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Abstract: Lie-Poisson structure of the Lorenz’63 system gives a physical insight on its
dynamical and statistical behavior considering the evolution of the associated Casimir
functions. We study the invariant density and other recurrence features of a Markov
expanding Lorenz-like map of the interval arising in the analysis of the predictability
of the extreme values reached by particular physical observables evolving in time under
the Lorenz’63 dynamics with the classical set of parameters. Moreover, we prove the
statistical stability of such an invariant measure. This will allow us to further characterize
the SRB measure of the system.
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1. Introduction

In 1963 E. Lorenz by a drastic truncation of fluid-dynamics equations governing the
atmospheric motion obtained a system of ODE which he proposed as a crude yet non
trivial model of thermal convection of the atmosphere [L]. As a matter of fact, the Lorenz
model is today understood as a basic toy-model for the evolution of Earth atmosphere’s
regimes, like zonal or blocked circulation or climate regimes (e.g. warm and cold), in
which dynamics is described by equilibrium states [CMP,Se]. In his work Lorenz showed
such a system to exhibit, for a large set of parameter values, a peculiar chaotic behavior,
that is exponentially sensitive to perturbations of initial conditions and the existence of a
global attracting set for the flow nowadays called the generalized nontrivial hyperbolic
attractor. Although there exists an extensive literature on the subject, we refer the reader
to [Sp] for a rather comprehensive overview on this problem and to [V] for a recent
account on the progress made on the rigorous analysis of the Lorenz’63 ODE system
and the relationship between this and its more abstract counterpart, the geometric Lorenz
model, introduced in the second half of the seventies ([G,ABS and GW]) to describe
the geometrical features a dynamical system should possess in order to exhibit the same
asymptotic behavior as the Lorenz one. An affirmative answer to the long-standing ques-
tion whether the original Lorenz’63 flow fits or not the description of the one modeled
by the geometric Lorenz, which means it supports a robust singular hyperbolic (strange)
attractor, has been given by W. Tucker in [T] by means of a computer assisted proof.
As a byproduct, Tucker also proved that Lorenz flow admits a unique SRB measure
supported on the strange attractor. Further results about the characterization of the set
of geometric Lorenz-like maps are given in [LM].

In 2000 it has been emphasized that the Lorenz’63 model and the Kolmogorov one,
considered as a low-order approximation of the Navier-Stokes equations, belong to a par-
ticular class of dynamical systems, named Kolmogorov-Lorenz systems [PP1], whose
vector field admits a representation as a sum of a Hamiltonian SO (3)-invariant field, a
dissipative linear field and constant forcing field (see also [PP2] for an extension of this
analysis to the Lorenz’84 model). Moreover, they proved that the chaotic behavior of
these models relies on the interplay between dissipation and forcing.

More specifically, and more recently, in [PM] it has been shown that the effect of the
dissipative and forcing terms appearing in the previously described decomposition of
the Lorenz’63 vector field, with the classical set of parameters, is to induce chaotic oscil-
lations in the time evolution of the first integrals of the Hamiltonian system associated
to the Lorenz’63 model, namely the Hamiltonian and the Casimir function for the (+)
Lie-Poisson brackets associated the so (3) algebra [MR], which represents the angular
momentum of a free rigid body in the Kolmogorov-Lorenz representation of geofluid
dynamics introduced in [PP1]. In particular, it has been shown that two subsequent oscil-
lation peaks in the plot of the Casimir function C as a function of time are related by a
map� of the interval similar to the one originally computed by Lorenz in [L] depicting
the functional dependence of two subsequent maximum values assumed by the third
coordinate of the flow as a function of time. We remark that, C being the square norm
of the flow, the similarity of the plots of these two maps is therefore not surprising. In
[PM], the recurrence properties of � are also studied, which allows to characterize the
trajectories of the system through the number of revolution they perform around the
unstable point lying on one side of the plane x + y = 0 when the initial condition is
chosen on the opposite side ([PM], Figs. 2, 10 and 11).

In our paper we clarify what is stated in [PM] by giving an account in the first sec-
tion of the rigid body formulation of the Lorenz’63 model and constructing, in the next
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section, a Markov expanding Lorenz-like map T of the interval being the reduction to
[0, 1] of �. Both maps are in fact derived throughout the Poincaré map associated to
the surface in the configuration space of the system corresponding to the set of max-
ima reached by the Casimir function during its time evolution. Hence, we will study
the invariant measure under the dynamics defined by T characterizing its density and
consequently the SRB measure of the system. Furthermore, we analyse the recurrence
properties of the dynamics induced by T clarifying more rigorously what is stated in
Sect. IV B of [PM].

We will also perturb the system by adding an extra forcing term which will eventually
cause the system to lose its symmetry under the involution R : (x, y, z)→ (−x,−y, z)
of R

3. Due to the robustness of the attractor, i.e. persistence under perturbations of the
parameters, proved in [T], maps analogous to T can be defined and studied, and their
statistical properties analysed as in the unperturbed case. Therefore, such perturbation
of the Lorenz’63 field will only have the effect to induce a change in the statistics of the
invariant measure for the system, the SRB measure. We will prove that this change could
be detected by looking at the deviation of the invariant density of the perturbed map with
respect to the unperturbed one. Such a result would confirm what has been empirically
shown in [CMP] about the impact of anthropogenic forcing to climate dynamics of the
northern hemisphere.

We also believe that this analysis could also be pursued in the case of more general
N -dimensional models such as those introduced by Zeitlin in [Z] to approximate in the
limit of N tending to infinity the dynamics of the atmosphere in absence of dissipation
and forcing.

We will present elsewhere our contributions in these directions; here we prove the
first non-trivial result about the statistical stability of the invariant measure for T . The
technique we propose is new and we believe it could be applied as well for other maps
with some sort of criticalities.

We remark that, in particular, the distribution of the return times of a measurable
subset of [0, 1], which can be derived directly from the invariant measure of T, could
be useful in studying the statistics of extreme meteorological events.

2. Return Lorenz-like Maps

2.1. Rigid body formulation of the Lorenz’63 model. It can be shown ([PP1]) that the
Lorenz’63 ODE system [L],

⎧
⎨

⎩

ẋ1 = −σ x1 + σ x2
ẋ2 = −x1x3 + ρx1 − x2
ẋ3 = x1x2 − βx3

(1)

can be mapped, through the change of variables
⎧
⎨

⎩

u1 = x1
u2 = x2
u3 = x3 − (ρ + σ)

, (2)

to the ODE system
⎧
⎨

⎩

u̇1 = −σu1 + σu2
u̇2 = −u1u3 − σu1 − u2
u̇3 = u1u2 − βu3 − β (ρ + σ)

(3)
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representing the evolution of a Hamiltonian system whose configuration space is the
SO (3) group, subject to dissipation and to a constant forcing. That is, denoting by

{F,G} := ω2
+

(
ad∗∇F x, ad∗∇G x

) = x · ∇F ×∇G (4)

the Lie-Poisson brackets associated to the symplectic 2-formω2
+ defined on the cotangent

bundle of SO (3) [MR], (3) reads

u̇i = {ui , H} − (	u)i + fi , i = 1, 2, 3, (5)

where:

•

H (u) := 1

2
u ·
u + h · u (6)

is the Hamiltonian of a rigid body whose kinetical term is given by the matrix

 := diag (2, 1, 1) , while h := (0, 0,−σ) is an axial torque;

• 	 := diag (σ, 1, β) is the dissipation matrix;
• f := (0, 0,−β (ρ + σ)) is a forcing term.

This representation allows to study the Lorenz system as a perturbation of the Ham-
iltonian system

vi (u) := {ui , H}, i = 1, 2, 3, (7)

admitting, as in the case of a rigid body with a fixed point, two independent first integrals
H and the Casimir function C for the Poisson brackets (4) [MR]. In fact, when rewritten
in this form, it follows straightforwardly that the system is non chaotic for σ = 0 [PP1]
while, for σ �= 0, the values of C and H undergo chaotic oscillations [PM].

Moreover, when passing to the representation (5), the symmetries of the system are
preserved as well as other features such as the invariance of the x3 (u3) axis and the
direction of rotation of the trajectories about this axis. The critical points of the velocity
field of the system are then

c1 :=
(√
β (ρ − 1),

√
β (ρ − 1),− (σ + 1)

)
, c2 := (−x1 (c1) ,−x2 (c1) , x3 (c1)) ,

(8)

and c0 := (0, 0,− (ρ + σ)) .
We also remark that (5) can be rewritten in the form

u̇ = v − w, (9)

where v is the divergence free field (7) and

R
3 � u �−→ w (u) := 	u − f = ∇K (u) ∈ R

3 (10)

with

K (u) := 1

2
u ·	u − f · u (11)
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a convex function on R
3. Notice that the fields v nd w are orthogonal in L2

(
rB;R3

)
,

where B := {u ∈ R
3 : ‖u‖ ≤ 1} is the unitary ball in R

3 and r B denotes the ball of
radius r.

The decomposition of the velocity field as the sum of a divergence free field ad a gra-
dient one, together with the appearance in the Hamiltonian description of the flow of the
Lie-Poisson brackets (4) in the space reference frame of the rigid body, i.e. right transla-
tion on SO (3) , is standard in fluid dynamics [A,MR] and can be seen as another source
of analogy between the Lorenz’63 model and Navier-Stokes equations [PP1,FJKTV].

2.2. The return map on the set of maxima of the Casimir function. If u0 is any non
stationary point for the field (3) such that ‖u0‖ ≤ ‖ f ‖√

λ	
, with λ	 := min{t ∈ spec	},

and C (t) := ‖u (t, u0)‖2 , let

m := inf
t>0

C (t) ; M := sup
t>0

C (t) . (12)

Clearly, m ≥ 0 since C ≥ 0. Moreover, M < ∞ since it has been shown in [PP1] that
C (t) ≤ ‖ f ‖√

λ	
where, for our choice of parameters,

‖ f ‖√
λ	

= ‖ f ‖ = β (ρ + σ) . (13)

To construct the function which links two subsequent relative maximum values of
C (t) we proceed as follows:

• first we identify the manifold� in the configuration space of the system correspond-
ing to the relative maxima of C (t) ,

• then we construct a map of the interval [0, 1] to itself as a function of the map of the
interval [m,M] of the possible values of C (t) in itself, which can be defined through
the Poincaré map of this manifold.

The existence of the aforementioned Poincaré map follows from the existence of the
return map computed by Tucker in [T].

Throughout the paper we will assume σ = 10, ρ = 28, β = 8
3 .

2.2.1. Identification of �. By (9) we get

Ċ (u) = −2

[

E (u)− β (ρ + σ)2

4

]

, (14)

with

E (u) := σu2
1 + u2

2 + β

(

u3 +
(ρ + σ)

2

)2

. (15)

Therefore,

E :=
{

u ∈ R
3 : Ċ (u) = 0

}
=
{

u ∈ R
3 : E (u) = β (ρ + σ)2

4

}

, (16)
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as already noticed in [PM], is an ellipsoid intersecting the vertical axis (u3) in the origin
and in c0. This also implies, M = ρ + σ. Clearly, c1, c2 ∈ E .

Moreover, by (14) and (4),

C̈ (u) = 2∇E · [u ×∇H + ∇K ] (u)

= 4

{

σ 2u2
1 + u2

2 −
[
σ (σ − 1) + (β − 1)

(
u3 +

ρ + σ

2

)
+
ρ + σ

2

]
u1u2

+β2
(

u3 +
ρ + σ

2

)2
+ β2 ρ + σ

2

(
u3 +

ρ + σ

2

)}

. (17)

Let us set z := u3 + ρ+σ
2 , then

E ′ :=
{

u ∈ R
3 : C̈ (u) = 0

}

=
{

u ∈ R
3 : σ 2u2

1 + u2
2 −

[
σ (σ − 1) + (β − 1) z +

ρ + σ

2

]
u1u2

+β2z
(

z +
ρ + σ

2

)
= 0
}
. (18)

We remark that, denoting by R the involution

R
3 � u = (u1, u2, u3) �−→ Ru := (−u1,−u2, u3) ∈ R

3, (19)

leaving invariant the field u̇, RE = E and RE ′ = E ′.
Consider the diffeomorphism

qi = O (z) ui , i = 1, 2; q3 = z (20)

such that for any fixed value of z, O (z) is an orthogonal matrix diagonalizing the sym-
metric quadratic form

ζ · A (z) ζ := σ 2ζ 2
1 + ζ 2

2 −
[
σ (σ − 1) + (β − 1) z +

ρ + σ

2

]
ζ1ζ2, ζ ∈ R

2, (21)

namely, setting A (z) = Ot (z) diag (λ1 (z) , λ2 (z)) O (z) ,

u · A (z) u = q · O (z) A (z) Ot (z) q = λ1 (z) q2
1 + λ2 (z) q2

2 , (22)

with

λ1 (z) =
σ 2 + 1 +

√
(
σ 2 − 1

)2 +
[ρ + σ

2
+ σ (σ − 1) + (β − 1) z

]2

2
, (23)

λ2 (z) =
σ 2 + 1−

√
(
σ 2 − 1

)2 +
[ρ + σ

2
+ σ (σ − 1) + (β − 1) z

]2

2
. (24)

Under this change of variables

E ′ =
{

q ∈ R
3 : λ1 (q3) q2

1 + λ2 (q3) q2
2 + β2q3

(
q3 +

ρ + σ

2

)
= 0
}
. (25)
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Since λ1 (q3) is positive for any choice of the parameters β, ρ, σ and q3, the equation
giving the intersection of E ′ with the planes parallel to q3 = 0 (u3 = − (ρ+σ)

2 ) can have
a solution only if λ2 (q3) is negative, that is for

q3 > −σ (σ − 3) + ρ+σ
2

β − 1
⇒ u3 > − 1

β − 1

[

σ (σ − 3) + β
(ρ + σ)

2

]

; (26)

q3 < −σ (σ + 1) + ρ+σ
2

β − 1
⇒ u3 < − 1

β − 1

[

σ (σ + 1) + β
(ρ + σ)

2

]

. (27)

Therefore, for q3 �= 0 (u3 �= − (ρ+σ)
2 ), these intersections are hyperbolas while, if q3 = 0

or q3 = − (ρ+σ)
2 (u3 = − (ρ + σ)), from the definition of E ′ we get the equations

• if q3 = 0,

σ 2u2
1 + u2

2 −
[
(ρ + σ)

2
+ σ (σ − 1)

]

u1u2 = 0 ; (28)

• if q3 = − (ρ+σ)
2 ,

σ 2u2
1 + u2

2 −
[
σ (σ − 1)− (β − 2)

ρ + σ

2

]
u1u2 = 0. (29)

Since for our choice of the values of the parameters of the model,

λ2 (0) =
σ 2 + 1−

√
(
σ 2 − 1

)2 +
[
(ρ+σ)

2 + σ (σ − 1)
]2

2
< 0, (30)

λ2

(

− (ρ + σ)

2

)

=
σ 2 + 1−

√
(
σ 2 − 1

)2 +
[
σ (σ − 1)− (β − 2) (ρ+σ)

2

]2

2
< 0,

(31)

the intersection of E ′ with the planes z = q3 = 0 and z = q3 = (ρ+σ)
2 are the straight

lines. The manifold in R3 corresponding to the relative maxima of C (t) is

� :=
{

u ∈ R
3 : Ċ (u) = 0, C̈ (u) ≤ 0

}

=

⎧
⎪⎨

⎪⎩
u ∈ R

3 :

⎧
⎪⎨

⎪⎩

σu2
1 + u2

2 + β
(

u3 + (ρ+σ)
2

)2 = β(ρ+σ)2

4

σ 2u2
1 + u2

2 −
[
σ (σ − 1) + (β − 1)

(
u3 + ρ+σ

2

)
+ ρ+σ

2

]
u1u2+

+β2
(
u3 + ρ+σ

2

)
(u3 + ρ + σ) ≤ 0

⎫
⎪⎬

⎪⎭
.

(32)

Since for our choice of the parameters

1

β − 1

[

σ (σ − 3) + β
(ρ + σ)

2

]

> ρ + σ, (33)

� is composed by two closed surfaces in R3, �+ and �−, such that R�+ = �− and
intersecting only in the critical point c0.
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By definition, ∀u ∈ E, the vector u̇ (u) is orthogonal to the vector ∇C (u) , hence it
belongs to the plane spanned by∇E (u)−(∇E · ∇C) (u)∇C (u) and (∇C ×∇E) (u) ,
where

∇C ×∇E = 4

⎛

⎜
⎝

u2
[
(β − 1) u3 + β ρ+σ

2

]

−u1
[
(β − σ) u3 + β ρ+σ

2

]

− (σ − 1) u1u2

⎞

⎟
⎠ (34)

and, since C is a constant of motion for the Hamiltonian fieldv,∀u∈E, (w · ∇C) (u)=0.
Moreover:

• |∇E | �E , |∇C | �E and |∇C ×∇E | �E are always different from zero;
• from (14) and (32)

C̈ (t) = (u̇ · ∇Ċ
)
(t) =

(

u̇ · ∇
[

−2

(

E − β (ρ + σ)2

4

)])

(t) , (35)

hence, ∀u ∈ ∂�, u̇ (u) is parallel to ∇C ×∇E, that is tangent to �.

Therefore, u̇ is transverse to �\∂� and since ∀u ∈ �\∂�,
C̈ (u) = (u̇ · ∇Ċ

)
(u) = −2 (u̇ · ∇E) < 0 �⇒ (u̇ · ∇E) > 0, (36)

the direction of u̇ (u) points outward to the bounded subset of R
3,

{

u ∈ R
3 : E (u) ≤ β (ρ + σ)2

4

}

. (37)

2.2.2. Parametrization of �. If r ∈ (0, ρ + σ) , γ := r B ∩ E is a regular closed curve.
Therefore, we can parametrize �+ by choosing an appropriate arc of γ as a coordinate
curve of the parametrization, that is there exist an open regular subset 
 of R

2 and a
map b+ ∈ C1

(

,R3

) ∩ C
(

,R3

)
such that

⎧
⎨

⎩

u1 = b+
1 (y, z)

u2 = b+
2 (y, z)

u3 = b+
3 (y, z)

, (y, z) ∈ 
. (38)

Moreover, we can choose the parametrization such that z = r2, therefore the coordinate
curves b+

z (y) satisfy the equations
{

C
(
b+

z (y)
) = z

Ċ
(
b+

z (y)
) = 0

. (39)

We remark that the tangent field to γ is parallel to ∇C × ∇E, while, if ζ denotes the
coordinate curve b+

y (z) , the tangent field to ζ is parallel to ∇E × (∇C ×∇E) .
Similar arguments also hold for �−. Furthermore,


 � (y, z) �−→ b− (y, z) := Rb+ (y, z) ∈ R
3 (40)

is easily seen to be a parametrization of �− sharing the same properties of b+.
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2.2.3. Return maps on �. The evolution of the system maps in itself the ball
β (ρ + σ) B, E ⊂ β (ρ + σ) B and the velocity field is transverse to �\∂� and E\�.

For our choice of parameters ρ, β and σ, it has been shown in [T] that there exist
periodic orbits crossing a two-dimensional compact domain � contained in the plane
π := {u ∈ R

3 : u3 = 1− (ρ + σ)
}
, which is also intersected by the stable manifold of

the system W s
o along some curve �0. Furthermore, the first eight shortest periodic orbits

have been rigorously found in [GT]. Notice that, by symmetry, if ϕ (t, u) , u ∈ �+,

is a periodic orbit, Rϕ (t, u) is also a periodic orbit and either Rϕ (t, u) = ϕ (t, u) or
Rϕ (t, u) = ϕ (t, Ru) , where Ru ∈ �−; that is periodic orbits are either symmetric
or appear in couples whose elements are mapped one into another by R, as already
remarked in [Sp].

Since � is easily seen to be contained in
{

u ∈ R
3 : Ċ (u) ≤ 0

}
∩ π, (41)

these periodic orbits then necessarily cross � which is also possibly intersected by W s
o

along some curve � lying in the half-space
{

u ∈ R
3 : u3 ≥ 1− (ρ + σ)

}
. (42)

Therefore, if u0 ∈ �\� lies on a periodic orbit of period t0, there exists an open
neighborhood N � u0 and a C1 (N ,R) map τ such that τ (u0) = t0 and ϕτ(u) (u) ∈ �
for any u ∈ N . Then,

N ∩�\� � u �−→ P� (u) := ϕτ(u) (u) ∈ �. (43)

Moreover, it has been proved in [T] that�\�0 is forward invariant under the return map
on π and that on� there exists a forward invariant unstable cone field. These properties
are also shared by a compact subset �′ ⊂ � such that any open subset of �′ is diffe-
omorphic to a open subset of �. Hence, P� admits an invariant stable foliation with
C1+ι, ι ∈ (0, 1) leaves.

2.2.4. Construction of the map T . Let P(±) := P�± .By the parametrization previously

introduced for�+, there exists an open subset
′ ⊂ 
\�′, with �′ := (b+
)−1

(�) , and
a C1

(

′,R2

)
map


′ � (y, z) �−→ S (y, z) ∈ 
′, (44)

such that, ∀ (y, z) ∈ 
′,
(
b+ ◦ S

)
(y, z) :=

(
P(+) ◦ b+

)
(y, z) . (45)

Furthermore,

G (y, z) := (Ċ ◦ b+ ◦ S
)
(y, z) = 0. (46)

Let S1, S2 be respectively the first and the second component of S. Since b+ is a diffeo-
morphism and the components of ∇E = ∇Ċ are different from zero on �+, ∀ (y, z) ∈

′, ∂yG (y, z) �= 0. Thus, by the implicit function theorem, ∀ (y0, z0) ∈ 
′, there exist
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two open intervals (y1, y2) , (z1, z2) such that (y0, z0) ∈ (y1, y2) × (z1, z2) ⊆ 
′ and
a unique C1 ((z1, z2)) map

(z1, z2) � z �−→ y := U (z) ∈ (y1, y2) (47)

such that, ∀z ∈ (z1, z2) , G (U (z) , z) = 0 and, ∀ (y, z) ∈ (y1, y2)× (z1, z2) such that
y �= U (z) , G (y, z) �= 0.

Therefore, let

(z1, z2) � z �−→ V (z) := S2 (U (z) , z) ∈ (z1, z2) . (48)

Notice that, since b+ ∈ C1 (
) , S = (b+
)−1 ◦ P(+) ◦ b+ is C1

(

′
)

if and only if
P(+) is, and so are U and V .

Moreover, by symmetry,

b− ◦ S = Rb+ ◦ S = R P(+) ◦ b+ = R P(+) ◦ Rb− = P(−) ◦ b−. (49)

Hence S = (b−)−1 ◦ P(−) ◦ b−.
Clearly, [z1, z2] ⊆

[
m ∨ (r∗)2 , ρ + σ

]
, with r∗ := inf{r > 0 : r B ∩� �= ∅}.

Let u+ ∈ �+, (y+, z+) ∈ 
 be such that P(+) (u+) = c0 and b+ (y+, z+) = u+. Setting

[z1, z2] � z �−→ X (z) := z − z1

z2 − z1
∈ [0, 1] , (50)

we define

[0, 1] � s �−→ T (s) := X ◦ V ◦ X−1 (s) ∈ [0, 1] . (51)

Hence, by construction, T is a C1 ((0, 1) \ {x0}) map, where x0 := X (z+) , and,
since there exists ι ∈ (0, 1) such that P� admits an invariant stable foliation with C1+ι

leaves, then T is also C1+ι ((0, 1) \ {x0}) .

3. The Invariant Density for the Evolution Under T

In this section we compute the density of the unique (by ergodicity) absolutely continuous
invariant measure for the map T and we prove its statistical stability. For the construction
of the density we use the techniques recently introduced in the paper [CHMV] (see also
[BH] for results related to similar maps), which dealt with Lorenz maps admitting indif-
ferent fixed points besides points with unbounded derivative. For the statistical stability
we will follow the recent article [BV], but with some new substantial improvements. The
techniques used in [CHMV] turned around Young’s towers [LSY] and, substantiated by
a careful analysis of the distortion, led to a detailed study of the density of the absolutely
continuous invariant measure, of the recurrence properties of the dynamics and of limit
theorems for Hölder continuous observables. This analysis could in particular be carried
over when the map has a derivative larger than one at the fixed point, as in the case we
are going to treat, but possibly smaller than one in some other point (see below). We
recall that whenever the Lorenz map is a Markov expanding map with finite derivative,
it could be investigated with the spectral techniques of Keller [K]. Young’s towers are
useful when the map loses the Markov property, but preserves points with unbounded
derivative. This has been analysed in [KDO], see also [OHL] when there are critical
points too. Our main effort will be in investigating the smoothness of the density. We
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Fig. 1. Normalized Lorenz cusp map for the Casimir maxima

will show that such a density is Lipschitz continuous on the whole unit interval. The
argument we produce is a strong improvement with respect to the result achieved in
[CHMV] (and applies to it as well), where we solely proved the Lipschitz continuity
on countably many intervals partitioning the unit interval. We stress that, as far as we
know, this is the first result where the smoothness of the density for Lorenz like maps is
explicitly exhibited.

Notations. With an ≈ bn we mean that there exists a constant C ≥ 1 such that C−1bn ≤
an ≤ Cbn for all n ≥ 1; with an ∼ bn we mean that limn→∞ an

bn
= 1. We will also use

the symbols "O" and "o" in the usual sense.
The analysis we perform in this section applies to a large class of Lorenz-like

maps which includes in particular those whose behavior is given by the theoretical
arguments of the preceding section and by the numerical investigations of the paper
[PM]. The map T (Fig. 1) has a left and a right convex branch around the point
0 < x0 < 1; the left branch is monotonically increasing and uniformly expanding
even at the fixed point 0,while the right one is monotonically decreasing with the deriv-
ative bounded from below by a constant less than one; at the cusp, located at x0, the left
and right derivative blow up to infinity. Both branches are onto [0, 1] and this makes
the map Markovian. Moreover, we recall that our map is C1 on [0, 1]\{x0} and C1+ι,

ι ∈ (0, 1) , on (0, x0) ∪ (x0, 1).
The local behaviors are (c will denote a positive constant which could take different

values from one formula to another):
{

T (x) = α′x + β ′x1+ψ + o(x1+ψ); x → 0+

DT (x) = α′ + cxψ + o(xψ), α′ > 1; β ′ > 0; ψ > 1
, (52)

{
T (x) = α(1− x) + β̃(1− x)1+κ + o((1− x)1+κ); x → 1−
DT (x) = −α − c(1− x)κ + o((1− x)κ ), 0 < α < 1, β̃ > 0, κ > 1

, (53)

{
T (x) = 1− A′(x0 − x)B′ + o((x0 − x)B′); x → x−0 , A′ > 0
DT (x) = c(x0 − x)B′−1 + o((x0 − x)B′−1), 0 < B ′ < 1

, (54)
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{
T (x) = 1− A(x − x0)

B + o((x − x0)
B); x → x+

0 , A > 0
DT (x) = −c(x − x0)

B−1 + o((x − x0)
B−1), 0 < B < 1

. (55)

We set B∗ := max(B, B ′); moreover we set T1 (resp. T2) the restriction of T to
[0, x0] (resp. to [x0, 1]). A key role is played by the preimages of x0 since they will
give the sets where we will induce with the first return map; so we set: a0 := T−1

2 x0;
a′0 := T−1

1 x0; a′p = T−p
1 a′0; ap = T−1

2 T−(p−1)
1 a′0, p ≥ 1.We also define the sequences

{bp}p≥1 ⊂ (x0, a0) and {b′p}p≥1 ⊂ (a′0, x0) as T b′p = T bp = ap−1. The idea is now to
induce on some domain I and to replace the action of T on I with that of the first return
map TI into I. We will see that the systems (I, TI ) will admit an absolutely continuous
invariant measure μI which is in particular equivalent to the Lebesgue measure with a
density ρI bounded from below and from above. There will be finally a link between the
induced measure μI and the absolutely continuous invariant measure μ on the interval,
which will allow us to get some information on the density ρ of μ. The principal set
where we will choose to induce is the open interval I = (a′0, a0)\{x0}. The subsets
Z p ⊂ I with first return time p will have the form

Z1 = (a′0, b′1) ∪ (b1, a0), (56)

Z p = (b′p−1, b′p) ∪ (bp, bp−1) p > 1. (57)

We will also induce over the open sets (a′n, a′n−1) and (an, an+1), n > 1, simply denoted
in the following as the rectangles In . In order to apply the techniques of [CHMV], we
have to show that the induced maps are aperiodic uniformly expanding Markov maps
with bounded distortion on each set with prescribed return time. On the sets In the first
return map TIn is Bernoulli, while the aperiodicity condition on I follows easily by the
inspection of the graph of the first return map TI : I → I showing that it maps: (a′0, b′1)
onto (x0, a0); the intervals (b′l , b′l+1), l ≥ 1, onto the interval (a′0, x0) and (b1, a0) onto
(x0, a0). Finally, TI sends the intervals (bl+1, bl), l ≥ 1 onto (a′0, x0). Bounds on the
distortion of the first return map on I and on the In can be proved exactly in the same
way as in Proposition 3 of [CHMV] (we defer to it for the details) provided we show that
the first return maps are uniformly expanding1. The proof of this fact is given in the next
lemma and it requires a few assumptions which can be checked numerically with a finite
number of steps and by a direct inspection of the graph of T . With abuse of language
we will say that the derivative is larger than 1 if its absolute value is larger than 1.

Lemma 1. Let us suppose that in addition to (52)-(55) the map T satisfies the assump-
tions:

1 The Lorenz-like map considered in [CHMV] was C2 outside the boundary points and the cusp; our map
is instead C1+ι. This will not change the proof of the distortion in [CHMV] and all the statistical properties
which follow from it. As a matter of fact, in the initial formula (5) in [CHMV], we have to replace the term∣
∣
∣
∣

D2T (ξ)
DT (ξ)

∣
∣
∣
∣

∣
∣T q (x)− T q (y)

∣
∣ with Ch|DT (ξ)|

∣
∣T q (x)− T q (y)

∣
∣ι , where Ch is the Hölder constant larger than 0

depending only on T and ξ is a point between the iterates T q (x), T q (y). The only delicate point where the
C1+ι assumption could give problems is the summability of the series at point (i) in the statement of Lemma
4 in [CHMV]. The general term of this series will be of the form (we adapt to our case): (an+1 − an)

ι. In
[CHMV], due to the presence of the indifferent fixed point, the term (an+1 − an) decays polynomially like
n−κ , say, where κ > 1 depends on the map. In order to guarantee the aforecited summability property we
have therefore to ask an additional assumption on κ, namely κ > ι−1. We do not have such a constraint in
our case since the length (an+1 − an) decays exponentially fast.

Author's personal copy



Recurrence and Robust Properties of Lorenz’63 Model

(i) d(1,0) := inf x∈(b1,a0) |DT (x)| > 1;
(ii) |DT (b1)| ≥ DT (a′0);

(iii) |DT (ap−1)|DT (a′p−2) · · · DT (a′1)DT (a′0) > α′′, ∀p ≤ p∗ :=
⌊

1 + log(α′′α−1)
logα′

⌋
,

for 1 < α′′ ≤ d(1,0) ∧ α′.
Then the first return time maps TI and TIn , n > 1 have the derivative uniformly

bounded below away from α′′.

Proof. We give the proof for I and we generalize after to all the In . We represent with
an arrow “→” the evolution under T of a subset Z p ⊂ I, p ≥ 1, given in (56) and
(57). Consequently (b1, a0) → (x0, a0) and (a′0, b′1) → (x0, a0). In the latter case the
derivative of the map coincides with that of T and is larger than 1, since T1 has derivative
larger than α′ > 1. The former case follows by condition (i). For p > 1 we have:

⎧
⎪⎨

⎪⎩

(b2, b1)→ (a0, a1)→
(
a′0, x0

)
, p = 2

(bp, bp−1)→ (ap−2, ap−1)→ (a′p−2, a′p−3)→ (a′p−3, a′p−4)→ · · ·
→ (a′1, a′0)→ (a′0, x0) p ≥ 3

(58)

and
⎧
⎪⎨

⎪⎩

(
b′2, b′1

)→ (a0, a1)→
(
a′0, x0

)
, p = 2

(b′p−1, b′p)→ (ap−2, ap−1)→ (a′p−2, a′p−3)→ (a′p−3, a′p−4)→ · · ·
→ (a′1, a′0)→ (a′0, x0) p ≥ 3

(59)

In order to get that the derivative of T p is larger than one we need:

• in the first case
∣
∣DT (bp−1)DT (ap−1)

∣
∣ DT (a′p−2) · · · DT (a′2)DT (a′1) > 1 ; (60)

• in the second case

DT (b′p−1)
∣
∣DT (ap−1)

∣
∣ DT (a′p−2) · · · DT (a′2)DT (a′1) > 1. (61)

Let us suppose now that we have, for p > 1,
∣
∣DT (ap−1)

∣
∣ DT (a′p−2) · · · DT (a′1)DT (a′0) > α′′. (62)

If this condition holds, then the inequality (61) follows too with the same uniform (in
p) bound α′′, since, by monotonicity of the first derivative, DT (b′p−1) > DT (a′0). In
order to satisfy the inequality (60) with a lower bound given by α′′, by assuming again
(62), it will be sufficient to show that

∣
∣DT (bp−1)

∣
∣ ≥ DT (a′0), which, by monotonicity,

is implied by |DT (b1)| ≥ DT (a′0) and this follows from assumption (ii). Therefore, we
are left with the proof of the validity of condition (62). By condition (iii) this holds true
for p ≤ p∗. Moreover, since the points a′p−2, a′p−3, . . . , a′0 lie on the left of x0, all the
(p − 1) derivatives in the block DT (a′p−2) · · · DT (a′2)DT (a′0)) are larger α′. On the
other hand, the derivative in ap−1 is surely larger than α. Hence, (62) holds for all p

such that α
(
α′
)p−1

> α′′.
Now we return to the rectangles in In . Let us first call complete path the graphs given

above starting respectively from (ap−1, ap), p > 1, and ending in (a′0, x0) and starting
from (a′p, a′p−1), p > 1 and ending in (a′0, x0). It is easy to check, by looking at the
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grammar2 given by the arrows, that any subset of the rectangles in In with first return
time q > n will contain points whose trajectory follows a complete path, or spends some
time in (x0, a0). In any case, and by the condition (62) whose validity has been checked
above, the derivative DT q will be strictly larger than α′′. ��
Remark 2. The assumption (i)–(iii) in the previous lemma are easily verified for the map
investigated in [PM]. In particular, with the values α = 0.4603 and α′ = 1.113 asso-
ciated to the map and with α′′ ∼ 1.01, the inequality (iii) is verified for p ≥ 9; hence
we have only to check (62) for 1 < p ≤ 8 and this has been done, and confirmed, by a
direct easy numerical inspection.

As a consequence of the preceding results, we could apply, as in [CHMV], the L.-S.
Young tower theory and conclude the following statements:

• On the induced set I, the tail of the Lebesgue measure of the set of points with first
return bigger than n, to be more precise the quantity

∑
k>n m{x ∈ I ; τI (x) ≥ k},

where τI (x) denotes the first return of the point x into I, decays exponentially fast
with n. By using (56) and the asymptotic values for the bn and b′n given below, it

is immediate to find that the previous rate of decay is O(
(
α′
)− n

B∗ ). This implies
the existence on the Borel σ -algebra B ([0, 1]) of an absolutely continuous invariant
measure μ with exponential decay of correlations for Hölder observables evolving
under T w.r.t. μ (the rate of this decay will be of the type α̂−n, where α̂ is possibly
different from α′).

• Since the first return maps TI and TIn are aperiodic uniformly expanding Markov
maps, they admit invariant measures μI and μIn which turn out to be equivalent to
Lebesgue on I and In with densities bounded away from 0 and∞ [CHMV] and also
Lipschitz continuous on the images of the rectangles of the their associated Mar-
kov partition [AD].3 In the sequel we will show that such densities coincide, but a
constant, with the restriction, on the inducing sets, of the density ρ of the invariant
measureμ for the map T .Now, the images of the rectangles of the Markov partitions
are the (disjoint) sets (a′0, x0) and (x0, a0), when we induce over I, and the whole
intervals (a′n, a′n−1) and (an, an+1), n > 1, when we induce over the rectangles in
In . Therefore we could conclude that the density of the invariant measure μ is a

2 Let us give the coding for the map T with the grammar which we invoked above. To use a coherent nota-
tion we will redefine a−0 ≡ a′0; a−p ≡ a′p = T−p

1 a′0, p ≥ 1. We associate with each point x ∈ [0, 1]\χ,
where χ = ∪i≥0T−i {x0}, the unique coding x = (ω0, ω1, . . . , ωn , . . . ), ωl ∈ Z,where (from now on n will
denote a positive integer larger than 1), ωl = n iff T l x ∈ (an−1, an); ωl = −n iff T l x ∈ (a−n , a−(n−1));
ωl = 0 iff T l x ∈ I. The grammar is the following (the formal symbol −0 must be intended as 0) :

ωi = n > 0 ⇒ ωi+1 = −n; ωi = −n ⇒ ωi+1 = −(n − 1),

ωi = 0 ⇒ ωi+1 = n ≥ 0 (any n).

3 It is argued in [AD] that if α is a Markov partition of the standard probability metric space (X,B,m, T )
with distance d, then Tα ⊂ σ(α), where σ(α) denotes the sigma-algebra generated by the partition α,
and therefore it exists a (possibly countable) partition β coarser than α such that σ(Tα) = σ(β). More-
over, if the system is Gibbs-Markov, as in our case, then the space Lip∞,β of functions f : X → R,

f ∈ L∞m := L∞m (X) , which are Lipschitz continuous on each Z ∈ β, is a Banach space with the norm:

‖ f ‖Lip∞,β = ‖ f ‖L∞m + Dβ f, where Dβ f = supZ∈β supx,y∈Z
| f (x)− f (y)|

d(x,y) . The space Lip∞,β is com-

pactly injected into L1
m ,which gives the desired conclusions on the smoothness of the density as a consequence

of the Lasota-Yorke inequality. Notice that in our case m in just the Lebesgue measure. We denote by B(I )
the Banach space Lip∞,β defined on I.
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piecewise Lipschitz continuous functions with possible discontinuities at the points
ap, a′p, p > 1, a0, a′0 and x0.

We now improve this last result by showing that the density is Lipschitz continuous
over the unit interval. We stress that this result will improve as well Proposition 13 in
[CHMV].

Proposition 3. The density ρ of the invariant measure μ is Lipschitz continuous and
bounded over the interval [0, 1]. Moreover,

lim
x→0+

ρ(x) = lim
x→1−

ρ(x) = 0. (63)

Proof. We work on the induced set I. The invariant measure μI for the induced map TI
is related to the invariant measure μ over the whole interval thanks to the well-known
formula due to Pianigiani:

μ(B) = Cr

∑

i

τi−1∑

j=0

μI (T
− j (B) ∩ Zi ), (64)

where B is any Borel set in [0, 1] and the first sum runs over the cylinders Zi with pre-
scribed first return time τi and whose union gives I.The normalizing constant Cr = μ(I )
satisfies 1 = Cr

∑
i τiμI (Zi ).

This immediately implies that by calling ρ̂ the density of μI we have that ρ(x) =
Cr ρ̂(x) for m-almost every x ∈ I and therefore ρ can be extended to a Lipschitz contin-
uous function on I as ρ̂. A straightforward application of formula (64) gives [CHMV]:

μ(an−1, an) = CrμI (Zn+1), (65)

μ(a′n, a′n−1) = Cr

∞∑

p=n+2

μI (Z p). (66)

Let us now take a measurable B ⊂ (a′n, a′n1
); the formula above immediately implies

that

μ(B) = Cr

∞∑

p=n+2

μI (T
−(p−n)B ∩ Z p). (67)

Passing to the densities we have

∫

B
ρ (x) dx = Cr

∞∑

p=n+2

∫

T−(p−n)B∩Z p

ρ̂ (x) dx (68)

We now perform a change of variables by observing that the set B is pushed backward
p − n − 2 times by means of T−1

1 , then once by means of T−1
2 and finally it splits into

two parts according to the actions of T−1
1 and T−1

2 . Therefore,

∞∑

p=n+2

∫

T−(p−n)B∩Z p

ρ̂ (x) dx =
∞∑

p=n+2

∑

l=1,2

∫

B

ρ̂(T−1
l T−1

2 T−(p−n−2)
1 y)

|DT p−n(T−1
l T−1

2 T−(p−n−2)
1 y)|

dy.

(69)
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Since B is any measurable set in (a′n, a′n−1),we have for m-almost every x ∈ (a′n, a′n−1),

ρ(x) = Cr

∞∑

p=n+2

∑

l=1,2

ρ̂(T−1
l T−1

2 T−(p−n−2)
1 x)

|DT p−n(T−1
l T−1

2 T−(p−n−2)
1 x)|

= Cr

∞∑

m=2

∑

l=1,2

ρ̂(T−1
l T−1

2 T−(m−2)
1 x)

|DT m(T−1
l T−1

2 T−(m−2)
1 x)|

. (70)

This formula does not depend on the choice of the interval (a′n, a′n−1) and therefore it
holds for x ∈ (0, a′0). For the cylinders (an−1, an) we get similarly that, for m-almost
any x ∈ (a0, 1),

ρ(x) = Cr

∑

l=1,2

ρ̂(T−1
l x)

|DT (T−1
l x)| . (71)

Since ρ̂ is Lipschitz continuous inside I and the inverse branches of T are C1+ι, we
conclude that ρ can be chosen as Lipschitz continuous over the disjoint open intervals
(0, a′0) ∪ (a0, 1). It is now useful to observe that the right hand sides of (70) and (71)
give exactly the expression of the Perron-Frobenius operator associated to the first return
map and whenever x is chosen into I. By the existence of the left (resp. right) limit of
ρ̂ in a′0 (resp. a0) we immediately obtain the continuity of ρ in such points. We use now
this result to prove the continuity of the density in x0. We recall that such a density is the
fixed point of the Perron-Frobenius operator, so that it verifies the following equation,
for any x ∈ [0, 1]:

ρ(x) = ρ(T−1
1 (x))

|DT
(

T−1
1 (x)

)
|

+
ρ(T−1

2 (x))

|DT
(

T−1
2 (x)

)
|
, (72)

which gives, for x = x0,

ρ(x0) = ρ(a′0)
|DT

(
a′0
) | +

ρ(a0)

|DT (a0) | , (73)

and this proves immediately the continuity in x0.
We now observe that assumptions (52)–(55) together with the facts that T2(ap) =

a′p−1, T1(a′p) = a′p−1 and T1bp = T2bp = ap−1, allow to get easily the following
asymptotic behaviors (for p large) for the preimages of x0 (again c will denote a con-
stant independent of p and that could change from a formula to another):

a′p ∼
c

(α′)p ; (1− ap) ∼ c

(α′)p , (74)

(x0 − b′p) ∼
c

(α′)
p

B′
; (bp − x0) ∼ c

(α′)
p
B
. (75)

These formulas immediately imply that for x = bp (resp. x = b′p) in a neighbor-

hood of x0 and for p large the derivative behaves like |DT (x)| ∼ c
(
α′
)p( 1

B−1) (resp.

|DT (x)| ∼ c(α′)p( 1
B′ −1)). Since ρ̂ is bounded away from zero and infinity on I, by the

Author's personal copy



Recurrence and Robust Properties of Lorenz’63 Model

preceding scalings on the growth of the derivative near x0 we have that ρ(x) ≈ x
1

B∗ −1

for x close to 0 and 1, which means that ρ can be extended by continuity to zero on the
right side of 0 and on the left side of 1. ��

The preceding proposition suggests the following scaling for the density.

Proposition 4.

ρ(x) = c′xa + o(xa), x → 0+; a > 0, (76)

ρ(x) = c′′(1− x)b + o((1− x)b); x → 1−, b > 0, (77)

with

a = b = 1

B∗
− 1, (78)

and the constant c′ and c′′ verifying

(
1

α′

) 1
B∗

+

(
1

α( c′
c′′ )

B∗

) 1
B∗
= 1. (79)

Proof. We use again formula (72). By using for T and its two inverse branches the
asymptotic polynomial behaviors in 0 and 1 given in (52)-(55), we get at the lowest
order in x in the neighborhood of 0,

c′
(
α′
)−a−1

xa + c′′α−b−1xb = c′′xa . (80)

Now, suppose a < b. Then
(
α′
)−a−1 ≈ 1, which implies either α′ = 1 or

a = −1 and both cases are excluded. On the contrary, if a > b, then α−b−1xb ∼ 0,
implying α = 0, which is still impossible. Hence, we necessarily have a = b. We now
take the point x in the neighborhood of 1. By making explicit T−1

1 (x) and T−1
2 (x)

with respect to x in the neighborhood of x0 and substituting into the Perron-Frobenius
equation we get, at the lowest order in 1− x,

O(1)

(1− x)
B−1

B

+
O(1)

(1− x)
B′−1

B′
= (1− x)b, (81)

from which we obtain

(1− x)−
B∗−1

B∗ ≈ (1− x)b. (82)

We finally conclude that a = b = 1
B∗ − 1. Substituting this common value into Eq. (80)

we finally get the expression relating the constants c′ and c′′. ��
The latter relation is a good check for the validity of the shape of the density in 0 and 1.
By the continuity of ρ, we could use the value of a given above in terms of the map

parameter B∗ to guess a functional expression for ρ. In agreement with the previous
considerations, such an expression could be

ρ(x) = N (γ, δ) e−γ x xδ(1− x)δ, (83)
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Fig. 2. Fit of the invariant density ρ (x) for the map T with the function given in (83)

where, if Iν (z) is the modified Bessel function of the first kind,

N (γ, δ) = γ
1
2 +δe

γ
2√

π� (1 + δ) I 1
2 +δ

( γ
2

) , (84)

with δ = a, c′ = N (γ, δ) and c′′ = N (γ, δ) e−γ .
Numerical computations performed on about 105 values for Casimir maxima allowed

us to estimate the parameters describing the local behavior of the map listed at the begin-
ning of this section:

• α′ ! 1.113, α ! 0.4603 ;
• B ′ ! 0.3095, B ! 0.2856.

Therefore, we get B∗ = B ′ and δ ! 2.2258. The fit of the empirical stationary dis-
tribution function performed with such parameters comes out to be in good agreement
with the functional expression for the invariant density (83) and the estimated value for
γ is γ ! 4.26.

An interesting question is to locate the maximum of the density ρ. Numerical inves-
tigations suggest that this maximum belongs to

[
a′0, x0

]
(see Fig. 2) depending on the

parameters which define the map T .

3.1. Return times. In Sect. II and in Sect. IV B of [PM], the periodic orbits of the sys-
tem, due to its invariance under R, have been empirically classified by specifying that
the initial condition belongs to the half space containing, say, the fixed point c1 and the
number of rotations they perform around the fixed point c2 (cfr. [PM] Figs. 2 and 11b).

In particular, labeling as �+ the portion of � laying in the half space containing c1,

it can be shown by direct inspection that Fig. 11b in [PM], which represents the map
of the set of maximum values of C in itself associated to periodic trajectories starting
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from �+ after k rotations around c2, is exactly the graph of the induced map of T in the
appropriate scale.

Therefore, the distribution of the number of times a trajectory of the system, starting
from �+, winds around c2 before hitting again �+ or equivalently, starting from �−,
winds around c1 before hitting again �−, is the same as that of the random variable
τ(x0,1) (x) , x ∈ (x0, 1) , being the return time on (x0, 1) starting from x under the
dynamics induced by T . In terms of the already constructed invariant measure μ, this
probability is given by

μ(τ(x0,1)(x) ≥ n ; x ∈ (x0, 1)) =
∞∑

l=n

μ(τ(x0,1)(x) = l ; x ∈ (x0, 1)) (85)

=
∞∑

l=n

μ(an−2, an−1).

But the sum on the r.h.s. can be computed using the corresponding expression evaluated
in (6) and we finally get

μ(τ(x0,1)(x) ≥ n; x ∈ (x0, 1)) ≈ (α′)− n
B∗ . (86)

We remark that the distribution of τ(x0,1) (x) , x ∈ (x0, 1) , is the μ a.s. limit of the
empirical distribution of the points appearing in Fig. 2 of [PM].

We also take the occasion to remark that the average time between two crossings
of � corresponds to the gap between the filled bands of points appearing in Fig. 2 of
[PM] which has been estimated to be about 0.66. Therefore, the period of the smallest
periodic orbit of the Lorenz system is about 2 · 0.66 in complete agreement with what is
predicted by the perturbation theory developed in [Lu] and the more rigorous estimate
given in [GT].

3.2. Statistical stability. A slight change in the forcing term in the Lorenz equation
will also change the shape of the associated map T and therefore the invariant density
associated to it, which will exists provided the perturbed map still satisfies (52–55). At
the end of the section we will give two examples of such a perturbation of the forcing
contribution to the Lorenz field, the first preserving the original symmetry of the Lorenz
system, and the second breaking it. As already remarked in the Introduction, this last
type of perturbation has been empirically shown in [CMP] to model the impact of anthro-
pogenic forcing to climate dynamics of the northern hemisphere as well as the effect of
the sea surface temperature on the Indian summer monsoon rainfall variability [KDC].

Let us denote by Tε the perturbed map. We show in this section that under suitable
assumptions the density ρε of the perturbed measure will converge to the density ρ of
the unperturbed one in the L1

m norm. This kind of property is know as statistical stabil-
ity. A former paper by Alves and Viana [AV], see also the successive paper by Alves
[Al], addressed the question of the statistical stability for a wide class of non-uniformly
expanding maps. Their result is based on two assumptions: (i) the perturbed map belongs
to an open neighborhood of the unperturbed one in the Ck topology with k ≥ 2 and
(ii) the two maps are compared throughout their first return maps defined on the same
subset where the first return maps are uniformly expanding, with bounded distortion
and long branches. Moreover, the structural parameters of the perturbed map (especially
those bounding the derivative and the distortion) could be chosen uniformly in a Ck

neighborhood of the unperturbed map. The main result of those papers is that when the
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perturbed map converges to the unperturbed one in the Ck topology then the density of
the absolutely continuous invariant perturbed measure converges to the density of the
unperturbed measure in the L1

m norm. Here we prove the same result but allowing the
perturbed map to be close to the unperturbed one in the C0 topology only. We will make
use of induction but, in order to preserve the Markov structure of the first return map, we
will compare the perturbed and the unperturbed first return maps on different induction
subsets. The difficulty will therefore arise in the comparison of the Perron-Frobenius
operators, which will now be defined on different functional spaces. The proof we give is
inspired by the recent work [BV], but it contains the important improvement of changing
the domains of inductions. Contrary to [AV] we are not able to establish the continuity
of the map Tε �→ ρε and this is surely due to the fact that we only require the maps C0

close. On the other hand, discarding regularity allows us to cover a much wider class of
examples; we believe in fact that our techniques could be used to prove the statistical
stability for general classes of maps with some sort of criticalities and singularities.

Assumptions on the perturbed map.

Assumption A Tε is a Markov map of the unit interval which is one-to-one and onto
on the intervals [0, xε,0) and (xε,0, 1], convex on both sides and of class
C1+ιε on the open interval (0, xε,0) ∪ (xε,0, 1).

Assumption B Let ‖·‖0 denote the C0-norm on the unit interval, then

lim
ε→0

‖Tε − T ‖0 = 0. (87)

Moreover, ∀x ∈ [0, 1], x �= x0, we can find ε(x) such that,
∀ε < ε(x), DTε exists and is finite and we have

lim
ε→0

DTε(x) = DT (x). (88)

Furthermore,

lim
x→x+

0

lim
ε→0

DTε(x)

DT (x)
= lim

x→x−0
lim
ε→0

DTε(x)

DT (x)
= 1. (89)

Assumption C Let us denote by Ch,ε and ιε respectively the Hölder constant and the
Hölder exponent for the derivative of Tε on the open interval (0, xε,0)∩
(xε,0, 1); namely: |DTε(x) − DTε(y)| ≤ Ch,ε |x − y|ιε for any x, y
either in (0, xε,0) or in (xε,0, 1). We assume Ch,ε and ιε to converge to
the corresponding quantities for T in the limit ε → 0.

Assumption D Let us set d(ε,1,0) := inf(bε,1,aε,0) |DTε(x)|. We assume d(ε,1,0) > 1 and
that there exists a constant dc and εc = ε (dc) such that,
∀ε < εc, |d(1,0) − d(ε,1,0)| < dc.

Remark on the notation. To simplify the notations we will set: W ′
n = (a′n, a′n−1);

Wn = (an, an+1) and we will denote by W ′
ε,n = (a′ε,n, a′ε,n−1) and Wε,n = (aε,n, aε,n+1)

the corresponding perturbed intervals, where a′ε,n and aε,n, n > 1, are the preimages of
the maximum point xε,0. We also set

Zε,1 = Z1
ε,1 ∪ Z2

ε,1 ; Z1
ε,1 := (a′ε,0, b′ε,1), Z2

ε,1 := (bε,1, aε,0) (90)
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and

Zε,n = Z1
ε,n ∪ Z2

ε,n ; Z1
ε,n := (b′ε,n−1, b′ε,n), Z2

ε,n := (bε,n, bε,n−1), (91)

where Tεb′ε,n = Tεbε,n = aε,n−1. The same notation will be used for the corresponding
unperturbed intervals. We denote by Iε := (a′ε,0, aε,0)\

{
xε,0
}

the interval where we
will induce with the first perturbed return map. From now on, we will denote by F the
first return map of T over I, by Fε the first return map of Tε on Iε and by P and Pε the
Perron-Frobenius operators associated respectively with F and Fε . If t ∈ T−nz, where
t = T−1

in
◦ T−1

in−1
· · · ◦ T−1

i1
z with ik = 1 or 2, we will call the sequence i1, . . . , in the

signature of t relative to z.

Remark 5. The preceding assumptions imply that the order of tangency of Tε in 0, x0 and
1 tends, in the limit ε → 0, to that of T . This is the first requirement to get again Lemma
1 for the perturbed map. The other requirement is expressed by Assumption D which
guarantees the condition (i) in Lemma 1. Notice that this condition cannot be deduced
by Assumptions (A)–(C). On the other hand, the assumptions (ii) and (iii) of Lemma
1 are still valid for the perturbed map since we have only to control a finite number of
relations among the corresponding derivatives. For instance, by using Assumptions B
and C, we have

|DT (a′l)− DTε(a
′
ε,l)| ≤ |DTε(a

′
l)− DTε(a

′
ε,l)| + |DTε(a

′
l)− DT (a′l)|. (92)

The first term on the right hand side of this inequality is controlled by the Hölder conti-
nuity of the derivative of Tε while the second one is controlled by the local convergence
to DT of DTε in the limit ε → 0. However, we need some more information for the
first return maps, which are summarized in the following lemma.

Lemma 6. (i) For any n ≥ 0, let tn and tε,n be two preimages of order n of x0 and
xε,0 respectively with the same signature with respect to these two points. Then,
limε→0 tε,n = tn .

(ii) For any n > 0 we have:

lim
ε→0

∥
∥T n

ε − T n
∥
∥

0 = 0. (93)

(iii) For any x �= ∪∞k=0T−k x0, n > 0 there exists ε(x, n) such that, for any ε < ε(x, n),
the derivative DT n

ε (x) exists and is finite and moreover

lim
ε→0

DT n
ε (x) = DT n(x). (94)

(iv) For any n ≥ 1, let [un, vn], [uε,n, vε,n] ⊂ [0, 1] be such that uε,n → un, vε,n →
vn in the limit ε → 0 and T n

ε �[uε,n ,vε,n ], T n �[un ,vn ] are injective on the respective
images. Then, setting for any y ∈ T n

ε ([uε,n, vε,n]) ∩ T n([un, vn]),
T−(n)ε := (T n

ε �[uε,n ,vε,n])
−1, T−(n) := (T n �[un ,vn ])

−1, (95)

T−(n)ε (y)→ T−(n)(y) in the limit ε → 0.

Proof. (i) We prove it for n = 0, for n ≥ 1 the proof will follow by induction. Sup-
pose xε,0 does not converge to x0, then passing to subsequences, by compactness,
there exists a subsequence εn and a point x̃ �= x0 such that xεn ,0 → x̃ for n →∞.
In such a point T (x̃) < 1 since T has only one maximum located at x0. Now,
|Tεn (xεn ,0) − T (x̃)| = |1 − T (x̃)| > 0. We now fix σ > 0 and choose n large
enough, depending on σ, in such a way that for uniform convergence we get
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∣
∣Tεn (xεn ,0)− T (x̃)

∣
∣ = ∣∣Tεn (xεn ,0)− Tεn (x̃) + Tεn (x̃) + T (xεn ,0)

−T (xεn ,0) + T (x̃)
∣
∣

≤ 2
∥
∥Tεn − T

∥
∥

0 + |T (xεn ,0)− Tεn (x̃)|
≤ 2σ + |T (xεn ,0)− Tεn (x̃)|. (96)

In the limit n →∞ the second term on the right-hand side of the previous inequal-
ity goes to zero by Assumption B and by the continuity of T . We finally send σ
to zero getting a contradiction with the above strictly positive lower bound.

(ii) The proof is standard and by induction and it uses the uniform continuity of T n

on the closed unit interval.
(iii) We use induction again. Suppose the limit holds for n. Then we write

|DT n+1
ε (x)− DT n+1(x)| = ∣∣DTε(T

n
ε (x))DT n

ε (x)− DT (T n(x))DT n(x)

+ DTε(T
n(x))DT n

ε (x)− DTε(T
n(x))DT n

ε (x)
∣
∣ .

(97)

Now, we know that: (a) x �= ∪n−1
k=0T−k x0 by assumption, and also (b) x �=

∪n−1
k=0T−k

ε xε,0, since by the induction assumption the derivative DT n
ε (x) is well

defined at x �= ∪∞k=0T−k x0. We need to take ε even smaller, than a certain ε(x, n),
to guarantee that |DT n+1

ε (x)| is well defined too. This is easily achieved since the
preimages of x0 and xε,0 converge to each other according to signature and by
choosing ε small enough depending on x and n we could just get (a) and (b) at
the same time and for any fixed n. We can now bound the previous expression by:

|DT n
ε (x)||DTε(T

n
ε (x))− DTε(T

n(x))|
+|DTε(T

n(x))DT n
ε (x)− DT (T n(x))DT n(x)|. (98)

The second term converges to zero by the induction assumption. The first term
can be bounded making use of the Hölder continuity assumption on the derivative,
namely

|DTε(T
n
ε (x))− DTε(T

n(x))| ≤ Ch,ε |T n
ε (x))− T n(x)|ιε , (99)

and of Assumption C assuring Ch,ε and ιε to converge to the corresponding quan-
tities given for T .

(iv) Let us set yn := T−(n)(y) ∈ [un, vn] and yε,n := T−(n)ε (y) ∈ [uε,n, vε,n].
Suppose yε,n does not converge to yn . Then, by passing again to subsequences
and by compactness, we can find ỹ �= yn such that limk→∞ yεk ,n = ỹ. But
y = T n

εk
(yεk ,n) = T n

εk
(yεk ,n) − T n

εk
(ỹ) + T n

εk
(ỹ). For k going to infinity the last

term tends to a value different from y since T is injective over [un, vn], while the
first difference goes to zero by (ii) above. ��

It is clear that with the previous assumptions the map Tε will admit a unique abso-
lutely continuous invariant measure with density ρε. This density will be related to the
invariant density ρ̂ε of the first return map Fε on Iε by the formula (70), with normalizing
constant Cε,r . Our next result will be to prove the statistical stability of the unperturbed
density, namely
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Proposition 7.

lim
ε→0+

‖ρ − ρε‖L1
m
= 0. (100)

Proof. The proof is divided into two parts. The second part, which concerns the com-
parison of the invariant densities outside the regions of induction, will follow closely
the proof of an analogous result given in [BV], but in our case the proof will be easier
since the quantities we are going to consider have an exponential tail contrarily to the
corresponding ones analysed in [BV] where the presence of a neutral fixed point forced
those quantities to decay polynomially fast. The first part concerns the comparison of
the invariant densities inside the regions of induction and this part is new.

First part. Let us suppose without restriction that the induction sets I = (a′0, a0)\{x0},
Iε = (a′ε,0, aε,0)\{xε,0} verify a′ε,0 < a′0, aε,0 < a0. In the following, to
ease the notation we will simply write dx instead of dm(x) for the (nor-
malized) Lebesgue measure on [0, 1] and, for any interval J ⊂ [0, 1] ,
we will set |J | := m (J ) . We begin by bounding

∫

I∩Iε
|ρ̂ (x)− ρ̂ε (x) |dx . (101)

In footnote 3 we defined the Banach spaces B(I ) and B(Iε), which are
invariant respectively under the action of the Perron-Frobenius operators
P and Pε . The densities ρ̂ and ρ̂ε belong respectively to these spaces and
they are Lipschitz continuous on the open intervals (a′0, x0) ∪ (x0, a0)

and (a′ε,0, xε,0) ∪ (xε,0, aε,0). In fact we have to consider the action of
the Perron-Frobenius operators on a larger functional space, namely that
of functions of bounded variation. It is a standard result that the Perron-
Frobenius operator associated to Gibbs-Markov maps with bounded dis-
tortion leaves invariant this space and moreover it satisfies a Lasota-Yorke
inequality for the complete norm given by the sum of the total variation
and the L1

m norm, see for instance [B] for an account of these results. We
denote by BV (I ) and BV (Iε) the Banach spaces of functions of bounded
variations defined respectively on the induction sets I and Iε, and by
‖·‖BV (I ) , ‖·‖BV (Iε ) the respective norms. We remark that the Lebesgue
measure associated to these norms should be understood as normalized
to the sets I and Iε . Since the Perron-Frobenius operators P and Pε are
quasi-compact on respectively BV (I ) and BV (Iε), we know that, in the
limit n →∞,

∥
∥Pn1I − ρ̂

∥
∥

BV (I ) → 0, (102)
∥
∥Pn

ε 1Iε − ρ̂ε
∥
∥

BV (Iε )
→ 0. (103)

It will be important in what follows that the convergence of the two pre-
vious limits are uniform with respect to ε in the L∞m , and therefore in
the L1

m, norms. This is guaranteed by the results in [LSV], in particular
Lemmas 4.8 and 4.11. As a matter of fact, our first return Gibbs-Markov
maps fit the assumptions of the covering systems with countably many
branches investigated in [LSV]. In particular, it can be proven that there
exist two constants C and 	 such that

∥
∥Pn1I − ρ̂

∥
∥∞ ≤ C	n, where
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the constant C and the rate 	 have an explicit and C∞ dependence on
some parameters characterizing the map and its expanding properties.4

Therefore, given η > 0 we can choose n large enough, depending on η,
and such that
∫

I∩Iε
|ρ̂ − ρ̂ε |dx =

∫

I∩Iε

∣
∣ρ̂ − Pn1I + Pn1I + Pn

ε 1Iε − Pn
ε 1Iε − ρ̂ε

∣
∣ dx

≤ 2η +
∫

I∩Iε

∣
∣Pn1I − Pn

ε 1Iε

∣
∣ dx . (104)

Let us introduce, for n ≥ 2,

ρ̂n := Pn−11I ; ρ̂ε,n := Pn−1
ε 1Iε , (105)

and finally ρ̃n := ρ̂n on I ∩ Iε and ρ̃n := an, on Iε\(I ∩ Iε), where
an = limx→a′+0 ρ̂n(x). Notice that this right limit exists since ρ̂n is Lips-
chitz continuous on (a′0, x0) and moreover ρ̃n ∈ BV (Iε) as proven in
Sect. 2. We remark that the need of considering BV (Iε) follows by the
fact that ρ̃n could be discontinuous in xε,0. Let us rewrite the second term
in (104) as

∫

I∩Iε

∣
∣Pn1I − Pn

ε 1Iε

∣
∣ dx =

∫

I∩Iε
|P ρ̂n − Pε ρ̂ε,n|dx

≤
∫

I∩Iε

∣
∣P ρ̂n − Pε ρ̃n

∣
∣ dx +

∫

I∩Iε
|Pε ρ̃n − Pε ρ̂ε,n|dx . (106)

We now consider the term
∫

I∩Iε
|Pε ρ̃n − Pε ρ̂ε,n|dx; by the positivity and

the contraction in L1
m of the Perron-Frobenius operator, we have

∫

I∩Iε
|Pε ρ̃n − Pε ρ̂ε,n|dx ≤

∫

Iε
|Pε ρ̃n − Pε ρ̂ε,n|dx ≤

∫

Iε
|ρ̃n − ρ̂ε,n|dx

≤
∫

Iε∩I
|ρ̂n − ρ̂ε,n|dx +

∫

Iε\(Iε∩I )
|an − ρ̂ε,n|dx

=
∫

Iε∩I
|P ρ̂n−1 − Pε ρ̂ε,n−1|dx +

∫

Iε\(Iε∩I )
|an − ρ̂ε,n|dx

≤
∫

Iε∩I
|P ρ̂n−1 − Pε ρ̂ε,n−1|dx +m(Iε\(Iε ∩ I ))(||ρ̂n||∞+||ρ̂ε,n||∞),

(107)

where the L∞m -norm should be understood in terms of the normalized
Lebesgue measures respectively on I and Iε . But each of these norms is

4 These constants can be explicitly computed using the Hilbert metric approach. In particular C = (1 +

a)DH eDH	
−2N0

	−2N0 , and 	 =
(

tanh DH
4

) 1
N0 . The integer N0 insures that the hyperbolic diameter of

the iterate P N0 of a certain cone of bounded variation functions is finite and bounded by DH . In particular,
a,� and DH are smooth functions of the quantities ν and D entering the Lasota-Yorke inequality (see the
next footnote).
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bounded by the Banach norm and in particular for ρ̂n we have, by the
Lasota-Yorke inequality,

∥
∥ρ̂n
∥
∥∞ ≤

∥
∥ρ̂n
∥
∥

BV (I ) ≤
∥
∥
∥Pn−11I

∥
∥
∥

BV (I )
≤ νn−1 ‖1I ‖BV (I ) + D.

(108)

This last quantity, for all n large enough, is less than a constant C2 and the
same argument also applies to

∥
∥ρ̂ε,n

∥
∥∞ . Moreover, setting C2 and Cε,2

the constants bounding (108) in the unperturbed and perturbed case, for
ε sufficiently small, we have that the difference |C2 − Cε,2| is bounded
by a constant independent of ε.5 By setting

Gl :=
∫

Iε∩I
|P ρ̂l − Pε ρ̃l |dx (109)

with l = 1, . . . , n and ρ̂1 := 1I , ρ̂ε, 1 := 1I ε we have

∫

I∩Iε
|P ρ̂n − Pε ρ̂ε,n|dx =

n∑

l=1

Gl + (n − 1)C2m(Iε\(Iε ∩ I )),

(110)

where m(Iε\(Iε ∩ I )) = O(ε).
In order to compute the term Gl we have to use the explicit structure of
the Perron-Frobenius operator. In particular we have

∫

Iε∩I
|P ρ̂n − Pε ρ̃n |dx =

∫

Iε∩I

∣
∣
∣
∣
∣
∣

∑

i≥1

ρ̂n(F
−1
i x)

|DF(F−1
i x)| −

∑

i≥1

ρ̃n(F
−1
ε,i x)

|DFε(F
−1
ε,i x)|

∣
∣
∣
∣
∣
∣
dx

≤
∫

Iε∩I

∑

i≥1

∣
∣
∣
∣
∣

ρ̂n(F
−1
i x)

|DF(F−1
i x)| −

ρ̂n(F
−1
i x)

|DFε(F
−1
ε,i x)| +

ρ̂n(F
−1
i x)

|DFε(F
−1
ε,i x)| −

ρ̃n(F
−1
ε,i x)

|DFε(F
−1
ε,i x)|

∣
∣
∣
∣
∣
dx .

(111)

Actually what we want to do is to compare the preimages of the perturbed
and of the unperturbed first return maps whose direct images are defined
on cylinders with the same return times. This can always be done and
in particular we will consider points x whose perturbed and unperturbed
preimages are both defined. In this regard, it will be enough to erase from

5 The constants ν < 1 and D are in fact explicitly determined in terms of the map; we defer to [B] for
the details. To compare with what is stated in [B], we need to show that there exists a power n0 of the first
return map F having the absolute value of its derivative uniformly larger than 2. In the case of interest, this
follows easily from the proof of Lemma 1 by combining the Markov structure of F with the lower bound for
the absolute value of its derivative which is uniformly larger than 1 and which is an explicit function of the
parameters describing the local behavior of the map T, in particular α′, α and d(1,0). The quantities ν and
D are then functions of the lower bound of

∣
∣DFn0

∣
∣ and of the constant, which we denote by D′, appearing

in Adler’s condition. This last condition is equivalent to prove that T has bounded distortion and we defer to
[CHMV] where the constant bounding the distortion is explicitly determined as a function of the parameters
defining the map. In the present case, a simple inspection of the proof in [CHMV] shows that such a constant
is a multiple of d(0,1). Hence, a contribution to D′ comes from d(0,1), while the other one [CHMV] comes
from the divergent behavior of the second derivative close to the fixed point. However, in our case, the Hölder
continuity assumption on the first derivative of the map and the exponential decay of the length of Zi makes
this second contribution simply bounded by 1.
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Iε∩ I the open interval with endpoints xε,0, x0 whose measure goes to zero
in the limit ε → 0. We will prove that the sum in (111) is bounded uni-
formly in ε in order to exchange the sum with the limit ε → 0.We recall
that the perturbed and unperturbed induced first return maps are Gibbs-
Markov and have bounded distortion and that

∥
∥ρ̂n
∥
∥∞ < C2. Therefore,

on each interval Z j
i (resp. Z j

ε,i ) i ≥ 1, j = 1, 2, where F (resp. Fε,i ) is
injective we have:

– For any i ≥ 1; j = 1, 2 and ∀x, y ∈ F(Z j
i ), we have

|DF(F−1
i x)|

|DF(F−1
i y)| ≤

D1, and ∀x, y ∈ F(Z j
ε,i ) we have

|DFε (F
−1
ε,i x)|

|DFε (F
−1
ε,i y)| ≤ D2.

– For ε small enough, by the argument developed in footnote 4, the
difference |D1 − D2| is bounded by a constant independent of ε.

– There exists y ∈ Z j
i (resp. Z j

ε,i ) such that |DF (y)| = |F(Z j
i )|∣

∣
∣Z

j
i

∣
∣
∣

(resp.

|DFε (y)| = |Fε (Z j
ε,i )|∣

∣
∣Z

j
ε,i

∣
∣
∣

).

This immediately implies that the first term in (111) is bounded by

∫

Iε∩I

∑

i≥1

ρ̂n(F
−1
i x)

|DF(F−1
i x)|dx ≤ C2 D1

∑

i≥1

|Zi |
|F(Zi )| . (112)

Similar bounds hold also for the other three terms in (111). We recall that
the images of the Zi have length (x0 − a′0) and the sum over the |Zi |’s
gives the length of I.We can therefore take the limit ε → 0 in (111). Let
us consider the first two terms in (111),

∑

i≥1

∣
∣
∣
∣
∣

ρ̂n(F
−1
i x)

|DF(F−1
i x)| −

ρ̂n(F
−1
i x)

|DFε(F
−1
ε,i x)|

∣
∣
∣
∣
∣

=
∑

i≥1

∣
∣
∣
∣
∣

ρ̂n(F
−1
i x)

|DF(F−1
i x)|

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
1− |DF(F−1

i x)|
|DFε(F

−1
ε,i x)|

∣
∣
∣
∣
∣
. (113)

We can bound this quantity making use of Lemma (6) part (iii) and part
(iv) first and then by observing that the point F−1

i x does not coincide with
x0. Let us set w := F−1

i x; wε := F−1
ε,i x and F = T i . Then,

∣
∣
∣
∣
∣

DF(F−1
i x)

DFε(F
−1
ε,i x)

∣
∣
∣
∣
∣
=

i−1∏

m=0

∣
∣
∣
∣

DT (T mw)DTε(T mw)

DTε(T m
ε wε)DTε(T mw)

∣
∣
∣
∣ . (114)

We notice that |T mw − T mwε | goes to zero by the continuity of T m .
The intervals with endpoints T iw and T i

ε wε do not contain xε,0 and their
length tends to zero when ε vanishes. Therefore,

i−1∏

m=0

∣
∣
∣
∣

DT (T mw)

DTε(T mw)

∣
∣
∣
∣ exp

[
i−1∑

m=0

1

|DTε(y)|Ch,ε (
∥
∥T m − T m

ε

∥
∥ιε

0 + |T mw − T mwε |)
]

,

(115)
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where y is a point between T iw and T i
ε wε.Hence, by Assumption B, this

term tends to 1 in the limit ε → 0.6

Moreover, the other couple of terms in (111),

∑

i≥1

∣
∣
∣
∣
∣

ρ̂n(F
−1
i x)

|DFε(F
−1
ε,i x)| −

ρ̃n(F
−1
ε,i x)

|DFε(F
−1
ε,i x)|

∣
∣
∣
∣
∣

≤
∑

i≥1

1

|DFε(F
−1
ε,i x)| |ρ̂n(F

−1
i x)− ρ̃n(F

−1
ε,i x)|. (116)

We remark that the function ρ̃n is a continuous extension of ρ̂ to Iε\(I∩Iε),
and therefore we can rewrite

|ρ̂n(F
−1
i x)− ρ̃n(F

−1
ε,i x)| = |ρ̃n(F

−1
i x)− ρ̃n(F

−1
ε,i x)|, (117)

where ρ̃n is now defined on I ∪ Iε . This function is continuous on
I ∪ Iε\{x0} and, by part (iv) of Lemma (6), limε→0+ |ρ̃n(F

−1
i x) −

ρ̃n(F
−1
ε,i x)| = 0.

To resume: for n larger than a certain n(η),

(104) ≤ 2η +
n∑

l=1

Gl + (n − 1)O(ε) ; (118)

each Gl is bounded uniformly w.r.t. ε and tends to zero for ε tending to
zero. Therefore we can pass to the limit ε → 0 and then η→ 0.

Second part. According to the assumptions made at the beginning of the first part and
without loss of generality, we will assume that all the Wε,n’s lie to the left
of the corresponding Wn . Therefore we have
∫

[0,1]
|ρ − ρε |dx =

∫

I∩Iε
|ρ − ρε |dx +

∫

I∩Wε,1

|ρ − ρε |dx

+
∫

Iε∩W ′
1

|ρ − ρε |dx

+
∞∑

l=1

{∫

Wl∩Wε,l

|ρ − ρε |dx +
∫

Wl\(Wl∩Wε,l )

|ρ − ρε |dx

}

+
∞∑

l=1

{∫

W ′
l ∩W ′

ε,l

|ρ − ρε |dx +
∫

W ′
l \(W ′

l ∩W ′
ε,l )

|ρ − ρε |dx

}

. (119)

The densities are given in terms of the corresponding densities of the
induced subsets and of the multiplicative constants Cr and Cε,r . Hence,

6 Actually y depends on ε, y = yε . Setting y∗ := limε→0 yε , we get

|DTε(yε)− DT (y∗)| ≤ |DTε(yε)− DTε(y
∗)| + |DTε(y

∗)− DT (y∗)|.
The first term on the r.h.s. can be bounded making use of the Hölder continuity assumption on DTε , the second
making use of Assumption B.
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we should first compare the latter. Since they are surely smaller than 1,
we have

|Cr − Cε,r | ≤
∞∑

i=1

i

∣
∣
∣
∣
∣

∫

Z1
i

ρ̂
dx

m(I )
−
∫

Z1
ε,i

ρ̂ε
dx

m(Iε)

∣
∣
∣
∣
∣
. (120)

The same bound holds also choosing Z2
i (Z2

ε,i ) instead of Z1
i (Z1

ε,i ). The
sum converges uniformly as a function of ε since the L∞m norms of ρ̂ and
ρ̂ε are bounded by C2 and the lengths of the Z1

i and Z1
ε,i decay exponen-

tially fast. We now show that passing to the limit ε → 0 inside the sum
this vanishes. In this regard we rewrite the previous bound as

∞∑

i=1

i

∣
∣
∣
∣
∣

∫

Z1
i ∩Z1

ε,i

ρ̂
dx

m(I )
+
∫

Z1
i \(Z1

i ∩Z1
ε,i )

ρ̂
dx

m(I )

−
∫

Z1
ε,i∩Z1

i

ρ̂ε
dx

m(Iε)
−
∫

Z1
ε,i\(Z1

i ∩Z1
ε,i )

ρ̂ε
dx

m(Iε)

∣
∣
∣
∣
∣

≤
∞∑

i=1

i

[

2C2m(Z1
i �Z1

ε,i ) + C2

∣
∣
∣
∣

1

m(I )
− 1

m(Iε)

∣
∣
∣
∣

+
∫

Z1
i ∩Z1

ε,i

|ρ̂ − ρ̂ε | dx

m(Iε)

]

. (121)

Each term in the last sum vanishes in the limit ε → 0; in particular the
third term tends to zero by what is stated in the first part of the proof.
Moreover, by Lemma 1 and by the fact that the derivatives of the maps T
and Tε are strictly expanding in the neighborhood of x0, for x ∈ (0, a′0),
we get

∞∑

m=2

∑

l=1,2

1

|DT m(T−1
l T−1

2 T−(m−2)
1 x)|

≤ C3
1

(αα′ logα′)
:= C4. (122)

Furthermore, for x ∈ (0, a0),

∑

l=1,2

1

|DT (T−1
l x)| ≤

(

min
(b2,b1)∪(b′1,b′2)

|DT |
)−1

:= C5. (123)

Analogous bounds hold also for the perturbed map, so we can choose the
constants C4,C5 independent of ε. Let us call ρs (resp. ρr ), the repre-
sentations of the invariant density on (0, x0) (resp. (x0, 1)) without the
normalizing factor Cr .By the previous bounds on the derivatives of T and
the boundness of the densities on the induced spaces, it follows immedi-
ately that there exists a constant C6 such that the L∞m norms of ρs and ρr
are bounded by C6. The same argument also holds for ρε,s and ρε,r and,
since C6 can be chosen independent of ε,

∥
∥ρε,s

∥
∥∞ ,

∥
∥ρε,r

∥
∥∞ ≤ C6.
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We can now proceed to bound each term in (119). For the first one we
get

∫

I∩Iε
|ρ − ρε |dx ≤ |Cr − Cε,r |

∫

I∩Iε
ρ̂dx + Cε,r

∫

I∩Iε
|ρ̂ − ρ̂ε |dx,

(124)

which can be bounded uniformly in ε by arguing as in the previous com-
putations. For the second term (the third one can be bounded in the same
way) we have

∫

I∩Wε,1

|ρ − ρε |dx ≤ |Cr − Cε,r |
∫

I∩Wε,1

ρ̂dx

+ Cε,r

∫

I∩Wε,1

|ρ̂ − ρε,s |dx . (125)

The right-hand side is uniformly bounded in ε, in particular

Cε,r

∫

I∩Wε,1

|ρ̂ − ρε,s |dx ≤ (C2 + C6)m(I ∩Wε,1), (126)

where vanishes m(I ∩Wε,1) in the limit ε → 0.
We now consider the last sum in (119). Similar arguments allow to

bound the remaining sum which is even easier to handle. We first have

∞∑

l=1

∫

W ′
l \(W ′

l ∩W ′
ε,l )

|ρ − ρε |dx ≤
∞∑

l=1

[

|Cr − Cε,r |
∫

W ′
l \(W ′

l ∩W ′
ε,l )

ρsdx

+ Cε,r

∫

W ′
l \(W ′

l ∩W ′
ε,l )

|ρs − ρε,s |dx

]

. (127)

The sum is uniformly convergent as a function of ε since W ′
l \(W ′

l ∩
W ′
ε,l) ⊂ W ′

l and the length of such an interval decays exponentially fast
with rate independent of ε. Finally, previous considerations imply that
each term into the sum goes to zero in the limit ε → 0.

Finally we have

∞∑

l=1

∫

W ′
l ∩W ′

ε,l

|ρ − ρε |dx

≤
∞∑

l=1

[

|Cr − Cε,r |
∫

W ′
l ∩W ′

ε,l

ρsdx + Cε,r

∫

W ′
l ∩W ′

ε,l

|ρs − ρε,s |dx

]

.

(128)

The preceding considerations also apply to the first sum in this formula
proving this to vanish in the limit ε → 0. For the second sum we make
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use of the representations of ρs and ρε,s in terms of the density on the
induced space. Thus we have

∫

W ′
l ∩W ′

ε,l

|ρs − ρε,s |dx

≤
∫

W ′
l ∩W ′

ε,l

∞∑

p=l+2

∑

k=1,2

∣
∣
∣
∣
∣

ρ̂(T−1
k T−1

2 T−(p−l−2)
1 x)

|DT p−l (T−1
k T−1

2 T−(p−l−2)
1 x)|

− ρ̂ε (T
−1
ε,k T−1

ε,2 T−(p−l−2)
ε,1 x)

|DT p−l
ε (T−1

ε,k T−1
ε,2 T−(p−l−2)

ε,1 x)|

∣
∣
∣
∣
∣
dx

≤
∫

W ′
l ∩W ′

ε,l

∞∑

p=l+2

∑

k=1,2

∣
∣
∣
∣
∣

ρ̂(T−1
k T−1

2 T−(p−l−2)
1 x)

|DT p−l (T−1
k T−1

2 T−(p−l−2)
1 x)|

− ρ̂ε (T
−1
ε,k T−1

ε,2 T−(p−l−2)
ε,1 x)

|DT p−l (T−1
k T−1

2 T−(p−l−2)
1 x)|

∣
∣
∣
∣
∣
dx

+
∫

W ′
l ∩W ′

ε,l

∞∑

p=l+2

∑

k=1,2

∣
∣
∣
∣
∣

ρ̂ε (T
−1
ε,k T−1

ε,2 T−(p−l−2)
ε,1 x)

|DT p−l (T−1
k T−1

2 T−(p−l−2)
1 x)|

− ρ̂ε (T
−1
ε,k T−1

ε,2 T−(p−l−2)
ε,1 x)

|DT p−l
ε (T−1

ε,k T−1
ε,2 T−(p−l−2)

ε,1 x)|

∣
∣
∣
∣
∣
dx

= Q1,l + Q2,l .

(129)

We further decompose Q1,l as

Q1,l =
∫

W ′
l ∩W ′

ε,l

∞∑

p=l+2

∑

k=1,2

1

|DT p−l(T−1
k T−1

2 T−(p−l−2)
1 x)|

×
∣
∣
∣ρ̂(T−1

k T−1
2 T−(p−l−2)

1 x)− ρ̂(T−1
ε,k T−1

ε,2 T−(p−l−2)
ε,1 x)

+ρ̂(T−1
ε,k T−1

ε,2 T−(p−l−2)
ε,1 x)− ρ̂ε(T−1

ε,k T−1
ε,2 T−(p−l−2)

ε,1 x)
∣
∣
∣ .

(130)

Changing variables, setting yk := T−1
k T−1

2 T−(p−l−2)
1 x and yε,k :=

yε(yk) = T−1
ε,k T−1

ε,2 T−(p−l−2)
ε,1 (T p yk), since yk and yε,k belong to Zk

p ∪
Zk
ε,p, we get

Q1,l =
∑

k=1,2

∞∑

p=l+2

∫

Zk
p

|ρ̂(yk)− ρ̂(yε,k) + ρ̂(yε,k)− ρ̂ε(yε,k)|dyk .

(131)

But,

∞∑

l=1

Q1,l ≤ 4C2

∞∑

l=1

∞∑

p=l+2

m(Z p), (132)

which is clearly convergent because the measure of Z p is exponentially
decreasing. Moreover, by what has been shown in the first part of the
proof,

lim
ε→0

∫

Zk
p

|ρ̂(yε,k)− ρ̂ε(yε,k)|dyk = 0. (133)

On the other hand, we first take ε small enough to get yε,k on the same
side of x0 as yk and then we use the Lipschitz continuity property of ρ̂
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to conclude, by observing that yε,k tends to yk when ε tends to zero, that
also

lim
ε→0

∫

Zk
p

|ρ̂(yk)− ρ̂(yε,k)|dyk = 0. (134)

We now consider Q2,l and show that it is uniformly bounded in ε. As a
matter of fact,

Q2,l =
∫

W ′
l ∩W ′

ε,l

∞∑

p=l+2

∑

k=1,2

∣
∣
∣
∣
∣
∣

ρ̂ε(T
−1
ε,k T−1

ε,2 T−(p−l−2)
ε,1 x)

∣
∣
∣DT p−l(T−1

k T−1
2 T−(p−l−2)

1 x)
∣
∣
∣

∣
∣
∣
∣
∣
∣

×
∣
∣
∣
∣
∣
∣
1−

∣
∣
∣DT p−l(T−1

k T−1
2 T−(p−l−2)

1 x)
∣
∣
∣

∣
∣
∣DT p−l

ε (T−1
ε,k T−1

ε,2 T−(p−l−2)
ε,1 x)

∣
∣
∣

∣
∣
∣
∣
∣
∣
dx . (135)

We bound it by the sum of its two parts: the density will have bounded
infinity norm; the sums in p over the inverses of the derivatives are
bounded by a constant since the derivatives decay exponentially fast and
the sums over l will be controlled by the measure of W ′

l . Finally the same
arguments that led to bound (114) apply also to the second factor in the
previous expression proving it tends to zero in the limit ε → 0.

This concludes the proof. ��
We end up our analysis considering two examples of the perturbed Lorenz system

giving rise to perturbed versions of the map T of the kind discussed in this section.

Example 8. Let us consider a perturbation of the Lorenz field (Fig. 3) obtained by adding
the constant forcing field (0, 0,−εβ (ρ + σ)) , ε > 0. The perturbation is easily seen

Fig. 3. Tε (thick line), T (thin line)
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Fig. 4. Fit of the invariant density for the evolution under T (solid line) and under Tε , ε = 0.5, (dashed line)

to preserve the symmetry under the involution R of the unperturbed field. Arguing as
in the first section, for ε sufficiently small, the perturbed system will keep the same
features of the unperturbed one, hence map Tε is easily seen to satisfy (52–55) as well
as Assumptions A–D. Here it follows the plot of Tε , for ε = 0.5, and the plot of the fit
of the invariant density ρR for the evolution under the maps T and Tε , corresponding
respectively to the choice of the Poincaré surfaces�+, �

ε
+, the last one being constructed

as in the unperturbed case (Fig. 4).

Fig. 5. T (thin line), T +
ε (thick line to the left of T ), T−ε (thick line to the right of T )
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Fig. 6. Fit of the invariant densities for the evolution under T (solid line) and under T +
ε (dashed line)

Fig. 7. Fit of the invariant densities for the evolution under T (solid line) and under T−ε (dashed line)

Example 9. We now consider the following perturbation of the Lorenz field (Fig. 5) real-
ized by adding the field (ε cos θ, ε sin θ, 0)where ε > 0 and θ ∈ [0, 2π). The perturbed
system is not R-invariant anymore, anyway, for ε sufficiently small, the system will
still have a saddle fixed point cε0 and two unstable fixed points cε1, cε2. Hence, for any
θ ∈ [0, 2π), we have two different Tε, namely T +

ε , T−ε , both satisfying (52–55) as well
as Assumptions A–D corresponding respectively to the choice of the Poincaré surfaces
�ε+, �

ε−, which can be constructed as in the unperturbed case. To obtain meaningful
plots of the deviation from T of the perturbed maps as well as of the deviation of the
associated invariant densities from the unperturbed one (Figs. 6 and 7), ε has been set
equal to 2.5 and θ to 70◦ as in [CMP].
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