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ABSTRACT. We present an original approach which allows to investigate the statisti-
cal properties of a non-uniform hyperbolic map of the interval. Based on a stochastic
approximation of the deterministic map, this method gives essentially the optimal
polynomial bound for the decay of correlations, the degree depending on the order of
the tangency at the neutral fixed point.

CONTENT

0. Introduction. ... ... o p. 1
1. The Model ... ... p. 2
2. An Invariant Come. ... ...ttt p. 3
3. A Random Perturbation.................oo i p. 5
4. Decay of Correlations. . ...........iiiiiiiiiiiiiiie ... p- 9
5. General considerations.......... ...ttt p. 11

References. .. ..o o p. 13

60 Introduction. Recently the study of the convergence to the equilibrium in
hyperbolic systems has witnessed several new results ranging from new methods
to treat systems with singularities [Lil], [Yo| or with partially hyperbolic behavior
[BY], to methods for studying Anosov flows [Ch2], [Do], [Li2].

Thanks to such results we can now regard the study of the decay of correlations
for uniformly hyperbolic systems as reasonably understood (albeit there is much
room for improvements, especially as flows and dependence on smoothness of ob-
servable are concerned). On the contrary the available results on the convergence
to the equilibrium in non-uniform hyperbolic systems are extremely unsatisfactory.
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The study of such systems stands as a challenge. In particular, it is evident the
need to develop new strategies to investigate such problems.

This is the focus of the present paper where we study a one parameter family
of intermittent maps. These applications are expanding, except at a neutral fixed
point, where hyperbolicity is lost. The local behavior of the map at this point
is responsible for various phenomenon. Let us denote by 1 4+ o the order of the
tangency at the critical point. For o = 0 we have a purely expanding map, which
has a unique equilibrium state for the potential ¢ = —log DT, with exponential
decay of correlations. For 0 < a < 1, the map possess an absolutely continuous
probability measure (SRB measure), which is still an equilibrium state (it is no
more unique, since the Dirac mass at the origin is invariant and do(¢) = 0). For
a > 1, there are no absolutely continuous invariant probability measure, whereas
one still has a o-finite absolutely invariant measures [PS].

We focus here on the second region of the parameter, and propose to find the
density of the invariant measure, and the rate of decay of the correlation functions.
In this domain, one cannot expect a spectral gap for the Perron-Frobenius operator
(see the end of section 4), therefore none of the usual strategies in this setting
can be followed. Our approach is based on the following philosophy : sure, the
map is not hyperbolic, but it is the case nearly everywhere; thus, if we perform a
random perturbation of the map, the neutral fixed point should be lost in a cloud
of hyperbolic points and the intermittent effect could be suppressed. This naive
argument, rather surprisingly, works.

An interesting property of such a method is the following. For smooth expanding
maps, the same idea can be carried out, but yields a sub-exponential rate of decay,
while the decay is well known to be exponential. On the contrary, in the present
case, the power law found appears to be near optimal, as remarked in section 4.

This is an indication that our crude approach performs better in the non-uniform
case than in the uniform one. These considerations are at the base of our belief
that this type of strategy could yield relevant results in more general situations.

The plan of the paper is as follows: In section one we present our model and
discuss some related literature. Section two is devoted to the study of the invariant
measure. The section may have an interest in itself since it gives a very direct
approach to obtaining the invariant measure and its properties for such a map (for
a comparison with other techniques see [CF,Th]). Section three introduces the key
idea of the paper, that is the random perturbation and its instrumental properties.
In section four we harvest the facts from the previous sections and obtain the
announced result. In addition, we point out that our results suffice to establish the
CLT for C'Y) observable, provided that o < 1/2 (Remark 4.2-(3)). The last section
contains few considerations on how to treat the general problem of expanding maps
with neutral fixed points. Since the focus of the present paper is on the method and
not on the class of one-dimensional maps to which it can be applied, we content
ourselves with few pointed, but sketchy, considerations.

§1 The model. Let us consider for 0 < o < 1 the map T : [0, 1] — [0, 1]

(1l 42%%) Ve el0,1/2)
Tz) = {2:1;—1 Ve € [1/2, 1]
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The importance of this kind of intermittent maps was addressed by Prellberg and
Slawny in [PS], where the relationship with a statistical model introduced by Fisher
[FF] and successively studied by Gallavotti [Ga] was emphasized. In the papers
[GW], [W], the dynamical behavior of these maps was taken as a model for the in-
termittency of turbulent flows [PM]. In the paper [PS] several mathematical results
were announced, concerning the ergodic and statistical properties of such maps, no-
tably the presence of phase transitions for the topological pressure (see also [Lo]).
The paper [W] deals with a piecewise linear version of the map and focus espe-
cially on the recurrence properties of the orbits. These latter properties have been
put on a solid mathematical basis by Collet, Galves and Schmitt in [CGS] in the
piecewise linear case, and by Campanino and Isola for the non-linear (o-finite) case
[CI1,CI2,CI3]. The problem of the decay of correlations was considered in the piece-
wise linear case and for the finite absolutely continuous (w.r.t. Lebesgue) measure
in [LSV] and [Mo]. Both papers obtain an algebraic (n~7) upper bound for the
decay of correlations, the first by using Markov approximations [some results were
successively improved by Chernov in [Chl]], the second by exhibiting the absence
of spectral gap for the Perron-Frobenius operator using the induction procedure,
already invoked in [PS] (it is interesting to remark that Mori’s work follows the
analysis of these maps carried out by Takahashi in a series of papers [Tal,Ta2]).

The decay of correlations for the non-linear case is a more difficult problem. In
our knowledge, the following methods have been proposed.

In the paper [Yu], Yuri applied Markov approximations, generalizing the works of
[LSV] and [Ch1]; the paper [Is] aims to extend to the non-linear case the approach
of Mori, still inducing, and gives a description of the zeta function, and finally in
[F'S] the authors propose an interesting technique based on Hilbert metrics, yet the
implementation of such an idea is still incomplete.

Let us go back to our particular model. In the next section, we will prove
that there exists' a locally Lipschitz function h € C(°)(]0,1]) N L'([0, 1]) such that
Ph = h.

82 An invariant Cone.

If we define the cone Co = {f € C(]0,1]) | f > 0, f is decreasing} it is
immediate to see that Cq is left invariant by the P-F operator. To see a bit more
let us call X the identity, X (x) = «.

Lemma 2.1. The cone C; = {f € Cy | X*T1f is increasing}, is left invariant by
the operator P.

Proof. Let f € Cq, then
T atl a1
$a+1Pf($) — Z (_y> Yy f(y) )

yeT 1z Y DyT

Setting T Y2 = {y1, y2}, 11 < y2, and £ = 2%y we can write

a+1 _ a—+1
s = e 5 (BER) s e

ISuch a result can also be obtained by inducing [Th]. The method used here is more direct and
provides additional informations on the properties of the invariant density, although such extra
informations will not be essential in the following. See section five for a more detailed discussion.
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Whence the result, since X f 2 s yy, 2+ £, 2 > yo are increasing. [J

1
= / fla)dx
0
Obviously m(Pf) = m(f).
The last interesting property is contained in the following.

Lemma 2.2. The cone C, = {f € C; N LY([0, 1]) | f(z) < ax™*m(f)} is invariant
with respect to the operator P, provided a 1s chosen large enough.

Proof. For each f € C, holds both

f(@) < ax™m(f),

v f() /f—m

Let us suppose for simplicity that m(f) = 1. One has to find a constant «, inde-
pendent of f, such that Pf(z) < ax™® since m(Pf) =m(f) = 1.

w4452
2

Let us define

and

<ay1—a N y—a—l
-D,T D, T

— axr~ .
N Y1 D, T ay2+1Dy2T

The term in curly bracket is bounded by?

A+ 2% 1+ aé + 2-6(1 + (a + 1)¢) <1+<a+w>g<l
l+(a+1)¢  a”— L+ (a+1)¢ - L+ (a4 1) =

Whenever a > 2%(a + 2), from which the Lemma follows. O
Putting together all the previous estimates yields

Lemma 2.3. There exists a locally Lipschitz function h such that Ph = h and
h(z) < azx™®.

Proof. The operator P leaves invariant the set K = {f € C, | m(f) = 1}. But
Xt K consists of equibounded equicontinuous functions,® hence it is compact

2q; z* ra+H
Since a+1Dy = < Tamis SE(L+ € <29¢.

3Let f € K and define ¢(x) = x!T< f(x), then, for # > y, holds

0< o) — 6(y) < @+ — g+ ) f(2) < all + a)a=" / "o

<a(l+a)le—yl
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in C©. Accordingly, for each f € K the sequence XQ'H% E?:_Ol P'f has accu-
mulations points in C®). Let h, € K be such an accumulation point. Clearly,

h = X717°h, is a fixed point of P, hence the result. The regularity of h is easily
obtained by checking that h € C,. O

Before introducing the random approximation to our dynamics let us remark a
property of the functions in C, that will be instrumental in the following.

Lemma 2.4. For each function f € C,

it fe) = (1) 2 min{a, {@} _} /Olf.

fla) <277 f(1).

We introduce the point z, = a1 f(1). On its left the first inequality is stricter and
the opposite holds on its right. If z, > 1, then f(1) > a, otherwise

= = [T [ [Taee e < S

from which the lemma follows. [

83 A Random Perturbation.

For simplicity let us identify [0, 1] with the circle S', on S! the map is not smooth
but it is continuous (this is not essential but it will make our life a bit easier). Let
us define the “ball” B.(z) = {y € S | |z — y| < &} and the averaging operator?

1
pfw) =g [ sty

It is now possible to define the perturbed operator
P. = P™A,,

where n. € N will be specified later.

The following Lemma shows that the perturbed operator is not too different from
the original one, provided we consider observables in C,.

4Let us remark that this particular choice of A. has nothing special, any other “reasonable”
choice would do as well.
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Lemma 3.1. For each [ € C,

[P f —P.flli < el fllie' .

Where ¢; = a(llo_“a).

Proof. We assume that f € C, and [ f = 1. First, observe that

||Pnaf_P€f||1 < ||f_A€f||1-

Next, we recall the estimates

=) e

This allows us to bound the L' norm of the difference between the function f and
its average.

1
I7 =ttty =g [an [y o) = st [ el = o [ st

<o [@ ! favtrw s+ [atse - s}

fl@)de + | fly)dy

B.(0) B2, (0)
- y_|_ ) . xZEa )
< / /dyf { ) }+4/0 d
<2(1—a5/€dl‘< —(z+e) T —(z—e)'%)

. o da -

% B —(r+e)” >+1_a(25)
=301 —a)(2— o) (20775 — 2270 _ (1 -2 _ 14 2(1— <))

+m{21 WlT 1T (1) T S_aa I—a

SRR
_Oé(]_—Q)

This proves Lemma 3.1. O
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Next,

1 1
R0 = 3 s |, mwie)

yET ey

1 1
= Z W/o dzxp. (=) (y) ()

yET ey
1 1

=5 | 4P m e @f()

= /01 K.(z, 2)f(2)d=.

Our task is to find a lower bound for the kernel K.(z, z). For this purpose, let us
define T} to be the map T restricted to the interval [0, 1/2] and a, = T} "1. We
have the following asymptotic bound for the sequence a,,.

Lemma 3.2. For all integer n > 0 the following holds

Q=

A 41
n §2a2+an

Proof. The Lemma is proven by induction. First it is clearly satisfied for n = 1.
Next, let us suppose that a, < cn_é, and let us prove that a,41 < ¢(n + 1)_5. If
it is false, then

an = anp1(14+2%2, ) > c(n+1)"7 (142 (n+1)7"),

By the assumption on a,, we obtain

1 1 2%
Ta > 1)~ = (1
h 2y TEa s 20
or equivalently
(1+ 1)L S 2
n’ n41
By convexity it follows
1 2(1 (0%
(2é - 1)_ = < )
n_ n+1
that is
1
< oo — L comatiod ),
n
which is contradictory if we choose ¢ = 227w, [

We define Ay, = [ag, ag—1] for each k > 0. We are now able to prove
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Proposition 3.3. There exists v > 0 such that for each ¢ >0, v, z € S*
Ke(z, 2) 27,

provided we choose n. = [22tae=] 4 1.5

Proof. First of all, we choose kg = 3. Next, notice that for each interval J and
integer m
(P \5)e) 2 xre o) inf (D,T™) 7

Let 69 = ag, — ag,+1. By Lemma 2.4 it is obvious that there exists ng and ¢ such
that for all intervals I of size larger than dg holds

P"x1 = co
provided n > ng. Thus the task is to control the inf,c ;(D,T™)~!, where m is the
time needed for the interval J to become an interval of size §y. Let Iy = [0, ag,].
Let J be an interval, three possibilities can occur :
(1) JN Iy = 0.

(2) JN Iy # () and J contains, at most, one ay for k > k.

(3) J contains more than one ay, for k > ko.
We can associate to each J a sequence ny,k1,...,ky,_1,n, of integers (ny may be
null), retracing the trajectory of J in the following way : For a time ny (1) holds,
then the image of J enters the intermittent region Iy and (2) holds with k = &y + ko,
so after kj iterations it exits from Iy. Then the image of J stays in the hyperbolic
region for ny iterations, and so on... Finally we end when the size of the interval
becomes larger than dg or if case (3) happens. Let us see what happens in this
regimes.

(1) Let D= sup —= andr = (D
YE€[arg+1,1] D?JT2

distortion estimates yield, for each y € J, with ¢ = D/(1 —r),

T)~! < 1. For n < ny, the usual

ko+1

D,T"|J]

——— < E T Jl].
rog < ExploalT" 7]

(2) Let J; = T"J. Let us see what happens in the intermittent region. Suppose
that J; Clags1,ar—1], i.e. (2) oceurs with k = kg + k1. In this case a direct
computation for 7 < ky and yq,y2 € J; implies

D, T’ SUPEElap_iq2,an_i] DgT ‘ ‘
D,.T7 =P : — Tyy — Ty
DyQT] _; lnfge[ak—i+27ak_i] D&’T
-
<Exp | Y oL+ )=l (D, TH ) TIR
Li=1
I kotki+1
<Exp |a(a+1) Z a?_l(DaqTq—(ko-l-?))—l|Tk1J1|
L g=ko+2

®Here the square braket stands for the integer part.



A PROBABILISTIC APPROACH TO INTERMITTENCY 9
Since the first branch of the map is convex, we have

- Ako+1 — Qko+2
DaqTq (ko+2) >y o+ 0ot+2 rai—l—fz a, (l—l—a)
Ag—1 — Qg

Moreover, Lemma 3.2 gives aga < 2242/@g=2  This yields, setting ¢35 =

ol + a)2%+2/

1+a ’
TCLk +2

D, T’
D,. T < Exp [es|TF J1]] -

(3) Finally, let us see what happens if (3) holds for some iterate K = T7.J. If
more than one third of the size of K isin [ay, 1], then we consider K N[ay, 1]
and case (1) will hold for ever, loosing just factor 1/3. Else we cut K into
pieces Ay_,---, A, such that the union of them is of size bigger than
|IK|/3. For these Ay, the preceding computation yields

Expl—c3|A ]

P* oy A, 2 XAy, L
Therefore, with [ = ng + k4 — ko,
! & I+ko—k pk—Fk & EXP 0350] Exp[—c3do] | K|
PXKZI«;P o~k pk—ko. >kzk:c0 |Ak|2coT?.

Since we control what happens on each region, it is possible to estimate the total
distortion after m = ny + k1 + - -+ + n, + [ iterations, where [ = ng if case (3) never
happens (I = ng + k4 — ko if case (3) occurs).

PmXJ >PanpPkp—1 ... PnQPkl_PanJ
>|J| EXp [ 6350 — 02|Tnp+...+k1+n1 J| . — C3|Tk1+"1j| . CQ|T"1J|)]

>|J| EXP [—(c2 + c3)do(1 4 r™r 4 pmetie=t oo g piptipoattnz)]

—(CQ —|— 03)507“

Co
> 7=

] = ~|J|.

To conclude, we need to fix n.. We choose the supremum over all possible values
of m =ny + ki +---+n, +1, associated to intervals J of size 2. It is immediate
to see that the worst case scenario is when case (3) happens at the beginning,

and J =] — 2¢/3, 4¢/3[. In this case, m is such that ag,4nm < 2¢/3. Clearly,
ne. = [2275e7%) 4 1 is large enough and the Lemma is proven. [
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84 Decay of Correlations.

Proposition 3.3 allows immediately to conclude that P, has an invariant density
he to which it converges exponentially fast® in L!. In the following we will call p
the invariant measure dy = hdzx. Using all the above facts, we are able to prove our
main result.

Theorem 4.1. For all g € L™, f € CW([0,1]) such that [ fdu = 0 the following
holds

‘/ QOT"fdu‘ < eaC (Ifllcon) lglloon™++ log n) =
Where C : IR — IR 1s affine.
Proof. Let f € Cy + IR, folf =0and g € L™, ||g]lcc = 1. For each n € N let us

write n = kn. +m, k € N and m < n.. Remembering Lemma 3.1, we have

/01 gP"f

<[P f = PEP™flly + IPEP™ £

k—1
<Y ||PUrVmep g — PP P f|ly + Exp [—vE] || £l

1=0
N o n
<2l e+ B |l

<ea|l fllin~ =+ (logn) .

by choosing ¢ = n~# (log p(=07 (-2t a )=

This is not yet the decay of correlation with respect to the absolutely continuous
invariant measure dy = hdx of our dynamical system. To get such a result, we need
to notice that if f € C"), then we can choose \,v,§ € IR such that fy,s(z) :=
(f(x) + Az + v)h(z) + 0 € Cy, and (A + v)h(x) + & € Cy, the dependence of the
parameters with respect to the C") norm of f being affine. Finally, the decay of
correlations with respect to u, for each f € C(l),f fdp = 0 and g € L*™ can be
estimated as follows

‘/ QOT"fdu‘ < a0 (|Ifllew)n™ = (logn) =

Where C : IR = IR is affine. O

Q=

®Let us briefly recall the argument: set € = [0, 1] and consider f € L'(Q) with [, f = 0.
Remember that P.1 =P*1 =1 and let QF = {2 € Q| P.f > 0}; Q4 = {x € Q| f > 0}, then

WJm:2AijﬁM4awﬂw:géwﬂwéjwmaaw—ﬂ
§2/Q+ dyf(y)/ﬂdw[/Cs(w, y)—v]= (1—7)2/ dyf(y)

24
= (L=l

Accordingly, for each f € L(€2) and defining I1f = [, f, holds

|(Pe = ID™ flly = IPZ(L = DSl < (1 =)"[If]]1-
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Remark 4.2.

(1) The proof of Theorem 4.1 allows to estimate the difference between h. and
h; namely, to prove the estimate:” ||h. — h|j1 < const.e!=*(loge™1)%.

(2) Theorem 4.1 allows to get an estimate for the rate of decay for Holder con-
tinuous observables. More precisely, qiven a (3-Holder continuous function
f, we can bound the correlations by n_ﬁ(é_l), up to some logarithmic cor-
rection.®

(3) We have obtained a polynomial decay, with a bound comparable to the one
found in [Mo] for the piecewise linear case and the one stated in [Is] for the
general case. Moreover, compared with numerical simulations [LSV], our
bound appears to be extremely close to optimal: the expected one is the same
apart from the logarithmaic correction.

(4) As a side consequence of our work we have that >~ P™f converges in

L' provided o < % According to [Li3] this estimate suffices to prove the

Central Limit Theorem. That is, given f € C1([0, 1]) such that fol fdu =0

%ZfoTi

converges, n distribution, to a Gaussian variable with variance fol Fdu +
1 .
2 [ ff o Ty,

85 General Considerations.

The reader may be under the impression that the proposed approach is specific
to the special maps studied here. In particular, section two seems quite model
dependent. In fact, while the estimates done there would apply certainly to similar
maps, it is true that some more work is needed to present them in a completely
general fashion®.

Nevertheless, section two is not completely necessary. Its aim was to make the
paper self contained and to emphasize the existence of a very direct method of

Tt suffices to write

|h = helly < ||P™1 = hlli + (P25 1 = hells + ||PZe 1 — P™M1||y
< const.{nl_é(log n)% +(1—9"" +ne}

and to choose n ~ e~ loge™1.
8The result is easily obtained by approximation. If f is a A-Hélder function, then we can
approximate it in L' by functions f- € C(1) such that ||f— f-||1 < ||fllge? and ||f/||co < ||f]lge?~!

(where || f]|3 is the S-Hoélder norm). Accordingly,

oo

and the result follows by choosing z judiciosly.

1
<llglloo 1 = fells + (eLllf2lloo + c2llflloc)n™ a7,

9¥et, the results extend immediately to any map of the interval which is C(!)—conjugate to our
model. More precisely, suppose that 7" : [0,1] — [0, 1] and ® € Diff(}) ([0, 1]) satisfies To® = ®oT.
Then, for the absolutely continuous T-invariant measure i defined by f(f) = p(f o @), it is
straightforward to see that the power law decay 1s the same for T" and T for (1) observable.
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studying the invariant measure. If one is willing to make same assumptions on the
invariant measure (which can eventually be proven separately) sections two can be
greatly simplified.

Here we discuss briefly what is really essential in order to apply the present
method.

Let us consider a map T : [0, 1] — [0, 1] expanding but for the fixed point 0.
where DoT = 1. Assume D*T continuous but in the point 0 and

|D2T| < Cx® ™t

5.1
(5-1) |D.T| =1+ ca® + o(z®).

Assume further that there exists an invariant probability measure absolutely con-
tinuous with respect to Lebesgue (see the discussion at the end of this section).
Calling h its density we have Ph = h. Then, in analogy with Lemma 2.1 holds!®

Lemma 5.1. There ezist a > o and b > 0 such that the cone

c={recm [0 <o) [ 5wl ]

18 tnwvariant with respect to the Perron-Frobenius operator.

Proof. Obviously, the first condition is invariant by P. If f belongs to the cone

2
El=| Y 2 e )
2= DT D,7|
2Cy*~1 a+by> fy)
< +
y;x(wm? yD,T[) 1D,T]
a + bx [ 2C  y*'T(y) T(y) a+by
< P su
s — Pl )yeopl 1D, T2 a+bT(y)  yID,T|a+bT(y)

Let Q(y) being the term in brackets. We have

y (]
= / DtTdt = / (1 + ct® + O(ta))dt =y + Lya—l—l + O(ya+1).
0 0 a+1

Which shows that Q(y) < 14 <2C + c(a—_i_l — 1>>ya + o(y®). Therefore there exists

d > 0 such that Q(y) < 1 on [0,4] provided «a is big enough. Next, outside this
neighborhood, we have y > § and |D,T| >~ > 1, so

12067 41 1
Q< -=% ¢
() < a ~? bdoy v

10Such a result should extends easily to maps expanding but for some fixed points {p; } where
Dy, T = 1. We can define §(x) = min; |z —p;| and assume D*T continuous but in the points {p; }
and
DT < Ch(a)
DT = 1+ c;6(2)7 + o(8(x)°).

a+b8(x)
0(z)

atbzx
T

Then the same cone with mstead of should be invariant.
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provided a and b/a are big enough. [

In addition, we assume that for some 0 < 3 <1, 0 <~ < 1 and ¢, > 0,
(5.2) Yo < h(z) < cer P,

It follows that a sharper cone is invariant. Note that in the process of proving the
next lemma we will establish the analogous of Lemma 2.4.

Lemma 5.2. There exists 6 > 0 and 0 < v < 7o such that

1
C*:{f€C|f(:1;)Z’y/0 f for x <6},

18 tnwvariant with respect to the Perron-Frobenius operator.
Proof. The proof starts by establishing the analogous of Lemma 2.4
Sub-Lemma 5.3. If f € C, then

IIllIl

— 2¢b
provided & 1s chosen small enough.

Proof. We have the bounds
1
flz) §20*x_ﬁ/ f
0

()] < (ax™ +0)f(x)
coming from the cone and the assumed estimate on the invariant measure. For
x > y > 4 the second bound yields

<%> ) < ;Eﬂy‘/’; < (E) Ha—y),

Accordingly, normalizing [ f = 1,

1:/f:/f+/f< 51ﬁ+5abx$nl]f

Next, by choosing 4 sufficiently small, we have 12_%51_6 < % from which the result
follows. [

Let pt = ||[DT||so. We choose § so small that for all y < § hold |D,T|~! > 1—2¢6*
and Sub-Lemma 5.3 together with 1 —2¢6® + =1 > 1. Let z < §, then T 1z will
consist of, at least, two points y; < ¢ and y2 > . By choosing ~ small, holds

and

a 1
Pf(x) 2|Dy, T7 flyr) + 1" Fly2) 2 (1 —2¢6%)y + ™" min {7’ 5_}] / Pf

2eb
1
> 7/ Pf.
0
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O]

This is enough to show that inf f > ~ [ f whenever f € C,, which implies (since
the constant function 1 belongs to the cone Cy)

5.3 inf inf P"1 >~ > 0.
(5.3) ntnt P12y

We have so generalized the two ingredients of section two used in the paper: the
existence of an invariant cone for P that allows to obtain the estimates used to prove
Lemma 3.1 and the analogous of Lemma 2.4, necessary in proving Proposition 3.3.

The reader can then easily generalize section three, since the distortion esti-
mates depend only on the behavior of the neutral fixed point which is ensured by
our assumption on D?*T. Section four follows exactly in the same way yielding a
polynomial decay depending on o and 3.

In conclusion, the following more general result holds:

Proposition 5.4. Given a map T satisfying (5.1), if it has an absolutely continuous
invariant probability measure with density satisfying (5.2), then for all g € L*°,
fecW [f=0,0<~y<L -2 holds

fror

for some constants cq and C(||f]lcm))-

< caaC([[flea)llglloon™

Here we do not address how to obtain the needed estimate on the invariant
density, although several approaches (besides the ones in the style of what we have
done in section two) are possible (see, for example, [Th] where a result of the type
(5.2) is obtained by inducing).
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