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We show how to obtain theoretical and numerical estimates of correlation dimension and phase

space contraction by using the extreme value theory. The maxima of suitable observables sampled

along the trajectory of a chaotic dynamical system converge asymptotically to classical extreme

value laws where: (i) the inverse of the scale parameter gives the correlation dimension and (ii) the

extremal index is associated with the rate of phase space contraction for backward iteration, which

in dimension 1 and 2, is closely related to the positive Lyapunov exponent and in higher

dimensions is related to the metric entropy. We call it the Dynamical Extremal Index. Numerical

estimates are straightforward to obtain as they imply just a simple fit to a univariate distribution.

Numerical tests range from low dimensional maps, to generalized Henon maps and climate data.

The estimates of the indicators are particularly robust even with relatively short time series.
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This study uses the link between extreme value laws and
dynamical systems theory to show that important dynam-
ical quantities as the correlation dimension, the entropy,
and the Lyapunov exponents can be obtained by fitting
observables computed along a trajectory of chaotic sys-
tems. All this information is contained in a newly defined
Dynamical Extremal Index. Besides being mathemati-
cally well defined, it is almost numerically effortless to
get as (i) it does not require the specification of any addi-
tional parameter (e.g., embedding dimension, decorrela-
tion time); (ii) it does not suffer from the so-called curse
of dimensionality. A numerical code for its computation
is provided in the supplementary material.

I. INTRODUCTION

Since its introduction by Grassberger and Procaccia,1,2

the correlation dimension (CD) has been used as a powerful

indicator for the description of the fractal structure of invari-

ant sets in dynamical systems. Similarly, the Lyapunov

exponents and the entropy3,4 provide an indication of the rel-

evant time scales associated with the dynamics and the pre-

dictability horizon of the system. Given the importance of

these quantities, there exists an increasing body of literature

on how to estimate CD, Lyapunov exponents, and entropy. It

has been shown that reliable estimates of CD can be obtained

with relatively short time series.5 Instead, the computations

of Lyapunov exponents and entropy are still challenging

because the existing methodologies require as input addi-

tional parameters as the embedding dimension and the rele-

vant time scale of the dynamics (e.g., the decorrelation

time). Calculations are limited to the top Lyapunov exponent

and the reliability of estimates from the time series of experi-

mental phenomena is often questioned.6 We defer the reader

to the monographs7,8 and to the articles9,10 for recent

advancements on the various statistical tools to investigate

the nonlinear time series.

The extreme value theory (EVT) has been used to char-

acterize the evolution of chaotic systems.11,12 It is possible

to obtain dynamical properties in phase space (fractal dimen-

sion or stability) by exploiting the limiting theorems of the

extreme value theory. The main idea is: (i) to replace the sto-

chastic processes used in the statistical framework with a tra-

jectory of a chaotic dynamical system and (ii) to study the

convergence of maxima of suitable observables to the classi-

cal extreme value laws. The parameters of the EVT provide

estimates of dynamical properties of the system. This con-

nection between EVT and the dynamical properties of cha-

otic systems is rich not only from a theoretical but also from

a numerical perspective. Indeed, the estimates of local prop-

erties obtained with EVT do not require the introduction of

additional parameters and they are easy to implement numer-

ically. They have been used to get insights into the dynami-

cal behavior of atmospheric flows in Refs. 13–15. In Ref. 16,

it has been shown that the numerical algorithm based on

EVT provide reliable estimates of the dimension of high

dimensional systems up to phase spaces with thousands of

dimensions. It is therefore desirable to estimate other key

dynamical quantities in the EVT framework.

The purpose of this communication is to show that the

correlation dimension and the EVT are intimately related:

the CD arises by studying the distribution of the maxima of a

new suitable observable evaluated along the orbit of a

chaotic system. Moreover, an exponent of the limit law, the

extremal index, is related, for hyperbolic attractors, to

the positive Lyapunov exponent in dimension two and to the

metric entropy in higher dimensions. The idea of the rela-

tionship between EVT and CD comes from a previous
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work17 where we used the extreme value theory to detect

and quantify the onset of synchronization in coupled map lat-

tices. The relationship between the extremal index and the

Lyapunov exponent and the entropy is new and is particu-

larly striking for maps with piecewise constant jacobian. In

the general case, we derive a formula whose validity is con-

firmed by numerical experiments. We also explain the rela-

tion between our extremal index, the local dimensions, and

the phase space contraction. In the rest of the paper, we will

name it as the DEI, the dynamical extremal index. We want

to points out that our DEI is a well defined quantity that can

be used as a new indicator for the sensitivity associated with

local hyperbolicity. We will present the theoretical results in

Sec. II: some of those results can be obtained by generalizing

the techniques introduced in Ref. 17; we will also address

the need to develop a more appropriate theory of EVT for

diffeomorphisms in higher dimensions. We will then provide

several examples of classical conceptual low-dimensional

dynamical systems. We will discuss the implications of our

results on higher dimensional systems and the possibility to

apply them to more general time series. As an example, we

will compute the indicators on climate data and explain how

they provide relevant physical information on the atmo-

spheric circulation over the North Atlantic.

II. THEORETICAL RESULTS

A. A brief presentation of the extreme value theory and
a new observable

Let (M, l, T) be dynamical systems given by a map T

acting on the metric compact space M with distance d(�,�)
and preserving the Borel measure l. Usually, M will be a

compact subset of some R
n and d a distance equivalent to

the standard one. Let us take the direct product ðM �M;
l� l; T � TÞ; and denote with ðx; yÞ 2 M �M, a couple of

point in the Cartesian product (M�M). We then introduce

the observable wðx; yÞ ¼ ÿlog dðx; yÞ; and consider the pro-

cess fw s ðTj � TjÞgj�0, and the maximum of the sequence

Mnðx;yÞ¼maxfwðx;yÞ;wðTx;TyÞ;…;wðTnÿ1x;Tnÿ1yÞg and

finally its distribution PðMn� unÞ, where P¼l�l is the

underlying probability and un is a suitable scaling function

tending to infinity and which we are going to define.

Suppose that for a given positive number s we can find a

sequence of numbers un such that nPðw� unÞ! s; n!1:
We say, that the process fwsðTj�TjÞgj�0 satisfies an

extreme value law of Gumbel’s type if there is a number

h2(0, 1], the extremal index, such that PðMn � unÞ! eÿhs;
n!1: We now introduce the diagonal neighborhood Sn in

the product space: Sn ¼fðx;yÞ;dðx;yÞ� eÿung. By substitut-

ing the expression of w in Pðw� unÞ, we have

Pðw � unÞ ¼ Pððx; yÞ 2 SnÞ ¼
ð

M

lðBðx; eÿunÞÞdlðxÞ;

(2.1)

where B(x, a) denotes the ball of radius a centered on x.

(Actually, we got the equality of the right hand side in the

limit of large n when the two small corners of Sn become

negligible.) The quantity
Ð

M
lðBðx; rÞÞdlðxÞ scales like rD2

and the exponent D2 is called the correlation dimension and

it characterizes the fractal structure of the support of l; a

more formal, definition of this fact is given in Ref. 18, Sec.

17, and references therein. A precise definition consists in

taking the limsup and liminf of the ratio of the logarithm

with log ð1=rÞ. By injecting successively into (2.1), we have

therefore that for large n

un �
ÿlog s

D2

þ log n

D2

:¼ z

an
þ bn; (2.2)

where s ¼ eÿz; an ¼ D2 and bn ¼ log n
D2

: For numerical pur-

poses, distribution functions like PðMn � zÞ are modelled,

for n sufficiently large, by the so-called generalized extreme

value (GEV) distribution which is a function depending upon

three parameters n 2 R; j 2 R; r > 0 and such that:

FGEVðz; j; r; nÞ ¼ exp ÿ½1þ nðzÿj
r
Þ�ÿ1=n

n o

.

The parameter n is called the tail index; when its value

is 0, the GEV corresponds to the Gumbel type. The parame-

ter j is called the location parameter and r is the scale

parameter: for n large, the scaling constant an is close to rÿ1

and bn is close to j. Therefore, if we could fit a limit law of

Gumbel’s type with suitable normalizing parameters an and

bn, we immediately get the correlation dimension. Such a

technique was previously used with a different observable,

and it allowed to get the so-called information dimension

D1(x), another fractal dimension which provides the scaling

of the measure of a ball around a given point x, see Ref. 19

and references therein. Although the information dimension

depends on the point x, its value is the same for almost all

the choices of x with respect to the invariant measure and

such an averaged valued, simply D1, is larger or equal to D2,

see Ref. 20 for an account on the different fractal dimen-

sions. In particular, if we denote with dH the Hausdorff

dimension, we have D2�D1� dH.

B. The spectral approach with the new observable for
conformal repellers

Before showing our numerical simulations for the com-

putation of the CD, let us argue how we get a Gumbel type

asymptotic distribution with an extremal index h of dynami-

cal meaning. First, we consider one-dimensional dynamical

systems generated by uniformly expanding maps with an

invariant set which could be a Cantor set and equipped with

mixing Gibbs measures. These systems are better known as

conformal repellers,—see for instance21 for a recent contri-

bution—whose measures are characterized by a potential u

of type uðxÞ ¼ ÿb log jT0ðxÞj, where T0 denotes the deriva-

tive of T and b 2 R. If we denote them as lb, they are given

by hb�b, where the density hb and the conformal measure �b
are, respectively, the eigenfunctions of the transfer operator

(Perron-Fr€obenius) and of its dual, both with eigenvalue

kb ¼ eQðbÞ, being Q(b) the topological pressure. We remind

that the transfer operator PT for the map T is defined, for an

observable f in some suitable Banach space B—for instance

the space of Lipschitz continuous functions—by the duality

relation:
Ð

PTfd�b ¼ kb
Ð

fd�b. We defer to the monograph22
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for an introduction to thermodynamic formalism. The con-

formal measure verifies the property �bðTAÞ ¼ kb
Ð

A
eÿud�b;

where T is one-to-one over the measurable set A. A powerful

method to investigate the distribution of our process

fw s ðTj � TjÞgj�0 consists in perturbing the transfer operator

P of the direct product T�T. The key observation is that by

repeatedly using the duality relation, we can write

PðMn � unÞ ¼ kÿ2n
b

Ð Ð

~Pn

nðhbðxÞhbðyÞÞd�bðxÞd�bðyÞ, where
the perturbed operator ~Pn is defined by acting on observables

f 2 B, as ~Pnðf Þ ¼ Pðf1ScnÞ; and Sn ¼ fðx; yÞ; dðx; yÞ
� eÿung. When n tends to infinity, the characteristic function

of the complement of Sn, 1Scn , goes to the identity and the

operators P and ~Pn converge to each other in B. If the

unperturbed operator P has a spectral gap, it allows expo-

nential mixing for the observables in B. This compensate the

lack of independence of the process fw s ðTj � TjÞgj�0: The

same is true for the operator ~Pn and the maximal, isolated,

eigenvalue of P; k2b; is close to that of ~Pn; ~k
ð2Þ
b;n. More pre-

cisely: ~k
ð2Þ
b;n � k2b ÿ ð1ÿ k2bq0ÞPðSnÞ, where now P ¼ lb

�lb. We will define the factor q0 in a moment. The operator

~Pn now decomposes as the sum of a projection along the one

dimensional eigenspace associated with the eigenvalue ~k
ð2Þ
b;n

and an operator with a spectral radius exponentially decreas-

ing to zero and which can be neglected in the limit of large

n. This allows us to write PðMn � unÞ � kÿ2n
b

~k
ð2Þn
b;n

Ð Ð

hbðxÞ
hbðyÞÞd�b;nðxÞd�b;nðyÞ, where �b,n is the conformal measure

for the perturbed operator and the double integral on

the right hand side converges to 1 for n ! 1. Finally, we

get by approximating ~k
ð2Þ
b;n as above: PðMn � unÞ

� 1ÿ ð1ÿk2bq0ÞPðSnÞ
k2b

� �n

� exp ÿ ð1ÿk2bq0ÞPðSnÞ
k2b

n

� �

. We now

remind that we are under the assumption that nPðw � unÞ
¼ nPðSnÞ ! s; n ! 1. This lead to the Gumbel law e–hs

provided that the dynamical extremal index h is defined as

h ¼
1ÿ kÿ2

b q0

k2b
: (2.3)

The term q0 is obtained by the previous perturbation theory

under the assumption that the diagonal in the product space

is left invariant by the direct product of the two maps. In par-

ticular, we have

q0 ¼ lim
n!1

PðSn \ �T
ÿ1
SnÞ

PðSnÞ
; (2.4)

provided that the limit exists. The technique just described

was first proposed by Keller23 as an alternative way to get

EVT for systems with exponential mixing and it is based on

a perturbative result by Keller and Liverani.24 We defer to

Ref. 23 and to our paper17 for a detailed presentation of that

theory. It can be applied to conformal mixing repellers and it

provides the preceding estimates, namely the asymptotic

scaling for the maximal eigenvalue. We would like to point

out that with our choice for the observable w, the perturba-

tive approach just sketched gives the Gumbel’s law in a very

direct and natural manner.

The computation of q0 proceeds now as in Ref. 17 with

a substantial difference: the nature of the conformal measure

does not imply necessarily that the ratio
�bðBðTx;rÞÞ
�bðBðx;rÞÞ is constant,

which happened when the conformal measure was Lebesgue.

This difficulty could be partially overcome by supposing that

the potential is constant, otherwise we could bound q0 from

above and below with (close) approximations of the poten-

tial. By assuming that the latter is constant and equal to �u

and also that the density hb does not vary too much, we get

that q0 is of order e
�u and therefore

h �
1ÿ kÿ2

b e�u

k2b
: (2.5)

It is worth mentioning that whenever the conformal measure

is Lebesgue (b¼ 1), the above computation can be made rig-

orous as in Proposition (5.3) in Ref. 17 and it gives

h ¼ 1ÿ

ð

M

h2ðxÞ
jT0ðxÞj dx

ð

M

h2ðxÞdx
; (2.6)

where h is the density of the invariant measure: we defer to

our paper17 for the assumptions on the system which permit

to get such a result. In particular, those systems contain con-

formal repellers with finitely many branches and absolutely

continuous conformal measures. Notice that by introducing

the invariant measure l¼ hdm, we could identically write

h ¼ 1ÿ

ð

M

hðxÞeÿlog jT0ðxÞjdlðxÞ
ð

M

hðxÞdlðxÞ
: (2.7)

If the derivative does not change too much, we get

h � 1ÿ eÿKl , where Kl is the positive Lyapunov exponent

of the measure l. Alternatively, if the density h could be

considered constant, we can bound (2.7) by Jensen’s inequal-

ity as

h � 1ÿ
ð

M

1

jT0ðxÞjdlðxÞ � 1ÿ e
ÿ
Ð

M
log jT0ðxÞjdlðxÞ ¼ 1ÿ eÿKl :

In both cases, the DEI h is related to the positive Lyapunov

exponent: this analogy will be pursued in Sec. II C.

C. Attractors and high dimensional systems

For invertible maps generating attractors endowed with

the SRB measure, the computation of the dynamical

extremal index is less straightforward; we should stress that

a spectral theory of extreme value for (invertible) uniformly

hyperbolic maps is still missing. Suppose we take an hyper-

bolic diffeomorphisms T preserving the ergodic SRB mea-

sure L. Then, the quantity q0 in (2.4) becomes

041103-3 D. Faranda and S. Vaienti Chaos 28, 041103 (2018)



q0 ¼ lim
n!1

ð

dLðxÞ
ð

1Snðx; Tÿ1yÞ1SnðTx; yÞdLðyÞ
ð

dLðxÞ
ð

1Snðx; yÞdLðyÞ
: (2.8)

When we iterate backward the points y 2 BðTx; eÿunÞ, we
should keep only those points whose preimage is at a dis-

tance at most eÿun from x. Those preimages form a set Q(x)

which is obtained by squeezing the ball BðTx; eÿunÞ along the

unstable manifolds. Let us suppose that the tangent expand-

ing subspace Ru(Tx) at x has dimension d. Then the measure

of Q(x), and therefore, by the forward invariance of the

measure, of its image in BðTx; eÿunÞ will be of order

jdetðDTðxÞjuÞjÿ1 LðBðTx; eÿunÞÞ, where DTðxÞju is the deriv-

ative of T restricted to Ru(x). We remember in fact that the

conditional SRB measure on the unstable manifolds is

smooth. This immediately gives q0 of order

q0 �

ð

dLðxÞjdetðDTðxÞjuÞj
ÿ1 LðBðTðxÞ; eÿunÞÞ

ð

dLðxÞ LðBðx; eÿunÞÞ
: (2.9)

We see that q0 contains information about the dimension

through the scaling of the denominator; we are now inter-

ested in the contribution of the other term in the numerator.

In this regard, we first remind that, for SRB measures, we

can use the Pesin’s formula25

ð

dLðxÞjdetðDTðxÞjuÞj ¼
X

d

j¼1

K
þ
j ¼ hL;

where K
þ
j is the positive Lyapunov exponents with multi-

plicity one, and hL is the metricentropy of the SRB measure.

We now proceed under two assumptions as we did at the end

of Sec. II B. Let us first assume that the derivative along the

unstable subspaces does not vary too much. Then, we could

estimate the DEI as

h � 1ÿ eÿhL : (2.10)

For d¼ 1, we can replace the entropy with the (unique) posi-

tive Lyapunov exponent KL; in the following, we will simply

write it as Kþ.
The other assumption exploits the fact that for these

system, and for L-almost all points x we have, by Young’s

theorem,26 that limr!0
logLðBðx;rÞÞ

log r
¼ D1, where D1 is the

information dimension. Hence, we could guess that

LðBðx; eÿunÞÞ � eÿunD1 and therefore forget about the depen-

dence on the variable x. This is generally false since the mul-

tiplicative factor in the previous scaling could depend on x.

Indeed, when we integrate LðBðx; eÿunÞÞ, we get D2 which

could be different from D1. If we suppose that the depen-

dence on x of the prefactors is negligible, which means that

we are considering a homogenous fractal invariant set with

D1 � D2, then we have for the DEI

h� 1ÿ
ð

dLjdetðDTðxÞjuÞj
ÿ1 � 1ÿ e

ÿ
Ð

dLðxÞjdetðDTðxÞjuÞj

¼ 1ÿ eÿhL ; ð2:11Þ

where the derivative is not supposed to be constant and

where we have used again the Jensen’s inequality to estab-

lish the upper bound.

Those two approximations are very crude; we are in fact

either neglecting the contributions of the prefactors in the

local scaling of the balls in (2.9), or not taking into account

the geometric factors when the ball BðTx; eÿunÞ is squeezed
at a distance eÿun from x. Moreover, the variation of the

derivative, especially sensible in the non-uniformly hyper-

bolic setting, could give large differences in the determina-

tion of the DEI, as we experience for instance for the H�enon

map, see below. The preceding relation is pretty well satis-

fied for maps with one-dimensional unstable subspace and

(piecewise) constant jacobian, like the Baker transformation,

the Lozi map, and the solenoid. For the algebraic automor-

phism of the torus (cat’s map), a simple argument allows us

to improve the previous rate just by taking into account the

geometric factors. Surprisingly, relation (2.11) is pretty well

satisfied in the example below of the generalized H�enon

maps, where the unstable subspace has dimension larger

than one, i.e., we have more than one positive Lyapunov

exponent. In conclusion, our index h traces in a satisfactory

way the entropy. The eventual deviations are due to the vari-

ation of the derivative and the local scaling of balls in (2.9).

Although these effects are difficult to compute analytically,

the DEI h is relatively easy to compute numerically and it

furnishes a new indicator for the local instability in chaotic

systems.

III. NUMERICAL COMPUTATIONS

The numerical computations presented in the remaining

of this work are performed by using the numerical algo-

rithms and codes detailed in the supplementary material. The

stability of the results is checked against different l,n,m,s. In

particular, we perform two sets of simulations. The first set

of accurate simulations consist of l¼ 100 trajectories, with

n¼ 106 iterations, m¼ 103 blocks of s¼ 103 length each.

The second set of l¼ 100 simulations consists of short series

of n¼ 104 iterations, with s¼m¼ 102. This second set is

useful to check whether the technique is reliable also for

short time series. Except where specified, we use ~s ¼ 0:99
for the following computations. However, results are stable

when considering different quantiles ranging from 0:97
< ~s < 0:999.

A. Low dimensional maps

We begin the numerical computations with several

examples on low dimensional maps. A summary of the

results for all maps analysed is reported in Table I. For a few

maps, we report the model equations in the supplementary

material to streamline the exposition.

• Let us begin with the Bernoulli Shift map T(x) ¼ 3x-mod

1. For this system, D2 ¼ 1 and h ¼ 1 –1/3 ¼ 2/3. The

numerical estimates (Table I) are coherent with the theo-

retical values for both accurate and short simulations.
• We now consider the Gauss map TðxÞ ¼ 1

x
-mod1 defined

on the unit interval. Although, strictly speaking, this map
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does not fit the assumptions in Ref. 17 since in the latter

paper, we consider maps with finitely many branches, we

still try formula (2.6). For the Gauss map, the density is

explicit and reads hðxÞ ¼ 1
log 2

1
1þx

. The integral in (2.6) can

be easily computed and gives h ¼ 4 log ð2Þ ÿ 2 � 0:77,
whereas D2 is expected to be 1. The numerical estimates

are coherent with the theoretical values (Table I).
• Returning to a map with constant slope 3, we now look at

the transformation generating the classical ternary Cantor

set. In order to compute numerically the GEV function,

one should access the invariant Cantor set, which is of

zero Lebesgue measure. We need therefore to use the

backward iterates of the map (otherwise almost all the for-

ward orbits will fall into the holes), and the measures

allowing us to compute the time averages are the so-called

balanced measures, given suitable weights to the prei-

mages of the map: see our article, Ref. 27 Sec. 3.2.2 for a

description of such measures. For the ternary Cantor set

and choosing equal weights 1/2 for the two preimages, it

is easy to check that such a balanced measure coincides

with the Gibbs measure with b ¼ log 2= log 3 which is the

Hausdorff dimension of the invariant set. The measure ldH
is called uniform, see Ref. 20, Sec. 3. The potential u will

be equal to ÿlog 2 and k ¼ 1, since by Bowen’s formula

Q(dH) ¼ 0. Therefore, for the ternary Cantor set, we get a

DEI equal to 0.5 which is perfectly confirmed by the

numerical simulations (Table I).
• For the Lozi map: xnþ1 ¼ ajxnj þ yn þ 1; ynþ1 ¼ bxn;
a ¼ 1:7; b ¼ 0:5, Kþ is of order 0, 47,28 which gives, with

our approximation, a DEI of order h ¼ 0.37. Previous

numerical computations for D2 gave D2 � 1.38.29 Our

computations (Table I) are coherent with the theoretical

values.
• For the H�enon map xnþ1 ¼ ax2n þ yn þ 1; ynþ1 ¼ bxn;
a ¼ 1:4; b ¼ 0:3, Kþ is of order 0, 42,28 which gives, with

our approximation, a DEI of order h ¼ 0.34. Previous

numerical computations for D2 gave D2 � 1.22.29 The

GEV computations give D2 ¼ 1.24 6 0.03 but h ¼ 0.43

6 0.01 for n ¼ 106 (See Table I for the results with

n¼ 104 iterations). The discrepancy of the DEI estimate

does not get any better with the increase of ~s or n. As said

before, we do not expect h to coincide with the estimate

0.34 due to the variation of the derivative and the non-

uniform hyperbolicity of the map.

• Let us consider the cat’s map with the associated matrix

1 1

1 2

� �

: The stable and unstable manifolds for such a

map are orthogonal, so we could suppose that the pre-

image of the ball BðTx; eÿunÞ will intersect the ball

Bðx; eÿunÞ in a rectangle R(x) centered at x and with the

shortest side of length ðkþÞÿ1
eÿun ; where kþ ¼ 3þ

ffiffi

5
p

2
is the

eigenvalue larger than 1 corresponding to the unstable

direction. An elementary calculation shows immediately

that q0 � LðRðxÞÞ=LðBðx; eÿunÞ is approximately given by
4
p
ðkþÞÿ1

which gives an extremal index as 0.51. Previous

numerical computations for D2 gave D2 � 1.987.29 The

numerical computation with the GEV fitting gives

D2¼ 2.00 6 0.06 and h ¼ 0.552 6 0.005 for n¼ 106.

In order to investigate the discrepancy with our theoretical

estimate, we raised the quantile from ~s ¼ 0:99 to

~s ¼ 0:999, i.e., we select more extreme clusters. The esti-

mates for this case are h¼ 0.54 6 0.02, more compatible

with the theoretical one. Finally, if we consider longer tra-

jectories (n¼ 107 iterates) with an even higher quantile

(~s ¼ 0:9999), we get h¼ 0.536 0.06, which is even closer

to the theoretical guess.
• We now consider the baker’s map (see supplementary

material); it depends on three parameters a, ca, and cb. The

positive Lyapunov exponent is given by Ref. 20, Eq.

(5.14)

Kþ ¼ a log
1

a
þ ð1ÿ aÞ log 1

1ÿ a
:

With the value a¼ 1/3, ca¼ 1/5, cb¼ 1/4, we get Kþ � 0,

64 which gives, with our approximation, an extremal

index of order 0, 47. In the paper, Ref. 20 Eq. (5.18), we

gave an implicit formula expressing D2 as a function of a

and with respect to the SRB measure. For a¼ 1/3, this

estimate reads D2 ’ 1.41. The GEV estimates are given in

Table I and are consistent with the theory.
• We next consider an attractor embedded in R

3, the so-

called solenoid, see supplementary material; it depends

upon the parameter a 2 (0, 0.5). The attractor is foliated

by one-dimensional unstable manifolds, while each merid-

ional disk is a two-dimensional stable manifold each of

which intersecting the attractor over a Cantor set. The

Lyapunov exponents are

TABLE I. Estimates of correlation dimension D2 and dynamical extremal index (DEI) h obtained with l¼ 100 trajectories, consisting of n¼ 106 iterations or n¼ 104

iterations. The maxima of w(x, y) are extracted in the block of s¼ 103 and s¼ 102 length, for a total of m¼ 103 or m¼ 102 blocks. The quantile for the estimate of

the DEI is ~s ¼ 0:99. For the Arnold Cat’s map, the convergence to theoretical value is lower and the estimates are provided only for ~s ¼ 0:99999 and n¼ 107.

Map D2 (classical) D2 (n¼ 106) D2 (n¼ 104) h (from Lyapunov) h (n¼ 106) h (n¼ 104)

Bernoulli’s shifts 1 1.006 0.02 1.016 0.14 0.667 0.6686 0.004 0.696 0.04

Gauss map 1 1.006 0.03 0.966 0.16 0.773 0.7736 0.005 0.786 0.04

Cantor IFS 0.667 0.646 0.01 0.596 0.13 0.5 0.5026 0.005 0.506 0.05

Baker map 1.41 1.466 0.02 1.426 0.25 0.47 0.496 0.02 0.506 0.04

Lozi map 1.38 1.396 0.11 1.296 0.25 0.37 0.376 0.01 0.376 0.05

Henon map 1.22 1.246 0.03 1.136 0.25 0.34 0.436 0.01 0.436 0.06

Solenoid a ¼ 1/3 1.6309 1.646 0.04 1.556 0.17 0.5 0.516 0.01 0.596 0.03

Solenoid a ¼ 1/4 1.5 1.526 0.03 1.576 0.20 0.5 0.516 0.01 0.536 0.03

Arnold Cat’s map 1.987 2.006 0.06 … 0.51 0.536 0.06 …
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Kÿ ¼ log a < 0; Kþ ¼ log 2;

while the Hausdorff dimension dH is given by the formula30

dH ¼ 1þ log 2

ÿlog a
:

The numerical computations for the solenoid provide a fur-

ther test of the validity of the numerical algorithm and are

provided in Table I.

B. High dimensional generalized H�enon maps

We now analyze the generalized H�enon maps defined in

Ref. 31 and further analyzed in Ref. 32. They are defined as

xnþ1ð1Þ¼axnðdÿ1Þ2ÿbxnðdÞ xnþ1ðiÞ¼ xnðiÿ1Þ: (3.1)

When the parameter a¼ 1.76, the number of positive

Lyapunov exponents is d – 1; we could therefore test our

relation (2.11) by computing the entropy hL as the sum of

positive Lyapunov exponents (see Table II in Ref. 32) for a

given d. We also perform the computation of the dimension

D2 and compare it to the Kaplan-Yorke dimension DKY given

in Ref. 32; we used such a dimension because we did not

find an explicit computation of D2 in the literature. The good

agreement between our numerical results (Fig. 1) confirm

the validity of Eq. (2.10) with the caveat that an exact corre-

spondence cannot be derived for the geometric factor that

stretch balls in phase space in different dimensions: the ori-

gin of this discrepancy has been discussed in detail at the

end of Sec. II C.

C. Application to atmospheric data

We now consider an application to atmospheric data.

The purpose of this application is to show that the applicabil-

ity of the technique on real data provides results that have a

coherent interpretation in terms of the underlying physics of

the systems. In order to provide evidence of the robustness

of our results, we will study several trajectories of a climate

models which incorporate observations of the past 110 years,

and compute h and D2 for several sub-periods showing that

the results are numerically stable. We study the atmospheric

circulation over the North Atlantic and focus on a single field

that represents its major features: the sea-level pressure

(SLP).33,34 Indeed, it has been shown that SLP fields can be

used to study teleconnection patterns as well as storm track

activity and atmospheric blocking.35,36 The trajectories of

our dynamical systems are successions of SLP fields

extracted with daily frequency from the ERA-20CM reanal-

ysis project over the period 1900–2010.37 The ERA-20CM

consists of 10 members ensemble of a (climate) model

whose task is to reconstruct at best the 1900–2010 atmo-

spheric dynamics by constraining the model to include the

information from available surface observations. Each mem-

ber of the ERA 20CM is therefore a slightly perturbed

reconstruction of the atmospheric dynamics in the past

110 years. The choice of the North Atlantic domain (80� W

�Long.� 50� E, 22.5� N�Lat.� 70� N) is motivated by

the better observational coverage over the region in the first

part of the analysis period compared to other regions of the

globe.38 Before presenting the results for D2 and h, we would

like to stress that (i) our analysis will only be representative

of the North-Atlantic domain and D2 will be a proxy of the

active degrees of freedom of the atmospheric circulation in

this area. Therefore, our results cannot be used to estimate

the dimension of the full atmospheric climate attractor. (ii)

Previous results15,39,40 have shown that the estimates

obtained for the daily dimensions are robust with respect to

the changes in the datasets, resolution of the climate models,

and are linearly insensitive to the size of the domain. This

gives us confidence on the applicability of the numerical

algorithm described in this paper for climate data since it is

largely based on those used in Refs. 15, 39, and 40.

The results for D2 and h on the SLP fields of the ERA-

20CM ensemble are presented in Fig. 2. For each estimate,

we fix the reference trajectory x as the first member (M1) of

the ERA-20CM ensemble because this is always considered

as the reference simulation, while y is alternatively set as the

Mith member with i¼ 2, 3,…,10. The dependence of the

results on the reference member are tested in the supplemen-

tary material Fig. S1. To test the robustness of the results, we

provide four estimates of D2 and h: (i) using the full data in

the period 1900–2010, (ii) using 1900–1955 data, (iii) using

1900–1928 data, and (iv) considering only the first 14 years

(1900–1914) of data. For each member, the results are

reported in Fig. 2. The ensemble averages of D2 and h for

the different periods are instead reported in Table II.

Estimates are consistent for different periods and the value

of D2 ’ 9 found on average, is slightly lower than the esti-

mates of dH found in Ref. 15 (we remind that D2< dH). The

value of D2 roughly corresponds to the number of spatial

degrees of freedom active in a North-Atlantic SLP field as

explained in Ref. 15. Indeed, the domain used for this analy-

sis can host about 9 large spatial structures reparted between

3 and 4 extratropical cyclones at time and the same number

FIG. 1. Estimates of the dynamical extremal index h and correlation dimen-

sion D2 (inset) obtained for the Generalized Henon maps [Eq. (3.1)] in dif-

ferent dimensions d. The values represent the estimates obtained taking 30

couples of trajectories, iterated for n¼ 106 iterations. Each couple is dis-

played using a single marker, but the uncertainty is so small that the differ-

ence between couples is hardly recognizable. The quantile used for the

estimation is ~s ¼ 0:98. The results are compared to those obtained using the

Kaplan-Yorke dimension DKY and the entropy hL. This map has d – 1 posi-

tive Lyapunov exponents.
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of anticyclones (see the textbook of Holton,41 for estimates

of the typical size of these objects). h is, in fact, the inverse

of the average time the two trajectories x and y cluster

together. The value of the DEI h¼ 0.5 corresponds therefore

to a contraction of the phase space associated with a time-

scale between 2 and 3 days. This is the typical decay rate of

baroclinic eddies associated with the low pressure systems

observed in SLP fields (see again the textbook by Holton41

for the decay rates). We finally notice that our formula (2.11)

gives for the entropy the value log 2. In Fig. S2, we show a

moving window computation of D2 and h. No clear trend

emerges that could be attributed to anthropogenic forcing.

This result is consistent with those found for dH in Ref. 39.

We remark however some differences in the variability of

the indicators among the members. In particular, M9 and

M10 have a minimum of h around 1960. This could be due

to the different boundary conditions applied to the members

and detailed in Ref. 37.

D. Additive noise

In our previous papers,17,42,43 we have analyzed the

effect of additive noise on the parameters of the extreme

value laws. It consists in defining a family of maps Tn¼T

þ en with n a random variable sampled from some distribu-

tion G (we will take here the uniform distribution on

some small ball of radius e around 0). The iteration of the

single map T will be now replaced by the concatenation

Tnn sTnnÿ1
� � � s Tn1 and the evaluation of an observable com-

puted along this orbit will be given by the probability mea-

sure P which is the product of G
N

with the so-called

stationary measure lS, verifying, for any real measurable

bounded function f:
Ð

fdls ¼
Ð

f sTndls: see Ref. 19

Chap. 7, for a general introduction to the matter. In the afore-

mentioned papers, Refs. 42 and 43, we have shown analyti-

cally that for dynamical systems perturbed additively, the

extremal index h¼ 1, no matter what the intensity of the

noise is. The proof was supported by numerical experiments,

using also different noise types. The extremal index is a

parameter that quantifies the amount of clustering, the sticki-

ness of the trajectory in phase space. In our setting, cluster-

ing happens in the presence of invariant sets, which are

periodic points in Ref. 42. By looking at formula (2.4), we

see that we estimate the proportion of the neighborhood of

the invariant set returning to itself; as we argued above, that

estimate gives information on the rate of backward volume

contraction in the unstable direction. Since the noise gener-

ally destructs these invariants sets, we expect the extremal

index be equal to 1 or quickly approaching 1 when the noise

increases. This is confirmed by the numerical experiments

reported in Fig. 3 where the value of h is plotted against the

intensity of the noise e for three maps: 3x mod 1 map, the

Baker map, and the Lozi map. In all cases, indeed h ! 1 for

large enough noise. However, with respect to the observables

discussed in Ref. 42, we find some remarkable differences

on the intensity of the noise needed to observe changes of

the extremal index from the deterministic values: whereas in

Ref. 42, we observed significant deviation from the deter-

ministic behavior for very small noise intensities (e� 10ÿ4),

here we need e � 10ÿ2, i.e., only large noise amplitudes per-

turb the estimates of D2 and h. This difference can be easily

explained: in Ref. 42, the extremal index was used to explore

the local stability at periodic fixed points, where the dynam-

ics is deeply affected even by a small noise. Here, instead,

the extremal index tracks a global property that it is stable

with respect to small stochastic perturbations. We underline

that, for the Lozi map, we cannot obtain estimates of h for

noise larger than 0.1 because the dynamics falls out the basin

of attraction.

IV. DISCUSSION AND CONCLUSIONS

Using the extreme value theory, we have introduced a

new and efficient way to compute the correlation dimension

FIG. 2. Estimates of correlation dimension D2 (a) and extremal index h (b)

obtained for daily sea-level pressure maps for four different periods in the

ERA-20CM reanalysis. The values represent the estimates obtained taking

as reference trajectory x the member M1 and as y, the remaining 9 ensemble

members.

TABLE II. Estimates of correlation dimension D2 and extremal index h

obtained for daily sea-level pressure maps for four different periods of the

ERA-20CM reanalysis. The values represent average over the 9 ensemble

members and uncertainty is expressed as the standard deviation of the

ensemble mean.

Period D2 h

1900-2010 8.96 0.8 0.486 0.05

1900-1955 8.86 0.7 0.506 0.03

1900-1928 9.46 0.8 0.506 0.02

1900-1914 9.06 1.0 0.506 0.03
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D2. Moreover, for higher dimensional maps, we introduced

the quantity q0, related to the expectation of the inverse of

the determinant of the derivative along the expanding sub-

space. Therefore, the extremal index h¼ 1 – q0 is a measure

of the average rate of phase space contraction for backward

iteration. Although this quantity slightly differs from the

entropy or from the positive Lyapunov exponent when the

expanding subspace has dimension one, it provides an

important piece of information on the dynamics of the sys-

tem. In fact it can be linked to the global predictability and

therefore considered as a new indicator of the local instabil-

ity in chaotic systems. We would like also to emphasize that

both h and D2 can be computed simultaneously just by look-

ing at the GEV function and this makes our method quite

rapid and efficient from a numerical point of view. We have

shown that even for a short time series of only of 104 itera-

tions, the estimates are robust and consistent with the theo-

retical expectations. We have also presented a first

application of these indicators to climate data proving that

the indicators are useful to infer the spatial number of

degrees of freedom and the typical time scales of the atmo-

spheric dynamics on the North Atlantic region. Finally, we

have observed their sensitivity to the different boundary con-

ditions imposed for the climate simulations analyzed. This

implies that the indicators could be useful in characterizing

and comparing also different climate datasets as those ana-

lyzed in international campaigns.

Our interpretation of h together with that on the correla-

tion dimension D2 could be useful also to analyze the times

series arising from the evolution of chaotic systems. Indeed,

these quantities are particularly straightforward to obtain

from numerical computations. Moreover, the results obtained

can also be used to detect the embedding dimension, namely

by replacing the sample of data with delay vectors of vari-

able lengths; we stress that computing the GEV with those

delay vectors will allow us to get exactly the embedding

dimension. We mean to develop further this approach in a

future paper.

Finally, the computation of the DEI could be helpful to

distinguish purely stochastic sequences for which the

extremal index should approach 1, see Sec. III D, from

dynamical systems with an underlying chaotic behavior even

in the presence of small stochastic perturbations. Again,

these further applications of our approach with EVT will be

the objects of forthcoming investigations.

SUPPLEMENTARY MATERIAL

See supplementary material for: (i) the algorithm for the

estimation of the correlation dimension D2 and the

Dynamical Extremal Index (DEI) h, (ii) a commented

numerical MATLAB code for such estimation, (iii) the

model equations for the maps used, and (iv) the supplemen-

tary figures.
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