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Abstract

‘We show that the probability of the appearance of synchronization in chaotic
coupled map lattices is related to the distribution of the maximum of a certain
observable evaluated along almost all orbits. We show that such a distribution
belongs to the family of extreme value laws, whose parameters, namely
the extremal index, allow us to get a detailed description of the probability
of synchronization. Theoretical results are supported by robust numerical
computations that allow us to go beyond the theoretical framework provided
and are potentially applicable to physically relevant systems.
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1. Introduction

Coupled map lattices (CML) are discrete time and space dynamical systems introduced in
the mid 1980’s by Kaneko and Kapral as suitable models for the study and the numerical
simulation of nonlinear phenomena in spatially extended systems. The phase space of a CML
is a set of scalar (or vector) sequences indexed by a lattice L, e.g. L = Z¢, Z or Z/nZ. For
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instance, a configuration X € I* of the lattice may represent a spacial sample of a meso-
scopic quantity with value in an interval /, such as a chemical concentration, the velocity of a
fluid, a population density or a magnetization. The dynamics of the lattice is given by a map
T : I* — IL which is usually written as the composition of two maps, i.e. T:= o, 0 To, where
To : I — I" is called the uncoupled dynamics and ®., : I* — I* the coupling operator. The
uncoupled dynamics acts on a configuration x € I as the product dynamics of a local map
T:1— 1, thatis T (x); :== T(x;) for every i € L. The coupling operator models spacial inter-
actions, which intensity is given by the parameter -y € [0, 1]. In particular, in the absence of
interaction v = 0 and ®( = Id. For example, for L = Z or L = Z/nZ the coupling operator
often writes as

((I)’y(x))i = ZC’YJ'X[*] VieL, (1.1)
jEL
where ¢ > 0, > ,c; ¢qj = Land coo = 1.

In the huge literature about CML, one can find many possible choices for the local map and
the coupling operator. For instance, the dynamics of CML of bistable, unimodal, or chaotic
maps have been studied for different kind and range of coupling, revealing a rich phenomenol-
ogy including spatial chaos, stable periodic points, space-time chaos, clusters, traveling waves
and synchronization, (see [4, 6, 10] and references therein). In this paper, we will consider a
system of n coupled chaotic local maps (the precise properties are given in section 2) defined
for any X := (x,...,x,) € I"by:

(TR))i = (1 — )T (x;) + % STl Vie{l....n).

Note that the study of this system is equivalent to that of a CML on a periodic lattice where
the coupling operator is defined by (1.1) with L = Z/nZ, cyo = (1 =y + 1)and ¢,; = I for
all j € {1,...,n— 1}. The chaotic and synchronization properties of CML of logistic local
maps with this mean-field-type global coupling were observed and studied by Kaneko in [23]
and then, among others, by Ashwin [2] (and references therein).

The first contribution which looked at CML in the framework and with the tools of ergodic
theory, was the work by Bunimovich and Sinai. In the famous paper [3], using thermodynamic
formalism, they proved the existence of mixing SRB measures for infinite CML with chaotic
local map and weak (nearest neighbor) coupling. Since then, the progress in the study of the
statistical properties of chaotic CML has been enormous, with the contribution of several
people, and the development of a spectral theory [15, 16]. We defer to the book [4] for a wide
panorama on the different approaches to CML and for exhaustive references.

In this paper, we present a new application of extreme value theory (EVT) to CML on
a finite (or periodic) lattice. Our aim is to provide a first approach to CML by using EVT
and to show how to get a certain number of rigorous results about the statistics of some rare
events, such as the synchronization in chaotic CML. We say that the CML is synchronized
when it is near a homogeneous configuration (in a small neighborhood of the diagonal of the
phase space). Synchronization is usually intended to last for a while once it has started and
this is what usually happens for some kinds of chains of synchronized oscillators. This is
not the case of course for chaotic CML, since almost every orbit is recurrent by the Poincaré
theorem. What we actually investigate is therefore the probability of a first synchronization
and how long we should wait to get it with a prescribed accuracy. EVT provides this kind of
quantitative information, since synchronization processes can be interpreted and quantified
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by computing the asymptotic distribution of the maximum of a suitable random process, see
sections 3 and 4.

Although we could not get a global synchronization persisting in time, we could ask about
the distribution of the number of successive synchronization events when the systems evolves
up to a certain time. We will see that after a suitable rescaling, the distribution of that number
follows a compound Poisson statistics: it is worth mentioning that for two uncoupled expand-
ing maps of the circle, this result dates back to a paper by Coelho and Collet, [5].

Actually a first result in our direction was given in the paper [13], although not explicitly
related to EVT, where the authors considered two coupled interval maps and applied their
spectral theory of open systems with holes to investigate the first entrance of the two comp-
onents into a small strip along the diagonal, which is equivalent to the synchronization of the
two-components lattice up to a certain accuracy. In more general situations, we will present
arguments about the spectral properties of the transfer operator of the system to sustain the
existence of a limit distribution for the maxima of some observables related to synchroniza-
tion, and we will discuss a formula approximating the extremal index (a parameter of the
distribution) for lattices with an arbitrary number of components. We therefore estimate the
behavior of such an index when the number of components is large. We will then generalize
the theory to CML which are randomly perturbed with additive noise and show, in particular
with numerical evidence, that the extremal index is 1 for any dimension of the lattice. We
hope that our approach could be helpful to understand and quantify those phenomena, like
in neuronal spikes or in business cycles of financial markets, where bursts of synchronization
happen, disappear, happen again, apparently in a disordered manner, but very often following
the extreme distributions arising in chaotic systems.

In section 2, we present a powerful and general approach based on perturbation of the
transfer operator, and which has the advantage of being applicable to a large class of observa-
bles arising in the study of EVT. In section 3, we give a short insight into basic notions of EVT,
especially when it is applied to recurrence in dynamical systems. In particular, we define the
extremal index and show that it goes to one when the size of the lattice goes to infinity or in
presence of noise. In section 4, we apply EVT to compute the probability of synchronization
events, and sustain the results by computing the extremal index in section 5. This computa-
tion depends on the behavior of the invariant density in the neighborhood of the diagonal; our
formula (5.35) can be proved under the assumption P8 which we believe to be unavoidable.
In section 6, we study the distribution of the number of successive synchronization events. In
section 7, we show that our analytic results and estimates are supported by numerical com-
putations. They confirm the existence of an extreme value distribution for a different kind of
synchronization, which we called local, and they validate the expected compound Poisson
statistics for the distribution of the number of successive visits. The fact that the extremal
index for local synchronization seems not to depend on the size of the lattice is an interesting
numerical discovery. In forthcoming papers we will study more general CML with non-local
form of coupling including the important case of diffusive or Laplacian interaction. A few
other possible developments are presented at the end of the paper (see section 7.2).

2. The map and the operators
As mentioned in the Introduction, we consider a finite CML of size n > 2 with a local map

T : 1 — I and a global coupling. It is defined for any X = (xi,...,x,) € " and v € [0, 1] by":

7We will not index the map T with n, hoping it will be clear from the context.
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n

Tx);=(1 —'y)T(x,-)—i—%ZT(xj) Vie{l,2,...,n}, (2.2)
j=1
where X = (x1,...,x,) € I",v € [0, 1]. We suppose that T is a piece-wise expanding map of
the unit interval onto itself, with a finite number of branches, say ¢, and which we take of class
C? on the interiors of the domains of injectivity A, ... ,A,, and extended by continuity to the
boundaries. The C? assumption is used in the proof of propositions (5.5) and (5.6), although
it could be relaxed with a C!* condition. Instead the finitness of the number of branches is
widely used in almost all the arguments. Let us denote by Ui,k = 1,...,¢", the domains of
local injectivity of T. By the previous assumptions on 7, there exist open sets Wy D Uy such

that f‘| w, is a C* diffeomorphism (on the image). We will require that

Sy i=sup sup ||D7A"|;,1(X)H <A<,
k }Ef"(Wk)

where A := sup; sup,era,) DTlfA‘1 (x)], and || - || stands for the euclidean norm. We will write
dist for the distance with respect to this norm.
An important tool for our further considerations is the transfer, or Perron—Frobenius (PF),

operator. The PF operator P of the map T is simply defined by the duality integral relation

/ P(f)gdLeb = / fg o TdLeb,

where Leb denotes the Lebesgue measure on I, f € L' and g € L>%. The spectral properties
of the PF operator become interesting when it acts on suitable Banach spaces. Let us therefore
suppose that there exists a Banach space B with norm || - ||g, which is compactly injected in
L' and the following properties hold”:

e P1 (Lasota—Yorke inequality) For any f € B there exists 7 < 1 and C > 0 such that
1Bf1ls < nllflls + ClIfl-

The Lasota—Yorke inequality implies that P has an isolated eigenvalue equal to 1 which is also
the spectral radius of P (spectral gap property). We will often call 7 the contraction factor in
the Lasota—Yorke inequality.

Remark 2.1. By iterating the previous inequality one easily get that

. C
||Pkf||6<ﬂk|lf\|6+j\lf||h Vk>1. (23)

This last inequality is actually needed in the perturbation theory used below. If one cannot
achieve it because P1 fails, it is enough to get P1 for an iterate of 7'. In this case a standard
argument allows us to get again (2.3).

e P2 The eigenvalue 1 is simple and P has no other eigenvalue on the unit circle. This
implies that P preserves a mixing measure /i which is the unique absolutely continuous
invariant measure with respect to Lebesgue. We moreover assume that the associated
density h € L.

81n the following we will use the same symbol Leb for any 7. Moreover L', L7 and L> will be taken with respect to
Leb. Finally the integral with respect to Lebesgue measure will be denoted with [ dLeb(x) or [ dx.
We will call a Banach space with this property adapted (to L").
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It is well known that with our assumptions on 7, the uncoupled dynamics Tp, i.e. ¥ = 0
in (2.2), satisfies P1 on any reasonable functional space 5. We will give examples of such
spaces just below. Therefore, the spectral decomposition theorem of Ionescu—Tulcea—
Marinescu, see for instance [21], guarantees the existence of a finite number of absolutely
continuous ergodic components. They reduce to a unique absolutely continuous mixing
measure, which is P2, with some topological transitivity condition on the map 7, which
could be achieved by asking, for instance, T to be Bernoulli, Markov, covering, etc (see,
e.g. example 2.2).

In order to transfer the properties P1 and P2 to the map 7 with v > 0, we invoke the
perturbation theory by Keller and Liverani developed in [14]. According to that theory,
one should previously show the persistence of the Lasota—Yorke inequality (2.3) for the
map T and then check that, for any f € B, we have

|(P = Po) £l < polIfl|5 (2.4)

where P is the PF operator of the uncoupled system (v = 0), and p-, is a monotone upper
semi-continuous function converging to 0 when y goes to 0. We defer again to example
2.2 for a particular case, where this technique can be applied.

The aforementioned perturbation theory was successively improved in [13] by the
same authors, in order to deal with open systems which produce a different kind of
perturbation for the transfer operator. This perturbation arises naturally in the context
of the EVT, as we will see in the next section. In order to introduce and define it, let
{D;}1en be an increasing collection of nested subsets of I" such that Leb(D;) — 1 when
I — oo. Moreover, suppose that the sets D; are the closures of their interiors and have
piece-wise C*° and co-dimension 1 boundaries. According to the observable used for the
application of EVT, the sets D; have a specific definition, and they will be given by (3.18)
and (4.22). The EVT can be related to the spectral theory by considering the perturbed
transfer operator P;, which is defined for any & € B by:

Py(h) := P(h1p)).

We now add new assumptions this operator must satisfy in order to apply the perturba-
tion theory for open systems. The goal is to compare the operators P and P; and get an
asymptotic expansion for the spectral radius of P; close to 1 for large values of /. We will
see that it will give us the extremal index in the limiting distribution of Gumbel’s law.
We follow in particular the scheme proposed by Keller in [12], that we also summarized
in [1], section 5, and in chapter 7 of the book [25] to which we defer for more details.
There are 6 assumptions in [12], section 2. The ﬁ~rst three ask for uniform (in the ‘noise’
parameter /) quasi-compactness for the operator P;. We summarize them in the following
single assumption:

e P3 The operators P, satisfy a Lasota—Yorke inequality, uniform in /, on the space B,
namely, the factors 17 and C are the same for every sufficiently large /.

The next two properties P4 and P5 cover assumptions (5) and (6) in Keller [12]. We also
notice that P4, together with P2, implies assumption (4) in [12], as explained in remark 3
still in [12].

e P4 For any h € B3, the quantity

rp = sup |/(I3h — P;h)dLeb|
h|hl]B<1
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goes to zero when [ — oo.
e P5 The density 4 of the (unique mixing) invariant measure /i of T verifies

nl|(P — P)h||s < C' (D), 2.5)

where C’ is a constant independent of / and Dj denotes the complement of D;. We
moreover assume that the density 4 is strictly positive, namely its infimum is larger
than 2™ > 0 on a set of full measure.

We finally assume that
e P6 The following limit

=i =1 .
9= im gug = fim 500 @9
exists for any k € NU {0}.
Under the assumptions P1-P6, it has been proved in [13] that
0:=1- a @7
k=0

exists and is equal to lim;_, %, where p; is the spectral radius of INJI. Therefore we have
1
the following asymptotic expansion for p;:
1 — pr = a(D))6(1 + o(1)), in the limit / — oco. (2.8)

We stress that py is the largest eigenvalue of P;, that there are no other eigenvalues on the circle
of radius py, and that there exist functions g; € B and measures ji; for which the operators P;
satisfy

Pih = i / hdin + Ok 2.9)

for all h € B. Moreover [ gdj =1, [ hdjy, — [ hdji when [ — oo and finally Q; is a linear
operator with spectral radius strictly less than p; and satisfying: ||Q}||s < /', for a suitable
0 < ¢ < 1, see again [13] for the derivation of these formulas.

It is a remarkable fact that this approach automatically provides the scaling exponent 6 for
the asymptotic distribution of the maxima, see (4.25) below, and therefore it gives a new proof
of the existence of that distribution. The quantity 6 is called the extremal index (EI) and it will
play an important role in the following. We will see in particular that it gives a correction to
the pure exponential law for the distribution of the maxima. In that respect it coincides with
the extremal index as it is defined in EVT, see [8, 25]. Our next task will therefore be to look
for a Banach space which verifies the preceding six properties.

One natural candidate would be the space BV(I") of functions of bounded variation on
R" restricted to the L' functions supported on T" := interior(I"). This space was used in [13]
in dimension 2, but it seems difficult to use it in higher dimensions to obtain PS. The reason
is that in order to get PS5 one needs first to compute the quantity r; in P4. Since & may not be
necessarily in L>, we should use Sobolev’s inequality to estimate the integral and we get ,;
of order Leb(D¢)s. This is not enough to recover P5, since the Banach norm ||(P — P))h||5
is simply bounded by a constant as a consequence of the Lasota—Yorke inequality. Instead
for n = 2 the characterization of the total variation as the maximum of sectional variations
along the coordinate axis is sufficient to get (PS), and it was just used in [13]. By referring

3331



Nonlinearity 31 (2018) 3326 D Faranda et al

to (2.12) below, we can in fact bound the integral [ |h1pc|dLeb by 1/2 times the total vari-
ation of the density times the Lebesgue measure of the section of Dj along one of the two
coordinate axis (we are using here the corollary 2.1 in [15]). But that sectional measure is
of the same order of the Lebesgue measure of the whole DY, just because we are on the unit
square. We therefore turn our attention to another functional space, the quasi-Holder space,
whose importance for expanding dynamical systems was stressed in the seminal works by
Keller [11] and Saussol [27].

We start by defining for all functions 4 € L!(I") a semi-norm, which given two real num-
bers gg > 0and 0 < « < 1, writes

|h|q == sup L / osc(h, B-(%))dLeb,
0<e<ey €%

where osc(h,A) := Esup;.,h(X) — Einfzeah(X) for any measurable set A. We say that

h € Vo (I') if |h| < oo. Although the value of ||, depends on &g, the space V(") does not.

Moreover the value of £ can be chosen in order to satisfy a few geometric constraints, like

distortion, and to guarantee the forthcoming bound (2.10)'°. We equip V,, with the Banach

norm

Alla := Ihla + [A]]1,

and from now on V, will denote the Banach space B = (Vo(I"),]| - ||o). With the assump-
tions we put on the map 7', in particular for the nature and smoothness of the boundaries of
the domains Uy, it can be shown that the transfer operator P leaves V,, invariant with o = 1,
and moreover a Lasota—Yorke inequality (P1) holds, whenever
4sn Yn—l
Z— <1, 2.1

1—-s, Y, (2.10)
where Y, is the volume of the unit ball in R” and Z is the maximal number of the boundar-
ies of the domains of local injectivity that meet in one point, see [27]. Also, one can show
that BB can be continuously injected into L> and in particular, [27], ||k||cc < Ch||hA||, Where

_ max(ley)
Cn = Yugg . . ~ .
Our next step is to show that B is invariant under the perturbed operator P;. By comparing

with the computations in [27], we see that the new term we should take care of is:

n::Sn'i'

1
|hlp,|o = sup E—a/osc(th,,Bs(X))dLeb.

0<e<ep
Using the results in [27] and with B, (D;) denoting the e-neighborhood of the set D' we have:
osc(hlp,, B.(x)) < osc(h, D; N B:(X))1p,

+2 | Esupy, (x)mD,Vi@ L. (). (7)) (%)-

By integrating and dividing by e~* we get

2 _ _
|h1Dl|a < |h|a + sup - sup \h(x)|IBE(D,)Q(BE(D?~))(x)dLeb
0<e<eo € JB.(X)ND

10 For explicit computations of €9 on concrete examples, see [27] and [22]; for the example (2.2) below, that value
was computed in proposition 6 in [28].
"'"To be more precise we have B.(D;) := {x € R" : dist(x, D;) < ¢}.
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Leb(B.(D;)) N (Ba(Df))'

< [hla + 2] Al =

Before continuing we must say what really the set D; is in our case. Its complement, Df is
given in (4.22) and with the actual notation reads

Di={xel: max i — x| < w},
i#j

where v; goes to zero when [ — oo. In this case it is easy to see that

Leb(B(Dy)) N (B=(D))) < Cueuy, .11)
see appendix A for the proof. Therefore we can continue the previous bound as:

|h1p,|o < |H]o[l + 2CyChe' ~%y).

This computation shows that B is preserved by P;, but if we want to get a Lasota—Yorke
inequality for it, and therefore satisfy (P3), we should multiply n by (1 + 2CyC,v;) and ask
that (1 + 2CyC,v;) < 1, which is surely satisfied by taking / large enough. Alternatively, one
could take higher iterates of T . In this case the backward images of D; will grow as well, but
linearly with the power of the map and their contribution will be dominated by the exponential
decay of the contraction factor.

As we said above property (P2) requires that the invariant measure of the unperturbed map
be mixing; we will give an explicit example below.

Since quasi-Holder functions % are essentially bounded, it is easy to get Property (P4)
estimating as:

dLeb < ||A]]cLeb(Df) < Cul ] Leb(D).
(2.12)
To check (P5), we begin to observe that the Banach norm |[(P — P;)h||3 is bounded by a

constant, say C depending on 4 as a consequence of the Lasota—Yorke inequality. Since the

density is bounded away from zero, we immediately have r||(P — P;)h||5 < hc(f’“ g w(D5).

\ / (Ph — Ph)dLeb| < / |1 e

Example 2.2. We now give an easy example which satisfies P1 to P3 with B the space
of quasi-Holder functions; P4 and PS5 follow from the above arguments and finally Property
(P6) will be proved in section 5 under the additional assumption PO and for a much larger
class of maps. We stress that our example will be used for the numerical simulations in sec-
tion 7. Moreover the techniques we are using could be easily extendable to other transforma-
tions not necessarily affine. As the one-dimensional map 7 we will take 7'(x) = 3x mod1. By
coupling n of them as in (2.2) we get a piece-wise linear uniformly expanding higher dimen-
sional map. We first notice that this map is not necessarily continuous on the n-torus, but it
satisfies the assumption (P0) in section 5. The Lasota—Yorke inequality (2.1) can be proved for
[ large enough, say for [ > [ if we verify the condition (2.10). If it does not hold for the map T
it will be enough to get it for an iterate of 7" and this is surely possible thanks to theorem 11 in
Tsujii’s paper [28], which holds for expanding piecewise linear maps whose locally domains
of injectivity are bounded by polyhedra. The constants 7 and C in (2.1) depend in our case
(local affine maps), simply on the contraction rate s, = 37" to the power /. The next step is to
prove the bound (2.4).

This can be easily achieved by adapting our proofs of proposition 4.3 in [1], or of lemma
7.5 in [20]. The basic ingredients of such proofs are: (i) the control of the distance between the
preimages of the same point z € I" with the maps Toand T (fora given 7); (ii) the distortion,
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involving the two determinants | det(DTj)| and | det(DT)| (for a given 7). By the structure of
the map (2.2), one immediately sees that the distance at point (i) is of order - times a constant
depending on the dimensionality n of ambient space. The ratio of the determinants at point
(ii) is instead of order (1 — «)" as it follows from the proof of proposition 3.2 below. This is
enough to obtain the bound (2.4); we left the details to the reader. We should finally check that
the invariant density is bounded away from zero for the map 7. We dispose of, at least, two
criteria of covering type for that. The first is taken from section 7.3.1 and lemma 7.5 in our
paper [20] and requires the existence of a domain of local injectivity Uy (see section 2), whose
image is the full hypercube I". The second is described in sublemma 5.3 in [22] and requires
the so-called fopological exactness, namely the existence for any X € I" and € > 0, of an in-
teger N. = N:(x,¢) > 0 such that ™-B. (%) = I". Both results rely on an interesting property
of the quasi-Holder functions, namely the existence of a ball where the (essential) infimum
of such a function is bounded away from zero, see [27]. We believe such covering conditions
are satisfied in our cases. As an example, we report the computation of the density for two
and three coupled maps; it is also interesting to observe that the density does not oscillate too
much in the vicinity of the diagonal, which is required by our assumption P8, see figures 1 for
n=2and?2 forn=3.

3. Extreme values and localizations

In this section and in the next one, we apply EVT to the study of a few recurrence behaviors
for our system of CML.

There are, at least, two approaches to EVT. The first, which we call the pure probabilistic
one (PPA) uses strong mixing properties to get fast decay of correlations for a suitable class of
observables and to control short returns around a given point. It is worth mentioning that the
PPA covers cases where there is no spectral gap and therefore the correlations do not decay
exponentially fast, see for instance [25] for a rich variety of examples.

The second approach, developed by Keller [12] and which we name the spectral approach
(SA), is based on the perturbation technique discussed in the preceding section and which
allow us to get Gumbel’s law directly by a smooth perturbation of the spectral radius of the
operator P;. We will show explicitly in section 4 how this method works. The SA seems par-
ticularly adapted to investigate synchronization, while the PPA is not suited, for the moment,
to study observables which become infinite on sets with uncountably many points, which is
what happens when we consider synchronization (along the diagonal). As we have already
pointed out in the previous section, the issue in the SA is to verify the properties P1-P6.

Let us suppose the vector 7 is given. When the orbit of a point X enters in a sufficiently
small ball centered at 7 we will say that there is localization of the orbit around the point Z.

Let us introduce the observable

p(®) = —log{> _|x; —zl}, (3.13)
i=1

and consider the maximum
M,, (%) := max{o (%), p(T%), ... p(T"'%)}. (3.14)

By adopting the point of view of EVT, we will fix a positive number 7 and we will ask for the
existence of a sequence u,, for which the following limit exists
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Figure 1. Invariant density for the map 2.2 with n = 2 for v = 0.3 ((a)-(c)), v = 0.5
((d)—(f)), v = 0.6 ((2)—(1)). The plots show the density in colorscale (a,d,g) with a view
from the top and ((b), (e), (h)) for a three dimensional view. The plots ((c), (f), (i)) show
the behavior of the map on the diagonal. The figure is obtained by averaging the density
over 300 realizations each consisting of 107 iterations of the trajectory.

m (e > wy) — T, m— 0. (3.15)

We will say that the sequence M,, has an extreme value law, (EVL), if there exists a non-
degenerate distribution function H : R — [0, 1], with H(0) = 0 such that

My < uy) — 1 —H(T), m — . (3.16)

By using the expression of ¢ we can rewrite (3.15) as
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Figure 2. Invariant density for the map 2.2 with n = 3 for 7 = 0.3 ((a))-(d)), v = 0.5
((e))—(h)), v = 0.6 ((i)—(1)). The plots show the density in colorscale ((a)—(c), (e)—(g),
(1)—(k)). The plots ((d), (h), (1)) show the behavior of the map on the diagonal x = y. The
figure is obtained by averaging the density over 300 realizations each consisting of 10°
iterations of the trajectory.

m (UMW) — 7 (3.17)
where
n
U ={xerl: Z |xi — zi] < v}, with v, :=e™" (3.18)

i=1

and consequently (3.16) can be restated as
pEer T x ¢ um k=0,...,m—1) =1 —H(r). (3.19)

We call v, the accuracy of the localization and we use the symbol ,. to denote it. Of course
it depends on m, but as we will see soon, it is sometimes convenient to fix the value of .. and
choose m accordingly. If we see {Tk}k>1 : I" — I" as a vector valued random variable on the
space {I", i} associating to the point X € I" its orbit, then the limit (3.19) could also be inter-
preted as the probability that each component {Tik}k>1 is localized with accuracy a. = e~ "»
around z; for the first time when k > m. In order to get the probability of such an event, we
have to insure a few assumptions, which were already anticipated in the previous section, and
which will allow us to apply proposition 3.3 in [1] that we restate in the following proposition:

Proposition 3.1. Suppose that the system (I",T, i) has a unique absolutely continuous
invariant and mixing measure [i with density bounded away from zero and exponential de-
cay of correlations on an adapted Banach space. Let (Xo, X, - ) be the process given by
X =@ oT" meN, where @ achieves a global maximum at some points 7. Then we have an
EVL for the maximum M,, and:
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(1) if Z is not a periodic point, then the EVL is such that H(T) =1 —¢e™";
(2)if z is a (repelling) periodic point of prime period p, then the EVL is such that
H(1) = 1 — e, where the extremal index (El)is given by 8(Z) = 1 — | det D(T?)(z)| ="

We notice that eventually (repelling) periodic points fall in part (1). Our observable (3.13)
satisfies the assumption of the proposition. On the other hand, by using theorem 1.7.13

in [24], we have a sufficient condition to guarantee the existence of the limit (3.15) for
1—F(x)
1—F(x—)
bution function of Xy, the term F(x—) in the denominator denotes the left limit of F at x and

0 < 7 < 00. Such a condition requires that — 1, as x — up, where F is the distri-

ur = sup{x : F(x) < 1}. For the observable just introduced ur = oo and if the probability /&
is not atomic at z, then it is easy to conclude that F is continuous at Z and therefore the above
ratio goes to 1.

This general result will not allow us to explicitly compute the sequence u,,. Let us take the
affine sequence: u,, = a’—m + by, with a,, > 0, and y € R. This suggests that we redefine u,,(y)
as a one parameter family in y. When the sequence (M, < uy) = fi(an(M, — by) <)
converges to a non-degenerate distribution function G(y), in the point of continuity of the lat-
ter, then we have an EVL. It is a beautiful result of EVT, just related to the affine choice for
the sequence u,'2, that such a G(y) could be only of three types, called Gumbel, Fréchet and
Weibull, see [24], and what determines it in a particular situation is just the common distribu-
tion given by the function F.

For instance and in our case, if we suppose that the invariant measure behaves like Lebesgue,

i ,(,,")) =0(vp)", thene " ~ (I) i, or equivalently i, ~ Llogm — Llog r and therefore

the probability of the first localization after m iterations with m large and with accuracy a.
of order (L) u, is e~7, or equivalently e~ ", having set 7 = e~”. The distribution function

e~¢ ",y € R is just the Gumbel law. In this easy example a,, = n,b,, = % log m, but we used
very crude approximation in estimating the ji-measure of the parallelepiped U,(,,") since we
simply forgot the local density of the measure at the point Z. Very often it is a difficult task to
get an explicit expression for the scaling coefficients a,,, b,,. In a few cases one succeeds, see
the results in [25], propositions 7.2.4, 7.4.1, 7.5.1. Otherwise and for practical purposes, the
distribution function fi(M,, < y) is modeled, for m sufficiently large, by the so-called general-
ized extreme value (GEV) distribution which is a function depending upon three parameters

EeR,ueR,0>0:GEV(y;p,0,8) = exp{_ 1 +£(%)]71/5}'

The parameter £ is called the tail index. When it is 0, the GEV corresponds to the Gumbel
type, when the index is positive, it corresponds to a Fréchet and finally when it is negative, it
corresponds to a Weibull. The parameter y is called the location parameter and o is the scale
parameter: for m large the scaling constant a,, is close to o~ ! and b,, is close to .

The proof of proposition (3.1) can be done with the SA or the PPA approaches and the
latter uses the approximation of our process with an i.i.d. process, this being guaranteed by
the exponential rate of mixing of the measure & on functions in B. It is interesting to point
out the dichotomy in the choice of the target point Z : there is only two functional expressions
for the distribution H(7) and what determines such a difference is the possible periodicity
of Z. We now focus on the EI §. Suppose we have successive entrances in the neighborhood
of Z, namely consecutive occurrences of an exceedance of our threshold u,. We interpret it

12 For other choices of the sequence u,,, see [24].
13 Actually we have (UJ)) = O(2"v}}), but the factor 2" will become negligeable by taking large m.
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as a memory of the underlying random process, and we quantify it with the parameter 6. In
particular, see [25], p 34, when 6 > 0 and for most of the times, the inverse of the EI defines
the mean number of exceedances in a cluster of large observations, i.e. is the mean size of
the clusters. We now show that in our model and whenever the number of components of the
lattice goes to infinity, the EI of periodic points goes to 1, so there are no clusters in the limit
of an infinitely large lattice.

We now have (from now on we write the EI as 6, to signify the dependence on n)

Proposition 3.2. Let T be the CML with n sites given by (2.2) and take v < 1 — \. Fix
> Lif z(p) € I" is a periodic point of prime period p, the EI 0, (Z,(,p)) satisfies

hm 0,z\") =

Proof. Recall the definition of the uncoupled dynamics

To(x) = (T(x1), T(x2), . ... T(x0)) VX = (x1,X2,...,%) €I",

and let C,, be the real n x n matrix, whose coefficients (C, ), are defined by (Cy); = v/n if
i#jand (Cy); = (1 —~)+~/nifi =j. Itis easy to check that T = @ o T, where the cou-
pling operator ®., : I" — I" is the linear map associated to the matrix C (e. @4 (X) := CyX).

Let p > 1, 7 € I" and let us compute the determinant of the J acoblan matrix of 77 evalu-
ated in the point Z. We have,

p—1
det(D:T") H det(Dg, o T) = [ det(Dy, 74z, @Dz To)
t=0
p—1 p—1
=[] det(Cy Dy To) = det(C,)? ] det(Dy. ) To).
t=0 =0

It is an easy exercise in linear algebra to show that the determinant of the symmetric matrix
C,isdet(Cy) = (1 — )" L

On the other hand DTy is a diagonal matrix with diagonal entries 7"(z;),- - - , T'(z,) and
corresponding Jacobian determinant in z given by det (DZTO) =TT, T (z) 1t follows that

p—1 n p—1 n
[det (DA7) | = (1= )7 TT TTIT (@ @)l = (1 = 97D [T TTI7(
t=0 k=1 t=0 k=1

=(p) :

According to [1], if z,"’ is a periodic point of period p, the EI satisfies

1

en(zgp)): - =
| det (Dzﬁp)Tp)|
Since
P
2 —n,! (1=7")"
det (D pT?) | > (1 — )P (yw = | 22227
[det (D T7) = (1 =97 (5) i)
and as v < 1 — A, we have that lim,,_, o, Hn(z,(,p)) =1. 0
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3.1 Random perturbations

There is another situation which produces an extremal index equal to 1. We can perturb the
map T with additive noise, see [1], by defining a family of maps 7,, = T + w, with each vec-
tor w belonging to the set €2 and chosen in such a way that each f‘ﬂ sends I" into itself. The
iteration of 7' will be now replaced by the concatenation

T%:: T£n0-~-07ll, withw := (W, , W, ) e ON,

and the w, chosen in an i.i.d. way in {2 according to some (common) distribution P. If we
now take any measurable real observable ¢, the process {y o T%}@l will be stationary
with respect to the product measure f[i; X PN, where 15 is the so-called stationary mea-
sure, verifying, for any real measurable bounded function f: [ fdji, = [fo T,dji : see
[25] Chapter 7 for a general introduction to the matter. We call the couple {fw, fis x PN} a
random dynamical system. In the framework of EVT we could therefore consider the process
{Xmz () }ns1 = {@ 0 T%(-)}n>1, Where ¢ is the observable introduced in (3.13), and consider
accordingly the distribution of the maximum (3.14) with respect to the probability measure
fis x PN, By adopting for T the same assumptions as in proposition 3.1, it is not difficult to
show that f is equivalent to Lebesgue and we finally proved in [1], corollary 4.4, that for any
choice of the target point Z, an extreme value distribution holds with H(7) =1 —e™ 7.

4. Extreme values and synchronization
We now introduce a new observable which allows us to consider synchronization of the n

components of an initial state iterated by T. Let us therefore define

() = —log{max |x; —xj|,i #j:i,j=1,...,n} (4.20)

and consider the maximum

My (%) = max{:(®). ¥(TF). ... p(I" D)},

By adopting the point of view of EVT, we fix again a positive number 7 and we ask for a
sequence u,, for which the following limit exists m fi(¢) > u,) — 7, m — oo. We say again
that the sequence M, has an Extreme Value Law, if there exists a non-degenerate distribution
function H : R — [0, 1], with H(0) = 0 such that i(M,, < uy,) — 1 — H(7), m — co. By
using the expression of i) we can rewrite (3.15) as

m p(S"y — 7 4.21)

s = {zer: max |xi — x;| < v}, where v, :=e™ " (4.22)

and consequently (3.16) can be restated as

pEel" :T%x) ¢ S™, k=0,...,m—1) = 1 —H(r). (4.23)

The limit (4.23) could also be interpreted as the probability that the n components have syn-
chronized for the first time after m iterations with accuracy a. of order e™"n.
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We cannot use the PPA to prove the existence of the limit (4.23). The reason is that our new
observable becomes infinite on a line (the diagonal), and for the moment rigorous results are
avalaible when the set of points where the observable is maximised is at most countable, see
[7] for a discussion of these problems.

The SA will bypass that issue by using the Banach space B given by quasi-Hoder func-
tions, since for such a space we can check properties P1-PS. Nevertheless there is still a
problem remaining, namely prove the existence of the limits (2.6). We will return to that in
the next section.

We now show how to get the asymptotic distribution functions of the extreme value theory
by using the SA. Let us begin by rewriting the maximum given in (4.23) using the density h
of the measure fi:

(M, < uy) = / }Az(f)l(sw)(_ (X)l(sfnn))r(f(f)) . I(S&@)[(T’”_I(X))dLeb = / P"(h)dLeb,
(4.24)
where, from now on,

ﬁm() = P(I(S,(,,"))f')'

Notice that ( ,(,fl ))C plays the role of the set D; in section 2. By invoking the spectral representa-
tion (2.9) we have with obvious interpretation of the symbols

/ Pr(h)dLeb = pl / hdfun + / Q"hdLeb,

where [ fzdﬂm = [ hdLeb =1, as m — oo, and the spectral radius of Q,, is strictly
less than p,. We now need to bound p,,, the largest eigenvalue of P,,, for increasing m
and it is given by (2.8). Let us now denote the exponent 0 the EI along the diagonal set
A:={x e R x; =xp,--- = x,} and its existence will follow if we prove limit (2.6). We
then write:

1 — pm = (S)0a (1 4 o(1)), in the limit m — oo,

then
/ Pr(h)dLeb = e~ (Gama(s,”)+moli(s;”))) / i + O(p," Q0 |5)  (4.25)

which converges to e~ 792 under the assumptions on i, the spectral radius of Q,, and the
condition (4.21). From now on we will simply write 6, for the EI along the diagonal set for
lattices with n components.

We now return to (4.23) since we now know that 1 — H(7) = e~%7. If we suppose that
ﬂ(S,(,,")) =O(vp")", thene™ ~ (I) 7 and therefore the probability of the first synchro-
nization after m iterations with accuracy a. ~ (%) ﬁ, is e~ %715 If the components of the
vector T* (x) are seen as the positions of different particles on a lattice, we have a quantitative

14 Actually this is a very crude approximation. In fact what is possible to prove eas-

ily is an upper bound on the Lebesgue measure of the domain {X € I", |x; — x;| < vy, : i # j} which

is simply (2v,,)"~ L. We sketch the argument for n = 3. In this case, the measure we are looking for is

Jdxy [ Aol —ai<uny &) [ Al <ot )1y, —x|<un} (%)- The last integral will contribute with 2v, and so
the second one.

1S We defer to the discussion after proposition 3.1 for the validity of this argument and its approximations.
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estimate of the probability of synchronization of the lattice after a prescribed time and with a
given accuracy.

Example 4.1.

e Ex. 1. Suppose we use the data in section 7, with an EI 65 ~ 1 — (39)? ~ 0.86, having
chosen A = 1/3 and v = 0.1, and take 3 particles each living on the unit interval. If we
want to synchronize them with a probability larger than 1/2 and an accuracy a. = 0.01
before m iterations, then we have to iterate the lattice around m = 8 100 times.

e Ex. 2. Analogously, if we want to observe with a probability larger than 1/2 the synchro-
nization of 100 particles each living on the unit interval with an accuracy a. = 0,01 and
before m iterations of the CML, then m has to be larger than 100'%.

5. Computation of the extremal index

The extremal index is given by formula (2.7). Keller showed in [12] that it coincides with that
given in proposition 3.1 for the process X,, = ¢ o T™ and the proof is exactly the computation
we performed in the previous section. As we said in the introduction, the rigorous computation

of the EI for two coupled maps was given in [13]. Their map was slightly different from ours

in the sense that for the ith component the averaged term X ]’.lzl T(x;) does not contain the

contribution of 7(x;). They first observed that in (2.6), all the g; but g, are zero due to the fact
that the diagonal is invariant and gg reads:

o A8 0TSY)
9 = 1 @
(Sm”)

m

(5.26)

This quantity was explicitly computed giving the formula [13]:

1 1 h(x, x)
by =1-— _ dx,
: 1=20 [ h(x,x)dx J DT (x)]

where the density h has bounded variation and for almost every x € [ the value it(x, x) is the
average of the limits of /(x — u, x + u) and A(x 4 u, x — u) as u — 0.

We get a similar result and still for n = 2, with a modification due to the fact that our map
is different, see formula (5.35) in the remark below. Instead the density along the diagonal is
defined again as a bounded variation function. It seems difficult to extend such a result in higher
dimensions without much stronger assumptions. Before doing that, we will explore how the EI
0, behaves for large n in a quite general setting with the objective to show that for large n such an
index approaches 1 and therefore the Gumbel’s law will emerge as the extreme value distribution.

We will index with n the invariant densities l%,,, while we continue to use the symbol i for
the invariant measure, despite the fact that /i depend on n too, via the density h,. Our next
objective is to show that all the g but g are zero. Such a result is claimed in [13] in dimension
2 and without proof; we sketch it below for the reader’s convenience in any dimension and
asking for a few assumptions.

We first notice that the quantities g, introduced in (2.6), read:

T
s = JP PoPi(P _ Pr)(r)dLed e {x € DS s tpe(x) = k+ 1} (5.27)
(D7) ' '
where fip: is the conditional measure to Df, and tpe(x) denotes the first return time of the
point x € Dj to Dj (we will come back on this equality in the next section). Additional
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Figure 3. Crossing of the discontinuity line, n = 2 (left) and surface, n = 3 (right), of
the neighborhood of the diagonal A, for Property P01. C; and C,: triangular (left) and

pyramidal (right) regions belonging respectively to Fy_, and Fj_;. We remove the
shaded regions on the left and the pyramidal regions C; and C; on the right.

properties are necessary; for that let us first denote with V.(A) an e-neighborhood of the
diagonal A.

e P01. The boundaries of the domains of local injectivity Uj,---,U, (see section 2)
are union of finitely many discontinuity surfaces D;,j=1,---, p“’, which are
co-dimension 1 embedded submanifolds. We denote by D the union of those discon-
tinuity sets. Moreover Ve > 0 and k € N, let us denote with F;.; the set of points
x € V.(A) for which there is a neighborhood O(x) such that O(x) UA # @), and
O@)N(DUT ' (D)U---T~%(D)) = 0. We require the existence of a constant Cy
independent on ¢ such that i(Fg_ ;) < Cro(e)a(V:(A)), where o () goes to zero when
e—0.

e P02. Let us denote with G, the set of points in V. (A) for which the segment of minimal
lenght connecting one of this point to the diagonal intersects one component of TDJ-. For
€ small enough, we will assume that there is a constant C,; independent of € such that
(Gae) < Cq k(g) (Ve(A)), where k() goes to zero when € — 0.

Remark 5.1. The condition P01 means that for a large portion of points in the vicinity of
the diagonal, we can find a neighborhood which intersects the diagonal but does not cross the
discontinuity lines up to a certain order. The condition P02 means that the piece of V.(A)
which is crossed by an element of ij has a length along the direction of A of order x(g).
Both situations happen when the crossing of the discontinuities are ‘transversal’: it is easy
to produces pictures in dimension n = 2 and n = 3. See figures 3 for P01 and 4 for P02. In
both cases we took € small enough in such a way that the discontinuity behaves locally, when
it intersects V.(A), as a line for n = 2 and as a plane for n = 3; moreover x(¢) = O(e). We
notice that condition P02 requires the control only of the first images of D and also it is not
necessary if the map 7 is onto on each U,.

We sketch the argument for k = 1, the others being similar. By replacing [ with m in (5.27)
we show that:

16 We observe that the map could be continuous on such boundaries, but the first derivative surely is not.
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disc: line

disc: surface

Figure 4. Crossing of the discontinuity line, n = 2 (left) and surface, n = 3 (right), of
the neighborhood of the diagonal A, for Property P02. We remove the shaded regions.

Lemma 5.2. The quantity

J(P = P)Pu(P—P,)(h)fdLeb  a(Sh) nT-'(s%)  nT-285")
A(s) (si)

(5.28)

goes to zero when m — oo.

Proof. Let us take a point x € F,.,. With these assumptions T and T? are open maps on
O(x). In particular, 72(O(x)) will be included in the interior of one of the U; and it will inter-
sect A by the forward invariance of the latter. We now suppose that 72(x) is in V.(A) and we
try to prove that 7'(x) must be in V. (A) too. Let us call D, the domain of the function 77!,
namely the inverse branch of the map sending 7'(x) to 7% (x). If the distance between 72(x) and
any point z € T2(O(x)) N A, such that the segment [T?(x), z] is included in D,, is less than &,
we have done since dist(7!(z)), T (T%(x)) = dist(Z, T(x)) < Ae, where 2 = T !(z) € A.
Notice that such a point z € A should not be necessarily in 72(O(x)), provided the segment
[T%(x),z] € D, and dist(z, T2 (x)) < e. What could prevent the latter conditions to happen is
the presence of the boundaries of the domains of definition of the preimages of 7', which are
the images of D. We should therefore avoid that 72 (x) lands in the set G, ., which means we
have to discard those points x € V.(A) which are in T*ZGd,g, and, by invariance, the measure
of those point is bounded from above by C; k(¢)fi(V:(A)). We now choose v, < € and work
directly with the sets S, The points which are not in 772G, N S AF du,2 S1Ves zero
contribution to the quantity fi( -1 (S,(,fl ) )n 7255 ), while the measure of the remain-
ing points divided by ﬂ(S,(,f ) ) goes to zero for m tending to infinity. O

Proposition 5.3. Let us suppose our CML satisfies properties P1-P5 on a Banach space
B with A\ = inf [DT|~! < 1 — ~, the density h, € L™ and 12,5‘“” :=infp hy, > 0. Then
asn N TS Al

lim sup < —
m—o00 ﬂ(S,(,:l)) (1 — ’}/)n_lh;(qu)

Remark 5.4. The upper bound makes sense of course when the right hand side of the
above inequality is less or equal to 1. Moreover the EI 6, will converge to 1, under the
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||i'nHoo n—1

additional PO assumptions, when n — oo if the ratio

does not grow faster than v

iz,(,i"f)
withv > (A/(1 —~))~L
Proof. We start by writing
S NT'ST) = [ d¥h ()1 500 ()1 500 (T%)

n

:/dxl ]dxz'"dx"il"(xl""’x")ls,ﬁ’”(f)'
1 =

n n

Lo (1= TG0 + L3700, (1= DT) + 13 T(x)).

i=1 i=1

We now have to reduce the domain of integration of I 3 x; in two steps: the first, changing /
into I’,, consists in removing intervals of length 2v, on the left and on the right on each bound-
ary point of the A;,/ =1,--- ,q. Clearly the difference between the integrals over I and I},
will converge to zero when m — oo since the integrand functions are bounded (remember the
density is in L°°); this argument is made more precise in appendix B together with the reason
of that reduction. For the moment we simply write I(7 \ I},) for the integral over I\ I},. By
introducing the operator P; acting on the variable x;, [ > 2, we could continue as:

(S N TS :1(1\1;,1)+/ dx; dxz...dxnpzo-..op,,[iz,,(xl,...,x,l)1s(n>(x)]
s "

153>((1-—707(xl)+-%(YTxl)4—X2-F-~-4‘xn)w--a(1“WQXh‘+ %(71x1)4-X2-%---%—xn)).

If we now introduce the sets

i#j# 1)

N (Txy) = {(x2,x3,- - ,x) €I":| T(x1) — x5 |< %,j: 2,...n, |x—x <

VUm
myy —

1
and

SS:)()CI) = {(xz,x3,... ,.Xn) (S I |x1 —xj| < um,j:2,... SNy | Xi — Xj |< Vm l#]?é 1},

we have

A(ss N TS
(s

Sy @1 Jyo) gy 32 P+ 0 Py [, o) Lo (8)] + 10\ 1)
L;IN dX| fsy(n”) (x1) dx2 ) dxnh(xla e 5xn)

We reduced the domain of integration in the integral in the denominator from 7 to I/ : this
kind of reduction will also affect I, and it will be explained in the appendix B. Let us now
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consider for simplicity the structure of the operators when n = 3:

Py o P [iz3(x1,x2,x3)18'513> (x1,X2,3)]

—1 el —1 el
xt. T2, T x3) 1o (0, T X2, Ty xs)

i
) zj: zk: DT, ) || 7T ey | ) 629

where {A;} denotes the intervals of monotonicity of the map 7. The preceding constraints
and the assumption 7 < 1 — A imply that: | Tj_'xz — X1 |< Uy | T 'x3 — X1 |< V. Since the
original partition is finite, if we take first m large enough and having removed the intervals
of length 2v,, around the boundary point of the domain of monotonicity of 7, for any x; € I,
there will be only one preimage which can contribute in each sum. By generalizing to n
components we could therefore bound the term (5.29) by A"~ !||A||~. Moreover a simple geo-
metrical inspection shows that the Lebesgue measures of the sets s )7 (Tx;) and st (x1) are in-
dependent of the point x; and also the ratio of the two measures is independent of m and gives

Leb(S5)) 1
N 1 (5.30)
Leb(sy”) (1—7)
see appendix B. We therefore get
1(S N T1SY)  Leb(SY N hulloo + 1T\ I
i ) Leb(SE N inlloe + 10\ 1) 531

A(SY) h Leb(Sy)hg™

We now notice that I( \ I”/) can be immediately bounded by ||| |00Leb(S,(,:fZ,)Leb(I \ I)). This
allows us to factorize the term Leb(S,Sff )v) in the denominator and divide it by Leb(S,(,f )). By
taking the lim sup we finally get our result. O

We can now strengthen the previous result by adding further assumptions. We start first
with a stronger hypothesis on the invariant density which we will relax later on.

e P7 The density h is continuous on /.

This condition is for instance satisfied in the uncoupled case for smooth and locally onto maps
T of the unit circle.

Proposition 5.5. Let us suppose that our CML satisfies properties P1-P5 and P7 on a
Banach space B with A = inf [DT|~! < 1 — ~, then

R n A1 (n J (X, X)
YT AAY 0 WS W 15 i
m—o0 ﬂ(Sr(r:l)) (1— ’y)"*l fl /:ln(x’ <o x)dx

Proof. We will write the proof for n = 3, the generalization being immediate, and this will
allows us to use the simple formulas in the previous demonstration. By the same arguments

in the latter and by denoting with T, ! the inverse branch of 7 such that T '(T(x;)) = x;, we
have
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h (x1, T oo, T x
s nrs) = f an | L L R AV 1)
1 S(z) (Txy) |DT Tx; xz)HDT(TxI X3)‘

(5.32)

and we have a lower bound for /1(S; D Ar-1st )) without the I(1 \ /) term. We call I(I")) the

first integral on the right hand side.

Since hj is continuous on I° and therefore uniformly continuous, having fixed € > 0, it will
be enough to choose v, small enough (remember that \Txl Xy — x| < Vo [T Y3 —x1| < ),
to have il3(x1, Tgl)Cg, Tg])%) = izg(xl,xl,xl) + O(g)

For the derivative we can use the fact that our map is C2?ontheinteriorof the A;, I =1,--- , q
and extendable with continuity on the boundaries to get by the mean value theorem

DT(T, 'x2) = DT(x1) + D*T(%)|Ty, 'x2 — x1|, DT(T;, 'x3) = DT (x,) + D*T(%3)| T 'x3 — x|

where X, belongs to the interval with endpoints Tx’llxz and x;, and X3 belongs to the interval
with endpoints 7, 'x; and x; and these two intervals are in the domains where 7 is locally
injective. By inserting these formulas in the definition of I(I])) we have:

I(I;’;) — d.x1 il3(x19x19x1) / dxde3
O () [1+

2 DT (%, DZT (%3
1 |DT(xl)| DT(x |Tx1 Xy — )Clml + )|TX1 X3 — 1”
1 / 0(9)
+ - dxadxs.
o \DT(xl)P s (ra) [1 + g;gﬁml x —x|][1+ %féﬁ“ T xs — x1]]

‘We now rewrite the first summand as

B (x1,x1,x1) 1

Ty :=Leb(SX)) [ dx
- $n3) J T IDTGOE Leb(se))

dxadxs
3 5.33
/(3) ) (1) [1 + %TT(X T "o — xy|][1 + LZ;TT(Xs)|T,Cl x3 — x1]] (5.33)

where we have suppressed the dependence on Tx; in the Lebesgue measure of the external

S,S? )7, which are independent of Tx; when x; € I/, and the second summand as

1 1
- $n2) J S DTG Lab(s@)

/ O(€) dxadxs
S () [1 4+ ll))zTT(x |Tx| x2 —x][1+ ?)2TT(M) |Tx1 X3 _XIH

Using same arguments we have:
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/2(5,513)) = Leb(S;(f)) dxlils(xl,th)

RN / dradys
1z Leb(Sn’) /55 (m)

1
+Leb(s®)) [ dx,

— O(8)dxodxs + X(IN\ 1)) = Ty + Za + X\ 1))
o Leb(S,gf)) /S,(f) (x1)

(5.34)
and with a lower bound for ﬂ(S,E,3)) without the I(7 \ I))’) term. Hence we get
Tim + Tom s NI i+ Tow + 1IN\ 1)

I3,m + I4,m + I(I \ Irliil) h ﬂ( ,(,:l)) A I3,m + I4,m

As in the proof of proposition 5.3, we have that I(7\ I]) < ||iAl||OOLeb(S,S13,Z,)Leb(I\I,’,L’)
and I(I\ 1)) < ||h]]ooLeb( f,f))Leb(I\I;;’). We can then factorize in the numerator and
in the denominator the Lebesgue measures of the sets S,(,z Zy and S,(,f ) and remember that
Leb(s$))

Leb(s$) — (1=7)*"
of Zy,, converges to [, dx;

After this factorization and when m goes to infinity, the remaining part
B3 (xr.x01.1)
IDT(x1)[?
|T;1xj — x1| < Up,j = 2,3, while the remaining part of Z,,, converges to an O(€) term. Still

by the dominated convergence theorem and the fact that

after the previous factorization, the remaining part of 73 ,, goes to f1 dxlﬁg (x1,x1,x1), while
the remaining part of Zy,, goes to an O(¢) term. The result then follows sending € to zero. []

It is possible to relax the continuity assumption P7 on the density by asking a much weaker
property. It seems to us that this condition is natural, and probably unavoidable, in the sense
that it controls the oscillations of the density in the neighborhood of the diagonal.

e P8 Let us suppose the density hisin V, (I") and moreover

. 1
hp := sup 7/osc(h,B€(x,--- ,x))dx < oco.

0<e<eg €

Proposition 5.6. Let us suppose that our CML satisfies properties P1-P5 and P8 on the
Banach space B = V{(I") with \ = inf |DT|~! < 1 — v, then the statement in proposition 5.5
holds.

Proof. The proof follows the line of proposition 5.5, with an essential change when we
compare the density in the neighborhood of the point (x;, x;,x1). In fact, we can now write

|3 (x1, T, ', Ty ' xs) — hs(x1,x1,x1)] < osc(hs, By, (x1, -+ ,x1)).
An quick inspection of the previous proof shows immediately that the integral f[ dx; O(¢)

will be now replaced with f] dx; osc(iz3, B, (x1,- - ,x1)), and this last integral is bounded by
]:lDl/m, which goes to zero when m tends to infinity. O
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Corollary 5.7. As a consequence of propositions 5.5 and 5.6, the extremal index 0, for
maps satisfying PO too, is given by

T (X, x)
1 fl |DT(x mregp-Td

0, =1- 1
— ) f] a(x, -, x)dx

(5.35)

and it will converge to 1 when n — o0,

5.1. Random perturbations

As for localization, we expect that the extremal index be one when we keep n fixed and we
add noise to the system. In the paper [1] we extended the SA to randomly perturbed dynamical
systems, mostly with additive noise. Even if we assume properties (P1)—(P6) on some Banach
space B, there will be a new difficulty related to the computation of the quantities gy in (2.6) in
the random setting. Such a computation as it was done in proposition 5.3 in [1] strongly relies
on the fact that the observable becomes infinite in a single point, the center of a ball: we do
not know how to adapt it in the neighborhood of the diagonal A. We will present nevertheless
numerical evidences in section 7 that in presence of noise the El is 1.

6. Distribution of the number of successive visits

We anticipated in the introduction that once the synchronization is turned on for the first time,
it cannot last since almost every orbit is recurrent. However the orbit " (%) will visit for
almost every point X, infinitely often the neighborhood of the diagonal. We could therefore

expect that the exponential law e~" given by the EVT describes the time between successive
events in a Poisson process. To formalize this, let us take a neighborhood Sé’o of the diagonal
A with accuracy a, = < and introduce the following quantity (remember that the map 7" and

the measure /i depend on 7 too):

7o)
as™)

N (1) = Z 1s§n>(Tl(7C))v

=1
where |- | is the floor function, and consider the following distribution

N(n,s,1,k) := (N (1) = k).

If the target set was a ball of radius ¢ around a generic point Z or a dynamical cylinder set
converging to this point, one can prove under the mixing assumptions of our paper, that in
the limit of Vanishing radius or infinite length for the cylinder, A (n, <, t, k) converges to the
Poisson distribution - A fe' see for instance [17, 18]. Instead if we take the target point z periodic
of minimal period g, one get the so-called compound Poisson distribution, see [19] and [9],
which in our situation reads, for k > 1:

k .
_ t(1—p) (k-1
N(l’l ork)=e —t(1-p) E pk —J J+1(j!p) <j_]) (6.36)
j=0
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where

1

P [det(oaa0)|

6.37)

Remark 6.1. We do not dispose for the moment of analogous formulas when a ball is re-
placed by a strip along our diagonal set A. To the best of our knowledge the only known result
is in dimension 2 for the uncoupled systems given by the direct product of two piece-wise ex-
panding and smooth maps of the circle, see [5], and it is consistent with our results. Neverthe-
less a few preliminary considerations!” seem to indicate that the compound distribution (6.36)
still holds with p in (6.37) replaced by 1 — 8, in (5.35), and more generally with the EI given
by formulas (2.7), (2.6), with the quantities g given by the right hand side of (5.27) when the
transfer operator is not available. In particular one should recover a pure Poisson distribution
when the size n of the lattice tends to infinity.

Example 6.2 (Ex. (4.1) revisited).

e Suppose we consider as in the example (4.1), Ex. 2, n = 100 particles living in the unit
interval and take the accuracy ¢ = 0.01. With that value of n and taking the coupling -y
sufficiently small, we could consider that the previous number of visits Ng") (¢) follows a
Poisson distribution. Since the probability of entering the neighborhood of the diagonal
is of order 100~!%, the probability to observe exactly 5 synchronization events during m
iterations of the lattice is maximal for m = 5 100'% and is of order 18%.

e If instead we consider Ex. 1 with 3 particles and the same accuracy, the probability to

observe 5 synchronizations is maximal after 50 000 iterations and it is again of order
18%.

Comment 6.3. In the case of large n the extremely high number of iterations needed to get
synchronization or a given number of successive synchronizations could surprise. One reason
is surely due to the fact that we considered lattices which are globally coupled and we looked
at global synchronization. It would be interesting, and it will be the objects of future invest-
igations, to explore CML where only the nearest-neighbors of a given site contribute to the
coupling term (diffusive coupling), and also synchronization of the closest neighbors. About
the latter we will give a few preliminary numerical results in the next section.

7. Extensions and numerical computations

The goal of numerical computations will be to show that in the situations considered above
we have effective convergence toward an extreme value law and moreover the extremal index
satisfies the behavior we predicted theoretically. We will be mostly interested in synchroniza-
tion, since for localization we have plenty of analytic results. But there is one aspect where
the comparison with localization is particularly useful. In order to explain that, we first have
to introduce a new observable to depict a different kind of synchronization.

71. Local synchronization

Up to now synchronization was defined by asking that all the components of the evolution-
ary state become close to each other with a given accuracy a.. We could ask instead that each
17 At this regard see also the discussion in the last part of section 7.
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component synchronize only with the close neighbors. This is done by introducing the fol-
lowing observable

O(x) := —log{max |x; —xj|,i #j:j=i+ 1} (7.38)

(of course on the extreme points of the period of the lattice, j will take only one value). We
could generalize to more than one neighbor j = i + 2, £3, etc, but we limit ourselves here to
the case *1. It is not immediately obvious to have a geometrical description of the set that
the orbit will visit for the first time (and therefore to give analytic results in terms of the EI),
although the ‘physical’ interpretation will be the same, namely we get the probability that
the lattice will have for the first time and after a given number of iterations m, all the comp-
onents synchronized with the close neighbors and with a given accuracy a.. We call this local
synchronization, to distinguish from the global synchronization described in the preceding
sections. It seems intuitive from a physical point of view, that for m large enough and for a
given accuracy a., the probability to get local synchronization for the first time (from now on
we write it as P (-) for the different cases), is larger than that to get global synchronization,
P, (glob. sync.) < P (loc. sync.), and this will be confirmed by the numerical simulation as
we will see in a moment. On the other hand as soon as the global synchronization occurs, all
the components of the lattice will be aligned in a narrow strip around all of them, and this is
close to localization. Therefore we will expect that the probability to get localization is larger
than the probability of global synchronization. This is also confirmed by an easy application of
the theory. Suppose we fix m and the accuracy a,; we have also fixed n. By supposing a pure
exponential law for the asymptotic distribution of the maximum, we have
e For localization: a, ~ (%)5, which gives P, (local.) ~ e~ ~ e ™",
—mad"!

e For global synchronization: a, ~ ( )ﬁ, which gives Py (glob. sync.) ~ e~ ~ e~

T
m

We see that Py (glob. sync.) < P;(local.).

72. Blocks of synchronization

The observable (7.38) could be modified further by introducing a new one which we are going
to define. Let us first construct N blocks of L successive integer indices: B, := {ig,- -+ ,iy + L}
and take these blocks disjoint and possibly scattered along the lattice. Then we define:

JFji(i,j) €Bgq=1,--- N}

The distribution of the maximum of this observable will give us the probability that the parti-
cles in the N blocks will synchronise for the first time with a given accuracy. On the other hand
we do not require any synchronization of the particles outside those blocks. If such a limiting
distribution would exist, it could be consistent with the appearance of chimeras in chains of
coupled particles, namely patterns of synchronized sets which emerge as a consequence of the
self-organization of the entire lattice, see e.g. [26]. If our claim would be confirmed, such a
self-organization would be another statistical property of chaotic systems with several degrees
of freedom.

T(X) ;= —log{max |x; — x;

73. Simulations

Let us now analyze the results of numerical procedure. The experiment performed is the fol-
lowing: we consider the one-dimensional map 7 in (2.2) as

T(x) =3xmod 1.
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Figure 5. Shape parameter ¢ of the Generalized Pareto distribution as a function of
the number of variables n and the coupling parameter ~. Left: global case 1. Right:
local case ©. From top to bottom: deterministic, additive noise with intensity ¢ = 1074,
additive noise with intensity ¢ = 1072,

Once we have constructed the CML T we will perturb it with additive noise:
T,(F)i = T(X); + ew; mod 1

where ¢ is here the noise intensity and w with components w; is a random variable drawn from
a uniform distribution between —0.5 and 4-0.5. The stationary measure for such a map will
be L! close to that for v = 0 which is the direct product of the uniform Lebesgue measures
on the unit circle for each component and this independently of the value of €. Let us notice
that we are considering now a one-dimensional map on the circle. This is not a restriction to
our previous considerations and moreover it allows us to define correctly the additive noise.
Numerically we produce trajectories of 10* iterations for v < 2/3 and 0.02 increments. The
range 3 < n < 53 is analyzed. We consider the two observables 1), see (4.20) and O, see
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n=2 n=3
0.8 1

Figure 6. Extremal index 6 of the generalized Pareto distribution as a function of the
coupling parameter 7. Thin lines indicate estimates for 10 different realization of the
maps 3x-modl. Bold magenta lines indicate the expected theoretical values. Left:
n =2, Right: n = 3.

(7.38), corresponding to global and local synchronization cases respectively and in the fol-
lowing we will refer to them as the global and local cases. We analyze also the role of small
noise ¢ = 10~* and moderate noise ¢ = 1072

We first assess the convergence of the maxima of 1) and © to the Gumbel law by analyzing
the tail index &, see section 3. Here we chose to consider the complementary approach to the
block-maxima selection, i.e. the peak over threshold. The two approaches are equivalent in
chaotic systems as shown in [25]. The maxima of the observable are defined as the exceed-
ances over the 0.98 quantile of ¢ and © distributions. If a good convergence towards the
Gumbel law is reached, then £ ~ 0. The values of £ as a function of + and n are reported in
figure 5. A maximum likelihood estimator has been used for computation. The left panels
show the global case ¥ while the local case © is reported on the right. From top to bottom
we switch on the noise. In general, the convergence towards the Gumbel law is satisfactory
although some differences exist between global and local cases. For the global case the conv-
ergence is slower as the global synchronization event is more rare then the local one.

Moreover, the quality of the fits is lower when n and +y are larger. The addition of noise
helps the convergence to the Gumbel law as for the systems analyzed in [25].

We now study the implications of global and local synchronization on the extremal index 6.
For the analysis presented in this paper, we adopt the estimator by Siiveges (see the book [25]
for explanation and to retrieve the codes for the computation). For fixed quantile ¢, Siiveges’
estimator reads:

SN (1= g)Si+ N+ N, — \/(Zf’”(l —9)S; +N+NC)2 —8Ne SN (1 — g)s;
25 (1 - g)s;

where N is the number of recurrences above the chosen quantile, N, is the number of obser-
vations which form a cluster of at least two consecutive recurrences, and S; the length of
each cluster i. From the numerical point of view, this estimator is the expected value of the

9:

k)

compound distribution N (n, ¢, k) with S; being the empirical equivalent of the quantity
(n)
NG (x).
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Figure 7. Extremal index 6 as a function of the number of variables n and the coupling
parameter . Top: global case ). Bottom: theoretical asymptotic formula.

We begin by checking the theoretical results predicted in remark 5.4: for the 3x mod 1 map,

6, can now be estimated by taking the trace of the density on the diagonal reasonably of order

1 in (5.35), so that in dimension 2: 8, ~ 1 — ﬁ% and in dimension 3: 03 ~ 1 — ﬁé

The comparison between the theoretical curves and the numerical computations are shown
in figure 6. For each case n = 2,3 and v < 2/3 we produce 10 simulations of the map con-
sisting of 10* iterations and we estimate the extremal index as a function of . The numerical
estimates indeed match the theoretical curves (bold magenta lines).

We now check the asymptotic formula for large n and still with the same assumption on
the trace of the density, namely 6, ~ 1 — (ﬁ)”‘l, with A = 1/3. For each 3 <n <53
and v < 2/3 we perform one simulation of the deterministic 3x mod 1 map and compare
the obtained extremal index 6, with the previous asymptotic formula. Results are shown in
figure 7. There is indeed very good agreement between our asymptotic and numerical results.
The largest divergence is obtained for vy ~ 2/3 which correspond to the limit value for the
map.

We then perform a numerical analysis of the extremal index in the cases not covered by the
theory, namely for the observable ©. The results are presented in figure 8. The top-left panel
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Figure 8. Extremal index 6 as a function of the number of variables n and the coupling
parameter . Left: global case ¢. Right: local case ©. From top to bottom: deterministic,
additive noise with intensity ¢ = 10™*, additive noise with intensity ¢ = 1072

is repeated for convenience and show the global case results. The latter show that global and
local cases are substantially different. For the global, the synchronization depends on both n
and +: in particular, it is easier to synchronize systems with n small because the probability of
finding all the particles in the same state decreases quickly with n. On the other hand, in the
local case the extremal index 6, is substantially independent of n. In fact, whether n is small
or large, the particle sees only the nearest neighbors for synchronization so that it is insensitive

to the size of the lattice. The only dependence left is in v: in particular, for all n, we see the

dependence is compatible with the case n = 2 of the global coupling case: 6, ~ 1 — (ll_'y) %

The addition of the noise destroys clusters as observed in [1]. Qualitatively, the structure of
the extremal index is quite robust with respect to small perturbations. To fully destroy the
clusters, large intensity of the noise are needed. The results for ¢ = 10~* also demonstrate
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Figure 9. Example of global case. Right: 1) time series (red) and exceedances (black).
Left: empirical probability distribution (EPDF) of waiting time in the clusters. From
top to bottom: deterministic, additive noise with intensity ¢ = 10™*, additive noise with
intensity e = 1072

that our results are stochastically stable because one recovers the deterministic structure of the
extremal index for low noise values.

Although the numerical estimates of the extremal index are done by computing the expected
values of the compound Poisson distribution (Siiveges’ estimator), we can also check that the
waiting times g '8 defined in (5.27), between consecutive entrances in the neighborhood of
the diagonal with accuracy ¢, provides the same information. Actually this is what we get for
recurrence in balls as we discussed above, see [22] and [9]. Therefore we give some examples
of time series of ¢ and © in figures 9 and 10 respectively. The noise increases from top to bot-
tom. The histograms of the waiting times in cluster are normalized to sum-up to 1 (empirical
probability density function EPDF) and are in y-log scale. No clustering corresponds to an
exponential law (sequence of linearly decreasing boxes in log scale), whereas the clustering
case is characterized by an higher EPDF for lower waiting times. As one can see from the
deterministic cases, the higher the EPDF for short waiting times, the lower 6. Effectively the
fraction of waiting times equals to 1 which exceed the standard exponential law is exactly the
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Figure 10. Example of local case. Right: © time series (red) and exceedances (black).
Left: empirical probability distribution (EPDF) of waiting time in the clusters. From
top to bottom: deterministic, additive noise with intensity ¢ = 10~*, additive noise with
intensity e = 1072.

extremal index 6. We stress again that although we cannot demonstrate this identity theor-
etically, the numerical evidence suggests that one can use directly g ¢ as defined in (5.27), for
the estimation of the extremal index 6.
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Appendix A. Proof of (2.11)

The argument is the following. The quantity we are interested in is bounded by f, dx
| Hi# 1y —n <ype} () — Hi# 14 |x,—x|<vi—e} (X)| I at least one factor in the first product is
zero, the same is true for the second product, so we will suppose that all the factors in the first
product are 1. Therefore the difference of the two products will be maximum if at least one

factor in the second product is zero. There will be at most Y _,_, (1;) such possibilities. We

now proceed with a very rough bound. Each term in (’;), with 1 < k < (n — 1) contributes
with k measures of values 4%c* and with (n — k) measures of values 4”"‘1/,4*", having chosen

€ < v.. When k = n we simply write " < £"~ 1. In conclusion, we bound the quantity we are
. . . k
interested in by ev,C,, with C, = 4" >~ _, (n) N

Appendix B. Proof of (5.30)

Take for simplicity n = 2. There is in fact dependence of the two sets on x; since they inter-
sect I > (x2,x3) and as a consequence their measure will depend on the location of x;. It
will therefore be enough to evaluate the external integrals in x; on a even smaller domain
I C I, and on [)} in the denominator, in such a way they will not contain a (disconnected)
neighborhood U of 0 and 1 and its preimages T~'4. As a consequence, we can keep the full
amount of the area of the two sets S,(nz, Zy(Txl) and S,(,,2 ) (x1), which from now on we simply write
as Leb(S,(,,z,Zy) and Leb(S,sq2 )). Clearly the difference between the integrals over I and I/, 1))/

will converge again to zero when m — oco. About the other issue: write S,(,Z L(Txl) as the int-

egral of obvious characteristic functions in the variables x, . . ., x,,. Then make the change of
variables: x; = x(1 — 7) 4+ 7T (x1), in this way we get the measure of st (1) multiplied by
1=y O
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