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Abstract. We modify the idea of a previous article [8] and introduce polyno-
mial and exponential dynamically defined recurrence dimensions, topological
invariants which express how the Poincaré recurrence time of a set grows when
the diameter of the set shrinks. We introduce also the concept of polynomial
entropy which applies in the case that topological entropy is zero and complex-
ity function is polynomial. We compare recurrence dimensions with topological
and polynomial entropies, evaluate recurrence dimensions of Sturmian subshifts
and show some examples with Toeplitz subshifts.

1. INTRODUCTION

In [1] V. Afraimovich proposed to study the scaling properties of recurrence
time by defining, through the Carathéodory construction, a dimension called either
recurrence dimension or Afraimovich-Pesin (AP) dimension in [8]. This dimension
is a variant of the Hausdorff dimension, with the diameter of a set replaced by some
gauge function of the smallest return time of a set into itself (Poincaré recurrence
time of a set). Afraimovich investigated mainly irrational rotations and used 1/t as
a gauge function. In [8], a systematic study of the AP-dimension was carried out
with the use of another gauge function, e~t. We review here the principal results
of this analysis:

(1) The AP-dimension is a topological invariant.

(2) The AP-dimension coincides with the topological entropy on a large class of
dynamical systems (subshifts of finite type and Axiom-A systems). There
exist examples where the AP-dimension is different from the topological
entropy.

(3) The AP-dimension is bounded from below by the asymptotic distribution
of periodic points lim sup,,_, . W

(4) The AP-dimension of a measure has been defined as the infimum of the
AP-dimensions of the sets of full measures; it has been proved that it is
a metric invariant and that for aperiodic dynamical systems its value is
always zero.

All these results have been obtained with the use of general open and closed covers
in the Carathéodory construction, in the attempt to conform the theory to the
usual construction of the Hausdorff measures. If, on one hand, this approach yields
general topological and metric characterizations like those quoted above, on the
other hand it turned out to be difficult to compute the AP-dimension in particular
examples.

The basic question raised in [8] was whether there exists a system where the
AP-dimension is different from the asymptotic distribution of periodic points. In
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particular, does there exist a minimal system with positive AP-dimension? In this
case the AP-dimension would really impose as a new topological invariant to classify
such systems and describe their recurrence properties.

A first step in this direction has been done by Bruin [5]. He considered sub-
shifts and proved that the AP-dimension does not exceed the topological entropy.
Moreover he provided a non trivial example where the bound is strict. A second
improvement was given by Kurka and Maass [7]. Trying to answer the question ad-
dressed above and motivated by Bruin’s result, these authors studied large classes
of minimal systems with positive topological entropy (Toeplitz subshifts and Ver-
shik systems defined by Bratelli diagrams). In all these cases they showed that the
AP-dimension is zero. The conclusion was that the class of open covers used in
the definition of the AP-dimension was too large to get a distinguishing topological
invariant. For subshifts, they modified the definition of AP-dimension by replacing
open covers by dynamically defined clopen partitions similarly as these partitions
are used in computation of topological entropy and pressure. The resulting concept
called recurrence dimension is a topological invariant. Bruin’s results can be modi-
fied to show that the recurrence dimension does not exceed the topological entropy,
but may be different from it and positive.

In the present article we follow the same strategy with a few differences and
extensions, using the gauge function 1/t instead of e~*. Given a zero-dimensional
dynamical system we consider clopen partitions and their associated dynamically
defined partitions, and perform the Carathéodory construction. The critical expo-
nent of the resulting Borel measure is called polynomial recurrence dimension. We
show that the polynomial recurrence dimension is concentrated on the nonwander-
ing set similarly as topological entropy (Bowen theorem). Using Kac theorem we
show that the polynomial recurrence time is at least 1. For subshifts we obtain an
upper bound related to a quantity which we call polynomial entropy. This is the
exponent, of the algebraic growth of the complexity function, when the topologi-
cal entropy is zero. We show that the polynomial recurrence dimension of every
Sturmian subshift is 1, thus completing the previous work of Afraimovich [1] on
irrational rotations. Then we construct examples with Toeplitz subshifts showing
that polynomial entropy can attain arbitrary values and that polynomial recurrence
dimension may be different from it.

2. POLYNOMIAL ENTROPY

A dynamical system is a pair (X, f), where X is a compact metric space and
f: X — X is a continuous mapping. An open cover of a compact metric space
X is a finite system V = {V, : a € A} of nonempty open sets whose union is X.
Its diameter is diam(V) = max{diam(V) : V € V}, its size |V| is the number of
elements of its smallest subcover.

For a finite alphabet A denote by A* =, v, A" the set of all words of A. The
length of a word u € A™ is denoted by |u| = n. Denote by A" the space of one-sided
sequences of letters of A and (A", o) the shift dynamical system. The cylinders are
sets [u] = {z € AN : z[g ) = u}, where u € A™.

A subshift is any subset ¥ C AN which is closed and o-invariant. We denote by

LE)={uecA": e, FNi>0: vyip)=u}

the language of words appearing in ¥ and £"(¥) = £(X) N A". The complexity
function of a subshift is defined by P(n) = |L"(X)].
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Let (X, f) be a dynamical system and V = {V, : a € A} an open cover of X.
For u € A* U AN put

Viu={z € X: Vi<|u|,f(z) €V}

Then V* = {V, : u € A" V, # 0} is also an open cover. We say that V is
generating, if diam(V") — 0 as n — oo. The entropy H(X, f,V) of an open cover
V and the topological entropy h(X, f) are defined by
n
H(X,f,V) = lim M,

n—oo n

MX,f) = gl_r% sup{H (X, f,V) : diam(V) < e, V open cover of X }.

When the entropy of V is zero, the function |V"| grows slower than any exponential.
Its growth may be then polynomial |V"| ~ n®. We call a = lih\lanl the polynomial
entropy. In contrast to the (exponential) entropy, the limit in question need not
exist, so we get lower and upper polynomial entropies.

Definition 2.1. Let (X, f) be a dynamical system and V an open cover of X. The
lower (h(X, f)) and upper (h(X, f)) polynomial entropies are defined by
. Injvr| . In V7|
H,(X, f,V) = liminf 1 , Hy(X, f,V) =limsup Tun

n— 00 nn n—00

Ep(X, f = 1irr(1) sup{Ep(X, £,V diam(V) < e, V open cover of X}.
e—

The last line represents two formulas, one with upper bars h,, H, and the other
with lower bars. Sigilarly as for the (exponential) topological entropy we get
hy(X, f) = limy, 00 H,(X, f, V) whenever (V,)n>0 is a sequence of open covers

with diam(V,) — 0 as n — oo. In particular for a subshift ¥ we get h(X) =
In P(n) and

lim,, 00

h, (%) = lim inf lan(n)7 hp(E) = lim sup In P(n)

-P n— 00 nn n—o00 Inn

3. POLYNOMIAL RECURRENCE DIMENSION

In this section we consider dynamical systems on zero-dimensional spaces. A
compact metric space X is zero-dimensional iff it is homeomorphic to a closed
subspace of AN for some finite alphabet A. A clopen partition of a zero-dimensional
space X is a system V = {V, : a € A} of nonempty clopen sets V,, C X which are
pairwise disjoint and their union is X. Denote by P(X) the set of clopen partitions
of X. The Poincaré recurrence time of a subset Y C X is

7(Y) =min{k > 0: fEY)NY # 0}

Definition 3.1. Let (X, f) be a zero-dimensional dynamical system, V a clopen
partition of X, Y C X, and a > 0. Using upper and lower limits we define the
upper and lower polynomial recurrence dimensions 7,(Y, f) and r,(Y, f) of Y as

M,(Y, f,V,a) = liminf Z T(V)~¢,

n—oo
Vevn,Vny£0
M,(Y,f,V,a) = limsup Z (V)™
n—o0

Veyn VNY £0
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R,(Y,f,V) = sup{a>0: M,(Y,f,V,a)= oo},
m,(Y, f,a) = limsup{M, (Y, f,V,a) : V € P(X), diam(V) < e},
£,(Y,f) = sup{a>0: m,(Y,f,a) = oo}

Clearly, the upper and lower polynomial recurrence dimensions are topological in-
variants and r,(Y, f) < 7,(Y, f). We now explain how this definition has been
chosen :

e The set function M), is defined similarly as in [8], except that we restrict
ourself to a specific family of covers, namely clopen partitions and their
powers.

e We then define m, over all clopen partitions in order to get rid of the
arbitrary choice of the initial partition. The choice of the upper limit in
¢ yields the nice property (Proposition 3.7) that the dimension can be
calculated with the use of any generating clopen partition. This property
cannot be obtained with lower limit.

e Finally we define the critical exponent r, as the supremum over all a
such that my(Y, f,a) = oo. Taking the infimum over all « such that
my(Y, f,a) = 0 gives a less interesting quantity since it would give us
oo for every dynamical systems containing periodic points.

From now on, we write r,(Y, f) whenever the same arguments or statements apply
for both 7,,(Y, f) and r,(Y, f), and similarly for m,,, M, and R,.

Proposition 3.2. If (X, f) is minimal, then

rp(Y, f) =inf{a > 0: m,(Y, f,a) = 0}.
The proof of this fact can be easily adapted from Afraimovich [1].
Proposition 3.3. The set function my(., f,a) is a Borel measure.

Proof. These are standard arguments for construction of this type, see e.g., [9].
We check that m,, is an outer measure. If Y C Z, then m, (Y, f,a) < m,(Z, f,a).
Moreover, mp (U, U, f,a) < >, mp(Us, f, ). To show that m, is a Borel measure,
we have to verify the following property :

dY,Z2) >0=>m,(YUZ, f,a) =my(Y, f,a) + m,(Z, f,a).

This follows immediately from the fact that in the definition of M,,, we take parti-
tions V with diameter going to zero, thus Y and Z are covered by different sets of
the same partitions. O

Proposition 3.4. Let (X, f) be a dynamical system andY C X a closed invariant
subset. Then

mp(Y7 f|Y7a) S mp(Y7 f7 Ol) S mp(X7 f7 Ol)
TP(Y7 f|Y) < Tp(Y7f) < rp(Xa f)

Proof. Let V be a clopen partition of YV, diam(V) < e, n >0, and V € V. Since V
is open in Y, for every x € V there exists 0 < d, < 7, such that Bs, (z) NY CV,
and Bas, () NV’ = () for every V # V' € V. Let K C V be a finite subset such
that {B;, () : * € K} is a finite cover of V, and let Wy = |, Bs, (). Since
X is totally disconnected, the balls are clopen, so Wy is clopen too, V =Y N Wy,
and Wy N Wy, = 0, if V # V'. Let W be the clopen partition consisting of all
Wy, V € V and a clopen partition of the complement of | Jy,,, Wy. Then W is a
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clopen partition of X. We get V* ={Y NW : W € W"} and 7(Y N W) > 7(W),
so My(Y, fiy,V,a) < My(Y, f,W,a). Since diam(W) < e + 27 for arbitrarily
small 7, m,(Y, fly,a) < my(Y, f,a). From Proposition 3.3 we get m, (Y, f,a) <
mP(X7 f? Oé). D

From now on, we leave out f in the formulas for m, M, R, r.

Proposition 3.5. Let (X, f) be a zero-dimensional dynamical system and set
Per(n) = card{z € X : f*(z) = z}. Then

InP
7p(X) > lim suer(n)

n— 00 In

InP
, 1,(X) > liminf nrenn) er(n)‘
n—o0 nn

Proof. Suppose that for every n, Per(n) is finite. For every n there exists ¢ > 0,
such that if f*(x) = x, f*(y) =y, then d(x,y) > ¢. If diam(V) < ¢, then for every
k

Z 7(V)™% > Per(n) - n~%.

Veyk

If a« < 8 < limsup,,_, %l, then for an infinite number of n, Per(n) - n= >

nB=% so M,(X,V,a) = oo, my(X,a) = co and a < 7,(X). Similarly for lower
limits. O

For next proposition we prove the following lemma, :

Lemma 3.6. Let U and V two clopen generating partitions of X. Then one can
find a constant 0 < C' < 00, such that for every a > 0,

1
= My(X,V,0) < My(X,Uy0) < € My(X, V), ).
Proof. We have diam(U™) — 0, diam(V") — 0 as n — oo. Thus there exist
positive integers m,n such that ™! > V and V! > U, so for every k > n,
Uktm = Yk = yk=n_ Every V € V¥ is a subset of some set U € U*~" and a union
V =U; U---UU,, of at most p < |U"*™ sets U; € U™, We get 7(V) < 7(U;),
SO

p-7(V)"* > 7(U) "+ +7(Up) "

Yoty Y0 ()

Veyk Uelk+m
Thus M,(X,V,a) > [U|7™ ™ M,(X,U,a). Interchanging ¢ and V, we obtain the
result. O

Proposition 3.7. Let V be a generating clopen partition. Then r,(X) = R,(X,V).

Proof. If there exists a generating clopen partition, then there exists ¢ > 0, such
that any clopen partition of diameter less than ¢ is also generating. For a given
a, let us choose a sequence Vi, Vs, ... of clopen partitions with diameter going to
zero such that M,(X,V,,«) decreases and converges to m,(X,«). Thus, for n
large enough, V,, is generating, and we can apply Lemma 3.6 with V and V), for
each n. If @ < R,(X,V), then by Lemma 3.6, C' - M,(X, Vy, ) > My(X,V,a) =
oo. Since this applies for any n large enough and any a < R,(X,V), this shows
mp(X,a) = oo and rp,(X) > Ry(X,V). If @ > Ry(X,V), then for some k large
enough, M,(X, Vi, a) < C - My(X,V,a) < co. Since the sequence M,(X,V,, o) is
decreasing, this shows that m,(X, a) < co. This is true for any a > R,(X, V), thus
rp(X) < Ry(X, V). O
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Recall that a point € X is non-wandering, if every its neighborhood has finite
recurrence time. By Bowen theorem [4], the topological entropy of a dynamical
system is equal to the topological entropy of the system restricted to the set of
non-wandering points.

Proposition 3.8. Let (X, f) a zero-dimensional dynamical system, and Q the set
of non-wandering points. Then r,(X) = r,(Q).

Proof. If we denote W = Q° the complement of €, then for any point z € W,
one can find an open set U(z) such that 7(U(x)) = oco. Since W is separable, the
cover {U(z) : z € W} of W has a countable sub-cover F. By o-additivity, we have
m(W,a) < 3 permp(F,a) = 0, mp(Q,a) = mp(X, ) — my(W,a) = my(X,a),
and r,(X) = r,(Q). O

Proposition 3.9. For every zero-dimensional, minimal dynamical system (X, f),
r (X, f) > 1.

Proof. There exists an ergodic measure u, which is positive on open sets. By the
Kac’s theorem (see e.g., [6], page 133),

dp(z) 1
) < /UTU(x) wU) — wU)

Here 7¢7(x) = min{k > 0: f*(x) € U}. For every clopen partition
o)t > wU)>1
Ueu Ueu

so m, (X, f,U,1) > 0. Since (X, f) is minimal, r,(X, f,i) > 1 by Proposition
3.2. O

Proposition 3.10. For every subshift ¥ C AN, 7,(X) < hy(2) + 1

Proof. If hy,(X)+1 < a, pick some 3 with h,(¥) < 8 < a— 1. There exists kg, such
that for all k > ko, P(k) < k. Ifu € £7(2) and 7([u]) = k < n, then uj,; = u; for
all i € [0,|ul), so the number of cylinders of length n with the return time k is at
most the number of cylinders of length k. For 7([u]) = k > n we use e” 7"l < e=7
to obtain

Y. )™ < YOP(kR) k<YK
uweL™ () k=1 k=1
mp(E,a) < Zkﬁ_o‘ < 00
k=1
50 My (X, ) < 00, and 7, (X) < a. O

Proposition 3.11. Let & C AN be a subshift and a,b > 0. Then
Vno,3n > no,Yu € L"(X),alul < 7u] = r,(¥) <
Ing,Vn > no,Vu € L*(X),alul < 7[u] = 1r,(2) <k, (X)
Jng,Vn > ng,Vu € L"(X), 7[u] < blu| = h,(8) <T
Proof. 1. Let h,(¥) < 8 < a so for every n > ng, P(n) < n®. There exists an
infinite number of n such that a|u| < 7[u] whenever |u| = n. We get

Z Tlu]™® < P(n)(an)™® < a™® -nP~% 5 0
ueL” (%)
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Thus m,, (%, 4,a) =0, 50 1,(2) < a and 1, (X) < hy(D).

2. Let h,(¥) < B < a so there exists an infinite number of n for which P(n) < n”,

and alu| < 7[u] for all u with |u| =n. We get again m, (¥, 4,a) =0,s0r,(X) < a

and r,(X) < by, (2).
(2) >

3. Let h,(X) > B > a so for every n > ng, P(n) > n” and
Z Tlu]™® > P(n)(bn)~% > b~ -0~ = 0.
ueLn ()
Thus m, (%, A, a) = 00, 50 7(¥) > a and 7p(X2) > h,(2). O

4. STURMIAN SUBSHIFTS

A Sturmian subshift is a coding of a one-dimensional irrational rotation. Denote
by T the one-dimensional torus (circle) parametrized by the unit interval [0,1). For
6 € (0,1) irrational denote by (T, Ry) the rotation given by Rg(z) =z +6 mod 1.
Let V = {[0,1—-6),[1 —0,1)} = {Vb, V1 } be the cannonical semiopen cover of T.
For every binary word u € {0,1}* U {0, 1}, V,, = {x € T : Vi < |u|, R}(z) € V4, }
is a semiopen interval (possibly empty). The Sturmian subshift Qg is defined via
its language by £(Qg) = {u € {0,1}* : V, # 0}. Since V is generating, there
exists a factor map ¢ : (Qg,0) — (T, Rp). If u € £"(Qy) then ¢([u]) = V, and
~([ul) = 7(Va)-

The return times of cylinders and their corresponding intervals are obtained from
continued fraction expansion § = [ag, a1, . ..]. We use the notation from Schmidt [10]
or Alessandri and Berthé [3]. The partial convergents 2= of § satisfy po = ap = 0,
g =1, p1 =agar +1, ¢t = a; and py = agpr—1 + Pr—2, Gk = Arqr—1 + qr—2 for
k> 2. Then np = (=1)*(qz6 — pi) are positive and satisfy np = —arnr—1 + Ne—2
for k > 2.

Proposition 4.1. For any Sturmian subshift, the upper and lower polynomial re-
currence dimensions are equal to 1, 1,(Qg,0) =7,(Qg,0) = 1.

Proof. We use the Three distance theorem and the Three gap theorem (see e.g.
[3]). Given n > 0, there exist unique integers k, m,r satisfying

n=mq; +q-1+7, 1<m<Jag, 0<r<g.
The Three distance theorem states that the number and the length of intervals in
the dynamic partition V" are

n+1—gqp intervals of length [ = g,

r+1 intervals of length s = n_1 — mng,

gr — (r +1) intervals of length I3 =nr_1 — (m — 1)n.
The Three gap theorem tells us that the three possible return times of points of an
interval of length 8 into itself are

ti=qu, to=quq—m'qy, t3=quyr—(m' —1agy,
where k', m' (and ¢) are the unique solutions of
B=m'ny + e +é, 0<d<mp, 1<m<apq.

The Poincaré recurrence time of an interval is the minimum of these return times.
The third return time t3 is always the largest, so it does not interest us here. For
the first two return times we have ¢; < t except when m’ = ay/y1. In this case
ty = qr—1 < t1 by the equality gr 11 = ap41qr + qrr—1-

We will always choose ¢ =, i.e. the greatest value it can take. If we take
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e 3 =1y =n; : there are two cases
— apy2 =1: weset ¥ =k+2,m' = a1, thus the return time of the
interval of length I; will be £ = qp41.
—apy2>1:weset ' =k+1,m =ap 41 — 1, thus the return time will
be t; = qx+1 again.
e =1y =mnp_1 —mmn : there are three cases
—m<ap; —1: weset ' = k,m' = a1 —m — 1, thus the return
time of the interval of length Il will be t; = gy.
—m=apy1 —1: weset ' = k+1,m' = ap 41, thus the return time
will be t5 = qi.
—m = agy1 : weset k' = k+2,m' = ap 41 — 1, thus the return time
will be t1 = qg42.
e B=I3 =n,_1 — (m — 1)n : there are two cases
— m < apy1 : weset k' = k,m' = ap 1 —m, thus the return time of the
interval of length I3 will be t; = gy.
— m =agy1 : weset k' =k+1,m' = ap 41, thus the return time will be
ta = qx.
For a fixed n, we distinguish two cases. If m < aj11, then

n+1l—q q  (m—1q+qe—1+(r+1)

My(Qp, V1) = DEo Tk Gk +1
qk+1 qk qk+1
< A1k + Q-1 + (1 +1 —qr) L 1<2
qk+1

Ifm= QAk+1, then
(@k41 — Dagr + qe—1 + (r + 1) n r+1 n q — (r +1)
qk+1 qk+2 gk
r+1 —(r+1
qk+1 4 4 qk ( )
k41 qk gk

Mp(Q9, V™, 1)

=2

IN

Since V is generating, m,(Qp, V", 1) < 2, so T,(Qg,0) < 1. Using the global lower
bound for minimal dynamical systems (Proposition 3.9), we get the result. O

5. TOEPLITZ SUBSHIFTS

We construct some examples of Toeplitz subshifts. For a point z € AN, p > 0
put

Pery(z) ={k € N: Vn € N &pipnp = z1}

The p-skeleton y = S, (z) € (AU {*})N of x is obtained from x by replacing z; by
 for every i & Per,(x), so y; = z; if i € Per,(x), and y; = * otherwise.

A sequence x € AN is a Toeplitz sequence, if the union of all Per,(x) is N. A
Toeplitz subshift is the orbit closure of a Toeplitz sequence £, = o(z). If z is a
Toeplitz sequence, then o?(S,(x)) = Sp(z). An integer p > 1 is an essential period
of z, if S,(x) is not periodic with any smaller period than p. A periodic structure
for an aperiodic Toeplitz sequence z € AN is a sequence p = (pi)i>o such that every
p; is an essential period of z, p; divides p;11 and the union of all Per,, (z) is N.

Example 5.1. For every a > 1 there exists a Toeplitz subshift such that
hy(2) = 1,(2) =7(2) = hy(E) = a.
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Proof. Let (ny)r>1 be a sequence satisfying 3 < ny < ngi1 < (ng — 1)?. Put
Ar ={0,1,...,n, — 1} and construct injective substitutions vy, : Ap41 — A}, so
that for every a € Agy1, vg(a) = 00b0c for some b,c € A \ {0} and for every
b € Ay \ {0}, there exists a € Ajy; such that vg(a) = 0060b. For example, if
n, = k + 2, we have v, : {0,1,2,3} — {00101, 00202, 00102, 00201}. Set

Y= ﬂ{aiul...uk_l(u) D u € Ay, i >0} C AN
k=1

If u € £5(X), then there exist a,b € Ay and a phase 0 < m < 5 such that
u; = v1(ab)myq for all ¢ < |ul|. For different phases m, u contains zeros in different
positions, so 7[u] > 5. Moreover, since either a = 0 or b = 0, and 0a0a0 € L(X) for
all a € Ay, we have 7[u] < 10. If u € £(X) and |u| = 5* for some k > 1, then there
exists v € AY and a phase 0 < m < 5% such that u; = vy ...V5_1(0)mes. Since
5 < 7[v] <10, we get 58 < 7[u] < 2-5*. In general, if 5¥~1 < |u| < 5%, then

Ig_l < 5 < ru) < 2- 5% < 10|ul.

We estimate now the complexity of ¥. If |u| = 57!, then u is a sub-word of
V1 ... Vg—1(ab) for some a,b € A, and either a = 0 or b = 0. Thus we have at most
2ny, possibilities for ab and 5%~ possibilities for the phase. On the other hand there
are at least ny, different words of the form vy ...ny_1(a), and at least 2-5*~2 different
phases for them, in which the distinguishing part b0c of v4 (a) = 00b0c occurs. Thus
we get 2- 5872 .y < P(5F71) < 2. 581 . ny. In general, if 5571 < m < 5%, then

2-582 . np < P(m) <2-5% npgy.
To construct a subshift with polynomial entropies o = 1, put ny = 3 for all k£ and
get
ﬁp(z) =1p(¥) = Ep(z) =1L
Let a > 1, and let ko be the first integer with 5F(=1 > 3. For k > ko define n, by
5ke=1) < ny < 5F@=1) 4 1. Using the sequence (ny)g>k, We construct a subshift
in alphabet A = Ay, = {0,...,nx, — 1}. We verify easily ny < ngy1 < (ng — 1)%
If 5*=1 < m < 5%, then
In(2 - 5E—2+kle=1) 4 1) cInP(m) _ In(2 - skt kD=1 4 1)
klnb - lnm — (k—1)Inb

Both sides of this inequality tend to a as k — o0, so h,(¥) = hy(¥) = a. By
Proposition 3.11, 7, (%) = r,(¥) = a. O

Example 5.2. For every a > 2 there exists a Toeplitz subshift with
ry(2) < hy(S) = a, Fp(E) = a+1.

Proof. We use the construction of the preceding example, but we do not require
ng < Ng41, so that not all words 00a0a may be present. We loose the upper
estimate for 7[u], but we still have 7[u] > |u|. Thus we put (for large enough k)

ngg = [52H@] ngpyy = [53kHD]
h <

and we get h,(X) = a, hp(X) = a+1, and r,(X) < b, (%). O
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6. CONCLUSIONS

If we replace in Definition 3.1 the gauge function 1/t by e~ we get (exponential)
lower and upper recurrence dimensions r(Y, f) and 7(Y, f) of a subset Y C X of
a zero-dimensional dynamical system (X, f). For these (exponential) recurrence
dimensions, Theorems 3.2, 3.3, 3.4, 3.7 and 3.8 remain valid. For subshifts, we get

lim inf w
n—o0 n

<r(X,f) <h(X, f)

lim sup
n—oo

Examples in [5] or [7] show that there exists a subshift with 0 < r(X, o) and also a
subshift with 7(X, ) = 0 and positive topological entropy.

The Carathéodory structures used in this paper are close to the partition func-
tions employed in the thermodynamic formalism. Recently Afraimovich and co-
workers [2] constructed partition functions where, besides the exponential of neg-
ative Poincaré recurrence time of a cylinder, there is some power of the measure
of the cylinder. This would allow to get some sort of multifractal analysis of the
systems through the definition of a whole spectrum of recurrence dimensions. The
meaning of these ”generalized recurrence dimensions” is not yet clear and their
computation and interpretation in the context of the Toeplitz flows analysed in
this paper is surely an interesting challenge.

On can generalize the definition of recurrence dimension to higher-dimensional
homogenous spaces. These are spaces whose nonempty open sets have the same
topological dimension. A topological partition of a homogenous space is a finite
collection of its pairwise disjoint open sets whose closures cover the space. In zero-
dimensinal spaces, topological partitions are just clopen covers. In a real interval,
topological partitions consist of finite union of open intervals.

We have briefly spoken, in the Introduction, of the recurrence dimension of a
measure; its value was always zero with the former definition of the AP-dimension.
It would be interesting to reconsider this dimension in the framework developed in
this paper. There is no reason that it should be again zero. On the contrary it
could classify the invariant measures or, in the case of a uniquely ergodic systems,
it could give a new metric invariant.

As a final remark, we would like to point out that the main subject of the present
paper is the study of the recurrence dimension for minimal sets, just to show that
it is a non-trivial topological invariant. The variety of behaviors of this dimension
shows that it captures fine combinatorial structures of the underlying symbolic
systems. The role of this dimension for systems with higher chaotic behavior,
partially disclosed in [8] is a very promising field of research.

@ <F(X, ) < h(X, f)
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