, %).

Consider maps 7, : M - M (o € £2) which combine to make the measurable skew product S : @x M - Qx M,
(w, x) = (bw, T, x). As usual, for higher-order iterates we denote S"(w, x) = (0", T(x)) where T = Tpu-1,,0 -+ 0Ty, 0T, (n > 1).

For E € B X By, and w € 2, write E(w) = {x € M : (»,x) € E}. Denote

PPQXxM)={p e P@QxX M) : ng,fi =P},

Py@2XM)={i € P@XM) : S,i=fmg,fi=P},
and

P-a.s. .
w€Q B p,(E@)e0,1]is

P-a.s.
RP® (M) = TwEQNR - € P(M
(M)=1u o € P(M)| (B, Byo,1))-measurable, VE € Bo X By

P-a.s. p®)
RP(TE’)(M)={,4:weQ Ny yweP(M)‘P # € RPT(M) .

a.s., Vn20: T, p, = Hgn,
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Notation. Elements in the latter two sets will be written as 4 = (u,),, where the outer ‘@’ subscript (instead of ‘w € Q) is to
identify that the given family if defined P-a.s. The underlying full measure subset £, can be assumed to be forward and backward
f-invariant.

Any ji in PP(Q x M) (in Pg‘f(Q X M)) rewrites (disintegrates) as

AE) = /Q Ho(E(@)dP(w), 1

where (4,,),, is in RP® (M) (in RP;]?)(M)). Conversely, given (u,), in RP® (M) (in RP;]?)(M)), Eq. (1) defines /i in PP(2 x M) (in
P?(Qx M)). See [31] (prop. 3.3) and [32] (sec. 1.4).

Now, consider a given i = du,dP(w) € PE(.Q x M), with the associated (), € RP?P> )(M ). Define the marginal measure
fi = 7y A= [ Ho dP(@) € P(M).

Finally, consider I' € B, x %), so that, P-a.s, I'(w) is compact and so that u,(I'(w)) = 0. The set I' is the so-called random
target. Denote I',(w) = B,(I'(®)) (p > 0) and the corresponding w-collection by I', € B, X B,

The objects above comprise what we call a ‘system’, denoted by (6,P.T,,, u,, I').

2.2. Preliminary definitions

We now define some working objects.
Let U € B X By be so that u,(U(w)) > 0, P-a.s. We can assume that ., (U(0"w)) > 0, for all n € Z, P-a.s.

Definition 2.1. The first hitting time of (6,P, T, u,, U) is the family of functions
r;‘;'l : M - Ny U{w}
X = inflieN,y : T/ (x) U@ @)

where, for an integer # >0, N, , = {,/ +1,...}.
The associated higher-order hitting times are given, for # > 2, by the family of functions
Y M 5 Ny, U}

U
,£~1
x e rﬁ‘f(x) = rg‘f_l(x) + rg/ <T;U (x)) ’

w,f—1
where ' = v W,

Definition 2.2. The hit counting function of (6,P,T,, u,,, U) with noise w € 2 and up to time L > 1 is given by

Zly  M=Rs Zoh M-N,
L L-1

x> ) Ay o T,(x) x = ) Ly © Ty(x)
=1 i=0

These objects are related, for example, in the sense that {Z:’(}L > ) = {(r* < LY, {ZfijL =¢)={r"" < L< r;‘j’“] }. When
U =T, we write I’ = 11 i) 0 T},

Definition 2.3. The hit marking function of (¢,P,T,, u,,, U) with noise @ € Q and up to time L > 1 is given by
Yol M-m
L-1
X Z Syt Ly@iay © T, (%) ’
i=0

where M = {T5, 5, : k < oo, (x), € [0,1]}.!

Notation. An R-valued function defined on the product space, f(w,x), is often rewritten as f®(x) or f,(x) and seen as a family
of functions defined on M. And vice versa. When integrating a function, we may omit the variable of integration, even if it is a
sup/subscript. We leave it for the reader to infer what variables and parameters are being integrated and were omitted.

Notation. Consider non-negative sequences a(n) and b(n) (n > 0). we will write a(n) <, b(n) to mean that there exists a quantity
C > 0, independent of n, so that a(n) < Cb(n)(Vn > 0). When a and b have more arguments, we indicate which of them are controlled
uniformly. For example:

1 The set 9t can be given the vague topology (with C1([0,1]) test functions, see [33] Section 3.4), making it a complete separable metric space, while P(97)
is another topological space with the weak topology (with C;(90) test functions, see [33] Lemma 3.5).
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@) a(n, m) 5, b(n, m) when there exists C,, > 0 so that a(n,m) < C,,b(n,m) (¥n,m > 0),
(ii) a(n, m) S, ,, b(n,m) when there exists C > 0 so that a(n, m) < Cb(n,m) (Vn,m > 0).

When some of the arguments are taken to the limit, we implicitly consider that these are the ones being controlled uniformly
and we omit the associated subscripts from the < symbol. We also employ the usual big-O and little-o notation.

Definition 2.4. The compound Poisson distribution with intensity parameter s € R, and cluster size distribution (A)ren,, €
P(Ny), X5, £4s < oo, denoted CPD,,,, € P(Ny), is the distribution of a random variable M : (¥,2,Q) — N, given by
M) = Z,N= © 0;(©, where (X, 2,Q) is an abstract probability space, N is a N,-valued random variable on (X, Z,Q) having
Poisson distribution with intensity parameter s and (Q ) jeNs, is a sequence of N,-valued random variables on (X, Z,Q) which
are iid, independent of N and whose entries have distribution Q(Q; = ¢) = 4, (j,# € N;,). Denote R, = Z;—=1 Q;. Then the
probability mass function of CPD,, ), is given indirectly by

P(N =DP(R, =n) = Z Slle,_s Z H'%- (@)

=1 =1 (1] e nI)EN’Zl i=1

CPD%(/V)K n) =

n n !

Definition 2.5. The compound Poisson point process with intensity parameter s € R, and cluster size distribution (4,)sen,, €
P(Ns), ;":1 ¢4y < o, denoted CPPP, , e € PO, is the distribution of a random variable N : (X, 2,Q) — 9 that satisfies:

- V(Fy, ..., Fy) C By, mutually disjoint, (N(-)(F}))~_, is independent,
= VF € B, NOWUF),Q = CPDsy ey, ap),-

2.3. Statistical quantities

Notation. Write lim; _, @p—»o””" p) for the value of lim;_, ﬁwo a(L,p) and lim; _, lim _,a(L,p), when they do exist and

coincide. Denote also Z(L) = Ep_,o a(L, p) and a(l) := liLnﬂ

_oa(L,p).
We now introduce a few quantities that play a major role in the theory. Those denoted with a ‘A’ are hitting quantities, and
those with an ‘a’ are return quantities. Whenever the following limits exist (and the appropriate ones coincide), denote, for £ > 1

and w € Q2:

(0]
A7 = lim !lli%nfl“;(L,p), @
where
s
HLop) = po(Zp 7 = 0207 > 0 = —— v
» » ﬂw(ZI_' > 0)
p
(In
Ay = Lh_r)n Tim A, (L, p), ©
©.20
where
L =0 iz >0
(L) = p(ZE =0\ZE >0)= —— = / (L.p) ar@). ©
I, L, ,M(ZIL"‘, >0) e’ /.Q '“w(Z?L > 0)dP(w)
b
(11D
& = lim Tma?(L.p). @
=0
where?

2 Notice that, by L-monotonicity, the outer limits always exist provided that the inner ones do.
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0
Ho (T (@)

ﬂw(Z;:L 24,157 =1)

A L @,
ag(L,p) = ym(z;’P > f|I(‘)”’ =1)=

av)

ag = ngrgo limaZ (L, p),
=0

where

o Z3E =617 = 1)

fo (T (@)

QL p) = py(Z7" = 1177 =1) =

r,

Since {Z;’;L >/¢)> {Z;’;L >¢+1} and {Z;:L =1\ {Z?’:L >C+1) = {z"’p’L = ¢}, then

ag(L,p)— &y, (L,p) = ag(L,p),

which means that the existence of &2’s implies that of the a%’s with «% =45 — a7 .
W)
&, = lim lima,(L, p),
L—oco —
=0
where?®
MZE > ¢, 07=1) (T, (@))
ap(L,p)=p(Zf 2|1 =)= ——— = / a2(L, p)—————
5= o ar,) @ 7 [ o, (@)dP(w)
(VD
a, = lim @af(L, p),
L—oco =0
where
MZp =0 07=1) oL (@))
ap(L,p)= (Z} =¢|I) =)= ————— = / a?(L, p)——————
‘ L 0 fu(T,) @ O [ (T, (@)dP(e)

Since (Z]; > ¢} 2{Z > ¢+ 1} and {Z] > A}\{Zf 2 ¢+ 1} ={Z =}, then

ap(L,p) = Gpy (L, p) = ap(L. p),
which means that the existence of &,’s implies that of the a,’s with a, = &, — @,,;.

2.4. Working setup

Now we particularize the general setup of Section 2.1 to specify our working setup.
So we consider a system (6, P, T, u,,, I') satisfying the following hypotheses.

H1 (Ambient). Let M be a compact Riemannian manifold and 2 a compact metric space.
H2. (Invertibility Features)

2.1 (Degree). Yo € 2,Yn > 1, Vx € M, one has #(T£)_l({x}) < oo with
sup#(T;3)~' ({x})<eo (Yo, x), sup #(T;1) ™" ({x})<eo (Vn, x), sup #(T})~' ({x})<eo (Yoo, n).
nz0 wER xeM

3 See footnote 2.

dP(w).

dP(w).

®)

©

(10)

an

12)

13)

14)

5)

(16)
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2.2 (Covering). 3R> 0,3N > 1,Yw € Q,Yn > 1,30/ )keK C M with #K,,, < oo so that (BR(yzhn))keKw,n has at most N overlaps.

Terminology suggests that (B R(yf’"))ke k,, covers M entirely, but a small defect is allowed, in the sense of (H2.5) below.

2.3 (Inverse Branches). Yo € 2,Yn > 1,Vk € K,,, ,,
IBY" = {¢ : Br(y"") = M diffeomorphism onto its image with T, o ¢ = id}

is non-empty, finite* and so that @,y € IB]"", ¢ # v = p(dom(e)) N y(dom(y)) = @. In particular, the set IB(T2) = |, X, , IB" is finite
and so that ¢,y € IB(T}), dom(gp) N dom(y) = @ = @(dom(g)) N y(dom(y)) = @ '

The following item is a consequence of the previous ones, but we list it here for convenience.

2.4 (Cylinders). Yo € 2,Yn > 1, C? = {£ = p(dom(p)) : @ € IB(T)} is finite and has at most N overlaps.
2.5 (Large Covering). For P-a.e. w € 2, Vn> 1, p, (M \ Ugec;" g) =

2.6 (Big Images). 31> 0 so that

w,n
eg}sel_gfgf mf Mgnm(BR(yk ) >

Next, we consider that the aforementioned (plain) cylinders are refined enough as to split and distinguish regions with different
hyperbolic behavior.

H3 (Hyperbolicity and Cylinders). Plain cylinders split into acceptable (and unacceptable) cylinders, whereas acceptable cylinders subsplit
into good (and bad) cylinders.

+ -+ + -
Namely: Yo € 2,Vn > 1, one writes C!) = C? LU C?, C? = C® UC?, with

LxelJ =&

Cy(o,x) = cecy (€ {+,—, ++,+=})
0, otherwise

a measurable function from M to R.

Notation. For *€ {+, —, ++,+—}, write IB(Tw") ={p €IB(T)) : &£ = p(dom(e)) € C}'}.
This splitting distinguishes hyperbolic behavior in the sense of satisfying:

3.1 (Weak Hyperbolicity on Plain Cylinders). Vn > 1, one has

1< inf inf inf |DT"(x)v| < sup sup sup sup |DT"(x)v| < o
< lof, [, o |DT, (x)v] < wegéecpw Xe;; Sup, | DT} (x)v] <
vl \Lll 1

3.2 (Bounded Derivatives on Acceptable Cylinders). Vn > 1, one has
sup sup sup sup |DT)(x)v|=: a, < co.

wER + xe& velyM
secy llofl=1

3.3 (Distortion on Good Cylinders). 30 > 0,3C > 1, Vn > 1, denoting ¢ = p(dom(¢p)) one has

esssu 7 ( )
Sy su
P ir+p xygl,‘ J (y)
€

0

5

B( m)
where
d(p}i< [”G“wldom(m] d(p* [MG”wlT;f]
J,(x) = (x) = (x).
d Heo | pdom(y) die s

4 Cardinalities behave as in (H2.1).
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3.4 (Backward Contraction on Good Cylinders). 3k > 1,3D > 1,Vn > 1, denoting & = ¢(dom(gp)) one has

esssup sup sup  sup |D@(z)v|<Dn™* ie. Dn*<essinf inf inf inf [DT)(x)v],
wER ++ z&€dom(gp) veTM wEQ L XEE VELM
@EIB(TY) loli=1 @€IB(Ty) lloli=1

and, in particular,
esssup sup diam(¢) < Dn*.

++
@EIB(TY)

@

H4. (Target Position).

4.1 (Uniform Inclusion in Adequate Set). VL > 1, Fpgep(L) > 0,Yp < pyep(L), Voo € 2, V1 < L' < L,V0O<j< L' -1 onehas

. . +
(T Iy, (0 w) C CY, .

4.2 (Quenched Separation from Non-Good Set). It holds that

= WAy —
Llifgoli_n(l) zi 26 Hoio <r(9iw)n [cﬁ’w ucﬁ‘wD =0, P-as..
P n= i=

H5. (Lipschitz Regularities).
5.1 (Map). sup,ep Lip(T.(x) : 2 - M) < 0.
5.2 (Driving). Lip(#) < .

5.3 (Target). Lip(I' : Q - P(M)) < oco,where P(M) = {A C M,A compact, A # @} is equipped with the Hausdorff distance
dy (A, B) = sup,c 4 inf e p d(x, y) V sup,ep inf e 4 d(x, ), which makes it a compact metric space.

H6. (Measure Regularity).

6.1 (Ball Regular). 30 < dy < d; < 00,3Cy, C; > 0,3pgim < 1,VYp < pyiny, for P-a.e. w € 2, one has
Cip" < (T (@) < Cypo.

6.2 (Annulus Regular). 3y > f > 0,3E > 0,3pgm < 1,Vp < pgim. Vr € (0, p/2), for P-a.e. w € 2, one has
ﬂw(rﬂ+r(w) \ rﬂ*l‘(w)) < r

fo (T (@) ST

H7 (Decay of Correlations). 3p > 1 so that

7.1 (Quenched). For P-a.e. w € 2, VG € Lide (M,R),VH € L®(M,R),Vn > 1, one has

|/ 6 0Ty = ma @ D) £ 170 Gy, Ve
M

7.2 (Annealed). VG € LipdgxM (2 %X M,R),VYH € L®(2 x M,R),Vn > 1, one has

|G- Gro 8"~ i@iti)| £ 17 Gy, 1l
OxXM QxM




L. Amorim et al. Stochastic Processes and their Applications 179 (2025) 104511

H8 (Hitting Regular). It holds that

IAp)rs1 such that Y A, =1, 24, < co.
/=1 /=1
H9 (Return Regular). It holds that
o 0
Hap)psy such that a; >0, ap =1, Y F2a, < co.
/=1 #=1
We call a, the extremal index.
H9’ (Pre return regular). It holds that
o
3(@y)s»1 such that & — &, > 0, ) £i, < .

=1

Using the final implication of item (VI), it is immediate that (H9’) = (H9), because a; = &, — &, > 0, Z?’:l a, = a; =1, and
Yo Clay <235 fay < co.

Moreover, for technical conditions, we assume that the quantities appearing in the previous hypotheses harmonize so that the
following constraints hold. Mostly, they hold when (polynomial) decay is sufficiently fast.

H10 (Parametric Constraints). It holds that

p+dq

10.1. dy(p—1)> % (see (H6) and (H7)),
0/d

102, Hp>2 (@ v 1) +d, (see also (H3.3),

10.3. 2 < «kdy—1 (see also (H3.4).

2.5. Main results

The first result, although interesting on its own, plays mostly an auxiliary role. Valid in the general setup of Section 2.1, it
expresses hitting quantities (4,’s) in terms of return quantities (a,’s). This is providential because the former quantities are the ones
central to the theory, whereas the latter quantities are the computable ones in applications.

Theorem 2.1. Let (6,P,T,, u,, I') be a system as described in Section 2.1, with (9, P) only assumed invariant.
Then

¢~ Qpy

(HO) = Ay = = (¢ 2 1) and (H8).

Theorem 2.1 generalizes Theorem 2 from [21] to the random situation. Its proof is basically the same, so we omit it. The
interested reader can find the adapted proof in [34].

Remark 2.1. Theorem 2.1 implies that a; = (X5, £4,)7.

Let us now formulate our main result. It says that the systems prescribed in Section 2.4 have compound Poissonian quenched
hitting statistics.

Theorem 2.2. Let (6,P,T,, u,, I') be a system satisfying (H1-H7), (H9’) and (H10).
Then: V1>0,Vn20,Y(p,,),u51 \O With ¥ -, p,,?<co (for some 0<q<q(dy, d;,n. B, p)) one has

w.lt/AT, )
T

Pm

U(Z

®

I e ) 17
= ")”:; ml,(/lf)f(”)’ an

where CPDy () is the compound Poisson distribution with intensity s and multiplicity distribution (1,),.

Remark 2.2. The quantity g(dy,d,,n, f,p) > 0 will be introduced explicitly in Lemma 4.2.
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Remark 2.3. The 4,’s in the limit of Eq. (17) are those given in Eq. (5), whose existence follows from (H9’) and Theorem 2.1.

Remark 2.4. If the system has exponential asymptotics in (H7) and (H3.4), the previous conclusion is still true, but, actually, with
fewer parametric constraints being required: instead of (H10.1)-(H10.3), only xd, > 1 is needed.

The previous theorem can be strengthened to the following one, which provides an analogous limit theorem for point processes.

Theorem 2.3. Let (0,P,T,, y,.I') be a system satisfying (H1-H7), (H9’) and (H10).
Then: Vt>0,Y(p,,)s1 \O with Zm>1 pmi<co (for some 0<q<q(dy,d,,n, B, p)) one has®

w,[t/;}(Fm)J P-a.s. .
yp o = CPPPy (), in POR), 18)

where CPPP; , ,  is the compound Poisson point process with intensity s and multiplicity distribution (1),

Structure of the paper. The rest of the paper is organized into two parts:

(I) Theory: Until Section 5 we work to prove Theorem 2.2.

Section 3 proves Theorem 3.1. This result provides the skeleton of the proof of Theorem 2.2, by approximating the left side
of Eq. (17). Denoting it briefly by Hy(Z = n), one splits Z into equally sized blocks and mimics them with an independency of
random variables, whose sum forms Z. Theorem 3.1 bounds |u,(Z = n) — u,(Z = n)| by with a sum of long-range components
(terms R! and R', to appear) and short—range components (terms R? and R3, to appear).

Section 5 proofs Theorem 2.2. To estimate long-range errors, it uses weak hyperbolicity features (H3.1, H3.2), the target uniform
inclusion in the adequate set (H4.1), the annulus regularity (H6.2) and quenched decay (H7.1). To estimate short-range errors, it
uses structure of the covering system (H2), distortion (H3.3), strong hyperbolicity features (H3.4) and ball regularity (H6.1). Notice
annealed decay was not yet used.

To control the newly arranged estimates (still carrying some w-dependency) and to show that u,(Z = n) goes to the desired CPD,
thus closing the proof, the missing piece is an almost sure convergence result, which allows for the quenched theorem.

This almost sure convergence result is Lemma 4.3, proved in Section 4 after a Borel-Cantelli argument and a variance control
(Lemma 4.2). The proof of the variance control finally uses the annealed decay of correlations (H7.2) and the regularity in w of
maps and targets (H5).

Finally, Theorem 2.3 is proved in Section 6. Although it implies Theorem 2.2, to make ideas more transparent, we preferred to
prove Theorem 2.2 and leverage on this proof to prove Theorem 2.3. This decision can benefit users who wish to upgrade compound
Poison distributions limit theorems into compound Poisson point processes limit theorems.

(II) Applications: In Section 7 we consider certain random piecewise expanding one-dimensional systems, casting new light on the
well-known deterministic dichotomy between periodic and aperiodic points, their typical extremal index formula EI = 1-1/JT?({),
and recovering the geometric case for general Bernoulli-driven systems, but distinct behavior otherwise.

3. An abstract approximation theorem

The following theorem approximates the probability distribution of an arbitrary sum of binary variables in terms of the
distribution of a suitable sum of independent random variables. More precisely, to build the ‘suitable’ independent random variables,
one splits the first sum into smaller block-sums, and each of them is distributionally mimicked by a new random variable, with the
collection of new ones being taken to be independent.

Theorem 3.1. Consider n > 0, L > n, N € N large enough so that L < L’;’ |, and (X, ,-)‘.’i 5] arbitrary {0, 1}-valued random variables on
(X,2,Q). Denote N := Z € N,;° and (Z/)/]io_l given by Z; := Z(’_J;lL)L 'x

Let (Z; )j" e l/)e a family of independent N-valued random variables on (X,X,Q) satisfying Z; ~ Z; (j = 0,...,N' = 1) and
(Z )N -1 J.(Z )N l.

Denote VVab = ija VA ;(0<a<b<N'-1)and W o= VT/ON '~1. Similarly notation without ~’s is adopted, in which case W coincides
with YN0 X,

Then, for all A€ [1,N']:

QW =n)— QW =n)| SR (N,L,4) +R'(N, L, 4) + R*(N, L, 4) + R*(N, L, 4),

where
N'-1
51 _ N'-1 _ N'-1 _
RN, L, 4) = Z:,) qrg{g;;]\@(zj > DWW =0 -z 2 LW =q)l,
=

N'-1 q

RYN,L,A) = max
]g:; q€ll nlug}

’

Q(Z =u, VV/:A_] = q—u) —Q(Z] )Q(VVIIJ\A—] = q—u)

5 See footnote 1.
6 Although L need not divide N, we pretend this is the case, for simplification purposes, i.e. to neglect possible remainder terms associated with the
fractional part — which should not play a role in the asymptotics (of either the error and leading terms).
9
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N'-1
RN, L&) = ¥ Q(7,2 1w/ 1) and
j=0
N i
RN.LAH=Y, D QX =DQX, =1,

i=0 q=0v(i—AL)

with the convention that, for b>a, W,/ =0 and QW > 1) =

Proof. Using a telescopic sum and the given independence, one has
N'-1
|QW =) - QW =n)| < 2:,) QI + W' = - Qo + W =)
=

N'-1 n
W =D JewnN T =m0z, + W =0 =)

<Y D

j=0 1=0

We now estimate

low Nt =g -z + W) = =q-w-QZ =u W =q-uw

B

q
=q-uw-QZ; =W} = q-w| = Y IR;@q.u)l.
u=0

q
=Y )Q(z =u, WIQ’I-I
u=0

We single out u = 0 from the previous sum,

IR, @0 = |Q(Z; = 0.} = ) - Q(Z; = 00w}~ = g
)~ (00 =0 -0z, > o =)

= [(@ =0 -z > LWl
= [z = e =9 -z = LW =)

It follows that
N'-1n ¢
QW =m-QF =n)|< Y, Y IR (@q.u)l
Jj=0 ¢=0u=0

N'-1 n

N'-1
n Z}) max oz, > new ) = 9-0z, > LW = o) + z;) 2;)2 IR ;(q.u)]
= J=U q=Vu=
N'-1 N'-1 n
=0~z 2 LW =g+ Y ZZ'R (@ w.
Jj=0 ¢=0u=

< Z. > HowN !
s Z:‘)qren[gﬂ@( ;2 DR

The first summation will be kept on hold. We deal with the second one now
,q, we expand |R ;(q,u)| by including intermediate terms with a time gap 4 and applying the triangle inequality, as

Foru=1,...
follows:
=q-u)-QZ; =u W) =q-u|

IR0l < |QZ; =u,w})
= QWY =g -u)

+ )Q(z =uWN T =g-uw)-QZ;

Jj+a
+ |z, =waw ) =q-w -0z =W =4

where the entries in the RHS are denoted, respectively, by IRf.(q, u)|, IR}(q, u)| and IR? (g,u)| (note the unusual order)
Then the sum of the following three terms bounds the later triple sum

First:
N'-1

N'-1 n
> ZZlR @wl s Z max Z|R (@.w) =R'(N, L, 4).
j=0 ¢q=0u=
Second:
N'-1 n N'-1 N’-1
> 22|R2<q,u>| S 2 max ZIR @wl s Z QZ; 2 LW/ 2 1) = RAN, L, 4),
Jj=0 q=0u=1 j=0 14

10
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where the latter < step used that

. - . - A-1
Au = {Z-—MVI/]]_\:I l_q_u}sBu = {Z_u VI/]i]Al_q_u}::’Au\Bu’Bu\AuC{Z _MVI//:—I >1}

q q
= Y IR} g.wl = Y |Q(4,) - QB,)| < Z@(z =u W/t > D<Qz 2 LW e,
u=1

Jj+1 Jj+1
u=1 u=1

Third:
N'-1 n N'-1 N’=1(+1)L-1 (j+4+1)L-1
D ZZ|R3<q,u>|< 2, max Zm @wls Y Y Y QX=hoX=D
Jj=0 ¢=0u=1 j=0 Jj=0 I=jL i=(j+1)L
N+AL+L i—-L N i
= Y Y QX =hax=h< ), Y QU =DQX, = 1) =R¥(N, L, 4),
i=0  I=0v(i-L-AL) i=0 I=0v(i—AL)

where the second 5 step used the following: (with ¢ = g —u)

Q(W/j{ '=¢) = QZ 21w M)+ 0z, =0, Wfffl—qﬂ
Uz =0Wi"=¢) = QZy =0 ij;l—q’) = @(wgi’;‘—q)—@(zm/lWjjz-l—q')
:«|@(W,ﬁ;1—q’)—@wﬂ;l—q’n = 1QZy 2 LW =) - QZ 2 LW =)
but, with A :={Z;,, > LW}~ = }anclB:={Z,+1 >1,WN,"' =g}, one has A\ B,B\ A C {Z;, > 1}, implying

Qw1 =d)-ew ) =) <z,

(++1)L-1
s1QW N =) - =<z 2 < Y QX =)
i=(j+I)L
(+4)L-1
= QW =d)-Qw ! =4) Z@( n< Y QX =0
=1 i=(j+1)L
q q (j+4)L-1 (+1)L-1(j+4)L-1
> Y RwI <Y QZ=w Y QX,=hH< Y Y QX =DAX =D
u=1 u=1 i=(j+1L I=jL i=(j+1)L

Now we should deal with the summation we left on hold, coming from the singled-out term with u = 0, namely,
N’ 1

qug[ax oz, > e = o -0z > LW =),

Using an analogous triangle inequality trick, by adding two mixed terms that have a gap 4, and organizing them in the same
order used before, one verifies that the second term is bounded by R?(N, L, 4) and the third one is bounded by R3*(N, L, 4). So it
suffices to account for the left over term

N'-1
~ ’_ —
RN, L,4) = 2}) qgllg%\@(zj > QW =g -z > LW =g).
=

as desired. W
4. Borel-Cantelli type lemmata

The objective of this section is its final result, Lemma 4.3, which provides the almost sure convergence needed to back the
quenched result in the proof of Theorem 2.2. This lemma and its proof strategy was inspired in [24] (Lemma 9). To implement the
said proof, a Borel-Cantelli argument is used with expectation control given by Lemma 4.1 and variance control given by Lemma 4.2.

Lemma 4.1. Let (0,P,T,, u,.I') be a system satisfying (H9’) (and so (H8), by Theorem 2.1). Then:

_ azk =z

F
lim lim——t——— = (Y% Z1,) =« 19)
L~co>= LA(T,) Leafhe !
and
_M(ZL =n)
lim lim———— = (X%, £4,) "' 4, = a1 4,(n > 1) (20)

Lﬁwﬁ) Lj (F)

11
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Proof. Using (H9’) (for the following items (i.b,ii)) and (H8) (for items (i.a,iii-iv)): Ve > 0
(i) 3¢y(e) > 1 so that
@ X5, 0 <e
(b) VL > 1: Z;":fo(e) fgf(L) < Z;":fo(e) ta, <e.

(i) VL > 1,3p(e, L),Vp < py(e, L):

a,f(L) —e/(L>) < a,(L,p) < a,f(L) +e/(LHVE =1,..., L)
L
> Z tay (L, p) < Z ¢ <$,,(L)+e/(L2)) < 26 by (0.
=t(€) £=t(€)

(i) VL > 1,3ps(e. L), Yp < psle. L):

- +
Ap(L) — €/(Eo(€))? < Ap(L, p) < Ap(L) + €/ (L) (VE =1, ..., Eq(€)).

(iv) ILy(e) > £y(e), VL > Ly(e):
14y = 2o(L)] < e/(Eo(€)? 14 — ML)I e/(Co(e)* (V¢ = 1,...,Zy(€))
. _
= |4, (L) — Ap(L)| € 2e/(£y(€)*(VE = 1,..., £o(€)).

(v) (due to items (iv—v)) 3L(e),VL > Ly(e), 3p3(e, L),Vp < p3(e, L):

[44(L, p) = Ao (D)] < 3e/(£o()*(VE = 1,...,£0(€),¥ € {—,+})
= [4o(L, p) — A| S 4e/(Co(@)*(VE = 1,...,80(€),V € {—,+})

£o(e) £o(e) Zo(e)
D=L p) = Y (€ = Dig| < Y Lole)de/(Eo(e)) < 4e
=1 =1 =1

Now, considering any ¢ < 1/5 Z;"zl CAsy L 2 Ly(e) and p < py(e, L) A py(e) A ps(e, L), we evaluate the quantity of interest,
nz ]fp > 1)/L(T,), starting with its numerator:

L—
azEk > 1= / Ho(ZP 2 DdP(w) = / Ho <U<T,f,> r, (0fw>> dP(w)
p Q » Q =0
) L-1 L-1
2 [ Xm0 onb@ - [ 3 engzpt = ¢+ Dir@
220 242 g
= La(T,) - / (Z f/lt,H(L,p)) uw(z;:L > 0)dP(w)

£ole)—1
= Li(I)) - / ( Z mm@,p)) Ho(ZE > 0)dP () - /

Q

< D A (L, ,,)> Ho(Z:E > 0)dP()

=t (e)
£oe)-1
=La(T,) - Y ¢i(Zf _f+1)—/( D MM(L,,,)) ”w(z;’ﬂ,L>O)d]P’(w)
£=0 £=t(€)

NG) ©
= Li(I,) - < Y (& = Dag(L, ,,>> AZE > 0)~ / ( Y@= DIUL, p)) Ho(Z1:" > 0)dP(@)

£=1 t=to(e)+1

where (x) applied a typical Venn diagram argument using overcounting and correction.
Then we consider the following two estimates.
First, we have that:

Zo(e) ( ) Zo(e) )

Z(f— DAy (L, p) < Z(f- DA, +4e < Z(f— 1A, + 5¢ and

£=1 £=1 =1
Zp(e) )fo(e) 0 (i.a) 0
D& =1i(L,p) > Z(f—l)ﬂf—éte_ Z(f—m/ Y (¢-Dis—4e > Y (£ =1 5e
£=1 £=to(e)+1 /=1

Second, with v}, (x) =inf{j >0 : T € I,(6/w)}, we have that:
P

12
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o L
0< / ( > (f—l)z‘;:(L,p)) Ho(ZPE > OdP@) < Y, CpZE = 0)
o _ 4 _ ' P
£=to(e)+1 =t y(e)+1

L L-1 —1

L L
= Y Y Mzp=top=p< Y Y Z oS =£.(s)7'T)
t=boertl  j=0 ’ Lo+l j=0 ’

=
L L-1 L-1 L
= Y X aL—jpil,)= (Z > fapL- j,m) a(r,)

t=toe)+]  j=0 J=0 £=0(e)+1

L-1 L
< [2 ( Y L —M) +£0()aye(L = o) = Lap (L —j,p)] Acr,)

j=0 \£=Fq(e)+1

L-1 L ”

(i)

< [Z 3 mf(L—j,m] A(I,) < 2eLi(T,)
j=0 £=¢(e)+1

Combining what we obtained so far, it follows that:

MZE 2D L) = (5L, = DAs = Se) il(ZE 2 1) oo MZE 21D
< _ =1- Chy—1—-5¢ )| —2—
Li(T,) LiT,) 21 ‘ r,)
MZE 2 1) .
— < ==
Li(T,) s LAy —5e
and
MZE 21 LA, = (X5, = DAg +5¢) (Z > 1) = 2eLA(T,) oo MZE > 1)
— > _ 2 =1-( D ta —1+5¢ 2 —2¢
La(T,) La(T,) = Lia(T,)
(7L
M(er 21 1 —2e

Li(T,)  ~ X% ¢4, +5¢

Considering the final two inequalities and passing lim,_ ﬁ]__,oo E‘HO we observe that
___azkzn
lim lim

14 5] -1
= kA =
M A, T ek =

Alternating between lim sup’s and liminf’s let us reach the first desired conclusion.
Finally, to take care of the second desired conclusion, it suffices to note that
MZE =n  WZp 2D MZE =m
La(f) — Lad,) azk >0)
,

then take the appropriate limits and apply the first conclusion we have just proved (to obtain «,), together with the definition of
A W

Lemma 4.2. Let (0,P,T,, u,.I") be a system satisfying (H1), (H3.1), (H4.1), (H5), (H6.1), (H6.2), (H7.1), (H7.2) and (H10.1).
Then: Vt > 0,Vn > 1, VL > 1, 3p,,. (L) > 0, Vp < p,, (L) small enough so that N := [ﬁj >3and N' := % € N,3,” one has:
p

varp(2,) < C, ;. - p%, Vg € (0,q(dy. dy.n. 8. 1)),

where
N'-1 (G+1L-1
. . 1
W) 1= Y up(ZP =m. 20 = Y 1pgpoT,
i=0 I=jL

and q(dy, d,,n, B, p) is a positive quantity to be presented in the proof (which can be written explicitly).

Proof. Let t,n and L be as in the statement. Fix a € (0, 1). Set p, (L) < Psep(L) A paim small enough so that N* < N’. Consider

p < pyar(L) as in the statement.
For a given j € [0, N/ — 1], write ' = 6/L® and notice that

N'-1 N'-1
Ep(2,)= Y Ep (Ma,(Z/‘.” = /1)) =Y E (yw,(zfgol 11 @) oT(j),:n))
=0 =0
N'-1 N'-1
= Y B (Z8=m)= Y i(Zy=n)=N'i(Zy = ).
Jj=0 Jj=0

7 See footnote 6 . 13
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Now fix 4 := N* < N’. Then:

N'-1
Ep(W,%) = Y /Q Ho(ZP = My (ZY = ndP(w)
i,j=0
N’=1 (i+A)AN'=1) N1 N'-1
=2 2 Z / Ho(ZP = W (29 = n)dP(@) +2 Z 2 / Ho(Z = M (Z9 = m)dP(w)
i=0 j=i Q i=0 j=(i+AA(N'—1)+17 2
= (D+UD).

Immediately we get that
(G+DL-1 (H6.2)
Ho(Z =) S U (ZP 2 1S Y pg (T,0'w) 5 Lph
I=jL

= (I) S Lp™ ABp(20,) = Ap“O N j(Z = ).

Most of the remaining work is to control component (/7).
Fix € Q and, for a given i € [0, N’ — 1], write o’ = 6'Lw. Moreover, consider r € (0, p/2), v € [0, L — 1] and denote by

- +

Uu,w’ = rﬂ(euw/)’ Uv,r,w’ = Br(Uv,w’C)C’UU,r,w' = Br(Uv,w’)1 @2n

respectively, the p-sized target with noise o’ v-steps ahead; its reduction by radius r; and its enlargement by radius r. They relate
- +

as Uv,rfcu’ C Uv,w’ C Uu,r,w"
Moreover, dynamical counterparts of those in Eq. (21) are denoted by

n
/ vy-1 vy-1
(z8=ny = VU, = | | ATH'U,0 0 [ T
0<v) <-+<v,<L-1] I=1 vel0,L-1]
\lvyil=1....n)
- n — + c
— Ury—1 v -1
Ur,a)’ = |_| m(Tw') Uu,,m’ n n (Tw/) Uu,w’ ’
0K <--<v,<L-1] I=1 vel0,L-1]
\{vy:1=1....n}
+ n v 1+ I_ c
— IN— -
V,wy = | | AT "U,0n [ T |,
00y <-<v,<L—1] I=1 vel0.L-1]
\{oy:1=1....n}

describing

— the locus of points which hit the p-sized target exactly » times during the time interval [0, L — 1] when given the noise «';

— the reduction of the first by radius r, in the sense that hits are considered in a r-stringent way (at least r-inside the p-sized
target) and non-hits are considered in a r-stringent way (at least r-away from the p-sized target);

— the enlargement of the first by radius r, in the sense that hits are considered in a r-permissive way (at most r-away from the
p-sized target) and non-hits are considered in a r-permissive way (at most r-inside the p-sized target).

- +
They relate as V", C U,y C U
Finally, define

ro'

- 1,xel,
Lxe UV, +w/
— + c
¢;u/ (x) = 0,x GJ/{E);CU ; B ¢.:;’ (x) = 0,x € U,,(f/ . . (22)
MU € dy (U, ¢
; o = ,xEl/'wfc\I/r,w/ %,xe Vr,w’ \ V.,
MU Hdpy UL 1) Ay (U, ) Hdy (3 V)

- +
They relate as ¢¢’ < Iy, < o
+
Using that Lip, (dpr(x, U‘,,w,)),Lide (dp(x, V) € 1, it can be checked that

. * 6 diam(M 6 diam(M
Lip,,, 4?) < (M) < M)

. + 2 + 2
(mmxe mldpy (e Uy ) +dy (x, Uw,)]) i (Viy s Ui ©)

>

+
vV, U

+
where d,;, (U, U\ oy©) i=inf{dp(x,y) 1 X E U,y €V, (y ).

14
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+

Notice that for a point x € U}, to be minimally-displaced in such a way as to reach U, ¢, either: (a) some of the hits in its
[0, L—1]-orbit are consequently-displaced to an extent which now makes it at least r-away from associated p-sized target, or (b)
some of the non-hits in its [0, L—1]-orbit are consequently-displaced to an extent which now makes it at least r-inside the associated
p-sized target. In either case, the associated entry in the [0, L—1]-orbit image point of x has to be consequently-displaced by distance
at least ». When the said entry being consequently-displaced happens to be the last one in the orbit of x, i.e., its L — 1 iterate — by

. 4.1) +
the expanding feature of the system (H3.1) and since V,, C U (T’ By 00’y C C“” — this is when x would have to be

displaced the least: no more than r/a;_; (use (H4.1) and (H3.2)). Therefore r/a; | < d,,;, (V,y 1/, ¢), and so

'

+ !
Lipy,, (¢¢) < 6 diam(M)a 112/,

+w’ +w’ : +a)’ : +w’ : +a)’ : 27,2
Il ||ude = ll¢y llV Lipy,, (&7 ) = 1VLipy, (¢ ) = Lipy,, (¢} ) < 6 diam(M)a;_,~/r",
where the last equality follows from p being sufficiently small.
Now we start looking at (I 1) directly:

(23)

+ /
/ B Z2 = M (Z2 = mydP(e) / Ho(Z0 = Mty (B )dP (@)
Q Q

+ ’
= ’ / U ZP = Mty (Lyy, )P (@) - / Ho(Z2 = Wty (2 )dP ()
Q Q

0w r o
S | Heio(Zy ¥ = n)L—ﬂle’(w) = L—ﬂu(Zo =n),
Q P p

where the < is because

L1 + H6.2) ,n
”w’((ﬁ ) ”w’(vrw’ \Urw’) Z ”GD(U(UUV(A), \Uurw’) s Lp_ﬂ.

The approximating term that appeared above is transformed as follows®:

+ +
‘ / Ho(Z9 = Wty ($7)dP(@) - / Har (L s _y 97 )AP(@)
Q Q j=i

/ + / + /
= ‘ /Q Hor (Z2 = W)y (¢ )P () - /Q ot (L oot iy B JAP(@)

),

(H7 o ar_ 1
/ G = DL 19 g, dB@) S (G = DL

QU—DL gy

o G-DL o
HoG-iLay (Z = Uy (P )—er(]l(zou—:uw/:n) oT "¢y )| dP(w)

2

Whereas the new approximating term which appeared above is transformed as follows:

+ + Lt
/ ”“"(1(2“"v:n)¢(ru )dP(w) = / ]l(Zi_[:n)¢rd” = / L(zy=n} © SUDLg djy
Q J=i QxM QxM

and
('—')L+ +
[ tzenostadn- [ Aggdi- [ gan
QxM QxM QxM
(H7:2) L= aL—12
< ((G-HL)” p||¢r||L1pd <SG -HL) p—z,
I
+ +
where, recalling that ¢* = ¢%(n, L, p), we have used that’
. + |¢mI (X1) wz(xz)|
Lipg, (b)) = sup
(@)% Hwy,xy) da(@1,02) V d (X, X3)
+ +
Iy (xp) — 2 (x))l |¢r2(xl)_¢r (x3)]
< sup sup ———— +sup sup —MM—
X1 ) do(wy, @) @) xi#x dy(x1,X7)
+ +
2 @] (5] 2 L 2 L 2
a x) — x)| &) aj_ a~f+y)ay_ atay_
< L +supsup|¢r() r()|<L21+(ﬂZ)Lls 21’
X W #wo, do(wy, w) r r r

+
with () following from w ~ ¢@(x) being a locally Lipschitz function whose associated local Lipschitz constants are bounded by

2
%, where a =Lip(0) v 1, p =Lip(I') V 1, y = sup,cpr Lip(T.(x) : 2 — M). This is verified in the following paragraphs.

¥
8 Notice that lpe llLip, S a,_,?/r* as. is enough to justify the above inequality. However, our hypotheses imply this is true for every w. This might seem
%
an excess, but later in the proof we will need the inequality for every w. See g next footnote.

4
9 Here one needs [l ”Lim\, < aL‘z/r2 for every w. See the previous footnote.
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N
Fix x € M and consider w € Q. In case x € int(V,,) (or int(V', ), there is u,(w) > 0 so that @ € B, (@) implies x € int U,

+ +
(or int V", ), so the function of interest is locally constant. In case x € int(V", ,° \ U,,), it boils down to understand how the linear
+ +
interpolation within ¢, varies with & € B, (@), where v/ (o) is that for which & € B (@) implies x € int(V", ;¢ \ U;). For this
+
purpose, we first evaluate the Lipschitz constant of @ € By (@)@ = d(x, V) and @ € By, (@)(@) = d(x, U, ;°). Respectively:
®
ld(x, Uw) —d(x, UJ;N < dH(Uw, Ua,)

< ((supLip (T;' : P(M) > P(M)) v 1>L -(Lip(I) v 1)« (Lip@) v DX+ sup Lip(T7'4: Q- 9(M))>dg(m,ca)
w AEP(M)

< (@"f +p)do(, @).

since
Lip ([ :2(M)x(M)=2(M) ) <1, Lip (| : 2(MIXPM)—P(M) ) <1, Lip (B,: (M= (M) < 1,
supLip (T,)! + (M) » 2(M) < 1/ faf, inf, COLip(T, | : & = M) <
and sup Lip(T.(x) : @ = M)
sup Lip (T ™' A: Q- 9(M)) <—=2 < sup Lip(T.(x): Q— M),
-l TR AR T
1

where CoLip(T) = inf ., d(dT(i’;y ),
(ii) Similarly, ' + .
ld(x, U, , ) = d(x, V', )| < (@ B+ 7)d (0, @),

since also Lip(B,: P(M)—>P(M)) < 1.

To conclude justifying (%), one repeats the calcujations for the Lipschitz constant of a quotient and applies (i) and (ii) to get that

dy (X, V', ) < 4 diam(M)(a" g + y)d (0.5) < (abp+ V)aL—lz
———dg —_—

Lip,, < NOBS

m ~ do(w,®).
Ay (6 U y) + dpg (x, V) Apin(U 1.y s Uiy )2 r

Finally, we notice that 6.2

+ + (H6.2)
A Zy=m) b, )~ A(Zo=n)? | <A Zy=n) /Q Ho@” — 1y )dP(@) S L;_’;,;(zo=n),

Combining the previous four steps, we arrive at
F/J Ho(Z = M (Z7 = ndP(w) - j(Z, = n)*
Q

L 2
Ve n . : _,aTay_
S L= (Zy=m)+ (= DL P ——5,
p r

which implies N'—1 N'—1

L, 2
n a~ay_
ansy, <ﬁ(zo=n>2+L’—,,ﬁ<zo=n>+«j—i>L)—»_§ ! )
=0 j=(i+HANN'—1)+1 p r

. L, 2
<SN'(N' = 4) <ﬁ(Zo =P+ L7y = n)> + N2 (any e
p r

Then we can conclude the following about the variance:

16
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varp(20,) = Ep(,?) — (Ep(20,))*
S ApONA(Zy = n)
1! 2 r ’ aLaL—lz 1
+ N'(N'=8) | f(Zy=n)" + L— p(Zy=n) | + N —— @™
p r
- Nz, =n).
d 2.1 ata;_* 1
S ApONA(Zy=m) + N"L—p(Zy =)+ N —=—(4L)""*
p r
x) ] a(=p+1)
< NeLp% 4 N yala, 20 ? NN
P r2
—p+1
(*<*) * Lpd() + ;pw’?’ﬁ + aLaL—I ZL’P ; &p’zw
ar,)” ary,) Aary) ﬁ(rp)a(fpﬂ)
(H6.1)
< Lpto—ady 4 pun—p—dy +aLaL_l2L—ppad0(p—1)—2w—dl
(Kk %)

< pdo_"‘dl +pwﬂ—ﬂ—d1 +pado(P—1)—2w—d1’

where (x) uses N'i(Zy=n) < NL7'i(Zy > 1) < NL™! Lj(I',) St and 1 is incorporated into the < sign; (x*) uses the choice r := p*
for a given w > 1; and (x x %) incorporates L dependent quantities on <. Notice that r and L dependent constants being incorporated
inside S is associated to the use of a constant C, ; in the statement.

Finally, we need to choose (a, w) € (0,1) X (1, 00) so that

d0>ad1 a<3_(l)/\]:Z_(]J
wn > p+d; ie dw> 2y 24)
ady(p — 1) > 2w+ d, w < =t
which admits a solution if, and only if,
brdi, Z_?d()(p_l)_dl S dyp—1 M
o2 SN

This is guaranteed by the parametric constraint (H10.1), so there exists some solution («,, w,) to system (24). Actually, the space
of solutions to system (24) forms a non-empty triangle in the (a, w) space and one can choose («,,w,) as its incenter, a function of
dy,d;,n, p and p. This choice defines g(dy,d}.n, ,p) € R, what we call the margin of the latter system, that is, the!* quantity'!
satisfying

dy —a.(dy,dy,n, B,p)d; > q(dy,dy,n, B, p)
w,(dy,dy,n, B,0)n — B —dy > q(dy, dy, 1, B, p) (25)
a,(dy,dy,n, B, p)do(p — 1) = 2w, (dy, dy,n, p,p) — dy > q(dy, dy, 1, B, p).
Notice that the choice and margin appearing above boil down to functions of the parameters. Finally, under this choice, the margin
gives what we are after:

varp(20,) < C, - potnBD) < ¢, ;- p7, Vg € (0,q(dg. dy,m, f.9)) . W

Lemma 4.3. Let (0,P,T,, u,.I') be a system satisfying (H3.1), (H4.1), (H6.1), (H6.2), (H7.1), (H7.2), (H9’) and (H10.1).
Then: Vt>0,Vn21,Y(p,) s \O With ¥ | p,,9<co (for some 0<q<q(dy.d;.n, f,p)), denoting N = [ﬁj and N’ = %,12 one has:
Pm

(€

N'-1
lim lim Z Mw(Z;f’ =n) = ta; 4,, P-a.s.
L—-oo m=co =)
2
N'-1
Llilr;or% Z{) Ho(Z9 2 1) = tay, P-as.
3

N-1
Jlim z;) Hoi (T, 0/ @)) =1, P-as.,
=

o _ §U+DL-1 i
where Z = 3 s Lr, 0o ° Ty

10 Since system (24) is made of open conditions, there is no largest margin satisfying Eq. (25), so, to fix a canonical one, we consider half of the supremum
of all eligible margins. 17

11 Both the incenter (a,,w,) and the margin q(d,,d,,7, f,p) can be given explicit formulas, but they will not be used, so we omit them.

12 gee footnote 6.
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Proof. Let t,n and (p,,),>; be as in the statement. Consider L > 1 and m large enough so that p,, < py, (L), N > 3 and N’ > 3.
Denote also 20,(w) = Z;V:O_I Ho(Z7 = n).

Using Chebycheff’s inequality combined with Lemma 4.2, we get that
varp(W,) < Cr .

P, -5 o) < 0 < g
and therefore, since ¥’ ., p,,9 < oo, Borel-Cantelli lemma let us conclude that
lim |29, — Bz, )| =0, Pas.

m—0o0
On the other hand,
A ZL
/ A( r,

1

Ep@Q0, )= — —— p(Zy = n) = t——= .

P W) = L,y H0 =" LA(T,) azE >1
Pm

>0 Mz =m

Pm

so, by Lemma 4.1 and the definition of 4,, we have that

lim lim Ep(W, )= ra,4,
Lo S "

and therefore, combining the previous two centered limits, conclusion (1) follows:

lim lim 20, =ta;l,, P-as.

L—oo Mmoo
MZ[ 1)
For (2), it suffices to repeat the argument noticing that the new expectation will be driven by t#, whose double limit is
tay. o

For (3), it suffices to fix L = 1 and n = 1 in the above argument, and after the Borel-Cantelli step, notice that

AL, ) m—oo

Ep(0, ) =1- |
aly, )

5. Proof of Theorem 2.2
5.1. Applying the abstract approximation theorem

Lett> 0, n>1 (n=0 is the leftover case) and w € Q.
Fix, once and for all, (p,,),,»; \ 0 fast enough so that Zm>1 pm < o0, for some 0 < g < g(dy, d,. 5, B, p)-
Consider L > n, which should be chosen independently of previous variables.
Define N := [MF;/:)J and N, | = % € N;;3%. Let v € (0,d,) and set 4 := p,,~*. We will consider m large enough (depending
on L) so that N >3, 422, p < pyu(L), L < L%J and 4 < N'.

We want to study

N'—1(+1)L-1
o,N _ _ N-1;0o,m _ _ w®,m
o ZEN = = (B T = = | D 1
j=0 i=jL

where I = 11 (i oT..
Theorem 3.1 can be readily applied and gives
N1

o,N,, _ S0 _
j=

SRY,(N.LA+R, (N.LA)+R], (N, L A)+R} (N, L,4),

w,m

5 . j+1)L—1
where Z® mimics Z9 = ) G+DE=1 yom
J I=jL i

For the next sections, Lemmas 5.2 to 5.7, it is enough to consider  restricted to a P-full measure set.
5.2. Estimating the error R!

Recall that

1 —
RL(N.L.4)=
N'-1 q N'-1 N'-1
m:ilx Z He Zj‘.”:u, Z Zy = q-u|—H, (Z;.”zu)ﬂm Z Z} =q-u
—o €5 k=jtd, k=j+d,

13 See footnote 6.

18
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Now recycle the construction and notation used in the proof of Lemma 4.2 to control the term (II): for a given j € [0, N'—1], writ-
_ ; - N -

ing o' = ¢/Lw and considering r € (0, p,,/2), v € [0, L — 1], we once again have the objects: U, 1, U, 0 Uyt Vs U'prs U'prs qﬁ‘r"/

+
and qb;"' . Then:

N'-1 N'-1
He Z.—u Z Zy =q-u uw(Z“’—u) Z Z) =q-u
k=j+A k=j+A

U+DL-1 N-1 (+1)L-1 N1
S G RCEETID SR BVA (5 e A () B

i=jL i=(j+4)L i=jL i=GrA)L

L-1 , (N-1)—jL , L-1 , (N=1)—(j+4)L -
=I4m’<zl,»w'm=u, D I,.‘”””=q—u>—/4w,(Zli”’v’”=u>ﬂguw,< > o r wvmzq_,,)_

i=0 i=AL i=0 =0

AL

= (11/ ' ]1( 04y ol > — He! (]llfw;)lleALa,/ (]1“/;.;,4:(1_“)>‘

w4 ._ g (N=D-(+A)L 0AL o' \m (N=D=jL yo'im _ ;0,4 AL
where we used that V] Yico I , and thus ¥ - 7" =V TR,
o AL
S| (‘p(’u Liyoa_gon o T >_” o (Tv, ) Moot (]lcV,'““‘=qfu)>"

+ + -
where ¢’;" means that either ¢‘;” or ¢‘;” will make the inequality true,

+ +

e AL g
T2~ (3 Y ()
= (A)+(B).

ix/
Koy (¢;) ) ~ Ko/ (]lUwr )] HoAL gy <]1(Vj‘”'A=q7u)>

<

Now notice that

@ s@nler] s @nra /e, 26)

where the first estimate used (H7.1) while the later used (H3.1), (H4.1) and (H3.2), as in the quenched argument in the proof of
Lemma 4.2'* which led to Eq. (23).

Moreover,
w,A + - (H6.2) w,A 1
(B) < fgstyy (V/. : =q—u) by Uy \Uvar) S HaLey (Vj , =q—u) L5
m
Therefore
N'-1 q ar 2 "
— - r
RY (N.L.&)S Z max 2 [(AL) p er‘ + HgaLyy (ij’A=q—u)Lp—ﬂ]
u 1 m

'—1

N'-1 L
<Y Y
Jj=0 u=1

ap_4? r ap_i?
N(AL)™ > +Nﬁ < N(ALY™? > +LN—ﬂ

,A
+L— ; qg[llax HoAL (Vj G[O,q])

m pm
where VJ.’”‘A takes values between 0 and N — (j + )L < N
5.3. Estimating the error R!

This section is going to follow the lines of the previous one, with minor modifications.
Recall that

RY (N.L 4)=
N'-1 N'-1 N'-1

Z max |u,(Z721, z Zp=q —uw<Zj‘f’>1)/4a, Z Zp=q
j=o a€10] k=j+4 k=j+4

For a given j € [0, N’ — 1], writing o’ = ¢/! and considering r € (p,,/2), v € [0, L], we recall the definition of Uyw-U,,q and

+ - +
U, in Eq. (21), redefine V,,, V", s and U", s as

¥
14 In the present passage, the a.s. validity of llpe’ llLip, < a;_,%/r* would be enough, but, after recalling the argument of Lemma 4.2 we see that it actually
am

holds for every w. The validity for every » was important back then, but not here.
19
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L n
’ _ _ .
{Z(()U 21 } = 1/{1)’ = |_| I_I m(T:jf) IUU, o4 n m (T”l))f) lUu,m’ ¢ g

n=10<v|<-<v,<L-1] I=1 vel0,L-1]
\(vy:=1,...0m)
” - . N 1 h ¢
— - v =
‘L/'r"”l _|_| |_| ﬂ(Tw’) l]”b‘”/n ﬂ (Tw’) UU’”’/ ’
n=10<v|<--<v,<L-1| I=1 vel0.L—-1]
\{o:1=1,...n)

V-l U N buun () @]

n=10<v;<-<v,<L-1 vel0,L-1]

- +
and reuse the definition of ¢§”/ and qﬁ‘;” in Eq. (22) considering the above.
Following the same steps and notation from the previous section, we get that

N'-1 N'-1
w2921 Y, Ze =a|-m(Z72 | X 70 =a
k=j+4 k=j+4
< tm’ 1 TAL tw’ 1 im’ _ 1 1
R |Ho! ¢r {V,ru,A:) o Het ¢r HoaL gy (V“’A —q) + | Mot ¢r Kot U,y HoaL gy (Vj““‘:q}
=: (A)+ (B).

Similarly to Eq. (26), we now have

+ /
< -p 27,2
o RS

For the first inequality, (H7.1) is again used. For the second one, we adapt the quenched argument in the proof of Lemma 4.2 which
led to Eq. (23). In order to do so, firstly notice that the Lipschitz constant of, say, q.’)j‘" is bounded by the inverse of d(V", ., l/ac),).

Secondly, notice that, for a point x € U‘;, (i.e. with no hits) to be minimally displaced to V", s, among the entries of its [0, L—1]-
orbit being consequently-displaced, (a) at least one r-stringent hit has to be created while (b) the other instances should turn into
r-stringent non-hits (if they were not already). The situation where this would occur with minimal displacement is one where (b)
starts already fulfilled and only (a) has to be accomplished by displacing x in such a way that its L—1 iterate changes from a non-hit
to a r-stringent hit. This can be made with a minimum displacement of r/a; _;, where again we use (H3.1), (H3.2) and (H4.1).

Moreover,
+ - (H6.2) o
B) < ttgsrey (VI =) sy Wiy \ V') S b (V) =4) sz—ﬂ.
m
Therefore
N'-1 .
,
a)m(N LAs Z max [(AL) b 1 + HgaL gy (ij,A =q) Lzﬁ]
m
N’—l , N1
AL P“ +12 (V.‘”’Ae 0, )
2 2
<N(AL)|J +LN— N(AL)|J +LN
m pm
where Vj‘”’A takes values between 0 and N — (j + 1)L < N
5.4. Estimating the error R?*
To start
N'-1 ,+A 1 N'—1 j+4-1
R2 (N, LAY = Y pu,(Z0>1, Y Z¢ <Y Y u(ZP2 1,222 1)
Jj=0 k=j+1 Jj=0 k=j+1
where we reverse the double sum and single out the k = j + 1 terms, to get
N +4-2 (k=2)A(N'-1) N’
Bo(ZP 2 L, Z0 2 )+ Y u (29, 2 1,Z2 2 1) =1 (1) +(IT)
k=1 j=(k=A+1)v0 k=1

To estimate (/) we notice that:

20
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N'+4-2 (k=2)A(N'=1) (j+1)L—1 (k+1)L—1
m< Y Y Y Y (@), @ona), @) a0
k=1 j=(k—A+DVO  i=jL  I=kL
N'+4-2 (k=2)A(N'=1) (j+1)L—1 (k+1)L—1 -
N : /
<Y Y Y Y w(ne)naihin e cy)
k=1 j=(k—A+DVO  i=jL  I=kL
N'+4-2 (k=2)AWN'~1) G+ L1 (k+1)L—1 — _
. . / ,
YN Y Y w(naenaitn, e a| e uer])
k=1 j=(k=A+DVO  i=jL  I=kL
= (Igood) + (Ibad)
where o = 0'w.
To estimate (I,o,q) We begin evaluating the following:

oy o Horle (E0THIT, @)
Ho | CO N, @YN(TH'E, (070 ) < > sy (©),
e, Har 1:©)
E=g(dom(p)e C {7
&nry,, (@)
where, from (H3.3), ¢ € IB(T';") implies ./ |pomg) = o~ [#+(Hgi-ir laom(p)], and so
[~ [0 Gt Laomi)]] ((omie) 0 (T1)7'T, (0'a))
< X = e
& as above [J(p [(p*(:uel—iw’ |d0m((p))]] (p(dom(e)))
supyes I, (x) Hol-ia ldom() (dom((p) ne '@, r,,m(e’-"w’>)
= : -1 . | d Hao' (é)
& as above mfxef J(p (x) Hol-ie! dom((p)( om(¢))
(H3.3) (H2.2)

S U= g (T, O'w) Y uy @ < U= g (T, (O'0)N py < U é)
(H2.6) & as above ¢ as above
(H3.4) o1 | ,

<=0 g (T, O ODN oy (B (T, @) )

(H6.1

)
< U =D iy (T, (0'@)DN Colpy + DU = D)) S g, (T, (0" 0N = D° [p,, %0 + (1=i) 0] .

Then

N'+4-2 (k=2)A(N'=1) (j+1)L—1 (k+1)L-1

U 2 2 X Y s, 0o =D [p," + (1= ]

k=1 j=(k=A+1)VO i=jL  I=kL

N'+4-2 (k=2)A(N'=1) (k+1)L~1 G4DL-1
= Z 2 Z <M51a,(l"pm(9/w)) Z (=P [pmdo " (l—i)"‘do]>
k=1 j=(k=A+1)VO I=kL St

N'+4-2 (k=2)A(N' 1) (k+1)L—-1 kL—jL+L-1

< Z Z Z <M0’w(Fp", (le)) Z SD [pmd() + S—Kd()] )

k=1 j=(k=4+1)V0 I=kL s=kL—jL—L+1

N'+4-2 (k=2)A(N'=1) [ /(k+1)L-1 kL—jL+L—1
D D [( > uefw(r,,mw’w)))( y oo [,,mdoﬂm(]])]

k=1 j=(k—A+1)V0

I=kL s=kL—jL—L+1
N'+4-2 /(k+1)L—1 (k=2)A(N'=1) kL—jL+L-1
/ d —xd,
< < Z Mol (T, (0 w))) z z 5% [ % + 57 ],
k=1 I=kL j=(k—=A+1)VO s=kL—jL—L+1

where s € [L +1,34L],'° so

N'+4-2 /(k+1)L-1 34L N'+4-2 /(k+1)L-1
(Igood) < 2 < 2 ”G’w(rpm (0160))> ( 2 uD [M—Kd() + pmd0]> < Z < Z HG’w(F/]m(alw))> (LD—Kd0+1 + (AL)D+lpmd()) R
k=1 I=kL u=L+1 k=1 I=kL

where for the first term in the square bracket we have used that, for ¢ > 1, Z,‘f’:m n¢ < m™¢*! together with 0 — kd, < —1, which

is guaranteed by (H10.3), whereas for the second we have used that «° is increasing and the summation interval is bounded above
by 34L.

We will leave (1,,4) to the end.
For (I1), we consider L' < L and proceed as follows

N’ N’ kL—1 kL+L'-1 (k+1)L—1
ECEETR SIS WA D W TI Y AR M T
k=1 k=1 i=(k—1)L I=kL I=kL+L’
N’ kL—1 kL+L'-1 kL—1 (k+1)L—1
Szllw Z I’_w,mZL Z Ilw,m>1 +,4w< Z Ii‘”""zl, Z ]lwsm>1>
k=1 i=(k—1)L I=kL i=(k—=1)L I=kL+L'

15 The interval where s ranges has length 2L and it is translated by L whefil j moves one unit, therefore the original and the new interval overlap by half,
so possible repetitions are more than compensated by a factor of two.
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and, denoting o’ = 6w,
N’ kL+L'—1
i
<X X w(,000)
k=1 I=kL
N'+4-2 kL-1 (k+1)L-1

) _ ++
£ XY (L@@, e a )

k=1 i=(k=V)L I=kL+L’
N kL-1 (k+1)L—1 _ B
+Ca)’ Ca)’
=Y

+2D Yty <rﬂm @)n@H'r, @' n
k=1i=(k—1)L I=kL+L'
=1 eq) + (IIgood) + (I yyg)

The term ([ I,.y) will not be improved, whereas the term (I /,404) is estimated just like (/4444), as follows:

N’ (k+1)L—1 kL—1
Ulgo) S Y, D (ugza,(r,,m(e’w)) > a-iyp [p,,,"0+(z—i)—”d°]>

k=1 I1=kL+L' i=(k—DL
N’ /(k+D)L-1 20-1 N’ /(k+DL-1
- 0—rdy+1
< Z( z Mglw(rpm(elw))>< Z u° [pmdo +u Kd0]> < Z( Z MG’w(rpm(elw))> (L/ Kdy+ +La+1pmd0>.
k=1 \I=kL+L' u=L'+1 k=1 \ I1=kL
Now we combine (I,4) and (I I,4) and their domain of summation'® to see that
N-1 i+AL —
0i 0i i
(Ipag) + (U 1pg) S z Hoi <[C1:".J U CI—(;')] n Fpm(ﬁlw)>
i=0 [=i+L+L’
N-1 AL — _
= Y3 <[cf“’ ucfw] nrpm(e’m)>
i=0 s=L+L'
AL N-1 —
< Hoie <[c “oucteln Fpm(G’a))> :
s=L" i=0

Combining the bounds of (I,q) and (I144,4), We conclude that
5N-1
RZ (N LS N sifT,, @) (L7070 4 (1)1, %)
1=0

N’ kL+L'-1

AL N-1 — .
+Y Y b (1, 0@)+ Y Y u ([Cf vyt w]nrpm(o'w)) :
k=1 I1=kL s=L/ i=0
5.5. Estimating the error R3
Here we use (H6.1) to see that
N-1 i N-1
RYLN.LA) = Y D gL, O o)y, (I, 0°0) S ALp, " Y g (T, (6'w)),
=0 £=0v(i-AL) i=0
which, noticing that AL < (AL)**!, reveals to be bounded above by Rivm(Nm, L,A4,).
5.6. Controlling the total error
Putr=p,” (w>1)and L' = L* (0 < a < 1). Then
_1 5 —2 40— —p—
e
SN-1
d—kdg+1 v
+ ) ﬂglw(rpm(elw))(L, rdotl 4 p o+, do l’(a“)) @7
=0
N’ kL+L'-1 AnL N—1 o
£ YD e (T, @)+ Y, D ko <[cf"’ el nr,,m(e'a))> :
k=l =KL s=L/ i=0

where in the first line of the RHS accounts for both R!' and R!.
Now we fine-tune parameters v € (0,dy) (4 = p,,7") and w > 1 (r = p,'"). In the last equation, we need the exponents
accompanying p to be strictly positive. In particular, we need
B+d,
w >
n

V1, pv—2w—d, >0 and dy — v+ 1) > 0.

2(¥v1)+al

—Jorn which is guaranteed
0

The space of solutions (w, v) € (1, ) X (0,d,) to those inequalities is a non-empty triangle if p >
by (H10.2). Let us fix any such solution (w, v).

16 Notice that the initial L'-strip of the first component of the original sumration has already been singled out inside (I1,.).
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We will take double limits of the type lim; _, lim,, ., on the RHS Eq. (27). To first take lim,,_,,, we use that, by Lemma 4.3,
5N-1

. i _ _
Jlim ,Zé Hol (T, (0'w) = 5t, P-a.s.

and, by similar arguments,'”

N’ kL+L'-1
lim z 3 o (rp (0160)) —11°! P-as.
m—oo m

= I=kL

Finally, using Hypothesis (H4.2) Eld noticing that 9—xdy+1 < 0 (by (H10.3)) and a—1 < 0 (by design), we conclude that th_e RHS
of Eq. (27) under the double limit lim; _,, lim,,_,, goes to 0. The same thing occurs if we adopt the double limits lim, | _lim,
lim;_, o lim  andlim, lim . Therefore

m—

m— o002

N1
L= N .
lim lim |y, (Z;’pm = ﬂ) — Uy Z Z? =n| =0, P-as.

—
®© m— oo

5.7. Convergence of the leading term to the compound Poisson distribution

It remains to show that u,, (Zj‘i’o—l Z/‘” = n) to CPDyg, (1,), (M) i
Due to the independence and distributional properties of the Z/?”s (see Theorem 3.1):

N'-1 n 1
2 Z=n|=2 )y I wer=0- % [lt@=m
Jj=0 1=1 0gjy<-++<jySN'=1| jelo,N'-1] (ny,.npent - i=1
\Ui ti=1...0) et )
1 1
N'—1 !
2 (1+0(1) H HolZ = 0) Z Y 2 wzi=m
: /E[ON’ U y.mpent =1
""" np4e- +n[=;
N’'-1 N'-1
@ _ o _
2 (1 +o(1)) H Mol ZS 0)2 TX H > Ha(Z ,
(ny,.. n,)EN’ i=1 Jj=0
nytes +n,_n

where (i) o(1) refers to a function g(w, m, L) so that EL_,OO l_m_,oo lg(w,m, L)| = 0, P-a.s.; (ii) equality (x) included 1/!! to account
for j;’s not being anymore increasing and used that the error terms that come from dlfferent Jji’s being equal are small, as one can
see in the case when two j; agree; and (iii) equality (xx) uses that a product of sums distributes as a sum of products.

We then notice that, by Lemma 4.3,

N'-1
1 1 NZ? = =tay A, , P-as.
fim, T 3, W2} =) = tary, Pas
and
N'-1 N'-1 N'-1
lim 11m H Mw(Z“’ 0) = 11m 11m exp Z ln(l —yw(ZJ(."Z 1)) = 11m 11m exp Z ﬂw(Z”’ D+o(l)|=eT, P-as..
Lo m—c0 =0 —00 j=0 —00 j=0
Therefore
_ N’-1 n (la )[ 1
lim lim |4, | Y Z¢=n|-e" Zl—} Y []4,|=0 Pas
L-oo 70 j=0 I=1 T openpend | i=1
n]+---+n[=;
N'-1
@2220 11m Z Z”’—n = CPDyy, (23,), (M| = 0, P-as.,

where the equivalence is because the former term is precisely the density of such a compound Poisson distribution (see Eq. (2)).
As a consequence, we can conclude the proof with

T o,N _
Jim | (ZN = m) = CPDyy, s, ()

N'-1 N'-1
< Jim fim g (ZEY =m = po | 3 Z7 = n |+ fim B g | ) Z7 = nf=CPDy i, ()] = 0.P-as.
j=0 Jj=0

17 Adapting the argument of Lemma 4.3 item (II) to the new term, we sge that the new P-expectation is tL*!, but the variance lemma used therein,
Lemma 4.2, would need to be adapted as well, which we omit here.
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6. Proof of Theorem 2.3

By [35] Theorem 4.2, it suffices to show that for any k>1, 0<a,<b<...<q;<b;<1 and n, ..., n; >0:
,| —— | »,| —— |
“, (Ypm Mo (lay b)) =y Y, " (10 b)) -nk) — @(N([al, 1>>-nl,...,J\J([ak,bk»=nk), (28)

where N : (X, 2,Q) —» M with N Q = CPPPy, o, complies with Definition 2.5.
To simplify the presentation, we consider k = 2 and that, when needed, fractions divided by A, )or L already make an integer.

Write, for ¢ = 1,2,

A = — ,B, = — N, = — N’ =
Coaa,)y A,y A,y T

N =———N'=
ad, )

a,t bt (by —api , ﬂ ¢ ,_ N
L L

So the left side of Eq. (28) becomes

By-1 By-1 N{=1 A +(j+1)L-1 NJ=1 Ay 4(j+1)L-1
mo_ w,m _ _ w,m _ m o
Mw(Z I,.wm_nl’ Z Ii —n2>—/4m< Z Z ]i“ =ny, Z Z ]’_‘“ _n2>.

i=A, i=A, J=0  i=Aj+jL J=0  i=Ay+jL
N ———’ N ———’
Zw,l Zw,Z
J J
With 7 = {(¢,j) : ¢ = 1,2,j = 0,..., N’ — 1}, the family of random variables (Z;.”’q)(q! jer is mimicked by an independency

(Z )<q/>€1’ (Z )(q/)el 1 (Z )<q,j>e1, Z;)’q ~ Z;)'q, for (¢,/) € I.
Analogously to the approxlmation theorem, we then want to bound

N]'—l N;—l N]’—l Né—l
w,l _ 2 _ 50,1 _ 50,2 _
”m(Z Zj =ny, z Zj _n2>_ﬂm<z Zj =ny, Z Zj _nZ) . (29)

J=0 =0 =0 J=0

Denote W' = Z/ _o Z;"* and similarly without ~’s.
Then

w,1 _ ,2 _ _ 7w, — 2 —
Bq. (29 < ko (Wo,Nf—l_"l’WON’l n2> Ho <W0,Nf—1 "1’W0,N2’—1 "2>

7w, .2 7w, ¥ w,2
= = —_ = =n
Ho <VVO,Nf—1 " Wo NI-1 "2> Heo <W0,N{4 " VVO,Né—l 2>

+

() +(9).

We consider (a) first. Repeating the telescoping argument in the proof of Theorem 3.1, we have

N1 ! ! i
w < ,Z ,,w(WO“; 1+Wm . ”l’WomN’*lznz)
I e le le Wa)Z —
= _”w( 0 ey N/ , =ny, ON’ 1 nz)
B 2
1, . ,,w(WwN, =1 WO“’N, L =n)
< ZO % ”w(VVOJ 1 l) Zwl -1, W
j = —Mw( +W+1N, 1 N’ 1 nl)
1
zlii Mw(Z/ Wli]N’l_q uVV()N’l_nz)
<
=<
y 1
30|y (Z] = W =g W = m)

One has to single out u = 0 from u € [1, q]. We focus on the principal part u € [1, g], which can be bounded by the sum of the

following three terms (note the unusual order).

N’—l ,1 ”,m we _
2 Z"] zq ﬂm(zj =1u, J+l, N/ l —-u 0, N/ 1 n2)
(A)z w,1 ’
j=0 lu=l|— = =
Jj=0 g=1u uw(Z =u, W+AN’ L\ =a-u WON’ . =ny)
N'—l w,l _ w,1 ”rw] _
< HolZy =t WJ+AN’ T 0,N-1 =n)
(A)l = z qel 1 n ]Z ’
j=0 1 — ol _ = =
Jj=0 =1 Mw(Z = wp, W +A NI —u, VV0 N’ : ny)
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N'-1 ,1
1 m :uw(Zj = u):uw(WJrA N/ 1 —u, VVON’ 1 nZ)
CIEIDW) :
J=0 q=1u=1 —yw(z‘” —u)yw(W+l N =4 WON, ,=n)

The bound of (2); can be handled pretty much as in the proof of Theorem 2.2. Minor modifications are needed and we discuss
them now. Notice that the first term inside absolute value in (a), can written as

Ho | 1 ca1+G40L-1 om_ 1 By won_ L OByl om
{Z::AIHL 1™ =u) {2i=A1+(/+A)L]/' =q-u) (X2 A 1=l

and, with o' = 941t/ Lg,

=Uy | 1, i 1 N-1-jL 1 By-1-4;-iL o,
“ < (X5 Iw M=t E Iw "'=q-u) (Z,=2A2—All—jL 17 "=}

AL
=Uy | L o1 o/ m 1 Ny -1-jL-aL ALy By—1-A|~jL—-AL gALef ol |,
(Zizg 17 7=w [ HZi, I :q_uln(zi:Az—AlﬁrL—AL I =n} @

where the last step is because
Ay— A —jL>Ay—A —(N] =1L > Ay~ A, — (B, — A)) = A, — B, > AL,

with the latter inequality following from being AL € [1, (A, — B,)/L] after choosing 4 :=p,,~, for some v € (0, d,) and considering
m large enough (dependent on L) so that the first inequality below holds.
(ay — byt -1 (ay—=b)t Ay)-B

Cp, ~  AUI,) L

pm—v < L—l

With the positive separation AL, we can follow the treatment of R(lu,m(N ,L,A) in Section 5.2: (a) the function not composed
with the dynamics should be given a Lipschitz approximation (and it is the same function that appeared before), (b) the function
composed with the dynamics is more complicated, but we only care about its sup norm, which is 1 anyway, (c) quenched decay of
correlations can be applied again, proceeding just as before.

To control the singled out term u = 0 one repeats the strategy in the proof of Theorem 3.1 with what we did above to control the
principal part. Using the notation from the proof of Theorem 3.1, errors with ~’s will appear, only the first of which still matters
at the end (the others are dominated by the respective errors without ~’s). We omit this part.

The bound of (a),, just like in the proof of Theorem 2.2, is estimated from above by

N/-1 N1

w,1 _ ml ,1 ml {ul
AR
qg[llaiz(ljz'um(z u, j+1]+A 17 I’VVO,N/_I m) < Mm(Z 1, ]+11+A  z D,

which is pretty much identical to R2 (N, L, 4) and can be controlled just like we did in Section 5.4.
We also omit the discussion of (A)3, which should be treated analogously.

So the error terms associated with (a) end up being treated just like the errors already controlled in the proof of Theorem 2.2.
Now we consider (v). Repeating the telescopic argument once more, we have

r_ 2
N2 1 ”(D(W(DN! | =n,, VVOJ 1 Ww _ nz)
) <
j=0 _:uw(W N’ 1 nl!W +VV1+1N/ 1 "2)
’_ ,2
NZ ! 2 5 M(U(W NI 1 =ny, W- N/—1 =n - )]
< Ho W2y =1) o
@ 0j-1 7 50,2 Wa)2
=0 /=0 _ — 2 . —
/ oW, N’ =4+ JHLNS-1 )
r_
N2 lnz ”w(WN/ l_nl’Z +W+1N/ l_q)
<
=<
502 | 2
=0 a=0 ”w(W N’ =z W(il N} =q
Ni-1 q
2 ny
2 _ _ w2 _ _
< ZZZMw(Z ”W+1N’1 q=u) = Ho(Z; u)ﬂw(WHN,1 =q-u)| -

The latter expression is essentially the same of that encountered at the end of the telescopic argument in the proof of Theorem 3.1.
Therefore it can be bounded in the same manner, with errors R', R!,R? and R?, which can then be controlled just as in the proof
of Theorem 2.2.

Finally, using independency and Section 5.7, the leading term appearing on the second part of Eq. (29) converges, as desired, to

CPD(”I‘”I)’“Iv(’lt’)f (ny) - CPD(hz—“z)ml»Uf)f ().
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7. Application: random piecewise expanding one-dimensional systems

We consider a class of random piecewise expanding one-dimensional systems (6,P,T,, u,,I") prescribed by the following
conditions. Elements in this class immediately comprise a system as in the general setup of Section 2.1 and will check that they also
comprise a system as in the working setup of Section 2.4 (i.e., satisfying Hypotheses (H1-H10)).

Cl. Consider finitely many maps of the unit interval (or circle), T, : M — M, for v € {0, ...,u—1}. For ease of exposition, say that u = 2.
They carry a family of open intervals A, = ({,; gl (1, < o) so that M \ Ugl {y is finite and T, |, . is surjective and C2-differentiable
with

1 < dpy < Wf{IT/G):x€8pv=1 ., T,i=0,...u—1},

sup{|T," )| 1 x€&pv=1,...,1,,i=0,...,u=1} < ¢py < oo

C2. Let 2=1{0,1}2 SetT, := where 7;(w) = w; (j € Z). Consider 0 : Q — Q to be the bilateral shift map.

7o(@)?

Forn> 1, let A? = \/7;(1) (TCJU')’IA,,J(,‘,). For n = 0, we adopt the convention Ag ={(0,1)} (Vo € Q). Write A? = [ ces® ¢ (co-finite)
and, for x € A?, denote by A”(x) the element of A” containing x. In particular, x € A¢ implies that x is a point of differentiability
for T".

[

C3. Consider P € Py(£2) an equilibrium state associated to a Lipschitz potential. Usual instances are Bernoulli and Markov measures.

C4. Consider I'(w) = {x(w)} (w € 2), where x : 2 — M is a random variable taking values either x, or x, (possibly coincident) in the
form x(w) = Xy With {xg,%1} C Npeq Ni2) AP'® (which needs to be a non-empty set).
Moreover, for each w € Q, with the minimal period

m(@) :=min{m > 1 : T"x(0) = x(0" )} € Ny, U {0},

one defines the number of finite-periods occurring along the  fiber (K(w) € Ny U {o0}) and the associated sequence of such periods
((m; (oo))j’.(z((‘)”)_1 C N,,), using the conventions m_;(w) := 0 and max @ := 0, letting

my(w) 1= m(w) eN;,
my(w) := m(0" ) €Ny,
K@) :=max3k > 1: my(w) := m@M@+m(@) ) €N, €N, U{oo}

my_y (@) 1= m(@M=2 M@ g)e N

In particular, writing M;(w) := j(;:) m(w) for 1 < j < K(w) (with My(w) :=0), one has:
() my(w) my(w)
M (@) My (@)
x(w) N x(OM1@) ) 17w x(OM2@) i) e, x(OM3@ gy .

We conclude (C4) assuming that the target satisfies the dynamical condition that
sup{m;(@) 1 w € Q2,j=0,...,K(w) -1} =: M| < oo,
where the convention sup @ := 0 is adopted.
C5. Suppose that there exists r > 0, K,Q > 1 and p € (0, 1] so that u, = h,Leb forms a family in RP(TP)(M ) with: () (w,x) — hy(x)

measurable, (i) K~ < holBx) < K @s., and (iii) hol B, (x(y € Holy(B.(x(®))) with Hy(hy g xy) € Q as. (see Remark 7.4), where,
for a metric space X, we set

P Fe) = £ e -0
SR M e R R O and Hy()) = ST aGy
X#y X#y

The following result says that Theorem 2.2 applies to systems in the class (C1-C5) and, in particular, they have quenched limit
entry distributions in the compound Poisson class with the needed statistical quantities presented explicitly.

Theorem 7.1. Let (6,P,T,, u,, I') be a system satisfying conditions (C1-C5). Then the hypotheses of Theorem 2.2 are satisfied with

18 The intersection ﬂ;’; AP is a co-countable set (Vo € Q).
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—1 -1
@) [(JTK”"““)(x(w») ~ (7T ) ] L if £ < K@)
ey (x(@))dP(w)
Q
- -1
a = / ) hy(X(@)) [ ITI () ] e =K@+1 dP@).
/ he,(x(w))dP(w)
Q
0 Lif €2 K(w)+2
The quantities a, comply with (H9) and Theorem 2.1, allowing for A, = (ay — a,,;)/a; to hold.
In particular: ¥1>0,¥(p,,),51 \O with ¥, -, p,,9<co(for some 0<g<1) one has
, [t/;i(l"pm )] P-a.s.
Mw(zrl, =n) mj)oo CPDm],ut,)t, (n)(Vn = 0),
and
o.|t/A(T,,)] P-as. .
erm ’ o 2 CPPPyy, (4,), In POD). (30)

We will prove the theorem after a few remarks on relevant subclasses within (C1-C5) and examples.
When the maps T, are piecewise expanding linear maps, they preserve Lebesgue and Conditions (C1)-(C3), (C5) are

Remark 7.1.

immediately satisfied.
To illustrate Condition (C4), or, better said, condition M < oo, we can look at deterministic targets x(w) = x. Two noticeable

cases occur:
(i) Pure periodic points x: when there is some m, = m,(x) > 1 so that x is (minimally) fixed by any concatenations of m, maps in

(T,)'Z}. In this case, m(w) = m,, K(w) = oo, m;(®) = m, and M = m,.
It is convenient to represent these types of examples with diagrams (that can neglect topological information), where the
deterministic target x is highlighted with a green ball, each arrow indicates how each map T, acts, blue cycles indicate cycles

that avoid the target, purple paths indicate paths between the blue cycles and the target and yellow cycles indicate cycles
that include the target (but are not obtained composing blue cycles with purple paths) (see Figs. 1 and 2).
To

TO TQ
& Ay

- ©I<./.

TN Ta

T GO T

Fig. 2. (b) Pure two-periodic diagram.

Fig. 1. (a) Pure one-periodic diagram.
Considering Remark 7.1, we can easily present explicit examples of systems complying with cases (a) and (b) above. In both

examples, x(w) = 1/2 and all maps preserve Lebesgue. Constructions of this kind are possible for any m, > 1 and u > 1 (see

Figs. 3 and 4).
\
/ /

\
7 \
/ \
v \

X=41a

X=1la,
Fig. 4. (b) A pure two-periodic system.

Fig. 3. (a) A pure one-periodic system.
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(ii) Pure aperiodic points x: when x is not fixed by any finite concatenation of maps in (Tv)‘;;(]). In this case, m(w) = co0, K(w) = 0
and M =0 (see Fig. 5).
Here are some compatible diagrams in this case:

Y
™t 'Y
i
“ “Te
T T T‘? wt L ;SQT‘
@#. —ly @ oo @—b.-’!w @\}.ﬁ
AL T =~ Yo
T
Ta T Ty Ta AL AN Ta
@d. mo f‘. @’!.0 ‘00 oo @d
N A P O VP (& e T\ -
To To To To To To T, 2 b7
T° \-ﬂ. .
T

Fig. 5. Some pure aperiodic diagrams.

Explicit examples realizing these structures (or exhibiting these sorts of behaviors) can be tricky to construct,’® especially
when the diagram is infinite and one has to control the behavior of infinitely many iterates of the system.?° Notice, however,
that, once the maps are fixed, the set of pure aperiodic x’s is generic, because it is given by
M\ U U Fix(T,, 0 ... oT,,),
p>1 (uou..,UP,I)E(O,.,.,u—l}P
which is co-countable (see Figs. 6 and 7).
For a finite diagram such as the last one in the first row, we can consider the following explicit example:

Fig. 6. A pure aperiodic system.

19 We are not claiming that every (possible) diagram compatible with (ii) can be realized by examples in the class (C1-C5).
20 In this direction, beta maps with irrational translation and rational (random) targets were studied in [29]. They do not fit exactly in the class (C1-C5)
because they do not have surjective branches. However, they can be dealt with here by considering their action on .S' rather than on [0, 1]. See Remark 7.3.

28



L. Amorim et al. Stochastic Processes and their Applications 179 (2025) 104511

(iii) Hybrid. This is the general case. They can combine the behavior in (i) and (ii) while still verifying M < co. Here are some
possible diagrams in this case:

: A A 0@
n Ges TGP, TGe_yOT

Fig. 7. Some hybrid diagrams.
For a finite diagram such as the last one in the first row, we can consider the following explicit example:

Fig. 8. A hybrid system.
(iv) Non-examples. Here are some diagrams which do not satisfy M < co.

. N\"
n QeI
TQ TO

A1 Ts
TN C @Q\ AN C @3-9 To

\T'/\T‘J To

Fig. 9. Some non-examples diagrams.
Notice that, whenever a purple path occurs, arbitrarily large periods can be formed. But this can occur without purple paths
as well, as in the first diagram. Moreover, this can occur both with infinite diagrams (the first two) and with finite diagrams
(the last two) (see Figs. 8 and 9).

Remark 7.2. It is not being claimed that systems as in (iv) are not covered by the theory presented in Theorem 2.2. It is just being
said that systems as in (iv) are not treated with the techniques used in this section (to calculate underlying a,’s).
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Proof of Theorem 7.1. It is enough to check that Conditions (C1)—(C5) imply the Hypotheses (H1-H7, H9—H10) of Section 2.4.

Here we check just (H9) and the rest are left for the reader (who should choose B R(yZ”") =(0,1),0=0, Cj;’, ©=0.dyd =1,k €
R>l P E R>l)-

We start calculating a,’s. Consider ¢ > 1 and w € £2 (eventually taken in a set of full measure).

Consider

L2 My g (). (€29)
Then take py(@, L) = py(my(®), ..., 71 (w)) small enough so that p < py(w, L) implies

T;Bp(x(w)) n Bp(x(Giw)) =@, Viell,L]\ {M(w) : k €[1,K(w)]}, (32)

which can be guaranteed noticing that

(a) returns occur precisely in the instants { M, () : k € [1, K(w)]} and not in between (by minimality),
(b) T’ is continuous on x(w) (Vi > 1), a.s., because, by (C4), one has

x(w) € {xg,x1} C ﬂ A;" C A?, as.
I=1

Because of the previous constraint, one could have started with L’s of the form L = M, .k (@), g, > ¢ (so still satisfying
Eq. (31)), in the sense that other choices of L are superfluous from the viewpoint of the quantity we will study, Z”. Then one
p
could restrict py(w, L) further so that p < py(w, L) implies:

My it <0M“,((0)U’)

——
M, (0) — M (w)
oM @),

eMk(w)

M, (w)
B (X(e g ®)) C A Mg, K (@) (@) =M (@)

(x(@M@w)) VK k € [0, A K(0)]. K <k, (33)

which can be guaranteed noticing that

@ 1" (oM )
a

My (6™ @
oM@,

x(OMe @) = x(0 )aMw @) = x(Mk@ ), with the latter point included in

(C4)

M@0 oM@
{xg,x m A >
0 X1} MqLAK(m)(w)_Mk(w)

b) T ¥ (o)

. . . My (@)
PRV is continuous at x(6Mv @ @), because, again by (C4), one has x(6Mv @ @) € 40+ @
w

My (HM‘C, ((u)w) .

The point of Condition (33) is to say that, p is so small that, starting from any pre-intermediary time M,,(w) and going to any
post-intermediary step M (w), the initial p-sized ball grows under iteration up to time M, (w) but still fitting inside a partition domain
(thus an injectivity domain) of the map evolving from time M, () until the end, M, ,x(,- In particular, the image balls will not
break injectivity (or wrap around). Most importantly, it is implied that for any z € Bﬂ(x(w))

( G VAR o mw)(w)( )>

is a binary sequence starting with a batch of 1’s followed by a (possibly degenerate) batch of 0’s (e.g. 11100, 1111 or 10000).
Then, for w, L and p as above, one has:

(32)

L (@) = o (Z > £ = 1177 = 1) = 197> ¢~ 1,197 = 1)

(/e( My (w):ke[l,q; AK ()]}

_ wp  _ w,p : w.p :
@ ,4(”(1 = LI = e I = ),1ft’—1<K(w) @ [lw(IMf](w) ),1ff—1<1<(w)

0 , otherwise 0 , otherwise
so that
o <(TMf 1(0))) lrp(eMt’—](w)w)) ((TMK(‘”)) IF‘,(GM/(‘”)Q)))
p - — , if £ < K(w),
oy Hal@) an o L) AT)
GK(L,p)W = ((T ‘- l(“’)) Il—vp(ng,l(a))w)> .
’ AT ,if £ = K(w) + 1,
P

0 ,if 2 > K(w) + 2.
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Notice that

He ((Tujlwf—l(w))—lFF(HMK—I(W)CO)> Leb <h(l)]I(T:If(w))’lfp(er(mw)>

AT,) © [ Leb(h,1 r (@)dP(®)

Ly (x(@)) + O(e)] Leb (7)1 B, (x(0M¢w)) )

Jalho(x(@)) + O(e)ILeb(B,(x()))dP(w)

[y (x(@) + O (JT3" x(@)) " + O(e)]| Leb (B, (x(0Mr @)

= Jolhy(x(@)) + O()]Leb(B,(x()))dP(w)
_ h,(x(@)) + O(e) [ (
Jo ho(x(@)) + Oe)dP(w)

T @)™ + o) (34)

where, given ¢ > 0 (for @ and L chosen as above), we have considered p < p;(w,¢) < r (see (C5)), with p,(w, €) small enough so that

for any p < p(w,¢):

h,(z) = h,(x(@)) + O(e),Vz € Bp(x(a)))

and

M (@) My (@)

(T @) = (TN (@) ! + Oe), Vz € B, (x(@)).

We can write
" M (@)1 /o
p1(w,€) = (G/Hp(hw|3,(x(w)))) A (E/Hﬁ ([JTw 1 |B,(x(w)))> AL

We can use (C1) (finitely many maps and uniformly bounded second derivatives), (C4) (uniformly bounded finite-periods) and
(C5) (uniform Holder constants for the densities) to pass to controls that are uniform on w and then integrate: for any ¢ > 0,
L>L, :=¢M, and

p<p(L,e) = (,,-J??BL) 1y, - vp) Aessinfpy(w,€) € (0,11,

e {0,1)L+!

one has
as(L,p) =

- -1
ITY O x(@)) 40w - (/T P xn) - O(e)] ,if £ < K(@)

h,(x(@)) + Oe) [(
/ hy,(x(@)) + O(e)dP(w)
° hy(x(@)) + O(e)
° / hy(X(@)) + O()dP(@)
0" Lif €3 K@) +2

[(JTHJ’W f_](w)(x(w)))fl + (‘)(6)] Jif e =K@ +1 P

then taking iterated limits of the type lim, lim; Enp one finds that

LD [ TN ) - (JTff“”)(x(w)))_l] if £ < K@)
[ hotxtnar@
ay = /Q _ hy(x(w)) [ JTf”"(w)(x(w)))_l] if £ = K@)+ 1 dP(w). 35)
[ huxnir@
Q
0 ,if £ 2 K(w)+2

The following diagram helps one to visualize how the integrand in Eq. (35), with the factor % suppressed, changes

(a) for w’s with varying amounts of periodicity (read the different lines),
(b) as Z grows (read the different columns).
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=1 £=2 £=3
_ my () _ my(w)
K@) = oo'<1 10 (L o, SO T i, ) >
: @® ’ mg(w) ’ mgy(w) my () L
JT," " (x(@)) IT," " (x(@)IT ), ) (x(@))
K(@)=0: ( 1 , 0 , 0 .0
(36)
. ) 1 0
K =1:(1-10T"%w), —eou—— 0
( ! I (x(@)
1= 10T (x(@)) )
K(w) = 2: (1 — 1T (x()), e L o).
IT @) IT @) T (x(@)

Having found that a,’s exist and have explicit representation, it remains to check that «; > 0 and Y5 | #%a, < co.
It holds that a; > 0 because the quantity found in the first column of diagram (36) is bounded below by 1 —1/d,
Moreover, considering the integrand of Eq. (35), we see that a, is at most (1/d,;,)° ™!, therefore

[so] [se]
3 oy <Y P ) ! < 00,
=1 =1

0.

min >

since d,;, > 1.

This concludes that Conditions (C1)-(C4) imply the hypotheses of Theorem 2.2 and that the associated «,’s satisfy (H9) and the
hypotheses of Theorem 2.1.

Let us finally notice that in this case, where d,d,n,f = 1 and p = o (i.e., can be taken arbitrarily large), q(dy., d;,#, B, p), reduces
to 1. This is because the system of inequalities appearing at end of proof of Lemma 4.2 reduces to only two (1 > a and w > 2 for
(a,w) € (0,1) X (1, )) which admit a solution that opens a margin of (at least) 1 in both equations. |l

Remark 7.3. For M = [0, 1], the use of surjective branches in (C1) was to facilitate as much as possible the presentation of covers
and cylinders in (H2) below. But these can be still presented without surjective branches. For example, one could consider the beta
maps Ty(x) = 1/2 + 2x (mod 1) and 7T (x) = 1/2 + 3x (mod 1). On the other hand, to have the type of decay against Lipschitz test
functions we will be after in (H7), the interval maps ought to have surjective branches (otherwise the good functional space becomes
bounded variation instead of Lipschitz), which is not the case of the previous beta maps. In this situation, one has to resort to seeing
these beta maps as acting smoothly in M = .S', and cylinders will not anymore mark regions of continuity/differentiability, but will
still mark injective regions.

Remark 7.4. Condition (C5) was included to make transparent what is really used in the argument above. But one should be aware
that Conditions (C1-C3) suffice to conclude that densities are a.s. bounded away from 0 and co and a.s. admit a uniform Holder
constant (on the entire manifold M). See [24] Example 21. This is stronger than (C5), which then can, technically, be omitted from
the list of conditions.

Now we concentrate on analyzing how the conclusions of Theorem 7.1 refine (or how «,’s in Eq. (35) simplify) when additional
conditions are considered.

Corollary 1. Consider the assumptions of Theorem 7.1 and assume further that K(w) = 0 a.s.
Then

Life=1
a = 37
0,ift>2

and CPD in the limit theorem boils down to a standard Poisson.
Proof. Immediate. W

Corollary 2. Consider the assumptions of Theorem 7.1 and assume further that P is Bernoulli, K(w) = oo a.s. and”’

By (x(@)) L (JT (x(HM/'(‘”)aJ)))

oM@,

”l,'(w)

E
Then
a, =(D—1)D’, with D! := / T (@) dP(w),
Q

and the CPD in the limit theorem boils down to a Polya-Aeppli (or geometric) one.

21 This occurs, for example, when &, = 1 a.s., or much more generally, when &, depends only on the past entries of w (see, e.g., [36] prop. 1.2.3 and [37]
prop. 3.3.2).
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Proof. Notice that K(w) = o a.s. and the independence of A, (x(w)) frorn the rest implies
)
-1
o = / 1]/ e, (0" (%;))] dP(w) - / H or o, (x(HMi(w)w))] dP(w),
oty

then, after we make the point in (I) that (a) = JT Aj,((::; (x(OMi (‘”)a)))) is independent under P, we will find that

m;(w m;(w -1
af—H / T @@ 0)]” dPw) - H / [T, 0" @a)| " dp@),

which, we will argue in (1), equals
r=2 . - |
ay = H/ [JT;"o(w)x(w)] dP(w) — H/ [JTU':U(“))X(CO)] dP(w) = (D - 1)D~,
j=07 j=0 /e

where D! := [ [JT}" x(@)]"! dP(w), as desired.
Let us keep track of the points that are missing.
(I) Notice first that
P(my(w)=iy, m(w)=i;) = P(my(w)=i, m0(¢9i0a)):i|) = P(my(w)=iy)P(my(w)=iy),
where the latter equality is because z,’s are independent under P and the indicator functions of the events in the left-hand side can
be expressed as functions of, respectively, x, ..., 7; _; and =, , ..., 7; 4; 1, with no overlaps. On the other hand
P(m; () = zl) = ) P(my(@) = ig, my (@) = i)
ig
= Z P(mgy(w) = ig)P(my(w) = i) = P(my(w) = i).
i
So combining the two previous chains of equality, we find that m; and m, are independent, i.e., my L m;.
By a similar independence argument, we find that
(TGO Lygrmsy ) L (LT OO 1 01 )
and therefore

P ({ [JRTO(H])(X(W))] =a, [JT'"'(“’) (x(gm()(ﬂ’)w))]_l _ b})

0M0(@)

= Z z P ({w : [JT;,U(x(w))]’1 =a, [JT;}Om(x(G’Ua)))rl = b, my(w) = ip, my(®) = i })

=YX ({w TR )] = a, [IT (<@ = b, mo(@) = iy, mo(00@) = i) })

0'00

- Z ZIO[IP’ (1{50 D [T (x(co))rl =a, mO(a))=i0}) P ({w : [JT;'}%(X(e'bm))]’l = b, my(00w)=i, })]
o 0
- [Z P ({a} L ITO )] = @, my() = io})] [ZIP’ ({ [T (x@))] ™ = b,m() = iy })]

’ =P({o: 1T u@)] " =a})P({o: 1T x@)] " =b}).
As a consequence,

P ({a) T (@M @] = b})

6m0@),

=y ({a) T (@) = a, e (O D)) = b})

N ({a) L [ITI ()] = a}) P ({w T (x))] ! = b})
P({o: T @] =b}).

So combining the two previous chains of equality, we find, as desired, that
[ITMO O™ LT (x(0"00- B
(II) Notice that
my (@ ) -1 . my(w o (@ -1
/Q T X0 w)] dB@) = ZbIP’({w T @M @w)] ™ = b))

= z bP <{ T2 @] }> = / [T x(@)] " dP(@).
Q

where we have used the last equality in (I). W

33



L. Amorim et al. Stochastic Processes and their Applications 179 (2025) 104511

Acknowledgments

LA was supported by Fundac¢do para a Ciéncia e a Tecnologia grant PD/BD/150458/2019 and also by the Faculty of Sciences
of the University of Porto, the Center of Mathematics of the University of Porto, the Université de Toulon, France, and the Centre
de Physique Théorique in Luminy, Marseille, France NH was supported by the Simons Foundation grant Collaboration Grants for
Mathematicians and also by the Université de Toulon, France, and the Centre de Physique Théorique in Luminy, Marseille, France. The
research of SV was supported by the project Dynamics and Information Research Institute within the agreement between UniCredit
Bank and Scuola Normale Superiore di Pisa and by the Laboratoire International Associé LIA LYSM, of the French CNRS and INdAM
(Italy). SV was also supported by the project MATHAmSud TOMCAT 22-Math-10, N. 49958WH, from the french CNRS and MEAE and
by the Mathematical Research Institute MATRIX for hosting a workshop during which part of this work was conceived. The authors
thank P. Varandas for useful comments on applications and J. Freitas for discussions on alternative interpretations of relationships
between return and hitting statistical quantities.

References

[1]1 W. Doeblin, Remarques sur la théorie métrique des fractions continues, Composit. Math. 7 (1940) 353-371.
[2] B. Pitskel, Poisson limit law for Markov chains, Ergodic Theory Dynam. Systems 11 (3) (1991) 501-513.
[3] M. Hirata, Poisson law for axiom a diffeomorphisms, Ergodic Theory Dynam. Systems 13 (3) (1993) 533-556.
[4] P. Collet, Some ergodic properties of maps of the interval, 1996, p. 5591, Dynamical Systems (Temuco, 1991/1992), (Travaux en cours, 52). Herman,
Paris.
[5] A. Galves, B. Schmitt, Inequalities for hitting times in mixing dynamical systems, Random Comput. Dyn. 5 (4) (1997) 337-348.
[6] M. Denker, M. Gordin, A. Sharova, A Poisson limit theorem for toral automorphisms, Illinois J. Math. 48 (1) (2004) 1-20.
[7]1 N. Haydn, S. Vaienti, The compound Poisson distribution and return times in dynamical systems, Probab. Theory Related Fields 144 (3-4) (2009) 517-542.
[8] A.C.M. Freitas, J.M. Freitas, M. Todd, The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics, Comm. Math.
Phys. 321 (2) (2013) 483-527.
[9] Y. Kifer, A. Rapaport, Poisson and compound Poisson approximations in conventional and nonconventional setups, Probab. Theory Related Fields 160
(2014) 797-831.
[10] M. Carvalho, A.C.M. Freitas, J.M. Freitas, M. Holland, M. Nicol, Extremal dichotomy for uniformly hyperbolic systems, Dyn. Syst. 30 (4) (2015) 383-403.
[11] D. Azevedo, A.C.M. Freitas, J.M. Freitas, F.B. Rodrigues, Clustering of extreme events created by multiple correlated maxima, Physica D 315 (2016) 33-48.
[12] M. Holland, M. Nicol, A. T6rok, Extreme value theory for non-uniformly expanding dynamical systems, Trans. Amer. Math. Soc. 364 (2) (2012) 661-688.
[13] M. Abadi, A.C.M. Freitas, J.M. Freitas, Dynamical counterexamples regarding the extremal index and the mean of the limiting cluster size distribution, J.
Lond. Math. Soc. 102 (2) (2020) 670-694.
[14] D. Azevedo, A.C.M. Freitas, J.M. Freitas, F.B. Rodrigues, Extreme value laws for dynamical systems with countable extremal sets, J. Stat. Phys. 167 (5)
(2017) 1244-1261.
[15] D. Faranda, H. Ghoudi, P. Guiraud, S. Vaienti, Extreme value theory for synchronization of coupled map lattices, Nonlinearity 31 (7) (2018) 3326.
[16] M. Carney, M. Holland, M. Nicol, Extremes and extremal indices for level set observables on hyperbolic systems, Nonlinearity 34 (2) (2021) 1136.
[17] A.C.M. Freitas, J.M. Freitas, F.B. Rodrigues, J.V. Soares, Rare events for cantor target sets, Comm. Math. Phys. 378 (2020b) 75-115.
[18] G. Mantica, L. Perotti, Extreme value laws for fractal intensity functions in dynamical systems: Minkowski analysis, J. Phys. A 49 (37) (2016) 374001.
[19] A.C.M. Freitas, J.M. Freitas, J.V. Soares, Rare events for product fractal sets, J. Phys. A 54 (34) (2021) 345202.
[20] A.C.M. Freitas, J.M. Freitas, M. Todd, Enriched functional limit theorems for dynamical systems, 2020c, arXiv preprint arXiv:2011.10153.
[21] N. Haydn, S. Vaienti, Limiting entry and return times distribution for arbitrary null sets, Comm. Math. Phys. 378 (2020) 149-184.
[22] A.C.M. Freitas, J.M. Freitas, M. Todd, S. Vaienti, Rare events for the Manneville-Pomeau map, Stochastic Process. Appl. 126 (11) (2016) 3463-3479.
[23] P. Marie, J. Rousseau, Recurrence for random dynamical systems, 2009, arXiv preprint arXiv:0906.4847.
[24] J. Rousseau, B. Saussol, P. Varandas, Exponential law for random subshifts of finite type, Stochastic Process. Appl. 124 (10) (2014) 3260-3276.
[25] H. Aytag, J. Freitas, S. Vaienti, Laws of rare events for deterministic and random dynamical systems, Trans. Amer. Math. Soc. 367 (11) (2015) 8229-8278.
[26] N. Haydn, M. Todd, Return times at periodic points in random dynamics, Nonlinearity 30 (1) (2016) 73.
[27] A.C.M. Freitas, J.M. Freitas, M. Magalhaes, S. Vaienti, Point processes of non stationary sequences generated by sequential and random dynamical systems,
J. Stat. Phys. 181 (2020a) 1365-1409.
[28] H. Crimmins, B. Saussol, Quenched Poisson processes for random subshifts of finite type, Nonlinearity 35 (6) (2022) 3036.
[29] J. Atnip, G. Froyland, C. Gonzélez-Tokman, S. Vaienti, Compound Poisson statistics for dynamical systems via spectral perturbation, 2023, arXiv preprint
arXiv:2308.10798.
[30] J.-R. Chazottes, P. Collet, Poisson approximation for the number of visits to balls in non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam.
Systems 33 (1) (2013) 49-80.
[31] H. Crauel, Random Probability Measures on Polish Spaces, vol. 11, CRC Press, 2002.
[32] L. Arnold, Random Dynamical Systems, Springer, 1995.
[33] S.I. Resnick, Extreme Values, Regular Variation, and Point Processes, vol. 4, Springer Science & Business Media, 2008.
[34] L. Amorim, Compound Poisson Distributions for Random Dynamical Systems (Ph.D. thesis), Universidade do Porto, Portugal, 2023.
[35] O. Kallenberg, Random Measures, De Gruyter, 1983.
[36] F. Ledrappier, L.-S. Young, Entropy formula for random transformations, Probab. Theory Related Fields 80 (2) (1988) 217-240.
[37] Y. Kifer, P.-D. Liu, Random dynamics, in: Handbook of dynamical systems, vol. 1, 2006, pp. 379-499.

34


http://refhub.elsevier.com/S0304-4149(24)00219-9/sb1
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb2
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb3
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb4
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb4
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb4
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb5
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb6
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb7
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb8
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb8
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb8
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb9
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb9
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb9
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb10
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb11
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb12
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb13
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb13
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb13
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb14
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb14
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb14
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb15
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb16
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb17
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb18
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb19
http://arxiv.org/abs/2011.10153
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb21
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb22
http://arxiv.org/abs/0906.4847
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb24
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb25
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb26
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb27
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb27
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb27
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb28
http://arxiv.org/abs/2308.10798
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb30
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb30
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb30
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb31
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb32
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb33
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb34
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb35
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb36
http://refhub.elsevier.com/S0304-4149(24)00219-9/sb37

	Compound Poisson distributions for random dynamical systems using probabilistic approximations
	Introduction
	Assumptions and main results
	General setup
	Preliminary definitions
	Statistical quantities
	Working setup
	Main results

	An abstract approximation theorem
	Borel–Cantelli type lemmata
	Proof of Theorem 2.2 
	Applying the abstract approximation theorem
	Estimating the error R1
	Estimating the error R1tilde
	Estimating the error R2
	Estimating the error R3
	Controlling the total error
	Convergence of the leading term to the compound Poisson distribution

	Proof of Theorem 2.3
	Application: random piecewise expanding one-dimensional systems
	Acknowledgments
	References


