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Abstract
The extremal index is a quantity introduced in extreme value theory to measure the presence
of clusters of exceedances. In the dynamical systems framework, it provides important infor-
mation about the dynamics of the underlying systems. In this paper we provide a review of the
meaning of the extremal index in dynamical systems. Depending on the observables used,
this quantity can inform on local properties of attractors such as periodicity, stability and
persistence in phase space, or on global properties such as the Lyapunov exponents. We also
introduce a new estimator of the extremal index and show its relation with those previously
introduced in the statistical literature. We reserve a particular focus to the systems perturbed
with noise as they are a good paradigm of many natural phenomena. Different kind of noises
are investigated in the annealed and quenched situations. Applications to climate data are
also presented.
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1 Introduction

In the last ten years extreme value theory (EVT) has been successfully applied to the study
of time series generated by dynamical systems. Illustrations can be found in the book [1]
and the articles [2–4] for an exhaustive account on the formalism, the methodologies and
several applications. In particular the extremal index (EI)—a quantity defined in the unit
interval—has been used as a powerful statistical indicator to discriminate among different
qualitative types of dynamical behaviors in the phase space of a few climate models and
in real situations (an extensive overview can be found in [5]). In a series of papers [5–9],
the EI was related to a local persistence indicator, suitable to estimate the average cluster
size of the trajectories within the neighborhood of a given point. The aim of this note is to
give an overview on a few recent rigorous mathematical results which show that the EI is
very sensitive to stochastic perturbations affecting the deterministic evolution of a system
states. We will also discuss the influence of noise on the dynamical extremal index, which
was recently introduced to characterize the global divergence of chaotic orbits [10].

The first rigorous computations of the EI for observable maximized at a point and for
expanding and uniformly hyperbolic systems (from now on named chaotic systems), showed
a dichotomy for the value of the EI, which is equal to 1 everywhere, except on periodic
points. Reference [11] give a detailed account of this matter. On the other hand, the EI
exhibits local variations which have been also connected to the local fractal dimensions. By
assuming that the data we are interested in are chaotic, one could wonder about the wider
variation of the extremal index, offering a spectrum of values beyond the previous dichotomy.
In a recent paper [12] we commented about a similar effect concerning the computation of
the local dimensions. Indeed, while it is well known for a large class of systems that the
local dimensions are all equal to the so-called information dimension D1 with probability
one, large deviation theory estimates the likelihood of deviations from this value at finite
resolution. In this perspective, the spread of the experimentally observed values of the local
dimensions can be thought of as originating from the multifractal structure of the invariant
measure, which in turn is revealed by the non-constant value of generalized dimensions.

Although finite resolution affects the estimation of the extremal index, it is unlikely that it
enjoys some large deviation property. This is due to the previous dichotomy, which prevents
the existence of a smooth spectrum of values for the EI. Yet, the computation of the EI is very
sensitive to randomness and disturbances in the measuring process. The main object of our
note is to show how the EI is affected by the presence of noise. Our starting point is to assume
for the EI a general formula obtained by Keller and Liverani [13] in the context of stationary
dynamical systems enjoying the so-called spectral gap property. For this reason we call it the
spectral formula. It encompasses all the other rigorous formulae previously obtained for the
computation of the extremal index. We will show that when the spectral formula holds, one
can obtain a generalized version of the O’Brien formula, which inspired several numerical
algorithms and statistical estimators (see Eq. (3.2.4) in [1]). This is discussed in Proposition
1, which constitute one of the main contributions of this paper. Let us briefly anticipated it.
The spectral formula is given by an infinite series. In the case of the dichotomy quoted above,
at most one term (with with index k) of the series is non zero. This correspond to the positivity
of the k + 1 term in the O’Brien limit (14), which is also the extremal index. We will present
in Sect. 4.2 a rigorous example of a random dynamical systems, where more than one term
of the series, namely infinitely many, are different from zero. Actually the Example 4.5 from
[14] also has all qk different from 0. These examples suggest that, under perturbation, the
range of variability of the EI is much wider than exhibited by the simple dichotomy of the
deterministic systems.
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The first sections are devoted to the computation of the EI for the standard observable
given by the distribution of the first visit of the trajectory in a decreasing net of balls around
a given point, which we qualify as the target set. The system will be perturbed according to
three different classes of noises: sequential, quenched and annealed. In particular, we will
focus on the annealed class since it gives stationary random processes particularly suitable
for the application of the spectral formula. We will show on simple but non trivial examples
that noises with discrete distributions tend to make the EI less than one, while noises with
continuous distributions usually make the extremal index equal to one. The latter case applies
also to deterministic dynamics with the target set affected by disturbances with smooth
densities, which corresponds to common physical situations.

Section 5 deals with a different extremal index we introduced recently with the name of
dynamical extremal index and that explores the mutual distances between the coordinates of
a point moving in a suitable higher dimensional direct product space. This new index captures
the rate of phase space contraction and is naturally related to positive Lyapunov exponent(s).
As in the case of the EI, this new index is sensitive to the different kinds of perturbations
described above, in particularwe observed the following facts, whichwewill partially support
by rigorous arguments:

• As soon as a deterministic system is perturbed with noise having some smooth distribu-
tion, the EI becomes equal to 1. With discrete (point masses) distributions, the EI could
be 1 for almost choices of the target and of the realisations, (see Sects. 3.2.1, 3.2.2, 5.1),
but it could also be less than 1, (see Sects. 4.1.2, 5.2).

• What we described in the previous item happens either with annealed and quenched
stochastic perturbations. In the annealed case with discrete probability distributions, the
value of the EI could depend either on the choice of the masses and on the closeness of
the maps, see Remark 3. This suggests that in the situations where the EI is generically
1, if one finds a lesser value, this could be the effect of a discrete perturbation.

• Of particular interest is the situation described in Sect. 4.2.2, where the dynamics is deter-
ministic, but the target set is knownwith someprobability having a continuous distribution
function. This describes physical situations where the localisation and observation of the
extreme event are affected by any sort of disturbances. No matter of the intensity of those
perturbations, the extremal index will be everywhere equal to one.

• The previous items concern the EI computed in a point z or averaging around it in the
moving target situation. Therefore different behaviors could coexist for the same system
and in the presence of stochastic perturbations of annealed and quenched type.

We finally analyze how the random perturbations affect the statistics of the number of
visits (persistence) in the target regions. The expectation of the limiting law is the reciprocal
of the extremal index and the differences in the value of the EI reflect in different types of
Poisson compound distributions. In particular:

• We have shown that the geometric nature of the target set produces different compound
Poisson distributions. Moreover these compound Poisson distributions persist even when
the system is randomly perturbed. Indeed the fact that the extremal index is the inverse
of the average cluster size seems to be a robust property of chaotic systems in the deter-
ministic and random settings.

• In presence of periodicity one expects asymptotic distributions of Polyà-Aeppli type.
Nevertheless for target sets composed bymore general invariant sets, different compound
Poisson distributions could emerge up as we showed above. This suggests that for the
statistics of the number of visits around sets with a more complicated geometry, and this
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could be relevant in applications, the computation of the EI is probably not enough, and
one should go to higher moments to get the real asymptotic distribution.

2 The Deterministic Case

Our intent is to provide a critical discussion of the application of the EI to time series.
Therefore, we start defining it for particular random processes. Let us therefore consider a
discrete dynamical system defined by amap T acting on a smoothmanifold X and preserving
a Borel measure μ. Suppose z is a point of X and B(z, r) an open ball around z and of radius
r . Given any other point x ∈ X let us consider the random variables Hn(x) given by

Hn(x) := {first time the orbit of x enters the open ball B(z, e−un )}, (1)

where the boundary level un is defined by asking that

n μ(B(z, e−un )) → τ, (2)

for some positive number τ . Notice that by the stationarity (or invariance) of the measure μ,
the quantity μ(B(z, e−un )) gives the probability that any iterate of the map T being in the
open balls B(z, e−un ). Moreover as soon as the measure is not atomic, the measure of a ball
varies continuously with the radius and this allows us to explicit un as a function of τ and n.

We say that we have an extreme value law for the process Hn if

μ(x; Hn(x) ≥ n) → e−θτ , (3)

where 0 ≤ θ ≤ 1 is called the extremal index.
We remind that the events Hn ≥ n are equivalent to the following ones:

{Mn(x) ≤ un}, where Mn = max{φ(x), φ(T x), . . . , φ(T n−1x)}, (4)

and the observable φ is defined as

φ(x) = − log d(x, z). (5)

It is remarkable that for a large class of systems whose transfer operator admits a spectral
gap, the extremal index can be explicitly computed. This is done by Keller [15], who applied
the perturbative theory developed in [13]. This spectral approach has the advantage to give a
formula for the EI which holds for general target sets when their measure goes to zero. We
will use it in the last section of this note when balls are replaced by tubular neighborhoods.

Let us first define the event

�(k)
n (z) :=

{
φ(x) > un, max

i=1,...,k
φ(T i x) ≤ un, φ(T k+1x) > un

}
, (6)

namely the set of points in B(z, e−un )whose first k iterates are outside B(z, e−un ) and whose
(k + 1)-th iterate falls again in B(z, e−un ). Put

q(n)
k :=

μ
(
�

(k)
n (z)

)
μ(B(z, e−un ))

,

and suppose that the following limit exists:

qk := lim
n→∞ q(n)

k (7)
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Then the perturbative theory gives a formula of the EI:

θ = 1 −
∞∑
k=0

qk . (8)

This formula allows us to reproduce a few existing results whenever the target point z is of
a particular type. For instance, for one-dimensional expanding systems with strong mixing
properties and preserving a measure absolutely continuous with respect to Lebesgue, the
extremal index is 1 everywhere but in periodic points. When we have a periodic point z of
(minimal) period p, only the qp−1 term is nonzero and it is of the form [11,15]

qp−1 = 1

|DT p(z)| . (9)

The dependence of the EI on the periodicity of the target point z means that the sojourns and
returns of the point into the ball B(z, e−un ), which constitute the clusters of exceedances,
keep memory either of the past orbit and of the topological structure of the target point.

This can be made more precise by defining a cluster size distribution πn( j) as the prob-
ability of having j returns into the ball up to a rescaled time n/kn , for a suitable sequence
kn = o(n). Section 3.2.1 in [1] provides more details on this derivation; a more formal
definition is also given in Sect. 7. It can be therefore proved that (see Sec. 3.3.3 in [1]):

θ−1 = lim
n→∞

∞∑
j=1

jπn( j), (10)

which is interpreted by saying that the EI is equal to the inverse of the average cluster
size.1 In the applications to dynamical systems, the periodicity translates into the fact that
the cluster size distribution is actually a geometric distribution of parameter θ ∈ (0, 1], i.e.,
πk = θ(1 − θ)k−1, for every k ∈ N0 [17]. We will return to this matter in Sect. 1.

The interpretation of the EI given in Eq. (8) has been used in applications to time series
climate data and it was also emphasized the local character of such an indicator and its strong
correlation with the fractal local dimension of the invariant measure [6–8].

Let us now consider for k ∈ N0 the event (compare with Eq. (6)):

A(k)
n :=

{
φ(x) > un ∩ max

i=1,...,k
φ(T i x) ≤ un

}
(11)

and the quantity:

θ
(n)
k :=

μ
(
A(k)
n

)
μ(φ(x) > un)

(12)

where we set θ
(n)
0 = 1,∀n. By introducing the event φ(T k+1x ≤ un) and its complement,

and passing to the limit for n → ∞, we get

qk = θk − θk+1, (13)

where
θk = lim

n→∞ θ
(n)
k , (14)

1 Abadi et al. [16] built a dynamically generated stochastic processes with an extremal index for which that
equality does not hold. They considered observable functions maximised at least two points of the phase space,
where one of them is an indifferent periodic point and another one is either a repelling periodic point or a non
periodic point. We will not consider these kind of observables in this paper.
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when the limit exists.
Notice that as soon as one of the two sequences {qk}k∈N, {θk}k∈N is known, the other one

is determined as well. This allows us to give another formula for the computation of the
extreme index whenever the latter is given by (8).

Proposition 1 Let us suppose that the limits in Eq. (7) defining the quantities qk exist for any
k ≥ 0 and moreover the extremal index θ is given by (8). Then the extremal index can also
be expressed as:

θ = lim
k→∞ θk = lim

k→∞ lim
n→∞ θ

(n)
k . (15)

Proof We already observed that whenever the sequence qk exists, the same happens for the
sequence θk . Then by a simple telescopic trick we get

θ = lim
k→∞

⎛
⎝1 −

k∑
j=0

q j

⎞
⎠ = lim

k→∞ θk+1.

	

Let us comment about this result. One could wonder if in general the extremal index could be
given by (15); we will see in the following that it is actually the case in several circumstances,
but our result relies on the possibility of obtaining first the EI by formula (8). In all the
examples where the spectral technique can be used, including those in this paper, the sum

∞∑
k=0

q(n)
k = 1, ∀n ≥ 1

by the Poincaré recurrence theorem, since we deal with stationary (or invariant) probability,
and the previous sum is over the disjoint level sets with a prescribed different first return.
This immediately implies that whenever the qk exist, the sum

∑∞
k=0 qk ≤ 1.

On the other hand, and under the assumption that one of the two sequences qk, θk exist, we
see that 1 − ∑∞

k=0 qk ≤ 1, since θk ≤ 1,∀k and by using our Proposition 15.

Question For what general class of systems the extremal index θ is given by

θ = lim
k→∞ lim

n→∞
μ

(
A(k)
n

)
μ(φ(x) > un)

? (16)

In some circumstances, the limit in Eq. (14) gives already the extremal index.
To explain this point, we need to be more precise about the assumptions we make. The

spectral approach briefly sketched above applies to a large class of dynamical systems admit-
ting a spectral gap for the transfer (Perron-Frobenius) operator. This means that the systems
have exponential decay of correlations for smooth enough observables, usually of bounded
variation type. This is not sufficient to establish the existence of the limit in Eq. (7). Computa-
tions of that limit under various circumstances are given in [12,13,15,18]. The more standard
approach to EVT, which consists in adapting the classical Leadbetter theory for i.i.d. ran-
dom variables to stationary dependent processes [19], requires milder mixing conditions that
allow to get asymptotic independence for the process. The theory of O’Brien [20] was devel-
oped for strictly stationary processes verifying asymptotic independence, which is a strong
probabilistic mixing condition like the φ-mixing (see [21] for the definition). We stress that
asymptotic independence is very difficult to check in practice. Recently it has been shown
that weaker conditions are enough. For our purposes, it is sufficient to remind condition
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D(un) in section 2.3 of [1] successively improved in [11].2 Asymptotic independence is not
enough to get the convergence of the limit distribution of the maxima. One needs to control
short returns, which could be in particular affected by clustering. A powerful condition which
takes care of that is:

D(k)
un = lim

n→∞ n
[n/ln ]−1∑
j=k+1

μ
(
A(k)
n ∩ T− j

(
A(k)
n

))
= 0, (17)

where ln = o(n) is a sequence slowly diverging to infinity and verifying the D(un) conditions
(see Remark 4.1.2 in [1] for the details). We call the integer k the clustering order. We now
summarize in the following proposition a few facts that are useful for our paper and which
refer to the stationary process {φ ◦ T k}k∈N, on the probability space (X , μ):

Proposition 2 • Suppose the sequence un verifiesEq. (2) and condition D(un)holds.More-
over suppose that lim infn→∞ μ(Mn ≤ un) > 0 and condition in Eq. (17) holds with
clustering order k. Then

μ(Mn ≤ un) − e−τθ
(n)
k → 0,

as shown by [22], Proposition 1.1.
• If the limit in Eq. (14) exists, then the extremal index is given by θk , as shown by Corollary

1.3 in [22] or Corollary 4.1.7 in [1]. This is sometimes called the O’Brien formula.
• If condition Eq. (17) holds for some particular k′ ∈ N, it also holds for all k ≥ k′ and

therefore the limit in Eq. (14) for all k ≥ k′ gives again the extremal index θ , as shown
by [11] and [1], Remark 4.1.10.

When the second item in the Proposition holds for a process with clustering order k we
have

q j = θ j − θ j+1 = 0, ∀ j ≥ k. (18)

The natural question is therefore to ask when Condition (17) is verified. For a large class of
dynamical systems, in particular verifying the assumptions of Theorem 4.2.7 in [1], it can
be shown that Condition (17) holds with k = 0 if the target point z is not periodic, and with
k = p if z is periodic of prime period p (see Proposition 4.2.13 in [1]). In particular, for one-
dimensional expanding systems with strongly mixing properties and preserving a measure
absolutely continuouswith respect to Lebesgue, the extremal index is 1−qp−1 = 1− 1

|DT p(z)|
in periodic points z of (minimal) period p. For higher dimensional systems, Condition (17)
gives a precise value for θ (see for instance [23]).

Remark 1 For the preceding example around periodic points, the spectral and the standard
approaches both give qp−1 and θp different from zero. Yet, the spectral approach shows that
all q j are zero for j 
= p − 1. This is therefore coherent with Eq. (18) for which θ j = θ j+1

for j ≥ p. Let us now consider qp−1 = θp−1 − θp . The quantity θp−1 is well defined as

the limit of θ
(n)
p−1, when n goes to infinity and it is equal to 1. This implies that the condition

(17) is violated, because otherwise θp should be equal to 1 as well. The fact that all the θ j ,
for j ≤ p − 1 are equal to 1 is not surprising: it means that the full conditional measure of
points in the ball B(z, e−un ) are outside it when iterated up to p − 1 times.

In the assumptions of Proposition 2, the EI is equal to θk when the limit in Eq. (14) defining
this quantity exists and k being the clustering order. We point out that the limits in Eq. (14)

2 This condition holds for instance when the invariant measure μ is mixing with decay of correlation fast
enough; sometimes a rate of decay as n−2 is sufficient.
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or Eq. (7) have been computed up to now and in the framework of dynamical systems in a
whole variety of situations: around periodic points inmany publications, around finitelymany
points [24,25], around countably many points [14] and even for Cantor sets recently [26,27].
Computations along the diagonal in coupled systems have been considered in [12,28–30].
In all these cases, at most only one of the qk is different from zero. We will present later
on further examples of explicit computations of the qk . In particular Sect. 4.1.2 will give an
example of a stationary random dynamical system for which all the qk are different from
zero and from each other, which implies that condition (17) is violated at all orders. In this
respect our formula (16) is a generalization of the O’Brien formula.

2.1 Statistical Estimators of the Extremal Index

We saw in the preceding section that the value θp provides the extremal index if the target
point z is of (minimal) period p. It is therefore not surprising that estimators based on the
O’Brien formula have been proposed for the computation of the EI. In particular the following
formula has been introduced to compute the extremal index associated to time series in [31]
(formula 10.26): we start with a trajectory (x0, T x0, . . . , T N−1x0) and for a high enough
threshold u we compute:

θ̂m :=
∑N−1−m

i=0 1(φ(T i x0) > u ∩ max j=1,...,m φ(T j+i x0) ≤ u)/(N − m)∑N−1
i=0 1(φ(T i x0) ≥ u)/N

. (19)

If we are in presence of a periodic point of, at least, period m for the observable φ(x) =
− log d(z, x), then θ̂m is a good approximation of the EI.

We notice that when m = 1, Eq. (19) gives the likelihood estimator of Süveges θ̂Su [32],
and the obtained result is an indicator of the persistence of the system close to a state z (see for
example [6]). We remind that for a high quantile p of the time series, the Süveges estimator
is given by:

θ̂Su =
∑Nc

i=1(1 − p)Si + N + Nc −
√

(
∑Nc

i=1(1 − p)Si + N + Nc)2 − 8Nc
∑Nc

i=1(1 − p)Si

2
∑Nc

i=1(1 − p)Si
,

(20)
where N is the number of exceedances over τ , Nc is the number of clusters of two or more
exceedances, and Si is the size of the cluster i . This estimator is presented in [32]. AMatlab
code and numerical details related to this computation in the context of dynamical systems
are available in [1].

Wewarn that in presence of periodicity of order, say p, the estimator of Eq. (19) is adapted
when it is strictly less than 1, because all the θm , for m < p are equal to 1. This observation
applies as well to the computation of the qk : they are all zero up to qp−1.

Ferreira [33] reviews several numerical algorithms to compute the EI (including those
shown before). In this paper we choose to work with the qk and we list a few features of this
approach.

• In the presence of periodicity, we do not need to check condition Eq. (17); the clustering
order, if any, is obtained automatically by progressing in the evaluation of the q j . We will
show in Sects. 4.1.2 and 4.2 examples of stationary processes constructed with random
perturbation where several qk are different from zero.
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• Equation (8) works as well when the ball B(z, e−un ) is replaced by any other measurable
sets whose measure goes to zero when n → ∞. This comes to modify suitably the
observable φ. A concrete example will be given in Sect. 5.

• Whenever one of the q j is strictly positive, we get an EI strictly less than 1. This will
be extensively used in Sects. 4.1.2, 4.2, 5.2. Notice that it is equivalent to find a certain
θk < 1 for k ≥ 1.

In practice, one cannot compute all the q j values and must stop at an order m. We stress
that the sequence {q j } is rapidly decreasing to 0 and the quantity θm = 1− q0 − · · · − qm−1,
wherem should be taken not too big, should give a fair estimate of θ . The approximate value
q̂ j for q j is obtained by considering a trajectory of length N as

q̂ j =
∑N−2−m

i=0 1(φ(T i x0) ≥ u ∩ maxl=1,...,m φ(T l+i x0) < u ∩ φ(T i+ j+1x0) ≥ u)/(N − 1 − m)∑N−1
i=0 1(φ(T i x0) ≥ u)/N

.

(21)

2.2 Numerical Estimates of the Extremal Index in Deterministic Systems

We present below the computations for different maps and various target points z and show
the difference between the approximate estimate θ̂m of θm (we performed our computations
at the orderm = 5) and Süveges estimate (with order 0). We find that θ̂m obtains values close
to the predictions of Eq. (9), while the other estimate gives 1 for points of period larger than
1 (Table 1).

We observe in Fig. 1 that for a target point of period k, θ̂m is equal to 1 form < k, is equal
to θ form ≥ k, due to the fact that only q̂k−1 is non zero. Form 
= k, we also have q̂m−1 = 0,
as expected. Although the Süveges estimator is not in principle suitable to detect periodic
points with period strictly larger than 1, it is very often used to analyze time series since it
is particularly simple to implement. But there is a more interesting reason. If the process is
not periodic, for instance generated by random dynamical systems like those presented in
the next sections, whenever the Süveges estimator is strictly less than one, the same happens
for the EI, thanks to our Proposition 1.

Table 1 Comparison of estimates of θ found with the different methods for the 2x − mod1 map and Arnol’d
cat map [34], defined in T

2 by T (x, y) = (x + y, x + 2y)

Application z Period Theoretical value θ̂Su θ̂5 Uncertainty

2x mod1 4/5 4 0.9375 1 0.9375 0.0024

2x mod1 0 1 0.5 0.5007 0.5005 0.0028

2x mod1 1/3 2 0.75 1 0.7508 0.0017

2x mod1 1/π Not periodic 1 1 1 0

Cat’s map (1/3, 2/3) 4 0.9730 [23] 1 0.9732 8.3 × 10−4

Cat’s map (1/2, 1/2) 3 0.9291 [23] 1 0.9292 9 × 32.10−4

Cat’s map (0, 0) 1 0.5354 [23] 0.5352 0.5350 0.0018

Cat’s map (1/
√
2, π − 3) Not periodic 1 1 1 0

For all of the computations, we averaged our results over 20 trajectories of 5 × 107 points and took as a
threshold the 0.999-quantile of the observable distribution. The uncertainty is the standard deviation of the
results
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(A) (B)

Fig. 1 Evolution of θ̂m with m, for different target points and different maps. The numerical values are found
in Table 4 and the parameter used in the text. The dashed line are the theoretical values of θ

Fig. 2 Comparison of the
distribution of θ with the two
estimates. The blue distribution is
obtained using θ̂Su and the red
one using θ̂5 (for both taking as a
threshold the 0.99-quantile of the
observable distribution) (Color
figure online)

Instead, aswe saw in the table above, the differencewith real situations of larger periodicity
could be important. In such cases, the estimate θ̂m performs systematically better. We will
use this estimator in the numerical computations of this paper.

To evaluate the differences between the two estimates in high dimensional datasets, we
test them on the North Atlantic daily sea-level pressure data described in [6]. For each
atmospheric state z, the EI index associated to the observable − log dist(z, .) was evaluated
using the Süveges estimate and called the inverse persistence of z. The two estimations are
shown in Fig. 3

Estimates using θ̂5 for these data are systematically lower than those with the order 0
method (in average 0.065 less), due to the contribution of some q̂k for k > 0 (see the empirical
distribution in Fig. 2). In Fig. 3 we present a scatter plot of the daily values of θ obtained with
the two estimators.We see that there is a strong linear relation between the two estimates with
an offset of about 0.1 days−1. The estimation of the cross-correlation coefficient, namely the
zeroth lag of the normalized covariance function, yields 0.94, meaning that the information
contained in the two estimators is the same except for a restricted set of states z. Moreover,
if we remove the time averaged values 〈θ̂Su〉 of the Süveges estimator and 〈θ̂5〉 of the new
estimator from the time series, we can compare the distribution of θ̂Su − 〈θ̂Su〉 with that of
θ̂5 − 〈θ̂5〉. For this comparison, we have used a two sided Kolmogorov–Smirnov test and
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Fig. 3 a Scatter plot of θ̂Su (the Süveges estimator) versus θ̂5 (the new estimator introduced in this work)
computed with p = 0.99. bAverage map of the 5% sea-level pressure patterns with the best matching between
θ̂Su and θ̂5; they correspond to the 5% closest values to the diagonal in (a). c Average map of the 5% sea-level
pressure with the worst matching between θ̂Su and θ̂5; they correspond to the 5% farthest values to the diagonal
in (a)

verified the null hypothesis that the estimators are from the same continuous distribution at
the 5% confidence level.

The lowest differences between the two estimators are found for patterns close to the
average field z. This corresponds to anomalies close to 0 hPa in Fig. 3b. Instead, large
differences between estimators correspond to a peculiar z pattern, consisting of a deep low
pressure anomaly over the north of the domain and an anticyclonic anomaly over the southern
part of the domain. This pattern resembles those observed in [6] for the minima of the local
dimensions d(z). This analysis confirms that the two estimators are different even beyond
the simple shift in the values. The patterns where the two estimators mostly diverge can
be thought as originating from the presence of higher order periodic points of the attractor
underlying the mid-latitude atmospheric circulation. In this sense, the combined use of both
θ̂Su and θ̂5 estimators could be useful to detect these special points of the dynamics in climate
data and other natural phenomena.

3 The Random Case: Non-stationary Situations (Quenched Noise)

Thedynamics and the consequent detection of the extremal index could be affected in different
ways. We begin with the dynamics by distinguishing first two cases:

3.1 Sequential Systems

These systems are defined by concatenating maps chosen in some set, usually in the close
neighborhood of a given map. As a probability measure one usually takes some ambient
measure like Lebesgue, which makes the process given by the sequences of concatena-
tions non-stationary. The extremal value theory and the extremal index must be redefined
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(see [35], in particular Eq. (2.8)). In Sect. 4.5 of the aforementioned paper, we showed an
example of a sequential system modeled on maps chosen in the neighborhood U of a given
β-transformation Tβ . According to suitable choices of U it is possible to show either that the
EI of the unperturbed map and of the sequential system are the same, or the two differ, in
particular when the elements of the concatenation are far enough from Tβ . In this case the
EI is simply 1. Sequential systems are a model for non-autonomous physical systems that do
not admit a natural stationary probability measure. Statistical limit theorems can be proved
as well in this context provided the observables are suitably centered (see [36,37] for more
details). The previous example with β-transformations suggests that when the maps are far
enough from each other, the EI converges to 1.

To the best of our knowledge, there are not numerical investigations of extreme value
behaviors for sequential systems. We propose one of them in the Appendix.

3.2 Random Fibred Systems

The sequential systems are in some sense too general, since there are no real prescriptions on
the choice of the maps. A much more realistic class of non-autonomous systems is given by
random fibred systems. They are constructed by taking a driving map σ that preserves a prob-
ability measure ν on the measurable space �, and which codes a family of transformations
fω, for ω ∈ � on the fiber X via the composition rule

f nω : x = fσ n−1ω ◦ · · · ◦ fω. (22)

The driving system encodes the external influences on the system of interest: it acts deter-
ministically in the choice of the evolution transformations on the fibers. As L. Arnold wrote
at the beginning of his monograph [38]:

Imagine a mechanism which at each discrete time n tosses a (possibly complicated,
many-sided) coin to randomly select a mapping φn by which a given point xn is moved
to xn+1 = φ(xn). The selection mechanism is permitted at time n to remember the
choices made prior to n, and even to foresee the future. The only assumption made is
that the same mechanism is used at each step. This scenario, called product of random
mapping, is one of the prototypes of a random dynamical systems.

The mechanism used at each step is just the driving system. It is interesting to observe
for the objectives of this paper, that random fibred systems have been used to analyze the
transport phenomena in non-autonomous dynamical systems, such as geophysical flows (see
the enlightening review article [39]). In order to perform statistics on these systems, we notice
that a family of sample measures μω lives on the fiber, which verifies the quasi-invariant
equation ( fω)∗μω = μσω, where ( fω)∗ is the push-forward of the measure. These sample
measures will be taken as the probability measures that describe the statistical properties
along the fiber and they do not give rise to stationary processes. The relation between the
sample measures and ν is that the measure μ := ∫

μωdν(ω) is preserved by the skew
(deterministic) transformation F(x, ω) = ( fω(x), σω), acting on the product space X × �.

The extremal index can be suitably defined and it could be different from 1 (see Corollary 5.1
andTheorem5.3 in [35] dealingwith random subshift). Transparent examples are constructed
in the following subsections.
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Table 2 Values of θ found for
different values of α and for
different trajectories of length
107

Trajectory α = 1/π α = √
2 − 1 α = 4/5

1 0.9995 0.9995 1

2 0.9995 0.9996 1

3 0.9997 0.9998 1

4 0.9997 0.9995 1

5 0.9996 0.9996 1

6 0.9994 0.9996 1

We used the estimate θ̂5 and the 0.999-quantile of the observable distri-
bution as a threshold

3.2.1 Random Lasota–Yorke maps [40]

Take � = IZ, where I = (1, . . . ,m) is a finite alphabet with m letters. We associate
to each letter a piecewise expanding map of the interval fω satisfying some smoothness
and distortion standard assumptions. The map σ is therefore the bilateral shift and ν any
ergodic shift-invariant non-atomic probability measure, for instance the Bernoulli measure
with weights p1, . . . , pm . The sequence of concatenations is given by f kω = fωk ◦ · · · ◦ fω1 ,
with ω j ∈ I and j = 1, . . . , k are the first k symbols of the word ω.3 In this setting it can
proved that the sample measures are equivalent to the Lebesgue measurem and form-almost
any target point z ∈ X and ν almost any realization ω ∈ �, the EI is equal to 1 (see [40]).
This corresponds to a quenched result since it depends on the choice of the sequences ω.

3.2.2 Rotations

Another more physical quenched example is constructed in the following way. Let us take
as � the unit circle S1 and as σ the irrational rotation: σ(ω) = ω + α − mod1, ω ∈ S

1 with
α ∈ R. Then we define T (x) = 3x − mod1 and make the correspondence:

ω → fω such that fω(x) = T (x) + ω − mod1.

σω → fσω such that fσω(x) = T (x) + σω − mod1.

...

σ kω → fσ kω such that fσ kω(x) = T (x) + σ kω − mod1.

and so on, by composing after that as: fσ kω ◦ · · · fω.
This last example was implemented numerically using the estimate θ̂5 for different tra-

jectories and choices of α, either irrational or rational. We found an extremal index equal or
very close to 1 in all cases (see Table 2).

Remark 2 In the preceding two examples we considered the extremal index, but we did not
indicate anymethod to compute it.We are in fact outside the stationary regimewhich provided
us with the various formulae described in the previous sections. Actually a definition of the
EI in the non-stationary case is given in formula (2.8) in [35]. This formula relies also on a
suitable definition of the boundary level un given in Eq. (2.2) in the aforementioned paper.

3 Notice that this is equivalent to Eq. (22) by defining the map ω → f(ω)′ , where (ω)′ is the ω1 coordinate
of ω.
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The above formula (2.8) is a slight modification of the O’Brien formula and it could be
reasonably recovered numerically by using Eq. (19) or the Süveges formula when we are not
in presence of clustering. Although the EI was computed rigorously for the Random Lasota–
Yorke maps as indicated in Sect. 3.2.1, we lack a rigourous argument for the rotations and
the numerical results we presented have been obtained with the θ̂5 estimate. We observe that
we could assume as a definition of the extremal index in these non-stationary situations the
reciprocal of the expectation given by the distribution of the number of visits (see Eq. (46)
in Sect. 6). We will show in Sect. 6.3 that the value for the EI computed in that way is the
same as that provided by the θ̂5 estimate.

4 The Random Case: Stationary Situations (Annealed Noise)

The preceding two situations dealt with non-stationary processes.We now focus on stationary
processes given by i.i.d. randomly chosen transformations (Sect. 4.1), and by i.i.d. moving
target sets (Sect. 4.1.2).

4.1 I.i.d. RandomTransformations

We now suppose that the maps fω are no longer driven by the measure-preserving map σ ,
but are chosen in an i.i.d. manner.

4.1.1 Additive Noise

Acommonway tobuild such aprocess is to choose amap f and to construct the family ofmaps
fξ = f +εξ , where ξ a random variable sampled from some distributionG. This distribution
can be the uniform distribution on some small ball of radius ε around 0, where ε is the
intensity of the noise. The iteration of the single map f is now replaced by the concatenation
fξn ◦ · · · ◦ fξ1 , where the ξk are i.i.d. random variables with distribution G. If T has good
expanding or hyperbolic properties, it is possible to show the existence of the so-called
stationarymeasureρs , verifying for any real bounded function g:

∫
gdρs = ∫ ∫

g◦TξdρsdG,

(see [1] Chapter 7, for a general introduction to the matter). If we now take the probability
productmeasureQ := G

N×ρs, any process of type {g( fξn ◦· · ·◦ fξ1)}n∈N isQ-stationary. The

extremal index is obtained again by applyingEq. (8)where the sets�
(k)
n (z) andμ(B(z, e−un ))

are now weighted with the measure Q. The expectation being taken with respect to G too,
makes this an annealed type random perturbation, while the fibred perturbation described
above is a quenched one, the expectations depending on the realization ω. In the article
[18] we rigorously proved that for a large class of piecewise expanding maps of the interval
perturbed with additive noise with the uniform distributionG, the extremal index is 1 as soon
as ε becomes positive. The same happens for other kinds of maps and smooth distributions, as
we showed in [41] numerically.We believe that this mostly happens for the systems perturbed
with i.i.d. noise, since the latter destroys all the periodic points. Nevertheless it is possible
to construct annealed examples giving an EI less than one. This will be done in the next
section.
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4.1.2 Discrete Noise

Let us consider:

• Two maps f0 = 2x − mod1 and f1 = 2x + b − mod1, 0 < b < 1.
• A fixed target set around 0: Hn(0) := B(0, e−un ), the ball of radius e−un around 0. Notice

that 0 is a fixed point of f0, but not of f1.

The indices ξ1, . . . , ξn in the concatenation fξn ◦ · · · ◦ fξ1 are i.i.d. Bernoulli random
variables with distribution, for instance, G = pδ0 + (1 − p)δ1, with p = 1

2 . The spectral
theorydeveloped in [18] applies aswell to this case, giving an absolutely continuous stationary
measure ρs . Proposition 5.3 in [18] gives for q0:

q0 = lim
n→∞

∫
dG(ξ)ρs(Hn(0) ∩ f −1

ξ Hn(0))

ρs(Hn(0))

= lim
n→∞

[
1

2

ρs(Hn(0) ∩ f −1
0 Hn(0))

ρs(Hn(0))
+ 1

2

ρs(Hn(0) ∩ f −1
1 Hn(0))

ρs(Hn(0))

]
(23)

Since 0 is not a fixed point of f1, a standard argument gives 0 to the limit in the square
bracket on the right hand side. Instead by the mean value theorem applied to the left term in
the square bracket we get in the limit of large n: q0 = 1

4 .

Remark 3 The preceding example could be interpreted as a perturbation of the map f0 =
2x − mod1 around its fixed point 0. Instead we change the point of view and consider it as
a perturbation of the map f1 = 2x + b − mod1 around 0. Supposing the map f0 is chosen
with probability p0, we see that when p0 = 0 (absence of perturbation), the E I = 1, since 0
is not a fixed point for f1, but it jumps to E I ≤ 1− 0.5 p0 as soon as p0 > 0 and regardless
of the value of b. This behavior is specific to what happened for the additive noise described
above: there it was enough to switch on the noise, no matter of its magnitude, to make the E I
equal to one. Here, the E I changes in term of the probability of appearance of the perturbed
map, no matter of its topological distance from the unperturbed one, the value of |b| in this
case. However, it is easy to make the E I to depend on the distance between the maps. For
instance, let us take f0 as f0 = (2 + j)x − mod1, j ∈ N, which could be seen as a strong
perturbation. By repeating the argument above we get that the E I ≤ 1 − p0

1
2+ j .

The preceding computation of q0 is valid for all values of b ∈ (0, 1). The question we may
ask now is whether other qk are non zero. By a similar reasoning as for the computation of
q0, this problem is equivalent to ask for the existence of a concatenation fξk+1 ◦ · · · ◦ fξ1
making the point 0 return to itself after k + 1 iterations and not before. Indeed, in that case
we have that

qk ≥ lim
n→∞

G(ξ1, . . . , ξk+1)ρs(Hn(0) ∩ ( f −1
ξ1

Hn(0))c ∩ · · · ∩ ( f −k
ξk

Hn(0))c ∩ f −k−1
ξk+1

Hn(0))

ρs(Hn(0))
.

(24)
Note that we have here an inequality since several concatenations could make the point

0 retun to itself after k + 1 iterations. The right hand side of the previous inequality equals
G(ξ1, . . . , ξk+1))/2k 
= 0.

If now the random orbit does not return to 0, a standard argument gives the value 0 for all
qk when k 
= 0.

To investigate the existence of such a concatenation, let us distinguish between the cases
when b is irrational or rational.
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If b is irrational and ξ1 
= 0, any concatenation of any length maps 0 into an irrational
point, and so the orbit cannot come back to 0 after having left it. For this reason, all the qk
but q0 are equal to 0.

We investigate the case where 0 < b = p/q < 1 is rational, where p, q ∈ N are mutually
prime.

We start by showing by induction that for n ≥ 1 and for all i ∈ [2n, 2n+1 −1], the random
orbit starting from p/q can attain the points i p

q − mod1 (and only them) in exactly n steps.
This proposition is true at rank n = 1, since f0(p/q) = 2p/q , f1(p/q) = 3p/q −mod1.

Suppose now that it holds at rank n. Then we have that

• f0(2n p/q − mod1) = 2n+1 p/q − mod1
• f1(2n p/q − mod1) = (2n+1 + 1)p/q − mod1

...

• f0((2n+1 − 1)p/q − mod1) = (2n+2 − 2)p/q − mod1
• f1((2n+1 − 1)p/q − mod1) = (2n+2 − 1)p/q − mod1,

and the proposition is true at rank n + 1. This result implies that any point of the form
j p/q −mod1, with j ∈ N, j ≥ 2 can be attained by the random orbit starting from the point
p/q . We remark that some of these points can be attained for the first time in several ways.
As an example, we can take p/q = 1/3. The point 2/3 can then be attained from 1/3 by the
concatenations f0 and f0 ◦ f1 ◦ f1.

Let us consider fξm ◦ · · · ◦ fξ2 ◦ f1 the concatenation of minimal length m ≥ 2 such
that fξm ◦ · · · ◦ fξ2 ◦ f1(0) = qp/q − mod1 = 0. Note that the first map involved in this
concatenation is f1, so that the first iterate gives p/q . By the preceding argument, there
exists such a concatenation and as we consider the smallest of the concatenations having
this property, the random orbit leaving 0 does not come back to 0 before m iterations. As
discussed earlier, this implies a non zero value of qm−1.

In fact, there exists infinitely many non zero qk : consider the concatenation of minimal
lengthm′ ≥ 2, fξ ′

m′ ◦ · · · ◦ fξ ′
2
◦ f1 such that fξ ′

m′ ◦ · · · ◦ fξ ′
2
◦ f1(0) = (q +1)p/q −mod1 =

p/q −mod1. By the argument in the induction, we have that either m′ = m or m′ = m + 1.
Then we see that

fξm ◦ · · · ◦ fξ2 ◦ fξ ′
m′ ◦ · · · ◦ fξ ′

2
◦ f1(0) = fξm ◦ · · · ◦ fξ2(p/q) = 0.

This proves the existence of a concatenation returning the point 0 to itself after exactly either
2m or 2m + 1 iterations (and not before). Again we have proved that either q2m or q2m−1 is
non zero. Applying the same reasoning, we can prove that infinitely many qk have positive
values.

An interesting situation happens when b = 1/2. In this case, for all k, 0 can come
back to itself after exactly k + 1 iterations, and this happens only for the concatenation
f0 ◦ f1 ◦ f1 ◦ · · · ◦ f1, where the map f1 is applied succesively k times. This sequence having
probability (1− p)k p = 1/2k+1, it is easily seen (by the very definition of qk in Eq. (7) and
analogously to the proof for the computation of q0), that the qk are non zero and are equal
to:

qk = 1

2k+1 lim
n→∞

ρs(Hn(0) ∩ ( f −1
1 Hn(0))c ∩ ... ∩ ( f −k

1 Hn(0))c ∩ f −k−1
0 Hn(0))

ρs(Hn(0))
= 1

4k+1 .

In this situation, θ can be computed analytically and we find:

θ = 1 −
∞∑
k=0

(
1

4

)k+1

= 2/3.
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Table 3 Estimations of the qk
using q̂k for the precedent
example with b = 1/2

Theoretical values Estimate q̂k Uncertainty

q0 0.25 0.2500 0.0020

q1 0.0625 0.0624 0.0016

q2 0.015625 0.0156 7.9 × 10−4

q3 0.00390625 0.0039 3.94 × 10−4

q4 9.765625 × 10−4 9.321 × 10−4 1.69 × 10−4

These results compare favorably with theoretical values to a precision of
the order of 10−4. Results are averaged over 20 trajectories of 5 × 106

points and we took the 0.999-quantile of the observable distribution as
a threshold. The uncertainty is the standard deviation of the results

We computed in Table 3 some estimates q̂k and we find a very good agreement between
theoretical and numerical estimates.

4.2 Moving Target

Another source of disturbance comes from the uncertainty of fixing the target ball for the
hitting times of the orbit. A more general theory of random transformations and moving balls
will be presented elsewhere. Here we simply consider the case of a deterministic dynamics
and a target set shifted by a random displacement and we assume an annealed approach.

4.2.1 Discrete Noise

Let us take a point z ∈ X ; then we consider σ the one-sided shift on m symbols and set
� = {1, · · · ,m}Z. To each symbols, j = 1, . . . ,m, there corresponds a z( j) ∈ [z−ε, z+ε].
As a probability G(ω), ω = (ω0, ω1, . . . ) ∈ �, we put the Bernoulli measure of weights
pi = 1

m , i = 1, . . . ,m. It is invariant under the shift. Note that ε is fixed and is the strength of
the uncertainty. At each temporal step the map T moves x and the target point moves as well
around z under the action of σ . We now construct the direct product S(x, ω) := (T (x), σω).
The probability measure P := μ × G is invariant under S. As in Sect. 2 we are interested in
the distribution of the random variable

Hr
n (x) := {First time the iterate T n(x) enters the ball B(z(σ nω)′, e−un )}, (25)

where ω′ = ω0 is the first coordinate of ω. We define the usual observable:

φ(x, ω) = − log |x − z(ω′)| = − log |x − z(ω0)|,
and notice that for all k ≥ 1 :

φ(Sk(x, ω)) = − log |T k(x) − z((σ kω)′)| = − log |T k(x) − z(ωk)|.
The distribution of Hr

n (x) is given by P (Mn ≤ un) , where

Mn(x, ω) = max{φ(x, ω′), φ(S(x, ω)), . . . , φ(Sn−1(x, ω))},
and the boundary levels un verify

nP(φ(x, ω) > un) = n
∫ ∫

dG(ω)μ(B(z(ω′), e−un ) → τ
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for some positive number τ . We now choose a map T on the unit interval admitting a spectral
gap for the transfer operator and preserving an absolutely continuous invariant measure μ.
That operator acts, for instance, on the space of bounded variation function on [0, 1], which
can be enlarged to a Banach space by adding to the total variation, | · |T V , the L1 norm with
respect to the Lebesgue measure m, || · ||L1(m). We endow the space of functions g(x, ω)

defined on X × � with the Banach norm defined by:

||g||B :=
∫

|g(·, ω)|T V dG(ω) + ||g||L1(G×m).

One can show that with respect to this norm the transfer operator LS for the direct product
S has a spectral gap on the largest eigenvalue 1. We introduce now the perturbed operator
L̃S(g(x, ω)) = LS(g(x, ω)1Bc(z(ω′),e−un )(x)), where g ∈ B is a function defined on the
Banach space just introduced. We first notice that

P (Mn ≤ un) =
∫ ∫

L̃n
S(h)dmdG,

where h is the density of μ, which, with our assumptions, is bounded from below by the
constant C . Since ||(L̃S − LS)h||L1(G×m) ≤ Ce−un ||h||B, we can apply the perturbation
theorymentioned in section 2, (see [1,15,42] chapter 7), and show thatP (Mn ≤ un) converges
to the Gumbel law e−θτ . The extremal index θ is given by the adaptation to the actual case
of Eq. (7), with the q0 which reads:

q0 = lim
n→∞

∫
dG μ

(
B(z(ω′), n) ∩ T−1B(z(σ−1ω)′, n)

)
∫
dG μ(B(z(ω′), n)

, (26)

where we denoted B(., n) = B(., e−un ) for simplification of notations.We now give a simple
example for which q0 > 0, which implies that the extremal index is strictly less than 1. Take
as T the map T (x) = 2x −mod1, and an alphabet of 4 letters: {0, 1, 2, 3}with equal weights
1/4. Moreover μ is the Lebesgue measure. Then we set the associations:

• 0 → z0
• 1 → z1
• 2 → z2
• 3 → z3,

where zi , i = 0, 1, 2, 3 are points in the unit interval verifying the following assumptions:

• T (z1) = T (z2) = z0; T (z0) = z3.
• T (z3) 
= zi , i = 0, 1, 2, 3.

The numerator of q0 is:∫
[ω0=1,ω−1=0]

μ
(
B(z1, n) ∩ T−1B(z0, n)

)
dG

+
∫

[ω0=2,ω−1=0]
μ

(
B(z2, n) ∩ T−1B(z0, n)

)
dG

+
∫

[ω0=0,ω−1=3]
μ

(
B(z0, n) ∩ T−1B(z3, n)

)
dG

+[sum over all the other cylinders of length 2],
where [ω0, ω−1] denotes a cylinder with fixed coordinates ω0 and ω−1.
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For the denominator we get the value:

∫
dGμ(B(z(ω′), n) =

n∑
l=1

∫
[ω0=l]

dGμ(B(z(l), n) =
4∑

l=1

pl μ(B(z(l), n),

By using the same arguments as in Eq. (23), we see that for all the cylinders in the numerator
different from the three explicitly given above, the integrals give zero in the limit of large n.
For the first of the three cases above (the others being similar), we get∫

[ω0=1,ω−1=0]
μ

(
B(z1, n) ∩ T−1B(z0, n)

)
dG

= 1

2

∫
[ω0=1,ω−1=0]

μ (B(z0, n)) dG = 1

2

(
1

4

)2

μ (B(z0, n)) .

The numerator therefore contributes with 3
2 (

1
4 )

2μ (B(z0, n)). The denominator is (by the
Lebesgue translation invariance): μ (B(z0, n)). Therefore we get q0 = 3

2 (
1
4 )

2 = 0.09375.
To get q1, we need to compute the following quantity:

q1 = lim
n→∞

∫
dG μ

(
B(z(ω′), n) ∩ T−1B(z(σ−1ω)′, n)c ∩ T−2B(z(σ−2ω)′, n)

)
∫
dG μ(B(z(ω′), n)

. (27)

We start, as before, by summing the integral in the numerator over all the possible cylinders
of length 3. Among those cylinders, it is easy to check that only 6 of them contribute to the
mass, namely ([3, 1, 1], [3, 2, 1], [3, 3, 1], [3, 1, 2], [3, 2, 2] and [3, 3, 2]). For the integral
associated to the first cylinder, we have (the five others are similar):∫

[3,1,1]
dG μ

(
B(z(ω′), n) ∩ T−1B(z(σ−1ω)′, n)c ∩ T−2B(z(σ−2ω)′, n)

)

=
(
1

2

)2 ∫
[3,1,1]

dG μ(B(z3, n)

= 1

43
1

22
μ(B(z3, n))

By summing over the six cylinders and dividing by the denominator, we get the result:

q1 = 6

(
1

4

)3 (
1

2

)2

.

Wetested this result numericallywith different sets of target points following the aforemen-
tioned assumptions.Wefindgood agreements of q̂0 with the theoretical value ofq0 = 0.09375
and of q̂1 with the theoretical value of q1 = 0.0234375 with a precision of order 10−3 (see
Table 4).

In the case where none of the points zi is the kth iterate of another (in particular none of
the points zi is k-periodic), it can be shown that qk−1 is equal to 0 for k > 2. This is indeed
what we find in our numerical simulations, which were performed up to the order 5.

This example is in some sense atypical since the four points z0, . . . , z3 could be far away
from each other. For instance, z1 and z2 are the two predecessors of z0 and therefore they
are on the opposite sides of 1

2 . By constraining the points to be in a small neighborhood of
a given privileged center, the previous effects should be absent and the EI should be one,
or very close to it. However our example shows that in the presence of moving target, it is
not the periodicity which makes the EI eventually less than one. This gives another concrete
example where the series in the spectral formula has at least two terms different from zero.
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Table 4 5-order estimates of θ

found for different z0 (the other
points z1,z2 and z3 are computed
to satisfy the assumptions of the
presented example)

z0 θ̂5 Uncertainty q̂0 q̂1

2/11 0.883 0.0017 0.0937 0.0231

10/13 0.883 0.0016 0.0936 0.0234

1/π 0.883 0.0022 0.0933 0.0234

We used as a threshold the 0.999-quantile of the observable distribution
and the uncertainty is the standard deviation of the results. The values
for q̂0 and q̂1 are averaged over the 20 trajectories and match with the
theoretical results. All the other q̂k computed are equal to 0

4.2.2 Continuous Noise

We claimed above that when the center of the target ball can take any value in a small
neighborhood of a given point z0, the EI collapses to 1, even for periodic points z0. To
model this more physically realistic situation, let us fix ε > 0 and consider the set Zε =
[z0 − ε, z0 + ε]. We define a map f acting on Zε with an associated invariant probability
measure ν that drives the dynamics of the target point z ∈ Zε . We suppose that ν is not
atomic. The observable considered is now φ(x, z) = − log |x − z| on the product space
{X × Zε, μ×ν}. By similar arguments to the ones we described for the discrete perturbation
of the target point, we can show the existence of an extreme value law for the process
φ ◦ (T k, f k), with an EI given by Eq. (7), with

qk = lim
n→∞

∫
Zε

dν(z)μ
(
B(z, n) ∩ T−1B( f (z), n)c · · · ∩ T−k−1B( f k+1(z), n)

)
∫
Zε

dν(z)μ(B(z, n)
, (28)

where B(y, n) denotes a ball around y of radius e−un . We have:

Proposition 3 Suppose that for all k ∈ N, ν({z ∈ Zε |T k+1(z) = f k+1(z)}) = 0 and that
μ is absolutely continuous with respect to Lebesgue with a bounded density h such that
h ≥ ι > 0. Then the extremal index is 1.

Proof To compute the term qk given by Eq. (28), we denote

Zn,k
1 = {z ∈ Zε |dist(z, T−k−1B( f k+1(z), n)) > rn},

where rn = e−un . We can write the numerator in Eq. (28) as a sum of integrals over Zn,k
1 and

its complementary set Zn,k
2 = Zε\Zn,k

1 .

Since for z ∈ Zn,k
1 , z and z∗ are at a distance larger than rn, for all z∗ ∈

T−k−1B( f k+1(z), n), we have that B(z, n) ∩ T−k−1B( f k+1(z), n) = ∅, and the integral
over Zn,k

1 is zero for all n.

It remains now to treat the integral over Zn,k
2 . We have that:

qk ≤ lim
n→∞

∫
Zn,k
2

dν(z)μ(B(z, n))∫
Zε

dν(z)μ(B(z, n))
≤ lim

n→∞ ν(Zn,k
2 )

supx∈M μ(B(x, n))

inf x∈M μ(B(x, n))

= lim
n→∞ ν(Zn,k

2 )
supx∈M h(x)

inf x∈M h(x)
.

(29)

With our assumptions on h, the fraction in the last term is finite. Let us consider the limit set
Zk
2 = ∩n Z

n,k
2 = {z ∈ Zε |T k+1(z) = f k+1(z)}. We have that limn→∞ ν(Zn,k

2 ) = ν(Zk
2) =

0, by hypothesis and so qk = 0 for all k and therefore θ = 1. 	
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Remark 4 In practice, the requirement that ν({z ∈ Zε |T k+1(z) = f k+1(z)}) = 0 for all k is
satisfied for a large class of situations. We take two maps T and f intersecting at a countable
number of points Z1

2. We suppose that the preimage of any point by the applications T and
f is a countable set. Then the set Zk

2 = T−k−1Z1
2 ∪ f −k−1Z1

2 is countable as well for all
k ∈ N. Since ν is non-atomic, we have that ν({z ∈ Zε |T k+1(z) = f k+1(z)}) = 0 is verified
and the proposition holds.

4.2.3 Observational Noise

Instead of considering a perturbation on the target set driven by the map f , we consider the
center of the target ball as a random variable uniformly distributed in the neighborhood of
size ε of the point z0. This situation models data with uncertainty or disturbances in their
detection, and is equivalent to the case observational noise which we considered in [43] in
the framework of extreme value theory. In this approach, the dynamics of a point x is given by
T kx+ξk , where ξk is a random variable uniformly distributed in a ball centered at 0 of radius
ε. The process is therefore given by − log(dist(T kx + ξk, z0)). When this is transposed in
the moving target case, it becomes − log(dist(T kx, z0 − ξk)) and the two approaches define
the same process, which give the same stationary distribution. In [43] we proved rigorously
in some cases and numerically in others, that for a large class of chaotic maps, an extreme
value law holds with an extremal index equal to 1. By equivalence of the two processes, an
extreme value law also holds in the moving target scenario and the EI is equal to 1.

We tested numerically the scenario of a target point following a uniform distribution in
an interval of length ε centered in a point z0, for several maps of the circle (Gauss map,
3x −mod1, rotation of the circle). For all of them, we find that for periodic z0, the extremal
index which is less than 1 when unperturbed, converges to 1 as the noise intensity ε increases
(see an example for the 3x − mod1 map in Fig. 4a). When z0 is not periodic (we chose it at
random on the circle), the EI is equal to 1 for all ε (see again Fig. 4b).

5 The Dynamical Extremal Index

Up to now the target set was a ball around a point. In the attempt to describe the synchronisa-
tion of coupled map lattices, Faranda et al. [42] introduced the neighborhood of the diagonal
in the n-dimensional hypercube and defined accordingly the extremal index related to the
first time the maps on the lattices become close together. Faranda et al. [42] then used that
approach to define a new type of observable, first in [10] and successively generalized in
[12], which brought to a different interpretation of the extremal index, in terms of Lyapunov
exponents instead of periodic behaviors.

Let us consider the k−fold (k > 1) direct product (X , μ, T )
⊗

k with the direct product
map Tk = T ◦· · ·◦T acting on the product space Xk and the productmeasureμk = μ◦· · ·◦μ.

Let us now define the observable on Xk

φ(x1, x2, . . . , xk) = − log( max
i=2,...,k

d(x1, xi )), (30)

where each xi ∈ X . We also write xk := (x1, x2, . . . , xk) and Tk(xk) = (T x1, . . . , T xk).
As we explained in [10], if we put Mn(xk) = max{φ(xk), . . . , φ(T n−1

k (xk)} and look at the
distribution of themaximumμk(Mn ≤ un), this distribution is non-degenerate and converges
to theGumbel law for n → ∞ e−θkτ , providedwe can find a sequence un → ∞ and verifying
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(A) (B)

Fig. 4 Influence of the intensity of noise ε on the EI for the 3x − mod1 map perturbed by uniform noise. We
simulated trajectories of 5 × 107 points and took p = 0.999. The computations are made using the estimate
θ̂5

nμk(φ > un) → τ , where τ is a positive number. The quantity θk is our new extremal index
and it will be described later on. Notice first that

μk(φ > un) =
∫
Mk

dxk1B(x1,e−un )(xk) . . . 1B(x1,e−un )(xk) =
∫
M
dx1μ(B(x1, e

−un ))k−1.

(31)
Our first motivation to investigate the observable in Eq. (30) was the fact that the integral

on the right hand side of Eq. (31) scales like e−un Dk (k−1), where Dk denotes the generalized
dimension of order k of the measure μ. We now describe θk . We first define:

�k
n = {(xk), d(x1, x2) < e−un , . . . , d(x1, xk) < e−un }. (32)

By using the spectral technique in [10], and the analytical results of [42], it is possible to
show that:

θk = 1 − lim
n→∞

μk(�
k
n ∩ T−1

k �k
n)

μk(�k
n)

. (33)

The quantity θk is the dynamical extremal index (DEI) appearing at the exponent of the
Gumbel law.

ForC2 expanding maps of the interval, which preserve an absolutely continuous invariant
measure μ = hdx with strictly positive density h of bounded variation, it is possible to
compute the right hand side of Eq. (33) and get:

μk(�
k
n ∩ T−1

k �k
n) =

∫
dx1h(x1)

∫
dx2h(x2) χB(x1,e−un ))(x2)χB(T x1,e−un ))(T x2)

· · ·
∫

dxkh(xk)χB(x1,e−un ))(xk)χB(T x1,e−un ))(T xk). (34)

All the k − 1 integrals above factorize, and depend on the parameter x1. Therefore they can
be treated as in the proof of Proposition 5.5 in [42], yielding the rigorous result:

Proposition 4 Suppose that: the map T belongs to C2; it preserves an absolutely continuous
invariant measure μ = hdx, with strictly positive density h of bounded variation; it verifies
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conditions P1 − P5 and P8 in [42].4 Then

θk = 1 −
∫ h(x)k

|DT (x)|k−1 dx∫
h(x)kdx

. (35)

This formula uses the translational invariance of the Lebesgue measure: we refer to Sects.
II-B and II-C in [10] for analogous extensions to more general invariant measures and to SRB
measures for attractors. As remarked in [10], whenever the density does not vary too much,
or alternatively the derivative (or the determinant of the Jacobian in higher dimensions) are
almost constant, we expect a scaling of the kind: θk ∼ 1− e−(k−1)hm , where hm is the metric
entropy (the sum of the positive Lyapunov exponents).

In Sect. D of [10] and for the case k = 2, we replaced the iterations of a single map with
concatenations of i.i.d. maps chosen with additive noise, see above, Sect. 4.1. Although the
dynamical extremal index is related to the Lyapunov exponents, it is also influenced by the
fact that the set � = ∪k

i=2{xi = x1} is invariant in the deterministic situation. By looking
at Eq. (33), we see that we estimate the proportion of the neighborhood of the invariant
set � returning to itself. As argued in [10], that estimate gives information on the rate of
backward volume contraction in the unstable direction. Since the noise generally destructs
these invariants sets, we expect the extremal index be equal to 1 or quickly approaching 1 for
all k when the noise increases. The situation depends again on the characteristics of the noise.

5.1 Additive Noise

The prediction at the end of the preceding section is confirmed by concatenating maps
perturbed with additive noise and smooth probability density function (see the numerical
computations shown in Fig. 9). As in Sect. 4.1.2 the perturbation is of annealed type. For
eachmap, trajectories of 107 points were simulated and the 0.999−quantile of the distribution
of the observable φ was selected as a threshold. As only the q0 term is non-zero, we choose
the Süveges estimate for our computations, to be assured that no error coming from q̂k terms
of higher order are added.

5.2 Discrete Noise

A different scenario happens if we look at sequences of finitely maps chosen in an i.i.d. way
according to a Bernoulli process as we did in Sect. 4.1.2. We choose now the two maps
f0(x) = 3x −mod1 and f1(x) = 3x +b−mod1 and we put the same distributionG defined
in Sect. 4.1.2. A combination of Eqs. (23) and (33) gives for the term q0 entering the infinite
sum defining the DEI:

q0 = lim
n→∞

∫
�

ρk(�
k
n ∩ f −1

ξ k
�k

n)dG
k(ξ k)

ρk(�k
n)

, (36)

where: ξ k is the vector ξ k = (ξ1, . . . , ξk), f −1
ξ k

= f −1
ξ1

· · · f −1
ξk

and ρk is the stationary

measure constructed as in [18]. We now split the integral over the cylinders ξ k,0 = [ξ1 =
0, . . . , ξk = 0], ξ k,1 = [ξ1 = 1, . . . , ξk = 1] and their complement (Fig. 5). Therefore we
have:

4 These conditions essentially ensure that the transfer operator associated with the map T has a spectral gap
and that the density h has finite oscillation in the neighborhood of the diagonal.
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(A) (B)

Fig. 5 Influence of the intensity of noise ε on the θk spectrum for maps of the circle perturbed by uniform
noise. We used the Süveges estimate and the 0.999-quantile of the observable distribution as a threshold, as
mentioned in the text

∫
�

ρk(�
k
n ∩ f −1

ξ k
�k

n)dG
k(ξ)

ρk(�k
n)

= G(ξ k,0)
ρk(�

k
n ∩ f −n

0 �k
n)

ρk(�k
n)

+ G(ξ k,1)
ρk(�

k
n ∩ f −n

1 �k
n)

ρk(�k
n)

+ (37)

{the integrals are computed over all the other cylinders of length k}. (38)

The two fractions in Eq. (37) are equal to the q(unp)
0 of the unperturbed systems, which

are the same by the particular choices of the maps and by Eq. (35).
All the other terms in Eq. (38) are zero, we now explain why. Let us in fact consider a

vector ξ̃ k different from (0, 0, . . . , 0) and (1, 1, . . . , 1). Suppose that the first coordinate ξ̃ k1
of ξ̃ k is zero and let ξ̃ kj 
= 0 for some 1 < j ≤ k. If xk ∈ �k

n , and since f0x1 = 3x1 −mod1,
f1x j = 3x j + b − mod1, we have that d( f0x1, f1xi ) →n→∞ min{b, 1 − b} as d(x1, xi ) <

e−un .
Therefore when n is large enough, ∀xk ∈ �k

n , f ξ̃ k xk := f ξ̃ kk · · · f ξ̃ k1 xk /∈ �k
n and �k

n ∩
f −1
ξ̃ k

�k
n = ∅. In conclusion we have

θk = 1 − q(unp)
0 (pk + (1 − p)k), (39)

where p is the weight of the Bernoulli measure. This last formula has been tested numerically
with the maps f0 and f1, for different values of b and with p = 0.5. Good agreement is
found for different values of b (see Fig. 8). We use trajectories of 5 × 107 points and the
0.995-quantile of the observable distribution as a threshold. Estimations are made using the
Süveges estimate, for the same reasons as described earlier.

6 Point Processes: Statistics of Persistence

We said in Sect. 2 that the extremal index is the inverse of the average cluster size when
we look at exceedances in the shrinking neighborhood of a given target point z. To be more
precise let us start with the deterministic case.
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Fig. 6 θk spectrum for the
sequence of two maps described
in the example, found using the
Süveges estimate. The red curve
is the value for b = 0, and for
different choices of b 
= 0, the
values of θk follow the
predictions of Eq. (39) (blue
squares) (Color figure online)

6.1 The Deterministic Case

We consider the following counting function

Nn(t) =
� t

μ(B(z,rn ))
�∑

l=1

1B(z,rn)(T
l(x)), (40)

where the radius rn goes to 0 when n tends to infinity. We are interested in the distribution

μ(Nn(t) = k), k ∈ N. (41)

for n → ∞. It has been proved (see for instance [11,17,44]) that when z is not a periodic

point, μ(Nn(t) = k) converge to the Poisson distribution tk e−t

k! , while for a periodic point of
minimal period p we have the Polyà-Aeppli distribution

μ(Nn(t) = k) → e−θ t
k∑
j=1

(1 − θ)k− jθ j (θ t)
j

j !
(
k − 1

j − 1

)
, (42)

where θ is the extremal index (Fig. 6).
We now invoke a very recent theory developed by [45], which allows us to put the statistics

of the number of visits in a wider context and to make explicit the connection with the EI,
which is the main object of this note.

We first replace the ball B(z, rn) with a sequence of sets Bn(�) whose intersection over
n ∈ N gives the zero measure set �. For instance in Sect. 5 such sets are the neighborhoods
�k

n . We keep in mind this example for the next application. We then define the cluster size
distribution πl as

πl := lim
K→∞ lim

n→∞
μ(

∑2K
i=0 1Bn(�) ◦ T i = l)

μ(
∑2K

i=0 1Bn(�) ◦ T i ≥ 1)
. (43)

As its name suggests, πl is the probability of havig exactly l retunrs in Bn(�) as n is
pushed to the limit. Under a few smoothness assumptions for the map T , which are verified
for the majority of what we called chaotic systems in this note, it is possible to prove ([45],
Theorem 1) that

μ

⎛
⎜⎝

� t
μ(Bn (�))

�∑
l=1

1Bn(�)(T
l(x)) = k

⎞
⎟⎠ → ν({k}), (44)
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Fig. 7 Graphical representation of the Markovian map defined below (left) and its associated invariant density
(right)

as n → ∞, where ν is the compound Poisson distribution for the parameter tπl . This
distribution can be recovered by its generating function gν(z) = exp

∫ ∞
0 (zx − 1)dH(x),

where H is the counting measure on N defined as H = ∑
l tπlδl , with δl the point mass at

l. The Polyà-Aeppli distribution is a particular case of compound Poisson distribution with
the πl having a geometric distribution πl = θ(1 − θ)l . The interesting feature of the theory
in [45] is that the πl can be expressed in terms of more accessible quantities, in particular of
the distribution function α̂l of the (l − 1) return into the set Bn(�) for n tending to infinity,
namely πl = α̂l−2α̂l+1+α̂l+2

α̂1−α̂2
, where

α̂� = lim
K→∞ lim

n→∞ μBn(�)

(
τ �−1
Bn(�) ≤ K

)
, (45)

being τ �
Bn(�)(x) = τ �−1

Bn(�)(x) + τBn(�)(T τ�−1
U (x)), with τ 1Bn(�) = τBn(�) = min{ j ≥ 1 :

T j (x) ∈ Bn(�), x ∈ Bn(�)}, the first return time. Moreover if θ denotes the extremal index
(as defined in Sect. 5 for general target sets), we have the identity:

∞∑
k=1

kπk = 1

θ
. (46)

This result is a generalization of Eq. (10) stated in Sect. 2 and which targeted neighborhoods
of periodic points (Fig. 7).

We now apply Eq. (46) to the dynamical extremal index introduced in Sect. 5 in the case
of direct product of two maps. For the class of maps verifying Proposition 35 we have the
general result for the α̂l [45]:

α̂l+1 = 1∫
I h

2(x) dx

∫
I

h2(x)

|DT l(x)| dx .

This formulawas also previously obtainedby [46]. In order tomake rigorous computations,
we consider a Markov map of the interval T for which the density h is piecewise constant
(see for instance [47]):

T (x) = 3x x ∈ I1 := [0, 1/3)
= 5/3 − 2x x ∈ I2 := [1/3, 2/3)
= −2 + 3x x ∈ I3 := [2/3, 1).
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Fig. 8 Comparison between the
empirical distribution
μ(Nn(50) = k) and the
Polyà-Aeppli distribution of
parameters t = 50 and
θ = 0.5926. The empirical
distribution is obtained by
considering 105 runs for which is
recorded the number of entrances
in the set �2

n ,as defined in the
text, after t/μ2(�

2
n) iterations of

the map

The density reads

h(x) = 3/5 =: h1 x ∈ I1

= 6/5 =: h2 x ∈ I2

= 6/5 =: h3 x ∈ I3.

The extremal index is given by the integral in Eq. (35) which has already been computed
in [12] and gives θ ≈ 0.5926. The quantities α̂l can also be computed explicitly. We defer to
[48] for the details, and obtain:

α̂l+1 =
[
(3

√
145 − 37)(17 − √

145)l + (37 + 3
√
145)(17 + √

145)l
]

2 × 72l
√
145

.

The interesting point is that the πk do not follow a geometric distribution. For the statistics
of the number of visits, we get a compound Poisson distribution which is not Polyà-Aeppli.

To illustrate that,we compare inFig. 8 the empirical distributionsμ(Nn(t) = k) for t = 50,
thatwe compute for the process associated to themarkovmapT ,with the distribution obtained
by supposing a Polyà-Aeppli with parameter equal to 0.5926. In this particular situation, the
sets Bn(�) are the tubular neighborhoods of the diagonal �2

n defined by Eq. (32). For our
numerical simulation, we fix the small set �2

n by taking un in Eq. (32) equal to the 0.99-
quantile of the distribution of the observable φ2 computed along a pre-runned trajectory
of 104 points. A quick analytic computation shows that for a small enough neighborhood
of the diagonal, we have that the normalizing quantity in Eq. 44) is equal to μ2(�

2
n) ≈

(h21 + h22 + h23)
√
2 exp (−un).

6.2 The Random Case

There are only few results on the statistics of the number of visits in the case of random
systems. In the forthcoming paper [40], we show that the quenched Lasota–Yorke example
studied in Sect. 3.2.1 gives a Poisson distribution for the visits around almost all target point
z. A Polyà-Aeppli distribution is seen to hold for some particular random subshits.

We are not aware of a rigorous treatment of these point processes for stationary (annealed)
random systems. We believe that the theory developed in [45] could be applied as well to
those systems. In particular we expect to get the extremal index as the inverse of the average
cluster size. To corroborate this claim, we computed the statistics of the number of visits for
two examples: the case in Sect. 4.1.2 for the composition of twomapswith b = 1/2, forwhich
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Fig. 9 For the composition of twomaps with b = 1/2 (left) and the moving target example (right), comparison
between the empirical distribution μ(Nn(50) = k) and the Polyà-Aeppli distribution of parameters t = 50
and respectively θ = 2/3 and θ = 0.8828. The empirical distribution is obtained as for the Markov maps, by
considering 105 runs. For both examples, we considered target balls of radius r = exp (−u), where u is the
0.99-quantile of the empirical distribution of the observable computed along a pre-runned trajectory of size
104

Fig. 10 Comparison between the
empirical distribution
μ(Nn(50) = k) and the Poisson
distribution of parameter t = 50,
computed with a trajectory of
length 5 × 107 of the rotational
system described in Sect. 3.2.2.
We used the same parameters and
procedure as the one in Fig. 9

there are infinitely many non zero qk , and the moving target example in Sect. 4.2. In both
cases we found that the real distribution coincide with Polyà-Aeppli with parameter given by
t = 50 and the extremal index of respectively is 2/3 and 1− 3

2 (
1
4 )

2 − 6( 14 )
3( 12 )

2 ≈ 0.8828.
These results are stable against different values of t (Fig. 9).

6.3 The Rotational Case

We now compute the statistics of the number of visits for the process described in Sect. 3.2.2.
The statistics are computed in the same way as for the preceding examples and the theoretical
value of 1 for the extremal index suggests that the number of visits is purely Poissonian. This
is indeed what is observed in Fig. 10. Again the results are stable against different values of t .

6.4 Climate Data

We study now the statistics of the number of visit for the atmospheric data presented in
Sect. 2.1. The target set considered in the analysis is a ball centered at a point z that corresponds
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Fig. 11 Comparison between the
empirical distribution
μ(Nn(t) = k) and the
Polyà-Aeppli distributions of
parameters t = 18 and the EI
found with different estimates.
The empirical distribution is
obtained by considering 24,396
intervals of length 365 and
counting the number of visits
inside the target ball described in
the text

to the mean sea-level pressure recorded on Jan 5th 1948. The radius r = e−τ , is fixed using
as τ the 0.95-quantile of the observable distribution. We considered the number of visits in
an interval of length 365 days, that corresponds to the annual cycle5 so that the parameter
t in Eq. (40) is taken equal to t = �365μ(B(z, r))�. For the target set considered, we get
t = 18, that is close to the average value of 18.13 that we find for the number of visits. This
value can be interpreted as the average number of times the systems enters the neighborhood
of the point z in a year. In Fig. 11, we compare the obtained empirical distribution with the
Polyà-Aeppli distributions of parameters t and the E I obtained using different estimates:
Süveges, θ̂5 and θ̂10. The distribution using the Süveges estimate seems to fit the empirical
data better than the other two. In fact if we increase the order of the estimate θ̂m , the value
it attributes to the EI decreases and the associated Polyà-Aeppli distribution flattens. We
believe that this is due to finite effects; indeed we observe that if the fixed threshold u in
formula (19) is too small, the numerator approaches 0 as m increases, yielding bad estimates
for the EI. Qualitatively similar results are found for different atmospheric states and different
quantiles considered (although taking higher quantiles gives too few data for the statistics),
suggesting that a Polyà-Aeppli distribution for the number of visits holds for this type of high
dimensional observational data. This analysis, applied systematically to a state of a complex
system, can provide important information on the recurrence properties of the target state,
namely how many visit to expect in a given time interval. In this sense, the extremal index
only provides an averaged information. The drawback is in the number of data required to
provide a reliable estimates of the visits distribution (see Fig. 11). This problem could be
however overcome by averaging the distribution of visits for class of events (several states
z) instead of considering just one state.
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Appendix

Asmentioned in Sect. 3, results proving the existence of extremevalue laws for non-stationary
sequential systems are lacking.Nevertheless, themethods of estimation described in the paper
can still be used to evaluate a quantity θ that would correspond to the extremal index in the

5 This time scale is relevant for the underlying dynamics of the atmospheric circulation.
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Fig. 12 Comparison between the
empirical distribution
μ(Nn(50) = k) and the
Polyà-Aeppli distribution of
parameters t = 50 and θ̂5 ≈ 0.92,
computed with a trajectory of
length 5 × 107 of the sequential
system described in the text. The
procedure used to compute the
empirical distribution is
described in the text

eventuality that an extreme value law holds for this kind of systems, which by the way was
the case in [35]. We could also alternatively define the extremal index by computing the
statistics of the number of visit and evaluating the expectation in Eq. (46). We choose this
second option and consider the motion given by the concatenation

f n
ξ̄
(x) = fξn ◦ · · · ◦ fξ1(x),

where the probability law of the ξi changes over time. In particular, we consider the 10 maps

fi (x) = 2x + bi mod 1,

where bi is the i th component of a vector b̄ of size 10, with entries equally spaced between
0 and 1/2. We consider sequences of time intervals [τk + 1, (k + 1)τ ], with τ = 10, for
k = 0, 1, 2, . . . in which the weights associated to ξi are equal to pki . For every τ iterations,
the weight associated to each ξi changes randomly, with the only constraint that they sum to
1. θ̂5 is computed considering a trajectory of 5×107 points, and a threshold u corresponding
to the 0.995-quantile of the observable distribution. Using the same trajectory, we computed
the empirical distribution of the number of visits in a ball centered at the origin and of
radius r = e−u in intervals of time of length �2tr�, with t = 50. This is indeed t times the
Lebesgue measure (which is the invariant measure associated to all the maps fi ) of a ball of
radius r centered in the origin. Choosing the same trajectory for the computation of θ and
for the statistics of visits is of crucial importance here, because different probability laws
imply large variations of θ depending on the trajectory considered. In Fig. 12, we observe
again a perfect agreement between the empirical distribution of the number of visits and
the Polyà-Aeppli distribution of parameters t = 50 and θ̂5, which is equal to 0.92 for the
trajectory presented in the Fig. 12. Although different trajectories give variations for θ , this
agreement is stable against different trajectories and different values of t and τ , suggesting
that a geometric Poisson distribution for the number of visits given by θ is a universal feature,
even for non-stationary scenarii.
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