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Abstract

In this paper we perform an analytical and numerical study of Extreme Value distributions
in discrete dynamical systems that have a singular measure. Using the block maxima approach
described in Faranda et al. [2011] we show that, numerically, the Extreme Value distribution for
these maps can be associated to the Generalised Extreme Value family where the parameters
scale with the information dimension. The numerical analysis are performed on a few low
dimensional maps. For the middle third Cantor set and the Sierpinskij triangle obtained using
Iterated Function Systems, experimental parameters show a very good agreement with the
theoretical values. For strange attractors like Lozi and Hènon maps a slower convergence to
the Generalised Extreme Value distribution is observed. Even in presence of large statistics the
observed convergence is slower if compared with the maps which have an absolute continuous
invariant measure. Nevertheless and within the uncertainty computed range, the results are in
good agreement with the theoretical estimates.

The existence of extreme value laws for dynamical systems preserving an absolutely
continuous invariant measure or a singular continuous invariant measure has been re-
cently proven if strong mixing properties or exponential hitting time statistics on balls
are satisfied. In our previous work we have shown that there exists an algorithmic way
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to study extrema by using a block-maxima approach for dynamical systems which pos-
sess an absolutely continuous invariant measure and satisfy certain mixing properties.
In this work we test our algorithm for maps that do not have an absolutely contin-
uous invariant measure showing that the cumulative distribution function of maxima
is related to the scaling of the measure of a ball centered around generic points. The
scaling exponent turns out to be the Hausdorff dimension of the measure (also known
as information dimension). Even if we cannot estimate analytically the asymptotic
behavior of the measure of the balls, the agreement with the numerical simulations
we have carried out for different maps suggests the validity of our proposed scaling in
terms of the information dimension. Our conjecture has been tested with numerical
experiments on different low dimensional maps such as the middle third Cantor set,
the Sierpinskij triangle, Iterated Function System (IFS) with non-uniform weights and
strange attractors such as Lozi and Hénon. In all cases considered, there is a good
agreement between the theoretical parameters and the experimental ones although,
in case of strange attractors which exhibit multifractal structures, the convergence is
slower. To perform the numerical simulations it has been used the L-moments proce-
dure in order to overcome the difficulties of dealing with a singular continuous invariant
measure.

1 Introduction

1.1 Classical Extreme Value Theory

Extreme Value Theory (EVT), developed for the study of stochastical series of independent and
identical distributed variables by Fisher and Tippett [1928] and formalized by Gnedenko [1943], has
been successfully applied to different scientific fields to understand and possibly forecast events that
occur with very small probability but that can be extremely relevant from an economic or social
point of view: extreme floods [Gumbel, 1941], [Sveinsson and Boes, 2002], [P. and Hense, 2007],
amounts of large insurance losses [Brodin and Kluppelberg, 2006], [Cruz, 2002]; extreme earth-
quakes [Sornette et al., 1996], [Cornell, 1968], [Burton, 1979]; meteorological and climate events
[Felici et al., 2007], [Vitolo et al., 2009b], [Altmann et al., 2006], [Nicholis, 1997], [Smith, 1989]. An
extensive review of the techniques and applications related to the EVT is presented in Ghil et al.
[2011].

Gnedenko [1943] studied the convergence of maxima of i.i.d. variables

X0, X1, ..Xm−1

with cumulative distribution (cdf) F (x) of the form:

F (x) = P{am(Mm − bm) ≤ x}
Where am and bm are normalizing sequences andMm = max{X0, X1, ..., Xm−1}. It may be rewritten
as F (um) = P{Mm ≤ um} where um = x/am + bm. Under general hypotesis on the nature of the
parent distribution of data, Gnedenko [1943] show that the distribution of maxima, up to an affine
change of variable, obeys to one of the following three laws:
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• Type 1 (Gumbel).
E(x) = exp(−e−x), −∞ < x <∞ (1)

• Type 2 (Fréchet).

E(x) =

{
0, x ≤ 0

exp(−x−ξ), for some ξ > 0, x > 0
(2)

• Type 3 (Weibull).

E(x) =

{
exp(−(−x)−ξ), for some ξ > 0, x ≤ 0

1, x > 0
(3)

Let us define the right endpoint xF of a distribution function F (x) as:

xF = sup{x : F (x) < 1} (4)

then, it is possible to compute normalizing sequences am and bm using the following corollary
of Gnedenko’s theorem :
Corollary (Gnedenko): The normalizing sequences am and bm in the convergence of normalized
maxima P{am(Mm − bm) ≤ x} → F (x) may be taken (in order of increasing complexity) as:

• Type 1: am = [G(γm)]−1, bm = γm;

• Type 2: am = γ−1m , bm = 0;

• Type 3: am = (xF − γm)−1, bm = xF ;

where
γm = F−1(1− 1/m) = inf{x;F (x) ≥ 1− 1/m} (5)

G(t) =

∫ xF

t

1− F (u)

1− F (t)
du, t < xF (6)

In [Faranda et al., 2011] we have shown that this approach is equivalent to fit unnormalized data
directly to a single family of generalized distribution called GEV distribution with cdf:

FG(x;μ, σ, ξ
′) = exp

{
−
[
1 + ξ′

(
x− μ

σ

)]−1/ξ′}
(7)

which holds for 1+ξ′(x−μ)/σ > 0, using μ ∈ R (location parameter) and σ > 0 (scale parameter)
as scaling constants in place of bm, and am [Pickands III, 1968], in particular, in Faranda et al. [2011]
we have shown that the following relations hold:

μ = bm σ =
1

am
.
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ξ′ ∈ R is the shape parameter also called the tail index: when ξ′ → 0, the distribution cor-
responds to a Gumbel type ( Type 1 distribution). When the index is positive, it corresponds to
a Fréchet (Type 2 distribution); when the index is negative, it corresponds to a Weibull (Type 3
distribution).

To analyze the extreme value distribution in a series of data two main approaches can be applied:
the Peak-over-threshold approach and the Block-Maxima approach. The former consists in look-
ing at exceedance over high thresholds [Todorovic and Zelenhasic, 1970] and a Generalized Pareto
distribution is used for modeling data obtained as excesses over thresholds [Smith, 1984], [Davison,
1984], [Davison and Smith, 1990].
The so called block-maxima approach is widely used in climatological and financial applications
since it represents a very natural way to look at extremes in fixed time intervals: it consists of
dividing the data series of some observable into bins of equal length and selecting the maximum
(or the minimum) value in each of them [Coles et al., 1999], [Felici et al., 2007], [Katz and Brown,
1992], [Katz, 1999], [Katz et al., 2005].

1.2 Extreme Value Theory for dynamical systems

As far as the classical EVT is concerned, we should restrict our domain of investigation to the
output of stochastic processes. Obviously, it is of crucial relevance for both mathematical reason
and for devising a framework to be used in applications, to understand under which circumstances
the time series of observables of deterministic dynamical system can be treated using EVT.
Empirical studies show that in some cases a dynamical observable obeys to the extreme value
statistics even if the convergence is highly dependent on the kind of observable we choose [Vannitsem,
2007], [Vitolo et al., 2009b], [Vitolo et al., 2009a]. For example, Balakrishnan et al. [1995] and more
recently Nicolis et al. [2006] and Haiman [2003] have shown that for regular orbits of dynamical
systems we don’t expect to find convergence to EV distribution.
The first rigorous mathematical approach to extreme value theory in dynamical systems goes back
to the pioneer paper by P. Collet in 2001 [Collet, 2001]. Important contributions have successively
been given by Freitas and Freitas [2008], Freitas et al. [2009],Freitas et al. [2010a] and by Gupta et al.
[2009]. The starting point of all these investigations was to associate to the stationary stochastic
process given by the dynamical system, a new stationary independent sequence which enjoyed
one of the classical three extreme value laws, and this laws could be pulled back to the original
dynamical sequence. To be more precise we will consider a dynamical system (Ω,B, ν, f), where
Ω is the invariant set in some manifold, usually R

d, B is the Borel σ-algebra, f : Ω → Ω is a
measurable map and ν a probability f -invariant Borel measure. The stationary stochastic process
given by the dynamical system will be of the form Xm = g ◦ fm, for any m ∈ N, where the
observable g has values in R∪±∞ and achieves a global maximum at the point ζ ∈ Ω. We therefore
study the partial maximum Mm = max{X0, . . . , Xm−1}, in particular we look for normalising real
sequences {am}, {bm},m ∈ R

+ for which ν{x; am(Mm − bm) ≤ t} = ν{x;Mm ≤ um} converge
to a non-degenerate distribution function; here um = t

am
+ bm is such that mν(X0 > um) → τ ,

for some positive τ depending eventually on t: we defer to the book [Leadbetter et al., 1983]
for a clear and complete picture of this approach. We will associate to our process a new i.i.d.
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sequence X̃0, · · · , X̃m−1 whose distribution is the same as that of X0 and with partial maximum:
M̃m = max{X̃0, · · · , X̃m−1}. Properly normalized the distribution of such a maximum converges
to one of the three laws in equations 1-3 and this is the interesting content of the Extreme Value
Theory. Equations 1-3 will be satisfied by our original process too, whenever we would be able to
prove that

lim
m→∞ ν(M̃m ≤ um) = lim

m→∞ ν(Mm ≤ um)

This can be achieved if one can prove two sufficient conditions called D2 and D′ and which we briefly
quote and explain in the footnote: these conditions basically require a sort of independence of the
stochastic dynamical sequence in terms of uniform mixing condition on the distribution functions.
In particular conditionD2, introduced in its actual form by Freitas-Freitas Freitas and Freitas [2008],
could be checked directly by estimating the rate of decay of correlations for Hölder observables 1.
Another interesting issue of of the previous works was the choice of the observables g’s: it is chosen
as a function g(dist(x, ζ)) of the distance with respect to a given point ζ, with the aim that g
achieves a global maximum at almost all points ζ ∈ Ω; for example g(x) = − log x. In particular the
observable g was taken in one of three different classes g1, g2, g3, see Sect. 2 below, each one being
again a function of the distance with respect to a given point ζ. The choice of these particular forms
for the g’s is just to fit with the necessary and sufficient condition on the tail of the distribution
function F (u) = ν{x;X0 ≤ u}, in order to exist a non-degenerate limit distribution for the partial
maxima [Freitas et al., 2009], [Holland et al., 2008]. We use here the fact that, thanks to conditions
D2 and D′, the distributions of X0 rules out the distribution of our non-independent process Xm

as well. It is important to remind that the previous conditions will determine the exponent ξ in the
types 2 and 3 for E(x).
Another major step in this field was achieved by establishing a connection between the extreme
value laws and the statistics of first return and hitting times, see the papers by Freitas et al. [2009]
and Freitas et al. [2010b]. They showed in particular that for dynamical systems preserving an
absolutely continuous invariant measure or a singular continuous invariant measure ν, the existence
of an exponential hitting time statistics on balls around ν almost any point ζ implies the existence
of extreme value laws for one of the observables of type gi, i = 1, 2, 3 described above. The converse
is also true, namely if we have an extreme value law which applies to the observables of type
gi, i = 1, 2, 3 achieving a maximum at ζ, then we have exponential hitting time statistics to balls
with center ζ. Recently these results have been generalized to local returns around balls centered
at periodic points [Freitas et al., 2010a].
In the context of singular measures, the EVT has been developed in the recent paper by Freitas
et al. [2010b]. The main goal of their paper was to establish a connection with hitting and return
time statistics; for that purpose they considered returns in balls and also into cylinders. We are
particularly interested in their Theorem 1, about balls, since it covers the class of observables
considered in this paper; in particular we use here one direction of the theorem which allows us

1We briefly state here the two conditions, we defer to the next section for more details about the quantities
introduced. If Xm,m ≥ 0 is our stochastic process, we can define Mj,l ≡ {Xj , Xj+1, · · · , Xj+l} and we put M0,m =
Mm. The condition D2(um) holds for the sequence Xm if for any integer l, t,m we have |ν(X0 > um,Mt,l ≤
um) − ν(X0 > um)ν(Mt,l ≤ um)| ≤ γ(m, t), where γ(m, t) is non-increasing in t for each m and mγ(m, tm) → 0 as
m→∞ for some sequence tm = o(m), tm →∞.
We say condition D′(um) holds for the sequence Xm if liml→∞ lim supm m

∑[m/l]
j=1 ν(X0 > um, Xj > um) = 0.
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to get the extreme value distributions if the exponential return time statistics has been previously
established for balls centered around almost all points and with respect to the probability invariant
measure (in this manner we do not need to check conditions D2 and D′).

1.3 This work

In our previous work Faranda et al. [2011] we have shown that there exists an algorithmic way to
study EVT by using a block-maxima approach for dynamical systems which possess an absolutely
continuous invariant measure and satisfy the mixing properties given by conditions D2 and D′. We
have established the best conditions to observe convergence to the analytical results highlighting
deviations from theoretical expected behavior depending on the number of maxima and number
of block-observation. Furthermore, we have verified that the normalising process of variables can
be applied a posteriori and a fit of unnormalised data produce a distribution that belongs to the
Generalised Extreme Value (GEV) distributions family.
In this work we test our algorithm for maps that do not have an absolutely continuous invariant
measure. We remind that in the context of dynamical system, the invariant measure plays the role
of the probability measure on the space of events; in this respect the general theory of extremes
will continue to apply no matter such a probability is absolutely continuous or singular with respect
to Lebesgue. The interesting point is that for the choice of observables we did (the functions gi),
the cumulative distribution function F will be related to the scaling of the measure ν(Br(z)) of a
ball Br(z) of radius r and centered at the point z, and such a scaling exponent turns out to be the
Hausdorff dimension of the measure (also known as information dimension), when the point z is
generically chosen. The experimental and accessible parameters of the GEV distributions will be
explicitly expressed in terms of such a dimension.
In order to get the values of ξ and of am and bm for finite m one should know how the measure of the
ball Br(z) behaves as a function of r and of z and for measures which are not absolutely continuous.
We notice that for absolutely continuous measure that approach works, at least in a few cases, and
we quote our previous paper for that. Instead for singular continuous measures like those supported
on Cantor sets, we are not aware of any analytic result allowing to get the few orders expansion
of ν(Br(z)). This will prevent us to compute rigorously the normalising constant am for type 1
observables g1; instead we will get the the limiting values of bm for type 1 and the limiting values
of am for type 2 and 3. Moreover we could not compute rigorously the exponent ξ. The values
proposed for those non-rigorous constants are obtained by simply approximating ν(Br(z)) with rD.
The agreement with the numerical simulations suggests that there were good choices and suggests
also a direct proof of the EVT for our observables and with the normalising constants indicated by
our heuristic analysis.
As explained in the previous subsection we can either check the conditions D2 and D′ or the
existance of an exponential return time statistics. The latter is the case of iterated function systems
considered in section 3.2: these are in fact given by expanding maps (since they verify the so-called
open set condition) and the exponential return time statistics for balls could be proved, for instance,
using the technique in Bessis et al. [1987]. It will be also the case for the Hénon attractor with
the parameters studied by Benedicks and Carlesson: for those parameters the attractor exists and
carries an SRB measure; moreover very recently Chazottes and Collet established the Poissonian
statistics for the number of visits in balls around generic points w.r.t. the SRB measure. Our
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numerical computation will concern instead the usual Hénon attractor. Finally, we will consider
the Lozi attractor, and in this case we will quote the result by Gupta et al. [2009], which proves
the existence of the extreme value distributions for the observables constructed with the functions
gi and for balls around almost any point w.r.t. the SRB measure. As a final remark, we stress that
the results by Freitas-Freitas and Todd have been proved under the assumption that ν(Br(ζ)) is a
continuous function of r: this is surely true for all the previous examples and such a condition will
play a major role in our next considerations too.
This work is organized as follows: in Section 2 we present the analytical results for the EVT in maps
with singular measures deriving the asymptotic behavior of normalising sequences and parameters.
In Section 3 we present the numerical procedure used for the statistical inference of the GEV
distribution and the numerical experiments that we have carried out for both singular measures
generated with Iterated Function Systems and maps with a less trivial measures such as the Baker
transformation, Hènon and Lozi maps. Eventually, in Section 4 we present our conclusion and
proposal for future work.

2 Extreme Value Theory for maps with singular measures

2.1 Definitions and Remarks

Let us consider a dynamical systems (Ω,B, ν, f), where Ω is the invariant set in some manifold,
usually R

d, B is the Borel σ-algebra, f : Ω→ Ω is a measurable map and ν a probability f -invariant
Borel measure.
As we said in the Introduction and in order to adapt the extreme value theory to dynamical systems,
we will consider the stationary stochastic process X0, X1, ... given by:

Xm(x) = g(dist(fm(x), ζ)) ∀m ∈ N (8)

where ’dist’ is a distance on the ambient space Ω, ζ is a given point and g is an observable
function, and whose partial maximum is defined as:

Mm = max{X0, ..., Xm−1} (9)

The probability measure will be here the invariant measure ν for the dynamical system. We will
also suppose that our systems which verify the condition D2 and D′ which will allow us to use the
EVT for i.i.d. sequences. As we said above, we will use three types of observables gi, i = 1, 2, 3,
suitable to obtain one of the three types of EV distribution for normalized maxima:

g1(x) = − log(dist(x, ζ)) (10)

g2(x) = dist(x, ζ)−1/α (11)

g3(x) = C − dist(x, ζ)1/α (12)

where C is a constant and α > 0 ∈ R.
These three type of functions are representative of broader classes which are defined, for instance,
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throughout equations (1.11) to (1.13) in Freitas et al. [2009]; we now explain the reasons and the
meaning of these choices. First of all these functions have in common the following properties:
(i) they are defined on the positive semi-axis [0,∞] with values into R ∪ {+∞}; (ii) 0 is a global
maximum, possibly equal to +∞; (iii) they are a strictly decreasing bijection in a neighborhood V
of 0 with image W . Then we consider three types of behavior which generalize the previous specific
choices:
Type 1: there is a strictly positive function p : W → R such that ∀y ∈ R we have

lim
s→g1(0)

g−11 (s+ yp(s))

g−11 (s)
= e−y

Type 2: g2(0) = +∞ and there exists β > 0 such that ∀y > 0 we have

lim
s→∞

g−12 (sy)

g−12 (s)
= y−β

Type 3: g3(0) = D < +∞ and there exists γ > 0 such that ∀y > 0 we have

lim
s→0

g−13 (D − sy)

g−13 (D − s)
= yγ

The Gnedenko corollary says that the different kinds of extreme value laws are determined by
the distribution of

F (u) = ν(X0 ≤ u) (13)

and by the right endpoint of F , xF .

We need to compute and to control the measure ν(Br(ζ)) of a ball of radius r around the point
ζ. At this regard we will invoke, and assume, the existence of the following limit

lim
r→0

log ν(Br(ζ))

log r
, for ζ chosen ν − a.e. (14)

Moreover we will assume that ν(Br(ζ)) is a continuous function of r (see Freitas et al. [2009] for a
discussion of this condition which shows that all the examples considered in our paper will fit it).
When the limit (14) exists on a metric space equipped with the Borel σ-algebra and a probability
measure ν, it gives the Hausdorff dimension of the measure or information dimension, defined as
the infimum of the Hausdorff dimension taken over all the set of ν measure 1 [Young, 1982]. This
limit could be proved to exist for a large class of dynamical systems and whenever ν is an invariant
measure: let us indicate it with Δ without written explicitly its dependence on ν. For example,
for a very general class of one-dimensional maps with positive metric entropy, Δ is equal to the
ratio between the metric entropy and the (positive) Lyapunov exponent of ν [Ledrappier, 1981]. For
two dimensional hyperbolic diffeomorphisms, Δ is equal to the product of the metric entropy times
the difference of the reciprocal of the positive and of the negative Lyapunov exponents [Young,
1982]. The information dimension is a lower bound of the Hausdorff dimension of the support of
the measure ν and it is an upper bound of the correlation dimension [Yakov, 1998], [Hentschel and
Procaccia, 1983], [Grassberger, 1983], [Bessis et al., 1988], [Bessis et al., 1987], [Cutler and Dawson,
1989].
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2.2 Limiting behavior of the Extreme Value Theory parameters

We summarize the three basic assumptions for the next considerations:

• Assumption 1: our dynamical system verifies conditions (D2) and D′.

• Assumption 2: the measure of a ball is a continuous function of the radius for almost all the
center points; moreover such a measure has no atoms.

• Assumption 3: the limit (14) exists (and its value is called Δ) at almost all points ζ.

Equipped with these conditions it is now possible to compute rigorously a few of the expected
parameters for the three types of observables.

Case 1: g1(x)= -log(dist(x,ζ)). Substituting equation 8 into equation 13 we obtain that:

1− F (u) = 1− ν(g(dist(x, ζ)) ≤ u)

= 1− ν(− log(dist(x, ζ)) ≤ u)

= ν(dist(x, ζ) < e−u) = ν(Be−u(ζ))

(15)

xF = sup{u;F (u) < 1}
To use Gnedenko corollary it is necessary to calculate xF ; in this case xF = +∞ as we will explain
in the proof below.

According to Corollary 1.6.3 in Leadbetter et al. [1983] for type 1 am = [G(γm)]−1 and bm =
γm = F−1(1− 1

m). We now show how to get the limiting value of γm; a similar proof will hold for
type II and III.

Proposition 1. Let us suppose that our system verifies Assumptions 1,2,3 above and let us consider
the observable g1; then:

lim
m→∞

logm

γm
= Δ

Proof
By our choice of the observable we have: 1− F (γm) = ν(Be−γm (ζ)) = 1

m ; since the measure is not
atomic and it varies continuously with the radius, we have necessarily that γm →∞ when m→∞.
Now we fix δ > 0 and small enough; there will be mδ,ζ depending on δ and on ζ, such that for any
m ≥ mδ,ζ we have

−δγm ≤ log ν(Be−γm (ζ)) + Δγm ≤ δγm (16)

Since logm−Δγm = −[log ν(Be−γm (ζ))+Δγm] and by using the bounds (16) we immediately have

−δγm ≤ logm−Δγm ≤ δγm

which proves the Proposition.

9



It should be clear that the previous proposition will not give us the value of γm and of bm, which
is equal to γm for type I observables. We have instead a rigourous limiting behavior and we will
pose in the following:

γm = bm ∼ 1

Δ
logm

The values for finite m could be obtained if one would dispose of the functional dependence of
ν(Br(ζ) on the radius r and the center ζ: this has been achieved for non-trivial absolutely continuous
invariant measure in our previous paper [Faranda et al., 2011]. The same reason prevent us to get
a rigorous limiting behavior for am = [G(γm)]−1. The only rigorous statement we can do is that
G(γm) = o(γm); this follows by adapting the previous proof of the proposition to another result
(see Leadbetter et al. [1983]) which says that for type I observables one has limm→∞ n(1−F{γm +
xG(γm)}) = e−x, for all real x: choosing x = 1 gives us the previous domination result. In the
following and again for numerical purposes we will take

am = [G(γm)]−1 ∼ 1

Δ

This follows easily by replacing in formula (6) ν(Br(ζ)) ∼ rΔ for r small. We finish this part by
stressing that for our observable we expect ξ = ξ′ = 0.

Case 2: g2(x)=dist(x,ζ)−1/α. In this case we have

1− F (u) = 1− ν(dist(x, ζ)−1/α ≤ u)

= 1− ν(dist(x, ζ) ≥ u−α)
= ν(Bu−α(ζ))

(17)

and xF = +∞. Since bm = 0 we have only to compute am which is the reciprocal of γm which is in
turn defined by γm = F−1(1− 1/m). By adapting Proposition 1 we immediately get that

lim
m→∞

logm

log γm
= αΔ

which we allow us to use the approximation am ∼ 1

m
1

αΔ
The exponent ξ for Type II observables is

given by the following limit (see [Leadbetter et al., 1983], Th. 1.6.2)

lim
t→∞(1− F (tx))/(1− F (t)) = x−ξ, ξ > 0, x > 0

The crude approximation ν(Br(ζ)) ∼ rΔ for r small, will give immediately that ξ ∼ αΔ and this
value will appear in the exponent ξ′ = 1/ξ in the distribution function given by the GEV.

Case 3: g3(x)=C-dist(x,ζ)1/α. We have first of all:

1− F (u) = 1− ν(C − dist(x, ζ)1/α ≤ u)

= ν(B(C−u)α(ζ))
(18)
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In this case xF = C <∞ and am = (C−γm)−1; bm = C. The previous proposition immediately
shows that limn→∞ logm

−α log(C−γm) = Δ which gives the asymptotic scaling γm ∼ C− 1

m
1

αΔ
; am ∼ m

1
αΔ ;

bm = C. Finally the exponent ξ is given again by Th. 1.6.2 in Leadbetter et al. [1983] by the formula

lim
h→0

(1− F (C − hx))/(1− F (C − h)) = xξ, ξ > 0, x > 0

which with our usual approximation furnishes ξ ∼ αΔ.

3 Numerical Experiments

3.1 Procedure for statistical inference

For the numerical experiments we have used a wide class of maps that have singular measure, also
considering the case of strange attractors such as the ones observed by iterating Lozi Map or Hènon
map. The algorithm used is the same described in Faranda et al. [2011]: for each map we run
a long simulation up to k iterations starting from a given initial condition. From the trajectory
we compute the sequence of observables g1, g2, g3 dividing it into n bins each containing m = k/n
observations and eventually obtaining the empirical cdf of maxima.
In Faranda et al. [2011] we have used a Maximum Likelihood Estimation (MLE) procedure working
both on pdf and cdf (cumulative distribution function), since our distributions were absolutely
continuous and the minimization procedure was well defined. In this case, we don’t have anymore
the pdf and consequently the fitting procedure via MLE could give us wrong results. To avoid these
problems we have used an L-moments estimation as detailed in Hosking [1990]. This procedure
is completely discrete and can be used both for absolutely continuous or singular continuous cdf.
The L-moments are summary statistics for probability distributions and data samples. They are
analogous to ordinary moments which meant that they provide measures of location, dispersion,
skewness, kurtosis, but are computed from linear combinations of the data values, arranged in
increasing order (hence the prefix L). Asymptotic approximations to sampling distributions are
better for L-moments than for ordinary moments [Hosking [1990], Figure 4]. The relationship
between the moments and the parameters of the GEV distribution are described in Hosking [1990],
while the 95% confidence intervals has been derived using a bootstrap procedure. As comparison
we have checked that the results presented in Faranda et al. [2011] are comparable with L-moments
methods. We have found that both the methods give similar results even if L-moments has an
uncertainty on the estimation of parameters generally slightly bigger.
The empirical cdf contains plateaux which correspond to non accessible distances in correspondence
of the holes of the Cantor set. The discrete nature of L-moments allows to overcome difficulties
that may arise in singular continuous cdf: the normalization procedure carried out with this method
consists in dividing each quantity computed via L-moments by a function of the total number of
data will prevent us from obtain a unnormalised distribution. The last issue we want to address is
the choice of a suitable model for our data: in principle, using L-moments procedure we can fit the
data to any kind of known cdf. To validate the use of the GEV model we proceeded in the following
way:
-A priori the choice of a GEV model arises naturally if the assumptions presented in the section
3 are satisfied. In this set up we can directly compute the parameters of GEV distribution using
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L-moments as described in Hosking [1990].
-A posteriori we can verify the goodness of fit to GEV family if we apply some parametric or non-
parametric tests commonly used in statistical inference procedures. For this purpose we have fitted
our experimental data to a wide class of well known continuous distributions. Using Kolmogorov
Smirnov test (see Lilliefors [1967] for a description of the test) we have measured the deviation
between the empirical cdf and the fitted cdf, finding that using the GEV distribution we effectively
achieve a minimization of the deviation parameter.
We summarize below the results we expect from numerical experiments in respect to n according
to the conjecture described in the previous section. Since we keep the length of the series k = n ·m
fixed, the following relationships can be obtained simply replacing m = k/n in the equations derived
in the previous section.
For g1 type observable:

σ =
1

Δ
μ ∼ 1

Δ
ln(k/n) ξ′ = 0 (19)

For g2 type observable, we can either choose bm = 0 or bm = c ·m−ξ′ where c ∈ R is positive
constant, as detailed in Beirlant [2004]. A priori, we do not know which asymptotic sequences will
correspond to the parameters μ in the experimental set up. The experimental procedure we use
automatically select bm = c ·m−ξ′ , therefore the following results are presented taking into account
this asymptotic sequence:

σ ∼ n−1/(αΔ) μ ∼ n−1/(αΔ) ξ′ =
1

αΔ
(20)

For g3 type observable:

σ ∼ n1/(αΔ) μ = C ξ′ =
1

αΔ
(21)

3.2 IFS for Cantor Sets

A Cantor set can be obtained as an attractor of some Iterated Function Systems (IFS). An IFS is a
finite family of contractive maps {f1, f2, ..., fs} acting on a compact normed space Ω with norm | · |
and possessing a unique compact limit set (the attractor) K ∈ Ω which is non-empty and invariant
by the IFS, namely:

K =

s⋃
i=1

fi(K).

We will put a few restrictions on the IFS in order to see it as the inverse of a genuine dynamical
system; we will explain in a moment why this change of perspective will help us to compute observ-
ables on fractal sets. We defer to the fundamental paper by Barnsley and Demko [1985], for all the
material we are going to use.
First of all we will consider the fi as strict contractions, namely there will be a number 0 < λ < 1
such that for all i = 1, · · · , s we have |fi(x)− fi(y)| < λ|x− y|, for all x, y ∈ X.
Then we will suppose that each fi is one-to-one on the attractor K and moreover ∀i = 1, · · · , s
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we have fi(K) ∩ fj(K) = ∅, i 
= j (open set condition). This will allow us to define a measurable
map T : K → K by T (x) = f−1i (x) for x ∈ fi(K): the attractor K will be the invariant set for
the transformation T which will play therefore the role of a usual dynamical system. A complete
statistical description of a dynamical system is given by endowing it with an invariant probability
measure; in particular we ask that this measure by ergodic if we want to compute the maxima of
the sequence of events constructed with the observables gi; we remind that these events are nothing
but the evaluations along the forward orbit of an initial point chosen according to the measure. If,
as always happens, the attractor K has a fractal structure and zero Lebesgue measure, we could not
get such an initial point for numerical purposes. We overcome this situation for attractors of global
diffeomorphisms by taking the initial point in the basin of attraction and by iterating it: the orbit
will be distributed according to the SRB measure (we will return later on this measure). For our
actual attractors generated by non-invertible maps, the iteration of any point in the complement of
the attractor will push the point far from it: it would be better to call repellers our invariant sets
instead of attractors. We have therefore to proceed in a different manner. The measures supported
on the attractor K will give the solution. First of all let us associated to each map fi a positive
weight pi in such a way that

∑s
i=1 pi = 1. Then it is possible to prove the existence of a unique

measure ν (called balanced) which enjoy the following properties:

• The measure ν is supported on the attractorK and it will be invariant for the map T associated
to our IFS (see above).

• For any measurable set B in X we have

ν(B) =

s∑
i=1

piν(f
−1
i (B))

• Let us put (Sg)(x) =
∑s

i=1 pig(fi(x)), for a continuous functions g on Ω and for any point
x ∈ Ω, then we have

lim
n→∞Sng(x) =

∫
Ω
gdν

This last item is very important for us; first of all it holds also for the characteristic function of a
set provided the boundary of this set has ν measure zero; therefore it is a sort of ergodic theorem
because it states that the backward orbit constructed by applying to any point in X the maps fi
with weights pi will distribute on the attractor K as the forward orbit (namely the orbit generated
by the transformation T associated to the IFS) of a point y ∈ K and chosen almost everywhere
according to ν.
Let us give our first example.

3.2.1 Uniform weights and the Sierpisnkij triangle

We consider the middle one third Cantor set that is the attractor of the IFS {f1, f2} defined as:{
f1(x) = x/3 with weight p1
f2(x) = (x+ 2)/3 with weight p2

(22)
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where x ∈ [0, 1] and we set p1 = p2 = 1/2 so that, at each time step, we have the same probability
to iterate f1(x) or f2(x):

Equivalently the previous IFS can be written as:

xt+1 = (xt + b)/3 (23)

where, at each time step, we extract randomly with equal probability b to be 0 or 2.

We will consider also the so called Sierpisnkij triangle, defined by{
xt+1 = (xt + vp,1)/2

yt+1 = (yt + vp,2)/2
(24)

We extract randomly at each time step and with equal probability the number p to be the integer
1,2 or 3. Then we iterate the map 24 substituting the elements vp,1 and vp,2 of the following matrix:

v =

∣∣∣∣∣∣
1 0
−1 0
0 1

∣∣∣∣∣∣ .
For these attracting sets the information dimensions are well known, they are Δ = log(2)/ log(3)

for the Cantor set and Δ = log(3)/ log(2) for the Sierpinskij triangle [Sprott, 2003].
In the following experiments In order to choose the centers ζ of our balls we proceed by using again
the backward preimages of any point in Ω, namely we take a point x ∈ Ω and we consider ζ as one
of the preimages f−t(x) with t much larger than the sequence of observed events; by what we said
above, that preimage will be closer and closer to the invariant Cantor set and also it will approaches
a generic point with respect to the balanced measure ν.
First of all we have analised the empirical cdf F (u) of the extrema for g1 observable. An example
is shown for the IFS in eq. 22 in Figure 1. The histogram is obtained iterating the map in equation
22 for 5 · 107 iterations, ζ � 0.775, α = 4, C = 10. Once computed the functions g1 the series of
maxima for each observable is computed taking each of them in bins containing 5000 values of g1
for a total of 1000 maxima. As claimed in the previous section, the cdf is a singular continuous
function and this is due to the structure of the Cantor set. The results are similar for the other
observables and other initial conditions.
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Figure 1: Empirical (blue) and fitted (red) cdf for IFS that generates a Cantor Set, ζ = 0.775, g1
observable function.

To check that effectively the parameters of GEV distribution obtained by L-moments estimation
are related to the fractal dimension of the attracting Cantor Set and the Sierpinskij triangle, we
have considered an ensemble of 104 different realizations of the eq. 22 and eq. 24, starting from the
same initial conditions. To check the behavior we have varied n and m keeping fixed the length of
the series k = 107. In Faranda et al. [2011] we have shown that a good convergence is observed when
n,m > 1000, therefore we will make all the considerations for (n,m) pairs that satisfy this condition.

In figures 2-4 the results of the computation for the IFS that generates the Cantor Set ( plots on
the left) and the Sierpisnkij triangle (plots on the right) are presented. In all the cases considered
the behavior well reproduce the theoretical expected trend described in equations 19-21. The initial
condition here shown is ζ = 1/3 for Cantor Set and ζ � (0.02, 0.40) for Sierpinskij triangle, but
similar results hold for different initial conditions if chosen on the attractive sets. The black line
is the mean value over different realizations of the map, while the black dotted lines represent one
standard deviation.

For g1 observable function, according to equation 19, we expect to find ξ = 0 in both cases
and this is verified by experimental data shown in Figure 2a). For the scale parameter a similar
agreement is achieved in respect to the theoretical parameters Δ = 1

σ(g1)
= log(2)/ log(3) � 0.6309
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Δ = 1/(α|κ|) Cantor Sierpinskij
Theoretical log(2)/ log(3) � 0.6309 log(3)/ log(2) � 1.5850

μ(g2) 0.636± 0.006 |κ| = 1.592± 0.007

σ(g2) 0.634± 0.007 |κ| = 1.56± 0.02

σ(g3) 0.64± 0.01 |κ| = 1.62± 0.01

Table 1: Information dimension Δ computed taking the logarithm of equations 20-21 and computing
the angular coefficient κ of a linear fit of data; IFS with uniform weights and Sierpinskij triangle,
α = 4, C = 10.

for the Cantor Set and Δ = 1
σ(g1)

= log(3)/ log(2) � 1.5850 for Sierpinskij shown in figure 2b) with
a green line. Eventually, the location parameter μ shows a logarithm decay with n as expected from
equation 19. A linear fit of μ in respect to log(n) is shown with a red line in figure 2c). The linear
fit angular coefficient κ of equation 19 satisfies Δ = 1/κ and the dimension computed from data
using this relation is Δ = 0.64± 0.01 for Cantor and Δ = 1.59± 0.01 in the Sierpinskij triangle.
The agreement between the conjecture and the results are confirmed even for g2 type and g3 type
observable functions shown in figures 3 and 4 respectively. In this case we have experienced some
problems in the convergence for the Cantor map has using α = 2 and α = 3. The problem is
possibly due to the fact that L-moments method works better if ξ′ ∈ [−0.5, 0.5] while for α ≤ 3 the
shape parameter |ξ′| > 0.5 for the Cantor map. For this reason results are shown using α = 4 both
for Sierpinskij triangle and Cantor IFS, for all the experiments presented the constant value in g3
will be C = 10. For both observables g2, g3 there is strong agreement between the experimental
and theoretical ξ′ values. In figures 3b), 3c), 4b) a log-log scale is used to highlight the behavior
described by eq. 20 and 21. We can check again the value of the dimension using the angular
coefficient κ which satisfies Δ = 1/(α|κ|). In Table 1 we compare these results with the theoretical
values. The error is here represented as one standard deviation of the ensemble of realizations and
we find a good agreement between theoretical and experimental parameters within two standard
deviations. Eventually, computing g3 observable function we expect to find a constant value for
μ(g3) = C = 10 while σ(g3) has to grow with a power law in respect to n as expected comparing
with equation 21.
Other tests have been done computing the statistics using parameter α = 5, 6, 7, 8 for g2 and g3
observables. Also in this cases, no deviation from the behavior described in eq. 19-21 has been
found.
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Figure 2: g1 observable. a) ξ′ VS log10(n); b) σ VS log10(n); c) μ VS log(n). Cantor set, Right:
Sierpinskij triangle. Dotted lines represent one standard deviation, red lines represent a linear fit,
green lines are theoretical values. 17



Figure 3: g2 observable a) ξ′ VS log10(n); b) log10(σ) VS log10(n); c) log10(μ) VS log10(n). Left:
Cantor set, Right: Sierpinskij triangle. Dotted lines represent one standard deviation, red lines
represent a linear fit, green lines are theoretical values.18



Figure 4: g3 observable. a) ξ′ VS log10(n); b) log10(σ) VS log10(n); c) log10(μ) VS log10(n). Cantor
set, Right: Sierpinskij triangle. Dotted lines represent one standard deviation, red lines represent a
linear fit, green lines are theoretical values. 19



3.2.2 IFS with non-uniform weights

Let us now consider the case of an IFS with different weights:

fk(x) = ak + λkx x ∈ [0, 1] k = 1, 2, ..., s (25)

and each fi is iterated with (different) probability wi.
In this case it is possible to compute the information dimension as the ratio between the metric

entropy and the Lyapunov exponent of the associated balanced measure [Barnsley, 2000]: we get
the following expression:

Δ =
w1 logw1 + ...+ ws logws

w1 log λ1 + ...+ ws log λs
(26)

In this analysis we have considered the following IFS:{
f1(x) = x/3 with weight w
f2(x) = (x+ 2)/3 with weight 1− w

(27)

and we have changed the weight w between 0.35 and 0.65 with 0.01 step. For w = 0.5 we
obtain the same results shown in the previous section, while for different weights we can check the
expression 26.

The presence of different weights makes the convergence process sensible to the choice of the
sample point ζ where our observable reaches its maximum. For that reason we took several different
values of ζ in order to obtain a reliable estimations of the information that should be obtained, in
this case, as an average property.

In Figure 5 we present the dimension Δ computed using relationship 19-21. In particular we
can compute the dimension from eq. 19 as:

Δ(σ(g1)) =
1

< σ(g1) >
(28)

We can infer dimension also from eq. 20, eq. 21 as:

Δ(ξ′(gi)) =
1

α| < ξ′(gi) > | , i = 2, 3 (29)

and in all expressions above the brackets < . > indicate an average on different sample points
ζ. For the rest of the numerical computations we set α = 5. The parameters have been computed
using 1000 different initial conditions on the support of the attractor, and for 30 realizations of each
sample point ζ,the block-maxima approach is here used with n = m = 1000. The error bar are
computed using the standard error propagation rules.

The agreement between the theoretical dimension and the experimental data is evident for
all the weights and for all the observable considered. The uncertainty increases when w is much
different from 0.5. This is due to the fact that as soon as we change the weight to be different from
0.5 the parameters spread increase to take in account the local properties of the attractor. The
best agreement and less uncertainty is achieved considering the dimension as computed from σ(g1)
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observable. This is possibly due to the slower convergence for g2 or g3 observables to the respective
theoretical distributions: in g1 we modulate the distances with a logarithm function while in g2 and
in g3 power laws are used. Nevertheless, all the data show the right trend.

Figure 5: Different estimation of Δ dimension obtained using Extreme Value distribution for the
IFS in equation 27

3.3 Non-trivial singular measures

In the previous subsection we have analysed the relatively simple cases of Cantor sets generated
with IFS. In order to provide further support to our conjectures, we now present some application
of our theory to the output of dynamical systems possessing a less trivial singular measures. We
consider three relevant examples of two dimensional maps.
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The Baker map
The Baker map is defined as follows:

xt+1 =

{
γaxt mod 1 if yt < α

1/2 + γbxt mod 1 if yt ≥ α

yt+1 =

{
yt
α mod 1 if yt < α
yt−α
1−α mod 1 if yt ≥ α

(30)

we consider the classical value for the parameter: α = 1/3, γa = 1/5 and γb = 1/4.
Rigorous analytical results are available for the estimation of the information dimension [Kaplan

and Yorke, 1979]. For our parameter values, the analytical expected value is D � 1.4357.
We have performed the same analysis detailed in section 4.1, but with a difference. This map

is invertible and its invariant set is an attractor given by the cartesian product of a segment, along
the y-axis, and a one dimensional Cantor set along the x-axis. The system possess an invariant
SRB measure, which can practically be constructed by taking ergodic sums for any point sitting on
the basin of attraction. In order to compute the center of the balls on the attractor, we proceed in
a similar manner as for repellers (see above), namely we take any point x in the basin of attraction
and we iterate it t times with t much bigger than the sequence of observed events. Then we take
ζ as the point f t(x): it will be closer and closer to the attractor and distributed according to the
SRB measure. In our set up: α = 4 for g2 and g3, C = 10. The results are shown in figures 6-8 the
black continuous lines will represent the parameter average over different initial conditions and the
black dotted lines the standard deviation of the distribution of the estimated parameters.
The expected theoretical ξ′ values are within one standard deviation of the results of the fit for all
three observable. The agreement seems to be better when we increase n even if this correspond to a
decrease of m in our set up. This behavior is quite interesting since it seems that we obtain a much
better convergence to theoretical values if n � 104, while in all other example there is no such a dif-
ference between n = 1000 and m = 10000. A similar consideration can be made for σ(g1) shown in
Figure 6b) that approaches the theoretical values value for bigger n values. The angular coefficient
of the linear fit for μ(g1) shown in the semilog plot in Figure 6c) allow us to estimate the dimension
Δ = 1/|κ| = 1.48±0.03 that is consistent with the theoretical values within two standard deviations .

Log-log plots of the parameters against n are shown in figures 7b), 7c) and 8b), and the value of
the dimension Δ computed using the angular coefficients are reported in Table 2. The agreement
with expected value is good enough for all the parameters and better for μ(g2). Eventually, Figure
8c) shows that μ(g3) approaches C = 10.
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Figure 6: g1 observable. a) ξ′ VS log10(n); b) σ VS log10(n); c) μ VS log(n). Baker map. Dotted
lines represent one standard deviation, red lines represent a linear fit, green lines are theoretical
values. 23



Figure 7: g2 observable a) ξ′ VS log10(n); b) log10(σ) VS log10(n); c) log10(μ) VS log10(n). Baker
map. Dotted lines represent one standard deviation„ red lines represent a linear fit, green lines are
theoretical values. 24



Figure 8: g3 observable. a) ξ′ VS log10(n); b) log10(σ) VS log10(n); c) log10(μ) VS log10(n). Baker
map. Dotted lines represent one standard deviation, red lines represent a linear fit, green lines are
theoretical values. 25



The Hènon and Lozi maps
The Hènon map is defined as:

xt+1 = yt + 1− ax2t
yt+1 = bxt

(31)

while in the Lozi map ax2t is substituted with a|xt| :

xt+1 = yt + 1− a|xt|
yt+1 = bxt

(32)

We consider the classical set of parameter a = 1.4, b = 0.3 for the Hènon map and a = 1.7 and
b = 0.5 for the Lozi map.

Young [1985] proved the existence of the SRB measure for the Lozi map, whereas for the Hènon
map no such rigorous proof exists, even if convincing numerical results suggest its existence [Badii
and Politi, 1987]. Note that Benedicks and Carleson [1991] proved the existence of an SRB measure
for the Hènon map with a different set of parameters. Using the classical Young results which makes
use of the Lyapunov exponents, we obtain an exact result for Δ for the Lozi attractor:

Δ � 1.40419

Instead, in the case of the Hènon attractor, we consider the numerical estimate provided by
Grassberger [1983]:

Δ = 1.25826± 0.00006

As in the previous cases the GEV distribution is computed with L-moments methods varying
n and m and averaging the distribution parameters over 1000 different sample points chosen as
described before for the Baker map. Results are presented in figures 9-11, the plots on the left-hand
side refer to the Hènon map, while on the right-hand side the results refer to the Lozi map.
When considering ξ′, the numerical results are in agreement with the theoretical estimates. Never-
theless, the parameters distribution have a rather range spread which indicates a slower convergence
towards the expected values in respect to what is observed for the IFS case. The experimental val-
ues of σ(g1) , shown in Figure 9b , approach the theoretical values shown by a green line. The
angular coefficient computed from the semilog plot of μ(g1) represented in Figure 9c) gives us an
estimate of the dimension Δ = 1/|κ| = 1.234±0.015 for Hènon and Δ = 1/|κ| = 1.40±0.01 for Lozi.

The other angular coefficients related to g2 and g3 observables for the plots shown in figures 10b),
10c), and 11b) are presented in Table 2. Within 2 standard deviation they are comparable with
the theoretical ones and the best agreement is achieved considering μ(g2). The constant C = 10 is
approached quite well (Figure 11c)).
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Δ = 1/(α|κ|) Baker Hènon Lozi
Theor. 1.4357 1.2582 1.4042

μ(g2) 1.47± 0.02 1.238± 0.009 1.396± 0.008

σ(g2) 1.39± 0.04 1.35± 0.07 1.38± 0.02

σ(g3) 1.56± 0.08 1.15± 0.07 1.42± 0.01

Table 2: Information dimension Δ computed taking the logarithm of equations 20-21 and computing
the angular coefficient κ of a linear fit of data; for Baker, Hènon and Lozi maps.

The slower convergence for these maps may be related to the difficulties experienced computing
the dimension with all box-counting methods, as shown in Grassberger [1983],Badii and Politi [1987].
In that case it has been proven that the number of points that are required to cover a fixed fraction
of the attractor support diverges faster than the number of boxes itself for this kind of non uniform
attractor. In our case the situation is similar since we consider balls around the initial condition ζ.
As pointed out, the best result for the dimension is achieved using the parameters provided by g1
observable since the logarithm modulation of the distance exalts proper extrema while weights less
possible outliers.
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Figure 9: g1 observable. a) ξ′ VS log10(n); b) σ VS log10(n); c) μ VS log(n). Left: Hènon map,
Right: Lozi map. Dotted lines represent one standard deviation, red lines represent a linear fit,
green lines are theoretical values. 28



Figure 10: g2 observable a) ξ′ VS log10(n); b) log10(σ) VS log10(n); fc) log10(μ) VS log10(n). Left:
Hènon map, Right: Lozi map. Dotted lines represent one standard deviation„ red lines represent a
linear fit, green lines are theoretical values. 29



Figure 11: g3 observable. a) ξ′ VS log10(n); b) log10(σ) VS log10(n); c) log10(μ) VS log10(n). Left:
Hènon map, Right: Lozi map. Dotted lines represent one standard deviation, red lines represent a
linear fit, green lines are theoretical values. 30



4 Final Remarks

Extreme Value Theory is attracting a lot of interest both in terms of extending pure mathematical
results and in terms of applications to many fields of social and natural science. As an example, in
geophysical applications is crucial to have a tool to understand and forecast climatic extrema and
events such as strong earthquakes and floods.
Whereas the classical Extreme Value Theory deals with stochastic processes, many applications
demanded to understand whereas it could rigorously be used to study the outputs of deterministic
dynamical systems. The mathematical models used to study them present a rich structure and their
attracting sets are very often strange attractors. In such sense is extremely important to develop
an extreme value theory for dynamical system with singular measures. Recently, The existence of
extreme value laws for dynamical systems preserving an absolutely continuous invariant measure or
a singular continuous invariant measure has been proven if strong mixing properties or exponential
hitting time statistics on balls are satisfied.
In this work we have extended the results presented in Faranda et al. [2011] to the case of dynamical
systems with singular measures. Our main results is that there exist an extreme value distribution
for this kind of systems that is related to the GEV distribution when observable functions of the
distance between the iterated orbit and the initial conditions are chosen. The three extreme value
type for the limit distribution laws for maxima and the generalized distribution family (GEV) are
absolutely continuous function. We will recover the GEV using histograms on the frequency of
maxima; in this way the cumulative distribution function which we got from such an histogram
will have plateaux just in correspondence of the holes of the Cantor set, whenever this one is the
invariant set. This could be easily explained by the very nature of our observables which measure
the distance with respect to a given point: there will be distances which are not allowed when
such distances are computed from points in the holes. It should be stressed that such a cumulative
distribution function, which is a sort of devil staircase and therefore is a singular continuous function,
in any way could converge to a GEV distribution. The latter as the three type extreme values
laws are normalized laws which must be adjusted in order to give a non-degenerate asymptotic
distribution. The strength of our approach, as we said above, relies in the possibility to infer the
nature and the value of such normalizing constants by a fitting procedure on the unnormalized data,
the histograms. This worked very well for probability measure which were absolutely continuous.
We will see that it works also for singular measures (and the normalizing constants will be related
to the information dimension), provided we remind that this time the fitting procedure will contain
a sort of extrapolation to smooth out the gaps of the Cantor sets.
It is interesting to observe that on Cantor sets the notion of generic point is not so obvious as for
smooth manifolds which support Lebesgue measure: in this case in fact one could suppose that
each point accessible for numerical iterations is generic with respect to an invariant measure which
is in turn absolutely continuous. This notion of genericity is restored on attractor by considering
the SRB measure. Instead for Iterated Function Systems we can dispose of uncountably many
measures, but we have a precise manner to identify them and this will be reflected in the different
dimensions produced by the numerical computation of the parameters of the GEV. The possibility
to discriminate among different singular measures having all the same topological support is another
indication of the validity and of the efficiency of our approach.
We have also shown that the parameters of the distribution are intimately related to the information
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dimension of the invariant set. We have tested our conjecture with numerical experiments on
different low dimensional maps such as : the middle third Cantor set, the Sierpinskij triangle),
Iterated Function System (IFS) with non-uniform weights, strange attractors such as Lozi and
Hènon. In all cases considered there is agreement between the theoretical parameters and the
experimental ones. The extimates of Δ are in agreement with the theoretical values in all cases
considered. It is interesting to observe that the algorithm described with the selection of maxima
acts like a magnifying glass on the neighborhood of the initial condition. In this way we have both
a powerful tool to study and highlight the fine structure of the attractor, but, on the other hand we
can obtain global properties averaging on different initial conditions. Even if we are dealing with
very simple maps for which many properties are known it is clear from numerical experiments that
is not so obvious to observe a good convergence to the GEV distribution. Even if we are able to
compute very large statistics and the results are consistent with theoretical values, the error range
is wide if compared to the experiment for maps with a.c.i.m. measures that we have carried out in
Faranda et al. [2011]. This should be taken in consideration each time this statistics is applied in a
predictive way to more complicated systems.
In the case of an experimental temporal series, for which the underlying dynamics is unknown, a
classical problem is to obtain the dimensionality of the attractor of the dynamical systems which
generated it. This can be achieved through the so called Ruelle-Takens delay embedding where,
starting from the time series of an observable O(n), we can construct the multivariate vectors in a
Δ-dimensional space:

φ(N) = [O(n), O(n+ 1), ..., O(n+ d− 1)]

and study the geometrical properties using the Recurrence Qualification Analysis [Marwan et al.,
2007]. The minimum value of Δ needed to reconstruct the actual dimension d∗ is given by [2d] + 2.
Using the procedure described in this paper we could find an estimate for d∗ thus determining the
minimum value of Δ to be used in the Recurrence Quantification Analysis. We will test this strategy
in a subsequent publication.

The theory and the algorithm presented in this work and in Faranda et al. [2011] allow to study in
detail the recurrence of an orbit around a point: this is due to the particular choice of the observables
that require to compute distances between initial and future states of the system. Understanding
the behavior of a dynamical system in a neighborhood of a particular initial condition is of great
interest in many applications. As an example, in weather forecast and climate it is important to
study the recurrence of patterns (the so called analogues). In principle, applying the extreme value
statistics to the output of meteorological models, will make possible to infer dynamical properties
related to the closest return towards a certain weather pattern. EVT will give information not only
about the probability distribution of the extrema but also about the scaling of the measure of a
ball centered on the chosen initial condition providing an insight to the dynamical structure of the
attractor.
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