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Abstract. It is well-known that, for sufficiently mixing dynamical systems, the number of visits to balls and cylinders of vanishing
measure is approximately Poisson compound distributed in the Kac scaling. Here we extend this kind of results when the target set is
an arbitrary set with vanishing measure in the case of φ-mixing systems. The error of approximation in total variation is derived using
Stein–Chen method. An important part of the paper is dedicated to examples to illustrate the assumptions, as well as applications to
temporal synchronisation of g-measures.

Résumé. Il est bien connu que, pour les systèmes dynamiques suffisamment mélangeant, la loi du nombre de visites dans les boules
et les cylindres de mesure tendant vers zéro, est proche d’une loi de Poisson composée à l’échelle de Kac. Ici, nous étendons ce type
de résultats lorsque l’ensemble cible est un ensemble arbitraire de mesure qui tend vers zéro, dans le cas des systèmes φ-mélangeants.
L’erreur d’approximation en variation totale est obtenue à l’aide de la méthode de Stein–Chen. Une partie importante de l’article est
consacrée à des exemples pour illustrer les hypothèses, ainsi qu’à des applications à la synchronisation temporelle de g-mesures.
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1. Introduction

The recurrence in small sets, which could be seen alternatively as a rare or extreme event, turned out to have very rich
probabilistic features and established itself as a major statistical property of dynamical systems. We consider in this
paper the general situation of a measurable deterministic dynamical system and try to characterise the distribution of
the number of visits to sets whose measure will tend to zero. Since the probability to visit the set coincides with its
measure for ergodic systems, one should normalise the length of the trajectory with the measure of the set, in order to get
meaningful asymptotic distributions. We called it, in the paper, the Kac’s scaling. If the system loses memory fast enough
in the future, which is achieved with relatively strong mixing properties, the number of visits of a trajectory of length n

tends to follow a binomial distribution B(n,pn), where pn is the measure of the small set. Kac’s scaling requires that the
product npn equals asymptotically the constant t and therefore one gets a Poisson law of parameter t in the limit of large
n for the number of visits up to time t

pn
. The implementation of this heuristic argument, for a given measure preserving

dynamical system, requires not only mixing properties, as we said above, but also some control on the nature of the small
sets. When the map acts on a metric space, the small set is usually taken as a ball around a given point z and with radius
shrinking to zero. The nature of the point z could change the limit distribution. Suppose in fact that z is a periodic point;
even if the system is mixing, the orbits starting or passing close to z tend to sojourn for a longer time in the small set. This
produces an effect of clusterization which will alter the Poisson law into a more general compound Poisson distribution.

The aim of the present paper is to obtain such results for measurable dynamical systems and for a wide class of small
sets. The latter are obtained by fixing an initial measurable generating partition and by taking its backward (and eventually
forward for invertible systems) joins. An arbitrary countable disjoint union of elements of the join of order n will be a
small set Un. We will also assume that the sequence {Un}n≥1 is nested and that it converges to a set of measure zero. The
asymptotic distribution of successive visits to Un will be assured by requiring that the invariant measure is φ, or ψ -mixing
with respect to the initial partition.
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First of all we proceed to adapt the Stein–Chen method [8,15,47,49] to compare a given probability measure, in our
case the distribution of the number Wn of visits to a set, to a compound Poisson distribution. This will give us an error
for the total variation distance between the two distributions. Any compound Poisson distribution depends upon a set
of parameters λl, l ≥ 1. It has been shown in [29], that those parameters are related to another sequence αl, l ≥ 1, (see
Section 2.2) which quantify the distribution of higher order returns. Whenever the limits defining the αl exist and verify
a summable condition, the error term given by the Stein–Chen method will go to zero, and therefore we recover the
expected convergence to a compound Poisson law: this is the content of the main result, Theorem 5. Applications to
concrete examples basically require to check two conditions on the system: (i) first of all the φ, or ψ -mixing property,
which enters the estimate of the error in the Stein–Chen approach; (ii) secondly the existence and summability of the αl ,
which instead depend on the system and on the choice of the nested sequence of small sets Un. A similar program was
carried over in [29], with a few substantial differences which in particular imply that the examples given in the present
paper cannot be covered by the theory developed in [29]. The latter targets C2 local diffeomorphisms on smooth manifolds
and satisfying a few geometrical and metric conditions, among which the most relevant are: (a) local hyperbolicity and
distortion; (b) the annulus-type condition which allows to control the relative measure of the neighborhoods of the small
sets; and finally (c) the decay of correlations which is stated in terms of Lipschitz against L∞ norms. The technique of the
proof of [29] was different from the Stein–Chen’ used here and it had a more geometric flavour, adapted to differentiable
dynamical systems. In particular it was possible to handle partially hyperbolic maps and synchronisation of coupled map
lattices. In the latter case and for the invariant absolutely continuous measure, it has been established that the returns to
the diagonal is compound Poisson distributed where the coefficients are given by certain integrals along the diagonal.
This example is reconsidered in this paper and compared with a different way to collect points close to each other in
the attempt to synchronise two or more trajectories. In the spirit of the present paper, a neighborhood of the diagonal
will be constructed with the elements of the join partition of increasing order, also called cylinders. As we said above,
cylinders and union of cylinders will be our small sets. If the dynamical system is encoded in a symbolic space, we could
transport our theory in the domain of symbolic dynamics and cover new panels of examples which are unattainable with
the previous geometric approach. Among the applications investigated in the paper, we quote here the House of cards
process, for which the distribution of the number of visits to runs of length above a given threshold is found to be Pólya–
Aeppli, and a class of (not necessarily Markovian) regenerative processes for which we compute explicitly the parameters
of the compound Poisson distribution. In particular we exhibit the existence of the quantity α1 which takes on a particular
role in extreme value theory, where it coincides with the extremal index.

An important part of the paper is dedicated to g-measures (see Section 4). These are equilibrium states with normalized
potentials of the form φ = logg, where g is the g-function [35]. These objects form the counterpart, in the dynamical
system setting, of the (possibly long memory) stochastic processes. For this class of models, we give mild sufficient
conditions (strict positivity and summable variation), allowing us to apply our theorem for the number of visits in cylinders
around periodic points. It has been recently shown [3] that for a particular class of g-measures called renewal measures,
it is possible to show that the limit defining the extremal index does not exist even though the measure is φ-mixing and
this was due to an essential discontinuity of g in a given point. Here we will prove that uniform continuity is enough for
the existence of the extremal index and, by discussing an example due to [25], that the lack of continuity of g does not
prevent the existence of the parameter, leading to a Pólya–Aeppli distribution around any periodic point. We will then
consider a decreasing cover by cylinders of the diagonal in the m-dimensional product space where a given g-measure is
seen as the coupling of the m coordinates g-measures. This will allow us to study the synchronisation of the coordinates,
what we called temporal synchronisation for g-measures. In the general case where the coordinate g-measures are not
independent, we will show the convergence to a Pólya–Aeppli distribution whose parameter is related to the topological
pressure of a given potential, see Theorem 12. It is interesting to observe that whenever the coordinate g-measures are
independent (the uncoupling case), the previous parameter can be expressed in terms of the Renyi entropy of order m− 1.
We also address the more general question of the interaction of possibly distinct g-measures and we propose two ways to
construct such an interaction.

Finally, in a discussion section on synchronisation, we highlight a difference between the geometric approach of [29]
and the symbolic approach of the present work. In a simple example of two uncoupled identical deterministic dynamical
systems, we show that the asymptotic distribution of synchronisations is Pólya–Aeppli when we target the diagonal by
cylinder sets (symbolic approach) but it is not Pólya–Aeppli when we target the diagonal by tubular neighbourhoods
(geometric approach). We conclude the discussion by considering yet another situation, of two uncoupled copies of the
same Markov chain on [0,1], with strong ergodicity conditions. We show that the asymptotic synchronisation always
follows a pure Poisson distribution, meaning that there is no clustering phenomenon in that setting.

We previously compared our achievements with the results obtained in the paper [29]; several other contributions de-
serve to be quoted and we will give here a brief survey of them. We should first remind the seminal papers by [46] and [33]
who showed that generic points have, in the limit, Poisson distributed return times if one uses cylinder neighbourhoods,
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while at periodic points the return times distribution has a point mass at the origin which corresponds to the periodicity of
the point. This dichotomy inspired and originated several successive works: it was proved in [1] for φ-mixing systems in
the symbolic setting, and in [28] for more general classes of dynamical systems with various kind of mixing properties.
The latter paper derived also the error terms for the convergence to the limiting compound Poissonian distribution. The
extension to ψ -mixing shifts was given in [38]; for φ-mixing systems a recent contribution is provided in [39]. We also
quote [13] who studied Poisson limit laws for subsystems of finite type in symbolic dynamics. The Chen–Stein method,
which is at the base of the actual work, was firstly used in [27] for φ-mixing measures and cylinder sets. A complementary
approach to the statistics of the number of visits has been developed in the framework of extreme value theory, where it is
more often called point process, or particular kinds of it as the marked point process associated to extremal observations
corresponding to exceedances of high thresholds. See for instance [21–23] for applications to deterministic and random
dynamical systems, and the book [41] for a panorama and an account on extreme value theory and point processes applied
to dynamical systems. The distribution of the number of visits to vanishing balls has been studied for systems modeled by
a Young tower: in [14] for the Hénon attractor, in [44] for some nonuniformly hyperbolic invertible dynamical systems, in
[30] and [31] for polynomially decaying correlations. Recurrence in billiards provided recently several new contributions;
for planar billiards in [43] and [24]; in [45] the spatio-temporal Poisson processes was obtained from recording not only
the successive times of visits to a set, but also the positions.

The paper is structured as follows. We directly state the main results in Section 2, and follow with a discussion
concerning assumptions and examples in Section 3. Next, Section 4 specializes to the case of g-measures. We provide
one further discussion on synchronization in Section 5, and conclude with Sections 6 and 7 containing the proofs of all
the results.

2. Main results

Let T be a measurable map on a measure space � and μ a T -invariant measure on �. Moreover let A be a countable
measurable partition on � and denote by An =∨n−1

j=0 T −jA be the joins of A. We assume that A is generating, that

is,
∨∞

j=0 T −jA consists of singletons.1 For every measurable set U we will denote by μU with μ(U) > 0 the measure

conditioned on (the points starting in) U , that is μU(A) := μ(U∩A)
μ(U)

. As usual, for any collection of sets B we denote by
σ(B) the smallest σ -algebra generated by B.

2.1. Distribution of the number of visits in a fixed set U

Initially, our interest will be to characterise the distribution of the number of visits to sets with small measure. To this end,
we define for any fixed set U and for any t > 0 the N-valued random variable

W =
t/μ(U)∑

i=0

1U ◦ T i,(1)

which counts the number of visits to U in the Kac’s scaling t/μ(U). Although W depends on t and U , we do not explicit
this dependence in the notation for the sake of simplicity. Our first theorem gives an upper bound on the total variation
distance2 between μ(W ∈ ·) and a compound Poisson distribution ν̃ with parameters t λ̃	, 	 ≥ 1, that is, a probability
distribution with generating function

ϕν̃(z) = e
∑

k≥1 t λ̃k(e
zk−1).(2)

Naturally, the parameters λ̃	, 	 ≥ 1 will depend on the dynamic.
We stand in the world of φ-mixing measures; we point out that the following mixing conditions are stated in terms of

the one-sided join An =∨n−1
j=0 T −jA which allows to open a gap between events separated in the future.

1When the map T is invertible, we ask
∨∞

j=−∞ T −jA to consist of singletons in order to guarantee that A is generating. We need generating partitions
since in the following we consider descending nested sequences of cylinders as “rare” sets, even collapsing around points.
2The total variation between two probability distributions P and Q on some measurable space (�,F) is defined as ‖P(·) − Q(·)‖ = supB∈F |P(B) −
Q(B)|.
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Definition 1. We say a T -invariant probability measure μ on � is left φ-mixing with respect to the partition A if there
exists a decreasing sequence φ(k) ↘ 0 so that for every n,m ≥ 1, U ∈ σ(An) and V ∈ σ(

⋃∞
m=1 Am):∣∣∣∣μ(U ∩ T −n−kV )

μ(U)
− μ(V )

∣∣∣∣≤ φ(k).(3)

Similarly we say μ is right φ-mixing if under the same conditions∣∣∣∣μ(U ∩ T −n−kV )

μ(V )
− μ(U)

∣∣∣∣≤ φ(k).(4)

For any i ≥ 1 and any 1 ≤ K ≤ i, the variable counting the number of visits to U at a distance less or equal to K

around i is

Z
(K)
i :=

i+K∑
j=i−K

1U ◦ T j .(5)

For x ∈ � denote by Aj(x) the unique atom of Aj which contains x. More generally for a set U ⊂ � we put for its
outer j -cylinder approximation of U (j ≥ 1)

Uj := Aj(U) =
⋃

A∈Aj ,A∩U �=∅

A.(6)

Similarly for U ⊂ � and and integer then, for j < n, we also define the n-right j -cylinder approximation by:

Ũ
j
n = T −(n−j)Aj

(
T n−jU

)= T −(n−j)
⋃

A∈Aj ,A∩T n−j U �=∅

A.(7)

In the case when U ∈ σ(An) (union of n-cylinders) then we shall write below Ũ j for Ũ
j
n . (In Remark 5 we will give an

example of a null set whose n-right j -cylinder approximation is the entire space for all j < n/2.) We are now ready to
state our first main result where we denote by φ1(	) =∑∞

j=	 φ(j) the tail sum of φ.

Theorem 2. Let μ be a T -invariant probability measure on � which is right φ-mixing with φ summable. Then there
exists a constant C1 so that, for any measurable set U ∈ σ(An), any t > 0 and any K < t/μ(U), we have

∥∥μ(W ∈ ·) − ν̃K,U

∥∥
TV ≤ C1t inf

K<�<t/μ(U)

(
K

φ(� − n)

μ(U)
+ �μ(U) + φ1(K/2) +

n∑
j=K/2

μ
(
Uj
))

,(8)

(Uj as defined in (6)) where ν̃K,U is the compound Poisson distribution with parameters t λ̃	(K,U), 	 ≥ 1, where

λ̃	(K,U) := 1

	
E
(
1

Z
(K)
i =	

|1U ◦ T i = 1
)
, ∀i ≥ K.(9)

If we assume left φ-mixing instead of right φ-mixing, the same statement holds after replacing the j -cylinder approxima-
tions Uj by the n-right j -cylinder approximations Ũ j (as defined in (7)) of U ∈ σ(An).

We now consider the case in which we have a stronger kind of mixing called ψ -mixing.

Definition 3. We say a T -invariant probability measure μ on � is ψ -mixing with respect to the partition A if there exists
a decreasing sequence ψ(k) ↘ 0 so that for every n,m ≥ 1, U ∈ σ(An) and V ∈ σ(

⋃∞
m=1 Am):∣∣∣∣μ(U ∩ T −n−kV )

μ(U)μ(V )
− 1

∣∣∣∣≤ ψ(k).

This stronger assumption naturally yields a stronger result.
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Theorem 4. Let μ be a T -invariant probability measure on � which is ψ -mixing where ψ(j) → 0 as j → ∞. Then
there exists a constant C′

1 so that, for any measurable set U ∈ σ(An), any t > 0 and any K < t/μ(U), one has

∥∥μ(W ∈ ·) − ν̃K,U

∥∥
TV ≤ C′

1t inf
K<�<t/μ(U)

(
ψ(� − n) + �μ(U) +

n∑
j=K/2

μ
(
Uj
))

,(10)

where ν̃K,U is the compound Poisson distribution with parameters t λ̃	(K,U), 	 ≥ 1 given by (9).
By symmetry of ψ -mixing, the same inequality holds with Ũ j instead of Uj on the RHS.

2.2. Asymptotic distribution of the number of visits in a nested sequence {Un}n≥1

Now we will consider nested sequences of measurable sets U1 ⊃ U2 ⊃ . . . satisfying μ(Un) → 0. We will denote by �

the limiting null-set. Our interest is to study the convergence in distribution of

Wn :=
t/μ(Un)∑

i=0

1Un ◦ T i

as n diverges, for any t > 0.
Naturally, it is expected that, if in the Poisson compound approximations of the preceding theorems the involved

parameters (9) converge and we can further control the error terms, then we would have a Poisson compound distribution
in the limit, parametrised by the limiting parameters. The statement of such a result needs some more definitions on the
entry/return time probabilities and the corresponding limiting quantities.

For a subset U ⊂ � we define the first entry/return time τU by τU (x) = min{j ≥ 1 : T jx ∈ U}. Similarly we get higher

order returns by defining recursively τ 	
U (x) = τ 	−1

U + τU (T τ	−1
U (x)) with τ 1

U = τU . We also write τ 0
U = 0 on U .

We now come back to our nested sequence of sets Un,n ≥ 1 and define (provided the limits exist) for k,L,n ≥ 1

αk(L,Un) := μUn

(
τ k−1
Un

≤ L < τk
Un

)
,

αk(L) := lim
n→∞αk(L,Un),(11)

αk := lim
L→∞αk(L).

As promised, using Theorems 2 and 4, and under proper further assumptions, we establish that the limiting distribution
of the number of visits to the Un’s is asymptotically compound Poisson.

Theorem 5. Consider a nested sequence of sets Un ∈ σ(An), n ≥ 1, converging to a null-set �. Suppose the T -invariant
probability measure μ satisfies:

(1) either ψ -mixing, or right φ-mixing with φ summable,
(2) there exists a vanishing sequence of positive real numbers ak, k ≥ 1 such that

∑n
i=k μ(Ui

n) ≤ ak for all sufficiently
large n’s,

(3)
∑∞

k=1 k2αk < ∞ (and naturally that the αk , k ≥ 1, exist, see (11)).

Then, for every E ⊂N0 one has

μ(Wn ∈ E) −→ ν̃(E)

as n → ∞, where ν̃ is the compound Poisson distribution with parameters t λ̃	, 	 ≥ 1 and

λ̃k := αk − αk+1.

If in assumption (1) we rather assume left φ-mixing with φ summable, then we have to change Ui
n to Ũ i

n in (2), and the
same statement applies.

3. Discussion of the results

In this section, we list a series of remarks concerning the results presented in the previous section, together with some
example illustrating these remarks.
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3.1. Concerning the assumptions

Here we discuss the assumptions of the above theorems.

• The results and proofs apply to invertible and non-invertible maps T .
• It is classical in recurrence theory for dynamical systems to require some mixing conditions on the dynamic. Here we

have two alternative assumptions which are not included one in the other. For Theorem 5 for instance, we need either
that the measure be ψ -mixing, or we require right (or left) φ-mixing with polynomially decaying φ. The difference
between assuming right or left φ-mixing is made in order to handle the case of invertible maps (see Remark 5 where,
after the proof of Theorem 2, this is explained). Plenty of examples satisfying these assumptions can be found in the
literature [9,10]. We will give some examples in Sections 3.7 and 4.

• The assumption (2) of Theorem 5 is necessary in our setting because in general, the Un’s may be large unions of
cylinders whose measures have to be controlled. It is clear that in the case where � is a point, this point is contained in
a cylinder Un and our mixing assumptions automatically imply that μ(Un) decays exponentially fast and thus satisfies
the assumptions.

If Un is the outer n-cylinder approximation of �, then (Un)
j = Uj for any j ≤ n and the condition simplifies to∑

j≥n μ(Uj ) → 0.

• Finally, we need that the αk’s exist and decay sufficiently fast so that
∑∞

k=1 k2αk < ∞. As we will explain, the exis-
tence/computation of the parameters αk, k ≥ 1 is not obvious in general, it is not granted by our mixing assumptions,
and can only be, at most, guaranteed case by case.

3.2. Interpretation of the compound Poisson distribution

The definition (2) of the Poisson compound distribution is not the most common in the literature. Let us explain that it
indeed coincides with the classical definition. Put r :=∑	 t λ̃	 and λ	 := t λ̃	/r . (Proposition 6 below will give conditions
under which we have that λ	 = α	 − α	+1.) With these quantities, we have

ϕν̃(z) = e
∑

k≥1 t λ̃k(e
zk−1) = er

∑
k≥1 λk(e

zk−1) = er(
∑

k≥1 λke
zk−1).

We recognise the moment generating function of the random variable Z =∑N
i=1 Xi in which N ∼ Poisson(r) and Xi, i ≥

1 are i.i.d. integer valued r.v’s with distribution

PX(	) = λ	 = λ̃	∑
k λ̃k

, 	 ≥ 1.

When λ̃1 = λ and λ̃k = 0, k ≥ 2, we obtain the straight Poisson distribution with parameter tλ.
We can now make the relation with our results concerning the count of limiting returns to sets with small measure.

The interpretation of the Poisson random variable N is that it gives the distribution of clusters which occur on a large
timescale as suggested by Kac’s formula. And the number of returns in each cluster is given by the i.i.d. random variables
Xj ’s. These returns are on a fixed timescale and they surely depend on the “shape” of the return sets, as observed in
Section 5.

An important non-trivial compound Poisson distribution is the Pólya–Aeppli distribution which happens when the
Xj ’s are geometrically distributed with parameter 1 − p, that is PX(k) = (1 − p)pk−1, k ≥ 1.

For instance, when λ̃	 = (1−p)2p	−1, the compound Poisson distribution with parameters t λ̃	, 	 ≥ 1, is Pólya–Aeppli
since λ	 = (1 − p)p	−1. In this particular case we have moreover that N ∼ Poisson(t (1 − p)). This specific case will be
called “Pólya–Aeppli distribution with parameter t (1 − p)”. This means in explicit form that

ν̃
({k})= e−(1−p)t

k∑
j=1

(
k − 1
j − 1

)
((1 − p)2t)j

j ! pk−j .

Several asymptotic distributions will appear along the paper, Pólya–Aeppli or not, depending of the examples (and the
setting).

3.3. Relation to the extremal index in extreme value theory

Assuming that the αk, k ≥ 1 exist and vanish as k diverges, we have that
∑

	 λ̃	 =∑	(α	 − α	+1) telescopes to α1. This
quantity, α1 := limK→∞ limn→∞ μUn(K < τUn), is called the extremal index and has a particular importance in extreme
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value theory [23]. Under some circumstances [5], it is equal to the inverse of the mean cluster size. Indeed, according to
Section 3.2, the expected cluster size is given by

∑
	

	
λ̃	∑
k λ̃k

=
∑

	 	λ̃	

α1
=
∑

	 α	

α1
.

It is explained in [29] (see for instance Theorem 2 and Remark 2 therein or see Proposition 6 below) that, if∑
k k
∑

	≥k α	 < ∞ (so in particular αk exists and vanishes as k diverges), then
∑

	 α	 = 1 and we obtain the desired

result 1
α1

for the mean size of a cluster.
An important issue however is to know, for given dynamical systems, whether or not the limits appearing in all these

quantities actually exist. We will investigate this question in Sections 3.6 and 3.4 on some examples, and in Section 4 for
the case of g-measures.

3.4. Example 1: The house of cards process

The house of cards process is a Markov chain on A = {0,1,2, . . .} with transition matrix Q parametrized by a sequence
of [0,1] real numbers ri , i ≥ 0:

Q(i, j) =
{

ri if j = 0,

1 − ri if j = i + 1.
(12)

It has a stationary version if and only if
∑

i≥1
∏i−1

j=0(1 − rj ) < ∞, which is the condition ensuring that the expecting
distance between two consecutive occurrences of a 0 is finite. In this case, the row vector π satisfying πQ = π is

π(k) = π(0)

k−1∏
i=0

(1 − ri)

where

π(0) = 1

1 +∑i≥1
∏i−1

j=0(1 − rj )
.

For the stationary version of this Markov chain, we want to study the asymptotic distribution of the number of visits
to runs of length n above a threshold l ≥ 1.

We will use the stochastic process notation involving random variables, but in order to relate to the framework of
Section 2, we could let μ denote the measure on AN associated to the stationary process. This measure is σ -invariant,
where σ is the shift operator σ : AN � defined through (σ (x))i = xi+1 for any x = (x0x1x1 . . . ) ∈ AN. We are interested
in studying the statistics of visits of this symbolic system in Un = Un(l) =⋂n

i=1 σ−i[l,+∞) as n diverges for some fixed
l ≥ 1.

Let {Xi}i≥0 be a stationary House of Cards Markov chain. By the Markov property, successive visits to 0 parse the
process into independent blocks. Let us denote

T := inf{k ≥ 1 : Xk = 0},

and for any i ≥ 0

qi(k) := P(T = k|X0 = i) = ri+k

i+k−1∏
j=i

(1 − rj )

the probability that the time elapsed until the next 0, starting with X0 = i, be equal to k.
Recalling the definition (11) of αk(L,Un), we have

αk+1(L,Un) ≥ P(T = k|X0 ≥ n + l)P(Xi < n, i = 1, . . . ,L − k|X0 = 0),
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and

αk+1(L,Un) ≤P(T = k|X0 ≥ n + l)P(Xi < n, i = 1, . . . ,L − k|X0 = 0)

+ P(T < k|X0 ≥ n + l)P(T ≥ n|X0 = 0).

Naturally, T and Xi being a.s. finite, we have that, as n diverges, P(Xi < n, i = 1, . . . ,L − k|X0 = 0) converges to 1 and
P(T ≥ n|X0 = 0) converges to 0. We will prove below that, if ri → r∞ ∈ (0,1), then for any k ≥ 1 and any l ≥ 1

lim
n

P(T = k|X0 ≥ n + l) = r∞(1 − r∞)k(13)

and therefore

αk+1 := lim
L

lim
n→∞αk+1(L,Un) = lim

n→∞Pπ (T = k|X0 ∈ Un) = r∞(1 − r∞)k

exists and decays exponentially fast in k, which grants Condition (3) of theorem 5.
Moreover, under the assumption ri → r∞ ∈ (0,1) we have that the Markov chain is Doeblin, and thus automatically

exponentially (right) φ-mixing [9]. This grants condition (1) of Theorem 5. Moreover, in our case, we have U
j
n = Uj =

{Xi ≥ l, i = 0, . . . , j − 1}, thus

μ
(
U

j
n

)=∑
n≥l

π(n)P(T ≥ j |X0 = n) = π(0)
∑
n≥l

j+n−1∏
i=0

(1 − ri)

which is summable in j since for any ε > 0, ri ≥ r∞ − ε for large enough i’s, granting Condition (2) of Theorem 5.
Thus if ri → r∞ ∈ (0,1), we can apply Theorem 5, which gives us that the number of visits to Un is, asymptotically,

Pólya–Aeppli distributed with parameter t (1 − r∞). According to Section 3.3, the corresponding extremal index is 1/r∞.
It only remains to prove the convergence (13). Let us compute

P(T = k|X0 ≥ n + l) =
∑

i≥n+l P(T = k|X0 = i)π(i)∑
i≥n+l π(i)

=
∑

i≥n+l ri+k

∏i+k−1
j=i (1 − rj )π(i)∑

i≥n+l π(i)

=
∑

i≥n+l ri+k

∏i+k−1
j=i (1 − rj )π(0)

∏i−1
j=0(1 − rj )∑

i≥n+l π(0)
∏i−1

j=0(1 − rj )

=
∑

i≥n+k+l ri
∏i−1

j=0(1 − rj )∑
i≥n+l

∏i−1
j=0(1 − rj )

.

By Stolz–Cesàro

lim
n

P(T = k|X0 ≥ n + l) = lim
n

rn+l+k

∏n+l+k−1
j=0 (1 − rj )∏n+l−1

j=0 (1 − rj )

= lim
n

rn+l+k

n+l+k−1∏
j=n+l

(1 − rj ) = r∞(1 − r∞)k

as we said.

3.5. Return and entry times

An important task, in order to apply Theorem 5, is to prove that the involved limiting quantities exist and to compute
the sequence λ̃k, k ≥ 1 (or, equivalently, λk, k ≥ 1, see Section 3.2), parameter of the asymptotic compound Poisson
distribution. Here we give some alternative ways to prove these facts, by defining other quantities related to λ̃k , k ≥ 1,
which are eventually easier to handle.
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Let us define α̂	(K,Un) := μUn(τ
	−1
Un

≤ K) and assume that α̂	(K) = limn→∞ μUn(τ
	−1
Un

≤ K) exist for K large

enough. Since {τ 	+1
Un

≤ K} ⊂ {τ 	
Un

≤ K} we get that α̂	(K) ≥ α̂	+1(K) for all 	 and in particular α̂1(K) = 1. By mono-
tonicity the limits α̂	 = limK→∞ α̂	(K) exist and satisfy α̂1 = 1 and α̂	 ≥ α̂	+1 for any 	 ≥ 1. Now assume that moreover
the limits p

(	)
i = limn→∞ μUn(τ

	−1
Un

= i) of the conditional size of the level sets of the 	th return time τ 	
Un

exist for i ≥ 0

(clearly p
(	)
i = 0 for i ≤ 	 − 2). According to Lemma 1 in [29] one has, for 	 ≥ 2,

α̂	 =
∑

i

p
(	)
i .

We also have, by definition, that α	 = α̂	 − α̂	+1, 	 ≥ 1. So the existence of the α	’s is granted once the α̂	’s exist,
moreover, according to what we just said

α	 =
∑

i

(
p

(	)
i − p

(	+1)
i

)
, 	 ≥ 2.

This relation also holds for 	 = 1. To see this, first recall that

α1 = lim
K→∞ lim

n→∞μUn(K < τUn)

and observe that p
(1)
0 = 1 and p

(1)
i = 0, i ≥ 1. It follows that we can write

∑
i (p

(1)
i −p

(2)
i ) = 1 −∑i p

(2)
i = 1 − α̂2 = α1.

Finally, we state without proof the following result which was proven in [29], and which gives an important character-
ization of λ	 under some conditions.

Proposition 6 ([29]). Let Un ⊂ � be a nested sequence so that μ(Un) → 0 as n → ∞. Assume that the limits α̂	(L) =
limn→∞ α̂	(L,Un) exist for 	 = 1,2, . . . and L large enough. Assume

∑
	 	α̂	 < ∞, then

λk = αk − αk+1

α1

where αk = α̂k − α̂k+1. In particular the limit defining λk exists.

3.6. Example 2: Regenerative processes

We recall that a a stochastic process {Xi}i≥0 is a regenerative process if there exist random times T1 < T2 < · · · such

that the sigma fields σ(X
Tn+1−1
Tn

), n ≥ 1 are i.i.d. and independent of σ(X
T1−1
0 ) (we refer for instance to [6, Chapter VI]

and [48]). So the model is completely defined if we specify the distribution of X
T1−1
0 , and X

T2−1
T1

. Here we consider a

particular case in which these vectors belong to
⋃

a∈A
⋃

k≥1 ak where ak denotes the vector (a, . . . , a) of k times the
same symbol a concatenated, and A ⊂ N. In other words, the independent blocks are filled up with only one symbol as
follows

X∞
0 = X0 . . .X0︸ ︷︷ ︸

T1 times

XT1 . . .XT1︸ ︷︷ ︸
T2 − T1 times

. . . XTn . . .XTn︸ ︷︷ ︸
Tn+1 − Tn times

. . .

Specifically, we consider that for any a ∈A and k ≥ 1

P
(
X

T2−1
T1

= ak
)= p(a)qa(k)

where
∑

a p(a) = 1 and, for any a ∈A,
∑

k qa(k) = 1. A way to interpret the above formula is in a two-steps procedure.
First we choose the symbol XT1 = a independently of everything, with probability p(a), and next, we choose the size
k of the block, with probability qa(k). This is a particular instance of Semi-Markov process [16,34]. In particular, it is
well-known that there exists a stationary version of the process if and only if the expectation of the blocks is finite, that is

ν =
∑
a∈A

p(a)νa :=
∑
a∈A

p(a)
∑
k≥1

kqa(k) < ∞
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where νa is the expectation of the blocks of symbols a. Another known fact is that, for the process to be stationary, the
distribution of X

T1−1
0 must be

P
(
X

T1−1
0 = ak

)= p̄(a)q̄a(k), a ∈A, k ≥ 1

where

p̄(a) = p(a)νa

ν
and q̄a(k) =

∑
l≥k qa(l)

νa

.

We want to study the distribution of the number of visits to states larger or equals to n when n gets large (we assume
that A is countably infinite).

As for the House of Cards Markov chain, we can relate to the framework of Section 2 by considering the symbolic
measure space (AN,B,μ,σ ), and this time, we consider the nested sets Un = [n,+∞), n ≥ 1.

The regenerative structure was also present in the House of Cards Markov chain, since visits to 0 cut the realisation into
independent blocks. However, regenerative processes need not be Markovian. The first step, if we want to use Theorem 5
is to investigate the mixing properties of this model.

Proposition 7. For the regenerative process described above, inequality (4) (right φ-mixing) holds for

φ(k) = 2 sup
a∈A

∑
i>k

q̄a(i).

The proof of this proposition is not difficult but since we did not find it in the literature, we do it in Section 7.
An interesting case is the Smith example, in which qa(a + 1) = 1

a
= 1 − qa(1). This example was used by [29] as

a case in which Proposition 6 cannot be used, because they proved that α̂k = 1
2 for any k. In any case, we cannot use

Proposition 7 neither, and thus we cannot conclude on the statistics of this model here.
To simplify the presentation, suppose now that qa(l) = q(l) for any l ≥ 1 independently of a, in which case q̄a = q̄ for

any a also. According to Proposition 7, Condition (1) of Theorem 5 is granted if the probability distribution q̄ has first
moment.

On the other hand, it is not too complicated to see that αk(L,Un) (see (11)) is close to the probability that the starting
block, which is a block of a symbol in Un (since we are conditioned on starting in Un), equals k. Indeed, using a similar
reasoning as the one used for the house of cards Markov chain [29, Section 8.2], we get

αk(L,Un) = q̄(k) +O
(
Lμ(Un)

)
from which it follows that

αk = q̄(k) =
∑

l≥k q(l)∑
k kq(k)

since in the present case qa(k) = q(k) for any k. So condition (3) of Theorem 5 is granted if we assume that q̄ has finite
second moment, that is,

∑
k2q̄(k) < ∞. This in turns is granted if q has third moment, since (we put νa = ν for any a)

∑
k

k2q̄(k) = 1

ν

∑
k

k2
∑
l≥k

q(l) ≤ 1

ν

∑
k

∑
l≥k

l2q(l) = 1

ν

∑
k

k3q(k) < ∞.

In order to ensure condition (2), we will assume that n
∑

i≥n p(i) → 0 as n diverges, which is the case for instance if the
probability distribution p(a), a ∈ A has first moment. Then, since in our case Ui

n = Un for any i ≤ n, we have for any
1 ≤ K and sufficiently large n

n∑
i=K

μ
(
Ui

n

)≤ nμ(Un) = n
∑
i≥n

p(i) ≤ K
∑
i≥K

p(i).

Thus taking ak = k
∑

i≥k p(j), the assumption (2) of Theorem 5 also holds.
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We conclude that, if p(a), a ∈ A has first moment and q(k), k ≥ 1 has third moment, then the number of visits to Un

is, asymptotically compound Poisson with parameter t λ̃k, k ≥ 1 where

λ̃k = q(k)∑
k kq(k)

.

As explained in Section 3.3, α1 =∑k λ̃k which in this case gives 1/
∑

k kq(k). Thus the extremal index is 1/α1 =∑
k kq(k) which is the expected block size.

3.7. Number of visits around a point

Determining the limiting distribution of the number of visits when the limiting target set is a point and the nested sequence
of sets is a sequence of cylinders containing the point is a classical question in the literature of recurrence theory [32]. It
is however a nice way to illustrate Theorem 5.

Suppose that the mixing conditions of Theorem 5 are satisfied by the dynamic under consideration. Fix a point x ∈ �

and for any n ≥ 1 consider the n-cylinder An(x), that is, the unique atom of An containing x ∈ �. In the notation of
the previous section, we let Un = An(x) (that is � = {x}), and we ask what is the asymptotic distribution of visits to
Un,n ≥ 1. It is well-known that in this case there is a dichotomy according to whether x is aperiodic, in which case we
have a Poisson distribution, or periodic, in which case we have a Polya–Aeppli distribution instead. Illustrating how to
use our results in this simple example will be the opportunity to clarify technical details concerning notation and some
involved limiting quantities.

Initially, for any measurable set U ⊂ � we write τ(U) = infy∈U τU(y) for the period of U . In other words, U ∩
T −jU =∅ for j = 1, . . . , τ (U)− 1 and U ∩T −τ(U)U �=∅. The proof of the following lemma is direct and can be found
for instance in [29].

Lemma 8. Let A be a (finite) generating partition of �. Then the sequence τ(An(x)), n = 1,2, . . . is bounded if and
only if x is a periodic point.

We start with the case where x is a periodic point, with minimal period m, say. Let us compute the values λ	. For
n large enough one has τ(An(x)) = τ∞ = m and therefore An(x) ∩ {τAn(x) = m} = An(x) ∩ T −mAn(x) = An+m(x).

Moreover p
(	)
i = limn→∞ μAn(x)(τ

	−1
An(x) = i) = 0 for i < m.

Assume the limit

p := p(2)
m = lim

n→∞
μ(An+m(x))

μ(An(x))
(14)

exists, then one also has more generally

p
(	)
(	−1)m = lim

n→∞
μ(An+(	−1)m(x))

μ(An(x))
= p	−1.

All other values of p
(	)
i are zero, that is p

(	)
i = 0 if i �= (	 − 1)m. Thus α̂	 = p

(	)
(	−1)m = p	−1 and consequently

α	 = α̂	 − α̂	+1 = (1 − p)p	−1

which is a geometric distribution and in particular implies that
∑

k k2αk < ∞, meaning that condition (3) of Theorem 5.
Moreover, in the present case, we have Ui

n = Un for any i ≤ n, and since our mixing assumptions imply that the measure
of cylinders decays exponentially fast in n, it follows that Assumption (2) of Theorem 5 is automatically granted. So
by Theorem 5, we conclude that the random variable W has Pólya–Aeppli distribution with parameter t (1 − p) (see
Section 3.2).

We now consider the case of a non-periodic point x. In this case, the increasing sequence τ(An(x)) goes to infinite
as n → ∞. Note that μAn(x)(τAn(x) ≤ K) = 0 for all n large enough so that K < τ(An(x)). Hence α̂2(K) = 0 for all
K which implies that α̂2 = 0 and consequently α̂	 = 0 for all 	 ≥ 2. Consequently in this case the extremal index is
α1 = 1 − α̂2 = 1 and αk = 0, k ≥ 2 so that λ̃1 = 1 and λ̃k = 0, k ≥ 2 and therefore W is Poisson(t) distributed.
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4. The case of g-measures

Let A= {1,2, . . . ,M} be a finite alphabet and

�B = {x ∈ AN : Bxi,xi+1 = 1,∀i ≥ 1
}⊂ � := AN

where B is an aperiodic and irreducible M × M matrix of 0’s and 1’s. Let F denote the Borel σ -algebra of �B . For
any finite string an

1 (shorthand notation for (a1, . . . an), ai ∈ A) of symbols of A, we let [an
1 ] := {x ∈ �B : xi = ai, i =

1, . . . , n} denote the corresponding cylinder set. The Borel σ -algebra F is generated by the cylinder sets. The shift
operator σ : �B � defined through (σ (x))i = xi+1 for any x = (x1x2x3 . . . ) ∈ �B is called sub-shift of finite type.

A measurable function g : �B → [0,1] satisfying∑
y:σ(y)=x

g(y) =
∑
a∈A

g(ax) = 1(15)

for any x ∈ �B is called a g-function. Let Lg be the associated transfer operator given by

Lgf (x) =
∑

y:σ(y)=x

g(y)f (y) =
∑
a∈A

g(ax)f (ax),

for functions f : �B → R, where ax is the concatenation of the symbol a with the sequence x (if admissible). A g-
measure is a probability measure satisfying L∗

gμ = μ [35] where L∗
g is the dual of Lg . This is equivalent [40] to μ being

σ -invariant and satisfying

Eμ

(
1[a]|F∞

2

)
(x) = g

(
aσ(x)

)
,

for any a ∈A and μ-almost every x ∈ �B . Yet another equivalent way is to define μ is through the variational principle,

μ ∈ argmax

{
hν +

∫
logg dν : ν is σ -invariant

}
where hν denotes the Kolmogorov–Sinai entropy. The maximum of the quantity above is called the topological pressure
of logg and denoted P(logg). It turns out that, since

∑
y:σ(y)=x g(y) = 1, we have P(logg) = 0.

All the above can be stated in the framework of equilibrium states for a real function ϕ on �B . This can be done simply
by substituting g by eϕ , except for the restriction (15) which is put in the g-measure context to give a stochastic process
flavour. We refer to [40,52] for the proofs of all the above equivalences and further details on the variational principle for
generic potentials and g-functions.

An important characterisation of the regularity of g is its variation of order k ≥ 1

varkg := sup
{∣∣g(x) − g(y)

∣∣ : xk
1 = yk

1

}
.(16)

The convergence varkg → 0 is equivalent to uniform continuity in the product topology. In this case, L∗
gμ = μ has at least

one solution [35]. Under the stronger assumption that
∑

k varkg < ∞ and g > 0, there is a unique g-measure specified
by g [40] and it enjoys ψ -mixing [52, see the proof of Theorem 3.2 therein].

4.1. Visits close to a periodic point

In Section 3.7, we considered the case of visits around a point through cylinders. Concerning periodic points of minimal
period m, the existence of the limit

p := p(2)
m = lim

n→∞
μ(An+m(x))

μ(An(x))
(17)

was assumed in order to conclude the asymptotic distribution of the number of visits close to the point. Here we consider
this question in the case of g-measures. We have the following proposition.

Proposition 9. Consider a g-measure μ and a point x ∈ �B of prime period m ≥ 1. If
∏m−1

i=0 g ◦ σ i is continuous

at x, then the limiting parameter p defined through (17) exists and is given by
∏m−1

i=0 g(σ i(x)). So in particular, if
limk→0 vark g = 0, the limiting parameter exists for any periodic point. If moreover

∑
k vark g < ∞ and g > 0, the

limiting distribution of the number of visits around x has Pólya–Aeppli distribution with parameter t (1 − p).



1162 S. Gallo, N. Haydn and S. Vaienti

Remark 1. Let us mention that the existence of the limit was proven and computed for Axiom A by [46].

Let us now consider a specific class of g-measures, called renewal measures. Consider the space � = {0,1}N and for
any x ∈ � let κ(x) := inf{n ≥ 0 : xn+1 = 1} count the number of 0 until the first occurrence of a 1 in x. Now take a
sequence of [0,1]-valued real numbers qi, i ≥ 0 and define the function ḡ by ḡ(1x) = qκ(x) = 1 − ḡ(0x). A g-measure
corresponding to ḡ exists under some technical assumptions on the sequence qi, i ≥ 1, which are automatically granted
if we assume that qi ≥ ε for any i ≥ 1.

Proposition 10. Consider a renewal measure with sequence of parameters {qi}i≥1 which satisfies qi ∈ [ε,1−ε] for some
ε > 0. Then, for any periodic point x �= 0∞, the limit p defined by (14) exists and the limiting distribution of the number
of visits around x has Pólya–Aeppli distribution with parameter t (1 − p).

The same occurs for visits around 0∞ if, and only if, qi, i ≥ 1 converge.

The main interest of this example lays in the fact that it is φ-mixing.

4.2. Existence of the extremal index

Due to its relation to the so-called extremal index, the question of (non-)existence of the limit (17) was investigated
recently in [4]. According to Proposition 9, vanishing variation guarantees existence of the extremal index at any periodic
point. So if we want to characterise systems for which the extremal index does not exist, we have to get out of the classical
setting of g-measures in which g is assumed uniformly continuous. This is what we discuss now.

First, let us observe that Theorem 3.2 of [3] completely solved the question of the existence (and computation) of the
limiting parameters in the case of renewal measures. Something interesting which is shown therein is that the renewal
measure provides a simple situation in which p does not exist although the measure enjoys good mixing. This is the case

if we take qκ(x) = ε1 if κ(x) is odd and ḡ(x) = ε2 otherwise: the limit lim μ̄([0n+1])
μ̄([0n]) does not exist (see also Proposition 10

above). With this choice of parameters, the measure is φ-mixing with exponentially decaying rate φ, but we easily see
that ḡ has a discontinuity (with respect to the product topology) at the point 0∞.

The first information we get from this example is that good mixing properties are not enough to ensure existence of the
extremal index, and that this existence is perhaps related to the continuity properties of the g-function. Technically, the
discontinuity of ḡ at 0∞ is an essential discontinuity, borrowing the terminology used in the context of statistical physics
[19]. This is a discontinuity which cannot be removed by changing function ḡ on a null μ̄-measure subset of � [20].

More generally, for a g-measure μ with g-function g, the non-existence of the limit limn μ([an
1 ])/μ([an−1

1 ]) implies
that g has an essential discontinuity at y∞

1 , but the converse is not necessarily true. So even when we focus on the easier
case of points of period 1, the non-existence of the extremal index implies on an essential discontinuity of g at a∞, but
the converse is not true in general. This non-equivalence is spectacularly clear with the following example.

4.3. The Furstenberg example

As far as we know, the following example is due to [25] (see Chapter 3.12 therein). On AN = {−1,+1}N, take the product
measure μ with marginal μ([+1]) = ε = 1 − μ([−1]). Next, consider the function � : {−1,+1}N → {−1,+1}N defined
through (�(x))i = xixi+1, the product of two consecutive coordinates. If ε = 1/2, then ν := μ ◦ �−1 is also the product
measure with marginal ν([+1]) = ν([−1]) = 1/2, but otherwise, ν has a g-function which is essentially discontinuous
everywhere [20,51]. Let us now write down its g-function g�. Since our interest here is with respect to discontinuities,
we will assume hereafter that ε �= 1/2.

For any fixed j ∈ N, when the limit exists, let

d
(
x∞
j

)= lim
n→∞

#{j ≤ i ≤ n,xi = −1}
n

denote the asymptotic density of −1 in the sequence x∞
j with xi ∈ {−1,+1}, i ≥ j . For any fixed y ∈ {−1,+1}N the

preimage set �−1(y) contains two elements, that we denote by x+(y) for the one starting by +1 and x−(y) for the one
starting by −1. Now, let

G := {y ∈ {−1,+1}N : d(x+(y)
)= εord

(
x−(y)

)= ε
}
.
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Then by the law of large numbers for the product measure μ, we have that ν(G) = 1. It is proved in [20] that for any
y ∈ G,

ν([1yn
2 ])

ν([yn
2 ]) →

{
ε if d

(
x−(y)

)= ε,

1 − ε if d
(
x+(y)

)= ε.
(18)

This defines g�(1σ(y)) for y ∈ G by the Martingale Theorem. For y ∈ Gc , g�(1σ(y)) may be defined arbitrarily, as this
set has null ν-measure and the choice will not affect the conclusion of everywhere essential discontinuity.

The following simple result proves that, despite of the terrible (dis)continuity properties of g�, the limiting quantities
needed to apply our theorems exist.

Proposition 11. Consider the measure ν with g-function g� as defined above. Then, for any periodic point x of prime
period m ≥ 1, the limiting quantity p defined by (14) exists and the limiting distribution of the number of visits around x

has Pólya–Aeppli distribution with parameter t (1 − p).

To conclude on this example, we observe that the value p is explicitly computed in the proof of the proposition (see
(35)).

4.4. Temporal synchronisation for g-measures

Consider m g-measures μ1, . . . ,μm on �B , respectively with functions g1, . . . , gm, and define the product measure
μ1 ⊗· · ·⊗μm on � = �m

B or even �m. Let σ̂ : � � be the shift map on the product space. For any n ≥ 1, Sn =⋃A∈An Am

is the n-cylinder neighbourhood of the diagonal � = {(x, . . . , x) : x ∈ �B} ⊂ �m
B (see Figure 2 for a picture with m = 2).

Observe that

σ̂−iSn = {(x(1), . . . , x(m)
) : x(1)

i . . . x
(1)
n+i−1 = x

(j)
i . . . x

(j)

n+i−1, j = 2, . . . ,m
}
,

that is, a visit in Sn can be interpreted as a synchronisation lasting n time units of the symbols of the dynamical systems,
therefore justifying the name “temporal synchronisation”.

A natural first problem is, in the above “uncoupled”, or “non-interacting” setting of product measures, to study the
distribution of the number of visits to Sn as n diverges, that is, visits to longer and longer synchronised pieces of orbits.
However, it would be even more interesting to study the same question for interacting g-measures. In full generality, for
any m ≥ 2, any g-measure on the product space � = (Am)N can be considered the coupling of the m coordinates g-
measures. That is, we see � as �m instead of seeing it as (Am)N. In other words, in this general setting, we are studying
the synchronisation of the coordinates.

Theorem 12 below is stated with this abstract approach because it is more general, and next, Corollary 13 will specialise
to the non-interacting case. Finally, we will rapidly discuss two explicit ways to make g-measures interact.

Let Wn count the number of synchronisations on the Kac scaling

Wn :=
t/μ̂(Sn)∑

i=0

1Sn ◦ σ̂ i .

Theorem 12. As before let B be irreducible and aperiodic. Then

(1) On the product space � = �m, for some m ≥ 2, let μ̂ be a σ̂ -invariant ĝ-measure. Assume that ĝ > 0 has summable
variation.

Then we have that

p := lim
n

μ̂(Sn ∩ σ̂−1Sn)

μ̂(Sn)

exists and μ̂(Wn ∈ ·) converges to a Pólya–Aeppli distribution with parameter t (1 − p).
(2) On the product space � = �m

B , for some m ≥ 2, let μ̂ be a σ̂ -invariant ĝ-measure. Assume that the function g� :
�B →R has exponentially decaying variations, where g�(x) := ĝ(x, x, . . . , x).

Then, μ̂(Wn ∈ ·) converges to a Pólya–Aeppli distribution with parameter t (1 − p) where p = eP (logg�) < 1 with
P(logg�) being the topological pressure of logg�.
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Remark 2. In the particular case in which ĝ only depends on the two first coordinates, μ̂ is a Markov chain with matrix
Q̂(â, b̂) := ĝ(x̂) for any x̂ ∈ �m

B such that x̂1 = b̂ ∈ Am and x̂2 = a ∈ Am. In this case, P(logg�) is logρ where ρ is the
largest positive eigenvalue of the matrix Q� :A×A → (0,1) defined by Q�(a,b) = Q̂((a, . . . , a), (b, . . . , b)).

We have the following direct corollary of item (2) of the preceding theorem.

Corollary 13. On the subshift space �B , consider m ≥ 2 independent g-measures μi, i = 1, . . . ,m, with g-functions g(i)

satisfying g(i) > 0 and having exponentially vanishing variation.
Then, μ̂(Wn ∈ ·) converges to a Pólya–Aeppli distribution with parameter t (1 − p) where p = eP (

∑
i logg(i)), with

P(
∑

i logg(i)) being the topological pressure of
∑m

i=1 logg(i).

The proof of this corollary is direct as, in the uncoupled case, ĝ(x1, x2, . . . , xm) = ∏m
i=1 g(i)(xi) and therefore ĝ

inherits the regularity and mixing properties of the g(i)’s.

Remark 3. The Rényi entropy of order q ∈R is defined as the limit

Rμ(q) = − lim
n→∞

1

qn
log
∑
[xn

1 ]
μ
([

xn
1

])q+1

when it exists. Proposition 7 in [2] states that it exists and equals −P((1+q) logg)
q

as long as g is continuous. So in the
case of the synchronization of m independent copies of the same g-measure, Corollary 13 states that the parameter of the
Pólya–Aeppli asymptotic distribution is −(m − 1)Rμ(m − 1).

Remark 4. In the particular case in which g(i), i = 1, . . . ,m only depend on the two first coordinates, μ(i), i = 1, . . . ,m

are Markov chains with matrices Q(i)(a, b) := g(i)(x) for any x such that x1 = b and x2 = a. In this case, P(
∑

i logg(i))

is logρ where ρ is the largest positive eigenvalue of the matrix Q� defined through Q�(a,b) =∏m
i=1 Q(i)(a, b).

As an example, consider m = 2 independent Markov measures with A= {0,1} and take Q(1)(0,0) = 0.2, Q(1)(1,1) =
0.7, Q(2)(0,0) = 0.8, Q(2)(1,1) = 0.9. Then, we have Q�(0,0) = 0.16 = Q�(0,1), Q�(1,0) = 0.03, Q�(1,1) = 0.63,
and in particular p = 16

25 .

Theorem 12 is abstract because it is not stated in terms of the interaction of (possibly distinct) given g-measures. The
natural question now is how to make g-measures interact? A direct application of the coupled map lattice approach used
for instance in [18,29] (see also Section 5.1 below) does not seem to make much sense in the setting of g-measures.
An observation at this point is that we prefer to use the terminology “interacting g-measures” instead of “coupled g-
measures”, because the second one has a precise definition in stochastic processes, which does not necessarily correspond
to what we want here.

We consider two ways. The first way to make g-measures interact is through a coupling of their g-functions, coupling in
the sense of stochastic processes as we now explain. Suppose we have m ≥ 2 possibly distinct g-functions g(1), . . . , g(m)

on �, and use the notation �xk = (xk(1), . . . , xk(m)) ∈ Am, k ≥ 1, and �x = (�x1 �x2 . . .). Then, a g-function ĝ on �m is said
to be a coupling g-function of the g(k)’s if, for any k = 1, . . . ,m, any a ∈ A and any (�x2 �x3 . . .)∑

�x1:x1(k)=a

ĝ(�x) = g(k)
(
ax2(k)x3(k) . . .

)
.

The g-measure μ̂ associated to ĝ is then automatically a coupling of the g-measures μ(k) associated to g(k), k = 1, . . . ,m,
in the sense that the kth marginal of μ̂ is equally distributed to μ(k) for any k. An example is given in Section 4.4.1.

A second way to make g-measures interact is, given m ≥ 2 possibly distinct g-functions g(1), . . . , g(m), to construct a g-
function on the product space �m parametrized by a tuning parameter γ ∈ [0,1] indicating the strength of the interaction,
that is, having the property that, when γ = 0, ĝ =∏m

i=1 g(i), which corresponds to the non-interacting case. The resulting
ĝ needs not to be a coupling of the g(k)’s in the stochastic process meaning. We give a simple example in Section 4.4.2.

In order to simplify the presentation, we will restrict ourselves to the case where the g(i)’s depend only on the two first
coordinates and will construct ĝ’s having the same property. This means that instead of specifying g-functions g, we will
specify matrices Q. Moreover, we assume that the Q(i)’s and Q̂ have only strictly positive entry, ensuring that we are in
force of all the conditions of Theorem 12, item (2).

Observe finally that, also according to Theorem 12, we only have to define the coupling ĝ on �, which means that we
only have to define Q�.
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4.4.1. Example 1: The maximal coupling
The maximal coupling is a classical coupling in the theory of stochastic processes, but is less known in dynamical systems.
We refer to [11] for a complete definition, here we only define the coupling on �, which is sufficient for our purposes.
We start with matrices Q(i), i = 1, . . . ,m, then the maximal coupling is defined on the diagonal as

Q̂max
(
(a, . . . , a),

(
b(1), . . . , b(m)

)) := inf
{
Q(i)

(
a, b(i)

)
, i = 1, . . . ,m

}
.

So, taking m = 2 and coming back to the matrices used in Remark 4, we obtain Q�
max(0,0) = 0.2,Q�

max(0,1) =
0.2,Q�

max(1,0) = 0.1,Q�
max(1,1) = 0.7 and therefore, according to Theorem 12 and Remark 2 we have asymptotically

Polya–Aeppli distributed synchronzations with parameter pmax = ρmax, the largest eigenvalue of Q�
max. This gives pmax =

( 9+√
33

20 ), strictly larger than the value p = 16/25 obtained in the uncoupled case considered in Remark 4.

The terminology maximal comes from the fact that Q̂max puts as much probability as possible on the diagonal, that is,
as much probability of agreement as possible in one step, still keeping the marginals equal to Q(i), i = 1, . . . ,m. So it is
natural that the synchronizations last longer than in the uncoupled case, and this is what pmax > p means.

4.4.2. Example 2: Parametrized coupling
Let Q(1) and Q(2) be two stochastic matrices on A = {0,1} and define transition probabilities q(1), q(2) : A2 ×A→ [0,1]
through

q(1)
((

a(1), a(2)
)
,1
)= (1 − γ )Q(1)

(
a(1),1

)+ γ a(2),

q(2)
((

a(1), a(2)
)
,1
)= (1 − γ )Q(2)

(
a(2),1

)+ γ a(1).

Naturally, we put q(i)((a(1), a(2)),0) = 1 − q(i)((a(1), a(2)),1).
Now, define

Q̂γ

((
a(1), a(2)

)
,
(
b(1), b(2)

))= q(1)
((

a(1), a(2)
)
, b(1)

)
q(2)
((

a(1), a(2)
)
, b(2)

)
.

Observe that Q̂γ is indeed a stochastic matrix on A2, and that when γ = 0, we get Q̂0((a(1), a(2)), (b(1), b(2))) =
Q(1)(a(1), b(1))Q(2)(a(2), b(2)) as we wanted.

As an example, consider the matrices used in Remark 4. According to Theorem 12 and Remark 4, we have asymptot-

ically Polya–Aeppli with parameter pγ = eP (logQ�
γ ) which equals the largest eigenvalue of Q�

γ . This yields

pγ = 1

200

(
79 + 2γ + 19γ 2 +

√
2401 + 7996γ + 3006γ 2 − 7604γ 3 + 4201γ 4

)
.

So we notice that the interacting parameter γ modifies in a non-trivial way the parameter of the asymptotic distribution.
Actually, in the present case, synchronisation increases as the parameter γ increases. (Observe that when γ = 0, we
retrieve 16/25, as in the non-interacting case, which is natural.)

The original inspiration here is as a toy model for two interacting neurons, in which the value 1 means that the neuron is
spiking, and 0 means it is resting. We assume that each neuron, when they don’t interact (γ = 0), has a spiking dynamic
given by the Q(i), i = 1,2. When they interact (γ > 0), the probability that a neuron spikes will depend not only on
whether or not it just spiked, but also on whether or not the other neuron just spiked, this is what q(i) models. More
precisely, it models the effect of excitatory neurons, since the probability of spiking for one neuron increases when the
other neuron has spiked: q(1)((a(1),1),1) > Q(1)(a(1),1). Next, given the past, we assume that the probability of spiking
for each neuron is independent, this is why Q̂γ is the product q(1)q(2).

Naturally, this model is very simple and does not represent correctly the complexity of a system of interacting neurons,
however, it retains some features of a recent model introduced by [26]. Their model is not markovian, and include several
physiological considerations, and it is a natural and interesting problem to analyse the synchonisation properties in their
setting, using Theorem 12.

5. Discussion on synchronisation

The present paper is mainly concerned with the symbolic setting of deterministic dynamical systems. In the present
section we make a small digression to discuss the difference, with regard to asymptotic synchronisation, between three
situations: (1) the geometric approach of deterministic dynamical systems, (2) the symbolic approach of deterministic
dynamical systems, and (3) Markov chain, a particular case of random dynamical systems.
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We start this section by making a rapid overview of what is known in the geometric setting. The first application of
recurrence type argument, like those used in this paper, to synchronisation was given in Section 4 of the article [37], where
the authors explicitly computed a first order formula for the leading eigenvalue of the perturbed transfer operator, the
perturbation being the small neighborhood around the diagonal. It was successively shown by [36] that such a perturbative
formula was intimately related to the extremal index. This spectral approach to extreme value theory was developed in
[18], which showed that the probability of the appearance of synchronization in chaotic coupled map lattices was related
to the distribution of the maximum of a certain observable evaluated along almost all orbits. The statistics of the number
of visits was proven in [29], with a technique different from the spectral approach: we recall it in the next subsection and
then, by considering a very simple example in Section 5.2 we will exhibit clearly how different can be this approach from
the symbolic approach developed in Section 4.4. We remind that an alternate probabilistic approach in a coupled maps
setting is proposed in [12]. We conclude with Section 5.3, considering the case of continuous state Markov chains, a third
situation, in which yet another behaviour is displayed.

5.1. Synchronisation of (un)coupled map lattices: Geometric approach

We shall consider coupled map lattices over uniformly expanding interval maps. Let T be a piecewise continuous map on
the unit interval I = [0,1] which is uniformly expanding, i.e. satisfies inf |DT | > 1. We also assume that T −1 has only
finitely many branches. Then we define the coupled map T̂ on � = Im, for some integer m ≥ 2 by

T̂ (�x)i = (1 − γ )T (xi) + γ

m∑
j=1

Mi,jT (xj ) ∀i = 1,2, . . . ,m,(19)

for �x ∈ �, where M is an m × m stochastic matrix and γ ∈ [0,1] is a coupling constant. The uncoupled case corresponds
to γ = 0 in which case T̂ is the product of m copies of T . For ν > 0 small, we put

Sν := {�x ∈ [0,1]m : |xi − xj | ≤ ν,∀i, j
}

(20)

for a tubular neighbourhood of the diagonal � (see Figure 1 for a picture with m = 2). Then we define as before
α̂k+1 = limK→∞ limν→0 α̂k+1(K,Sν) for the parameters of the limiting compound Poisson distribution which describes
the sychronisation effect in the neighbourhood of the diagonal �.

It has been previously shown by [29] that if T is a piece-wise uniformly expanding map of the unit interval with finitely
many branches satisfying a mild geometric condition along the diagonal and if μ is an equilibrium state for a sufficiently
regular potential function on � then the compound Poisson parameters are given by

α̂k+1 = 1

(1 − γ )k(m−1)
∫
I
h((x)m)dx

∫
I

h((x)m)

|DT k(x)|m−1
dx(21)

where h : � → R
+ is the density function of μ and (x)m denotes the set of points on the diagonal.

Obtaining explicit results is still a complicated problem for coupled map lattices. So we now turn our attention to the
case of uncoupled map lattices, that is, to the case where γ = 0. Such a situation was first investigated by [17]. They
proved that, for an absolutely continuous measure of a piecewise expanding and smooth map of the circle, the asymptotic
distribution of synchronisation is compound Poisson, and identified the limiting parameters α̂k, k ≥ 1.

So let us see how (21) looks like in the uncoupled case (we consider here the case m = 2 to simplify) in the setting of
interval transformations. Consider a partition A = {I1, . . . , IM} of I := [0,1) and a piecewise linear Markov transforma-
tion T which is continuous, monotone and uniformly expanding on each of the sub intervals Ii , that is infIi

|T ′
i | > 1 for

any i = 1, . . . ,M , where Ti = T on Ii . Define the stochastic M × M matrix Q by

Qi,j =
⎧⎨
⎩

0 if Ij ∩ T (Ii) =∅,
1

|T ′
i |

if Ij ⊂ T (Ii).

We know in this case that the invariant density h which satisfies Lh = h, where L is the transfer operator, is piecewise
constant. Thus put hi = h(x) for x ∈ Ii and consider the row vector �h = (h1, . . . , hM). Then hQ = h.

According to [18] and [29], we then have to compute

α̂k+1 =
∫
I

h2(x)

|DT k(x)| dx∫
I
h2(x) dx

.
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Fig. 1. A strip Sν around the diagonal � in [0,1)2.

For any (a1, . . . , ak) ∈ {1, . . . ,M}k , we use the notation x ∈ I(a1,...,ak) for T i−1x ∈ Iai
, i = 1, . . . , k and let

Ak := {(a1, . . . , ak) ∈ {1, . . . ,M} : Qai,ai+1 > 0, i = 1, . . . , k − 1
}
.

If (a1, . . . , ak) ∈ Ak then, using the chain rule,

∣∣DT k(x)
∣∣=
∣∣∣∣∣

k∏
i=1

DT
(
T i−1x

)∣∣∣∣∣=
k∏

i=1

|DTai
|, ∀x ∈ I(a1,...,ak)

while on the other hand

λ(I(a1,...,ak)) = 1∏k
i=1 |DTai

| .

We can now compute ∫
h2(x)

|DT k(x)| dx =
∑

(a1,...,ak)∈Ak

h2
a1

λ(I(a1,...,ak))∏k
i=1 |DTai

|(22)

and ∫
I

h2(x) dx =
∑

i

h2
i λ(Ii).

For instance, consider the case of T (x) = 3xmod1. Then we have hi = 1 and |DTi | = 3 for i = 1,2,3, and thus∫
h2(x)

|DT k(x)| dx = 3−k while
∫
I
h2(x) dx = 1. We therefore obtain α̂k+1 = 3−k , which means that the random variable

W has Pólya–Aeppli distribution with parameter t (1 − 1/3) (see Section 3.2). A natural conjecture (having also in view
Theorem 12) would be that this is the case for any uncoupled (sufficiently mixing) dynamical systems. However, as we
show below, this is not necessarily the case.

5.2. Geometric vs. symbolic: An explicit example

As is probably clear by now, we call geometric approach when we measure the synchronisation through visits to Sν, ν > 0
(see (20)), thin strips around the diagonal, as pictured in Figure 1. On the other hand, the symbolic approach, when we
measure synchronisation through visits to cylinder sets covering the diagonal, is pictured in Figure 2.
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Fig. 2. The set S2 =⋃
A∈A2 (A × A) where the partition A= {[0, 1

2 ), [ 1
2 , 3

4 ), [ 3
4 ,1)}.

Here we show that both approaches yield different classes of distributions in general (although both compound Pois-
son), by mean of a simple example. Consider the following map T on the unit interval I :

T (x) =

⎧⎪⎨
⎪⎩

3x if x ∈ I1 := [0,1/3),

5/3 − 2x if x ∈ I2 := [1/3,2/3),

−2 + 3x if x ∈ I3 := [2/3,1).

(23)

It is a piecewise linear Markov transformation with

Q =

⎛
⎜⎜⎜⎜⎝

1

3

1

3

1

3
0

1

2

1

2
1

3

1

3

1

3

⎞
⎟⎟⎟⎟⎠ .

5.2.1. Geometric approach
We know [18,29] that the asymptotic distribution of synchronisation is Poisson compound. We now calculate explicitly
the parameters α̂k+1, k ≥ 1 using (22) which, in matricial form, gives

∫
h2(x)

|DT k(x)| dx =
∑

(a1,...,ak)∈Ak

h2
a1

λ(I(a1,...,ak))∏k
i=1 |DTai

| =
∑

(a1,...,ak)

h2
a1

k∏
i=1

Q2
ai ,ai+1

= Trace
(
νhQ̂k

)

where νh = (h2
1 . . . h2

n) and Q̂ is the matrix with entries Q̂i,j = Q2
i,j . The corresponding piecewise constant density with

respect to Lebesgue is the row vector �h = (3/56/56/5), and we then obtain νh = (9/2536/2536/25). With this example
we get (using Mathematica online) that Trace(νhQ̂k) equals

2−3k−132−2k[(3√
145 − 23)(17 − √

145)k + (23 + 3
√

145)(17 + √
145)k]

25
√

145

and ∫
I

h2(x) dx =
∑

i

h2
i λ(Ii) = 27/25.
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This yields

α̂k+1 = 2−3k−132−2k[(3√
145 − 23)(17 − √

145)k + (23 + 3
√

145)(17 + √
145)k]

27
√

145

which does not correspond to a geometric distribution and we do not have Pólya–Aeppli asymptotic distribution of
synchronisation in a strip around the diagonal.

5.2.2. Symbolic approach
We can use Theorem 12 doing g(x) =: Qi,j for any x such that x1 = i, x2 = j (i.e. g(x) depends only on the first two
coordinates x1, x2). According to Remark 4, we conclude that synchronisation distribution for cylinder neighbourhoods
of the diagonal converges to Pólya–Aeppli with the parameter t (1 − ρ), where ρ, the largest positive eigenvalue of Q̂,
equals 1

72 (17 + √
145) for this specific example.

5.3. Synchronisation of Markov chains

Let us in this section consider the quintessential random dynamical systems which are Markov chains. In fact a random
transformation can in a simple way lead to a Markov chain in the following way (see for instance [7]). Take {ωk}k∈N0 a
sequence of i.i.d. random variables with values in some � that carries the probability measure θ . We associate to each
ω ∈ � a map Tω and the iteration of the unperturbed map T n(x), will be replaced by the composition of random maps
Tωn−1 ◦ · · · ◦Tω0 . These random transformations generate a stationary Markov chain {Zn}n≥0 with transition probabilities,
for any n ≥ 1:

P(Zn+1 ∈ A|Zn = x) =
∫

�

1A

(
Tω(x)

)
dθ(ω),

where A is a measurable set in some M and Tω is a map from M to M .
We therefore consider such a Markov chain {Xn}n≥0, stationary, with continuous state space I ⊂ R and transition

probabilities p(x,A) = P(Xn+1 ∈ A|Xn = x) for measurable sets A. If the transition kernel has a density p(x, y), that is
if p(x, dy) = p(x, y) dy, then

P(Xn+1 ∈ A|Xn = x) =
∫

A

p(x, y) dy.

The invariant measure P is then given by the transition probabilities p and an initial probability measure ρ. That is
P(X0 ∈ A) = ∫

A
dρ(y) and

dP(x0, x1, x2, . . . , xn) = dρ(x0)p(x0, dx1)p(x1, dx2) · · ·p(xn−1, dxn).

The probability measure ρ on I is invariant under the map T which is given by T μ(A) = ∫
I
p(x,A)dμ(x), for all A

measurable, and is the annealed invariant measure on I . The Markov chain satisfies the Doeblin condition if there exists
a probabiltiy measure ν and an η ∈ (0,1) so that p(x,A) ≥ (1 − η)ν(A) for all measurable A. If p satisfies this condition
then in the total variation norm ‖pn(x, ·) − ρ(·)‖TV ≤ 2ηn uniformly in x.

We can now associate to {Xn}n≥0 another independent copy {Yn}n≥0 and ask the distribution of the first synchronisation
time of the two chains. The Markov chain (Xn,Yn) ∈ I × I , n ∈ N0, has transition probabilities p2((x, y), (A,B)) =
p(x,A)p(y,B), A,B measurable. Let us denote by T̂ the product map on I ×I and by P2 = P⊗P its invariant probability
measure. By using the procedure of Section 5.1, we are led to consider the direct product of these two chains and look
at the couples of points which stay close to each other up to time n − 1. Let us therefore set �δ := {(x, y) ∈ I2 =
I × I, |x − y| ≤ δ} for a neighbourhood of the diagonal in I × I .

Specifically, we will show that for Markov chains whose densities are bounded above and away from 0, the limiting
distribution (as δ → 0) of return times to �δ is Poissonian, which means that orbits don’t cluster over time and that there
is no sychronisation effect.

In order to get a limiting compound Poisson distribution as δ → 0 we want to use Theorem 3 of [29]. For that purpose
let us put Xi = 1�δ ◦ T̂ i , i = 0,1,2, . . . , and Wb

a =∑b
i=a Xi . For simplicity we put W=WN

0 , where N = t/P2(�δ) (take
integer part) where t > 0 is a parameter. We cut the time interval N into blocks of length 2K +1 for some large K (K <<

N ) and put Z=∑2K
i=0 Xi . If we put N ′ = N/(2K + 1) (assuming it being an integer) then W =∑N ′−1

n=0 Z ◦ T̂ n(2K+1). We
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now choose a gap γ << N ′ (γ ≥ 2) and want to estimate the quantities

R1 = sup
0<γ<M≤N ′

0<q<N ′−γ−1/2

∣∣∣∣∣
q−1∑
u=1

(
P2
(
Z= u ∧W

M(2K+1)
γ (2K+1) = q − u

)

− P2(Z = u)P2
(
W

M(2K+1)
γ (2K+1)

= q − u
))∣∣∣∣∣

R2 =
γ∑

j=1

P2
(
Z ≥ 1 ∧ Z ◦ T̂ (2K+1)j ≥ 1

)
.

If we denote by ν̃ the compound binomial distribution measure where the binomial part has values p = P2(Z ≥ 1) and
N ′ = N/(2K + 1) and the compound part has probabilities λ	(K, δ) = P2(Z = 	)/p, then, by Theorem 3 of [29], there
exists a constant c1, independent of K and γ , such that∣∣P2(W= k) − ν̃

({k})∣∣≤ c12
(
N ′(R1 +R2) + γP2(X0 = 1)

)
.

(Please note that Theorem 3 in the paper from 2020 which we use here contains a typo in the lower summation limit of j

in the expression for R2: As we put it here the lower summation limit must be j = 1 and not j = 2 as printed there.) The
proof of the following lemma is given at the end of the present section.

Lemma 14. For any K ′ < K there exists a constant c2 so that

N ′(R1 +R2) ≤ c2KγP2(�δ) + ηK ′ + K ′

K
.

If we put γ = P2(�δ)
−β for some β ∈ (0,1) then

P2(W = k) −→ νK
({k})+O

(
ηK ′ + K ′/K

)
as δ → 0, where νK is the compound Poisson distribution with parameters tλ	(K) with

λ	(K) = lim
δ→0

P2(Z ≥ 1)

P2(�δ)

assuming the limits exist. Now put e.g. K ′ = √
K and let K go to infinity. Then νK converges to a compound Poisson

distribution ν with parameters tλ	, where λ	 = limK→∞ λ	(K) assuming the limits exist. Thus

P2(W = k) −→ ν
({k}).

What we showed above is that, if the transition probabilities are given by a density p(x, y) satisfying the Doeblin
condition (that is, if we assume that p is also bounded away from 0), then W converges in distribution to a compound
Poisson distribution ν. In order to show that ν is in fact a straight Poisson distribution we want to show that α̂2 = 0, which
implies by monotonicity that α̂	 = 0 for all 	 ≥ 2. To that end, we shall further assume that the transition probabilities
p(x, y) are bounded above by some constant K. If p(x, y) ≤ K for all x, y, we also get pn(x, y) ≤ K for all x, y and thus

P2
(
�δ ∩ T̂ −n�δ

)= ∫ 1�δ (x0, y0)1�δ (xn, yn) dρ(x0) dρ(y0)p
n(x0, xn)p

n(y0, yn) dxn dyn

≤ KP2(�δ)m(�δ),

where m is the Lebesgue measure on I × I ,. Thus

α̂2(K, δ) = P2(�δ ∩⋃2K
n=1 T̂ −n�δ)

P2(�δ)
≤ 2KKm(�δ) −→ 0

as δ → 0 (since m(�δ) ≤ 2δ) for all K . Thus α̂	 = 0 for all 	 ≥ 2 which implies that ν is Poisson with parameter t .
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Let us remark that the double limit first δ → 0 and then K → ∞ can be synchronised by going along a sequence
Kδ → ∞ as δ approaches 0 in such a way that KδP2(�δ) → 0 as δ → 0. This was shown in [53, Proposition 6.2].

We conclude the section with the proof of the lemma.

Proof of Lemma 14. In order to estimate R1 and the terms of R2 for j ≥ 2 we use the Doeblin condition and the
consequential exponential convergence to the initial distribution to obtain:

P2
(
Z ≥ 1,Z ◦ T̂ j (2K+1) ≥ 1

)= ∫
1Z≥1(z0, . . . , z2K)1Z≥1

(
z′

0, . . . , z
′
2K

)
dρ2(z0)p2(z0, dz1) · · ·p2(z2K−1, dz2K)

p
(j−1)(2K+1)

2

(
z2K,dz′

0

)
p2
(
z′

0, dz′
1

) · · ·p2
(
z′

2K−1, dz′
2K

)
≤ P2(Z ≥ 1)

(
P2(Z ≥ 1) + 2η(j−1)(2K+1)

)
,

where zi = (xi, yi) and ρ2 = ρ × ρ. Consequently

R1 ≤
∞∑

j=γ

P2(Z ≥ 1)η(j−1)(2K+1) ≤ P2(Z ≥ 1)η(γ−1)(2K+1).

For the estimate of R2 we consider the case j = 1 separately, choose K ′ < K and put Z′ =∑2K
i=2K−K ′ Xi , Z′′ = Z−Z′ =∑2K−K ′−1

i=0 Xi . Then, similarly as above, we obtain

P2
(
Z′′ ≥ 1,Z ◦ T̂ 2K+1 ≥ 1

)≤ P2
(
Z′′ ≥ 1

)(
P2(Z ≥ 1) + 2ηK ′)

.

Since

P2
(
Z≥ 1,Z ◦ T̂ 2K+1 ≥ 1

)≤ P2
(
Z′′ ≥ 1,Z ◦ T̂ 2K+1 ≥ 1

)+ P2
(
Z′ ≥ 1

)
we obtain

R2 ≤ P2
(
Z′′ ≥ 1

)(
P2(Z ≥ 1) + 2ηK ′)+ P2

(
Z′ ≥ 1

)+ 2
γ∑

j=2

P2(Z ≥ 1)η(j−1)(2K+1).

For the final estimate we use that N ′ = N
2K+1 ≤ N

K
= t

KP2(�δ)
and P2(Z ≥ 1) ≤ (2K + 1)P2(�δ),

P2(Z
′ ≥ 1) ≤ K ′

P2(�δ). Then as K ′ < K

N ′(R1 +R2) � t

KP2(�δ)

(
3K2

P2(�δ)
2 + KP2(�δ)η

(γ−1)K + 2KP2(�δ)η
K ′ + K ′

P2(�δ)
)

� KP2(�δ) + η(γ−1)K + ηK ′ + K ′

K

which implies the statement as K ′ < (γ − 1)K . �

6. Proofs of general theorems

Before we come to the proofs of Theorems 2, 4 and 5 we start this section with an important subsection which describes
rapidly the classical Stein–Chen method, used to prove Theorem 2.

6.1. Stein–Chen method

We will use the Stein–Chen method as described in [47] to estimate how close a given probability measure ν is to a
compound Poisson distribution ν̃ for parameters t λ̃	, 	 = 1,2, . . . , which satisfy

∑
	 λ̃	 < ∞. On the space F = {f :

N0 → R} of functions on the non-negative integers, the Stein operator S :F → F is defined by

Sg(k) = kg(k) −
∞∑

	=1

t	λ̃	g(k + 	).
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For a given set E ⊂N0 one wants to find f so that

Sf = 1E − ν̃(E)

where ν̃ is the compound Poisson distribution with parameters t λ̃	. This last identity is the Stein equation and Theorem 3
of [8] guarantees that such a solution function f exists. Moreover Proposition 1 therein also states that, for given E ⊂N0
it satisfies f (k) � 1

k
.

Indeed if
∫

Sf dν̃ = 0 for all bounded functions f on N, then

0 =
∑

k

Sf (k)ν̃
({k})

=
∑

k

(
kf (k) −

∞∑
	=1

t	λ̃	f (k + 	)

)
ν̃
({k})

=
∑

k

f (k)

(
kν̃
({k})− k∑

	=1

t	λ̃	ν̃
({k − 	})

)

implies

kν̃
({k})= k∑

	=1

t	λ̃	ν̃
({k − 	})

for every k. From this we conclude that ν̃ has the generating function

ϕν̃(z) = exp
∑

	

t λ̃	

(
ez	 − 1

)

which equals exp
∫∞

0 (ezx − 1) dρ(x) = exp(ϕρ(z) − L) where ρ =∑	 t λ̃	δ	, L =∑	 t λ̃	 and ϕρ(z) =∑	 t λ̃	e
z	 is the

generating function for the measure ρ. This implies that ν̃ is compound Poisson with parameters t λ̃	.

6.2. Proof of Theorem 2

We are now ready to prove our first main result.

Proof of Theorem 2. Let ν̃ be the compound Poisson distribution for t λ̃	, 	 ∈ N as defined in the statement of the
theorem. For E ⊂ N0 let again f be the solution of the Stein equation Sf = 1E − ν̃(E). Then for a probability measure
ν on N0 we have

ν(E) − ν̃(E) =
∫

1E dν −
∫

1E dν̃

=
∫ (

1E − ν̃(E)
)
dν

=
∫

Sf dν

=
∫ (

kf (k) −
∞∑

	=1

t	λ̃	f (k + 	)

)
dν(k).

For some fixed set U ⊂ � and t > 0, recall the definition (1) of the random variable W and put ν(·) = μ(W ∈ ·). We have

μ(W ∈ E) − ν̃(E) =
∫

Sf dν = E
[
Wf (W)

]− ∞∑
	=1

t	λ̃	E
[
f (W + 	)

]
.(24)

Now let K and � be (later taken to be large) numbers so that K << � << t/μ(U) and let us establish the following
notation (with the obvious restrictions i − j ≥ 0 and i + j ≤ t/μ(U)), where we used Ii := 1U ◦ T i :
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(i) Close range interactions: Zi =∑K
j=−K Ii+j . (The purpose of the double sided sum centred at i is to cover both

cases, when T is non-invertible as well as the case when T is invertible.) Observe that was denoted Z
(K)
i in the

beginning of the paper but we will omit the upper script to avoid overloaded notation.
(ii) The gap terms

V −
i =

K+�∑
j=K+1

Ii−j , V +
i =

K+�∑
j=K+1

Ii+j

and Vi = V −
i + V +

i for the entire gap.
(iii) The principal terms:

Y−
i =

∑
j>K+�

Ii−j , Y+
i =

∑
j>K+�

Ii+j ,

and Yi = Y−
i + Y+

i for the entire principle term. We reforce that these summands are restricted by i − j ≥ 0 and
i + j ≤ t/μ(U), and are therefore not infinite.

In this way we decomposed W as W = Zi + Vi + Yi for every i = 1, . . . ,N .
Now observe that, by translation invariance for any i ∈ (K,N − K)

t	λ̃	 = tE(1Zi=	|Ii = 1) = t

μ(U)
E(Ii1Zi=	) =

t/μ(U)∑
i=1

E(Ii1Zi=	).

Thus

t	λ̃	Ef (W + 	) =
t/μ(U)∑

i=0

E(Ii1Zi=	)Ef (W + 	).

On the other hand we can naturally write

Wf (W) =
∑

i

Iif (W).

With this in hand, coming back to (24) we have

μ(W ∈ E) − ν̃(E) =
t/μ(U)∑

i=0

(
E
[
Iif (W)

]−∑
	

E[Ii1Zi=	]E
[
f (W + 	)

])

=
t/μ(U)∑

i=0

(∑
	

E
[
Ii1Zi=	f (W)

]−∑
	

E[Ii1Zi=	]E
[
f (W + 	)

])

=
t/μ(U)∑

i=0

(∑
	

E
[
Ii1Zi=	f (Yi + Vi + 	)

]−∑
	

E[Ii1Zi=	]E
[
f (W + 	)

])
.

We now split the error term on the right hand side into three parts as follows:

t/μ(U)∑
i=0

∑
	

(
E
[
Ii1Zi=	f (Yi + Vi + 	)

]−E
[
Ii1Zi=	f (Yi + 	)

])

+
t/μ(U)∑

i=0

∑
	

(
E
[
Ii1Zi=	f (Yi + 	)

]−E[Ii1Zi=	]E
[
f (Yi + 	)

])

+
t/μ(U)∑

i=0

∑
	

(
E[Ii1Zi=	]E

[
f (Yi + 	)

]−E[Ii1Zi=	]E
[
f (W + 	)

])
= A + B + C.
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We now proceed to show that each of the three terms can be upper bounded in order to give the bound stated by Theo-
rem 2.

(i) For the first term we write A =∑i,	 Ai,	 where

|Ai,	| =
∣∣E[Ii1Zi=	

(
f (Yi + Vi + 	)

)− f (Yi + 	)
]∣∣

≤ ∥∥f ′∥∥E[Ii1Zi=	Vi]
(25)

where ‖f ′‖ := supk |f (k) − f (k − 1)|. Note that

2K+1∑
	=1

E
(
Ii1Zi=	V

+
i

)= E
(
Ii1Zi≥1V

+
i

)
≤ E

(
IiV

+
i

)
≤

2n∑
j=K+1

μ
(
Uj/2 ∩ T −jU

)+ K+�∑
j=2n+1

μ
(
U ∩ T −jU

)

where we recall that U	 = A	(U) =⋃A∈A	,A∩U �=∅
A is the outer 	-approximation of U (	 ≤ n). Therefore by the

right φ-mixing property (see (3))

∑
	

E
(
Ii1Zi=	V

+
i

)≤ μ(U)

(
2n∑

j=K+1

[
μ
(
Uj/2)+ φ(j/2)

]+ K+�∑
j=2n+1

[
μ(U) + φ(j − n)

])

≤ μ(U)

(
n∑

j=K/2

μ
(
Uj
)+ �μ(U) +

∞∑
j=K/2

φ(j)

)
.

(26)

One can also show that ∑
	

E
(
Ii1Zi=	V

−
i

)=∑
	

E
(
Ii1Zi=	V

+
i

)
.

Putting the above together we obtain (φ1 is the tail sum of φ)

|A| ≤
t/μ(U)∑

i=0

c1
∥∥f ′∥∥μ(U)

[
�μ(U) + φ1(K/2) +

n∑
j=K/2

μ
(
Uj
)]

= c2
∥∥f ′∥∥t

[
�μ(U) + φ1(K/2) +

n∑
j=K/2

μ
(
Uj
)]

.

On the other hand, we have ‖f ′‖ = O(1) since by Theorem 4 in [8]

∣∣f (Yi + Vi + 	) − f (Yi + 	)
∣∣≤ c3

1

Yi + 	
=O(1).

So

|A| ≤ c2c3t

[
�μ(U) + φ1(K/2) +

n∑
j=K/2

μ
(
Uj
)]

.(27)

(ii) We now estimate B . We get

B =
∑

i

∑
	

∞∑
a=0

f (a + 	)
(
E(Ii1Zi=	1Yi=a) −E(Ii1Zi=	)E(1Yi=a)

)
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=
∑
i,	

N∑
a=0

f (a + 	)
∑

a−+a+=a

(
E(Ii1Zi=	1Y−

i =a−1Y+
i =a+) −E(Ii1Zi=	)E(1Y−

i =a−1Y+
i =a+)

)
,

as a ≤ N . We want to sort the terms by their sign so that every level we have only two terms to which we can apply
the mixing property. Put

εa−,a+ = εa−,a+(i, 	) = sgn
(
E(Ii1Zi=	1Y−

i =a−1Y+
i =a+) −E(Ii1Zi=	)E(1Y−

i =a−1Y+
i =a+)

)
,

and then |Bi,	| = B−
i,	 + B+

i,	, where

B+
i,	 =

∑
a

∣∣f (a + 	)
∣∣ ∑

a−+a+=a
εa−,a+=+1

(
E(Ii1Zi=	1Y−

i =a−1Y+
i =a+) −E(Ii1Zi=	)E(1Y−

i =a−1Y+
i =a+)

)

and

B−
i,	 = −

∑
a

∣∣f (a + 	)
∣∣ ∑

a−+a+=a
εa−,a+=−1

(
E(Ii1Zi=	1Y−

i =a−1Y+
i =a+) −E(Ii1Zi=	)E(1Y−

i =a−1Y+
i =a+)

)
.

Let us begin estimating B+
i,	, the case of B−

i,	 will be done below. We partition the sum over a into segments of
exponential progression. For that purpose let us put, using N = 1/μ(U)

gm(	) = max
N2−m≤a<N2−m+1

∣∣f (a + 	)
∣∣

which by Proposition 1 of [8] satisfies gm ≤ c42m/N for some constant c4. We now get

B+
i,	 ≤

lgN∑
m=0

gm

2−m+1N−1∑
a=2−mN

a∑
a−=0

εa−,a+=+1

(
E(Ii1Zi=	1Y−

i =a−1Y+
i =a−a−)

−E(Ii1Zi=	)E(1Y−
i =a−1Y+

i =a−a−)
)

≤
lgN∑
m=0

c4
2m

N

2−m+1N−1∑
a−=0

(
E(Ii1Zi=	1Y−

i =a−1Y+
i,m(a−)) −E(Ii1Zi=	)E(1Y−

i =a−1Y+
i,m(a−))

)
where the set

Y+
i,m

(
a−)= ⋃

2−mN−a−≤a+<2−m+1N−a−
εa−,a+=+1

{
Y+

i = a+}

= {2−mN − a− ≤ Y+
i < 2−m+1N − a− : εa−,a+ = +1

}
cuts out slices of exponential progression. By the mixing property

E(Ii1Zi=	1Y−
i =a−1Y+

i,m(a−)) = E(Ii1Zi=	1Y−
i =a−)P

(
Y+

i,m

(
a−))

+O∗(
E(Ii1Zi=	1Y−

i =a−)φ(� − n)
)

= P
(
Y−

i = a−)
E(Ii1Zi=	)P

(
Y+

i,m

(
a−))(28)

+O∗(
P
(
Y−

i = a−)
P
(
Y+

i,m

(
a−))φ(� − n)

)
+O∗(

E(Ii1Zi=	1Y−
i =a−)φ(� − n)

)
where the symbol O∗ indicates an error term where the implied constant is 1 (i.e. if G =O∗(ε) then |G| ≤ ε). Also

P
(
Y−

i = a−)
P
(
Y+

i,m

(
a−))= E(1Y−

i =a−1Y+
i,m(a−)) +O∗(

P
(
Y−

i = a−)φ(2� − n)
)
.
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Thus, for m = 0,1,2, . . . , lgN ,

2−m+1N−1∑
a−=0

∣∣E(Ii1Zi=	1Y−
i =a−1Y+

i,m(a−)) −E(Ii1Zi=	)E(1Y−
i =a−1Y+

i,m(a−))
∣∣

≤ φ(� − n)

2−m+1N−1∑
a−=0

(P
(
Y−

i = a−)
P
(
Y+

i,m

(
a−)+E(Ii1Zi=	1Y−

i =a−) +E(Ii1Zi=	)P
(
Y−

i = a−))
≤ 3φ(� − n)

and

B+
i,	 ≤ 2c5φ(� − n)

lgN∑
m=0

2m

N
≤ 2c5φ(� − n).

Similarly one estimates the negative term B−
i,	 which yields the estimate B−

i,	 ≤ c5φ(�−n). Along the way one uses
the set

Y−
i,m

(
a−)= ⋃

2−mN−a−≤a+<2−m+1N−a−
εa−,a+=−1

{
Y+

i = a+},

where we note that

Y−
i,m

(
a−)∪Y+

i,m

(
a−)= {2−mN − a− ≤ Y+

i < 2−m+1N − a−}.
Consequently

|B| ≤
t

μ(U)∑
i=0

∑
	

(
B−

i,	 + B+
i,	

)≤ 4tc5

μ(U)

∑
	

φ(� − n) ≤ K
c6tφ(� − n)

μ(U)
.(29)

(iii) To estimate C, we first notice that, similarly to what we did for (25)∣∣E(f (Yi + 	) − f (W + 	)
)∣∣≤ ∥∥f ′∥∥E(Ii + Zi + Vi) ≤ c7�μ(U).

Thus

|C| ≤
∑

i

∑
	

c7�μ(U)E(Ii1Zi=	) ≤
∑

i

c7�μ(U)E(Ii1Zi≥1) ≤ c7t�μ(U).(30)

Combining (27), (29) and (30) we finally achieve that, for any K < � < t/μ(U)

∣∣μ(W ∈ E) − ν̃(E)
∣∣≤ C1t

(
K

φ(� − n)

μ(U)
+ �μ(U) + φ1(K/2) +

n∑
j=K/2

μ
(
Uj
))

,

for some C1 ≥ c2c3 + c6 + c7 thus proving (8) in the right φ-mixing case.
To get the corresponding conclusion in the left φ-mixing case notice that in the estimates of Ai,	 and A we have to

replace Uj by Ũ j and obtain that the estimate (27) is modified to

|A| ≤ c2c3t

[
�μ(U) + φ1(K/2) +

n∑
j=K/2

μ
(
Ũ j
)]

.

The estimates that lead to the bound of the term B will be the same although the order of splitting and combining terms
is the reverse. �
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Remark 5. There are two places in the proof of Theorem 2 where the argument for the right φ-mixing property has to
be adjusted. The first one is in the estimate of Ai,	 (specifically display (26)) and the second place occurs in (28) which
has to be replaced by

E(Ii1Zi=	1Y+
i,m(a+)1Y+

i =a+) = P
(
Y

+
i,m

(
a+))

E(Ii1Zi=	)P
(
Y+

i = a+)
+O∗(φ(� − n)

)(
P
(
Y

+
i,m

(
a+))

P
(
Y+

i = a+)+E(Ii1Zi=	1Y+
i =a+)

)
,

where

Y
+
i,m

(
a+)= {2−mN − a+ ≤ Y−

i < 2−m+1N − a+ : εa−,a+ = +1
}
.

Then similarly

P
(
Y

+
i,m

(
a+))

P
(
Y+

i = a+)= E(1Y+
i,m(a+)1Y+

i =a+) +O∗(
P
(
Y+

i = a+)φ(2� − n)
)
.

Summation over a+ and 	 then leads to the estimate (29).
To illustrate the situation suppose we are in the invertible case and � is a shift space with map T = σ the left shift

map. Let us assume that we have a left φ-mixing invariant probability measure μ on that two-sided shift space �. In
the two-sided case we have to use the two-sided joins Ân =∨n/2−1

j=n/2 T −jA where for simplicity’s sake we assume n

to be even. Now for a zero-measure limiting set � let x = (. . . , x−1, x0, x1, x2, . . . ) ∈ � be an arbitrary point and let
� = {y ∈ � : yi = xi ∀i ≤ 0} the local unstable leaf through x. We then let Ûn = Ân(�) =⋃

Â∈Ân,�∩Â�=∅
Â and in order

to apply Theorem 2 we use the invariance of the measure and consider Un = σ−n/2Ûn which satisfies Un ∈ σ(An) where
An is the standard one-sided join.

Now, since μ has the left φ-mixing property the sums of measures of sets Ui
n as on the RHS in the theorem would

have to go to zero as n goes to infinity. However

Ui
n = σ−(n−i)Ai

(
σn−iUn

)= σ−(n−i)Ai

(
σ

n
2 −i Ûn

)
,

which implies that Ui
n = � whenever i < n

2 . This implies that in a case like this Theorem 2 does not give any meaningful
result. The right φ-mixing property avoids this problem.

This also explains how the proof has to be changed if we assume left φ-mixing instead of right φ-mixing: the only
difference is in display (26) where we have to use Ũ j/2 instead of Uj/2.

6.3. Proof of Theorem 4

This proof is similar to the one of Theorem 2 but allows for some simplifications which we outline below.

Proof of Theorem 4. As above let ν̃ be the compound Poisson distribution for t λ̃	, 	 ∈ N as defined in the statement of
the corollary and the preceeding theorem. Also we let E ⊂ N0 and f the solution of the Stein equation Sf = 1E − ν̃(E).

For K << � << t/μ(U) we denote as above by Zi the close range interactions, by V ±
i the gap terms and by Y±

i the
two halves of the principal terms.

As in the proof of the theorem we split the error into three parts:

μ(W ∈ E) − ν̃(E) = A + B + C,

where A and C cover short term gap interactions in the dependent and independent case and B is the error that comes
from the principal term with long range interactions. We now proceed to show that each of the three terms can be upper
bounded in order to give the stated bounded.

(i) For the first term we write A =∑i,	 Ai,	 where

|Ai,	| =
∣∣E[Ii1Zi=	

(
f (Yi + Vi + 	)

)− f (Yi + 	)
]∣∣≤ ∥∥f ′∥∥E[Ii1Zi=	Vi].

The ψ -mixing property then yields (U	 = A	(U))

∑
	

E
(
Ii1Zi=	V

+
i

)≤ 2n∑
j=K+1

μ
(
Uj/2 ∩ T −jU

)+ K+�∑
j=2n+1

μ
(
U ∩ T −jU

)
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≤ μ(U)

(
2n∑

j=K+1

μ
(
Uj/2)(1 + ψ(j/2)

)+ K+�∑
j=2n+1

μ(U)
(
1 + ψ(j − n)

))

≤ μ(U)

(
2

n∑
j=K/2

μ
(
Uj
)+ 2�μ(U)

)

for K large enough, and similarly for the left part of the gap V −
i . Thus, since ‖f ′‖ = O(1) by Theorem 4 in [8],

|A| ≤ c1t

(
n∑

j=K/2

μ
(
Uj
)+ 2�μ(U)

)
.

(ii) We now estimate B which we split as before

B =
∑

i

∑
	

Bi,	,

|Bi,	| = B−
i,	 + B+

i,	, where for ε = +1,−1:

Bε
i,	 = ε

∑
a

∣∣f (a + 	)
∣∣ ∑
a−+a+=a
εa−,a+=ε

(
E(Ii1Zi=	1Y−

i =a−1Y+
i =a+) −E(Ii1Zi=	)E(1Y−

i =a−1Y+
i =a+)

)

with

εa−,a+ = εa−,a+(i, 	) = sgn
(
E(Ii1Zi=	1Y−

i =a−1Y+
i =a+) −E(Ii1Zi=	)E(1Y−

i =a−1Y+
i =a+)

)
.

Let us begin estimating B+
i,	, the case of B−

i,	 will be done below. We partition the sum over a into segments of
exponential progression. For that purpose let us put, using N = 1/μ(U)

gm(	) = max
N2−m≤a<N2−m+1

∣∣f (a + 	)
∣∣

which by Proposition 1 of [8] satisfies gm ≤ c12m/N for some constant c1. We now get

Bε
i,	 ≤ ε

lgN∑
m=0

c1
2m

N

2−m+1N−1∑
a−=0

(
E(Ii1Zi=	1Y−

i =a−1Y+
i,m(a−)) −E(Ii1Zi=	)E(1Y−

i =a−1Y+
i,m(a−))

)
where as above

Y+
i,m

(
a−)= ⋃

2−mN−a−≤a+<2−m+1N−a−
εa−,a+=+1

{
Y+

i = a+}

= {2−mN − a− ≤ Y+
i < 2−m+1N − a− : εa−,a+ = +1

}
cuts out slices of exponential progression. By the ψ -mixing property

E(Ii1Zi=	1Y−
i =a−1Y+

i,m(a−)) = E(Ii1Zi=	1Y−
i =a−))P

(
Y+

i,m

(
a−))(1 +O∗(ψ(� − n)

))
= P

(
Y−

i = a−)
E(Ii1Zi=	)P

(
Y+

i,m

(
a−))(1 +O∗(ψ(� − n)

))
= E(Ii1Zi=	)E(1Y−

i =a−1Y+
i,m(a−))

(
1 +O∗(ψ(� − n)

))
where the symbol O∗ indicates an error term where the implied constant is 1 (i.e. if G =O∗(ε) then |G| ≤ ε). Thus

Bε
i,	 ≤ c1

lgN∑
m=0

2m

N

2−m+1N−1∑
a−=0

E(1Y−
i =a−1Y+

i,m(a−))E(Ii1Zi=	)ψ(� − n)
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≤ c1ψ(� − n)

lgN∑
m=0

2m

N
E(Ii1Zi=	)

≤ 2c1ψ(� − n)E(Ii1Zi=	)

and consequently

|B| ≤ 2c1ψ(� − n)

N∑
i=1

2K+1∑
	=1

E(Ii1Zi=	) ≤ 2c1ψ(� − n)
∑

i

E(Ii1Zi≥1) ≤ 2c3tψ(� − n).

(iii) The estimate of the term C is exactly the one from Theorem 2,

|C| ≤ c2t�μ(U).

Combining the estimates we end up with

∣∣μ(W ∈ E) − ν̃(E)
∣∣≤ C′

1t inf
K<�<t/μ(U)

(
ψ(� − n) + �μ(U) +

n∑
j=K/2

μ
(
Uj
))

for some constant C′
1. �

6.4. Proof of Theorem 5

Recall that we start with a nested sequence of sets Un,n ≥ 1. For K < t/μ(Un) we define Z+
i =∑K

j=0 Ii+j and Z−
i =∑K

j=1 Ii−j , where we assume that i ≥ K . Let us also define WL =∑L
	=0 I	. In order to prove this result we first state the

following lemma taken from [29].

Lemma 15. Assume that the limits αk, k ≥ 1 (see (11)) exist and furthermore
∑∞

k=1 k2αk < ∞. Then for every η > 0
there exists an L0 so that for all L ≥ L0:∣∣E(1Z+

i =k1Z−
i =	−kIi) −E(1Z+

i =k′1Z−
i =	−k′Ii)

∣∣≤ ημ(U)

for all n large enough (depending on L,	).

We are now ready to prove the theorem.

Proof of Theorem 5. For E ⊂N0 and K < t/μ(Un)∣∣μ(Wn ∈ E) − ν̃(E)
∣∣≤ ∣∣μ(Wn ∈ E) − ν̃K,Un(E)

∣∣+ ∣∣ν̃K,Un(E) − ν̃(E)
∣∣(31)

where ν̃K,Un is as in the statement of Theorem 2. In order to prove Theorem 5 it is therefore enough to prove that both
terms on the RHS converge to 0 as n → 0 and K → ∞. We proceed in two steps.

(1) We start proving that the second term on the RHS of (31) converges to 0. First recall the definitions of
αk(L,Un),αk(L) and αk given in (11) and that of λ	(K,Un) given in (9). We have that ν̃ and ν̃K,Un are Poisson
compounds with parameters λ̃	 := αk − αk+1 and λ	(K,Un) respectively. So what has to be proved is that, pro-
vided αk exists, we have αk − αk+1 = limK→∞ limn→∞ λ	(K,Un), that is, the convergence of the parameters of the
involved Poisson compounds distributions.

Observe that αk(K,U) can be written as E(1Z0=k|I0). On the other hand, by translation invariance, E(1Z0=kI0) =
E(1Z+

i =kIi) for any i ≥ 1. We therefore work on the later quantity. Consider the disjoint union

{
Z+

i = k
}∩ {Ii = 1} =

∞⋃
	=k

{
Z+

i = k
}∩ {Z−

i = 	 − k
}∩ {Ii = 1}.
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By invariance, the expectations E(1Z+
i =k1Z−

i =	−k|Ii = 1) are equal for all i. Let us note that in the conditions of

Theorem 5, we have
∑

k≥1 k2αk < ∞. Thus we can use Lemma 15 which states that if η > 0, then for all K large
enough ∣∣E(1Z+

i =k1Z−
i =	−kIi) −E(1Z+

i =k′1Z−
i =	−k′Ii)

∣∣≤ ημ(U)

for k, k′ = 1,2 . . . , 	. Hence, since Zi = Z−
i + Z+

i

E(1Z+
i =k1Z−

i =	−kIi) = 1

	
E(1Zi=	Ii)

(
1 +O(η)

)= λ̃	(K,Un)μ(U)
(
1 +O(η)

)
and therefore

E(1Z+
i =kIi) =

∞∑
	=k

E(1Z+
i =k1Z−

i =	−kIi) = (1 +O(η)
)
μ(U)

∞∑
	=k

λ̃	(K,Un).

According to what we said above, we therefore have

αk(K,U) = E(1Z+
0 =k|I0)

=
E(1Z+

0 =kI0)

μ(Un)
=

E(1Z+
i =kIi)

μ(Un)

= (1 +O(η)
) ∞∑

	=k

λ̃	(K,Un).

So in particular αk(K,Un) − αk+1(K,Un) = (1 +O(η))λ̃k(K,Un), valid for any positive η → 0, thus provided the
limit αk exists, we have limK limn λ̃k(K,Un) = αk − αk+1.

(2) In order to prove that the first term of the RHS of (31) converges to 0 we naturally use Theorem 2. Let β ∈ (0,1) and
choose � = μ(Un)

−β , we get by (8) that |μ(Wn ∈ E) − ν̃K,Un(E)| is bounded above by

C1t

(
K

φ(μ(Un)
−β)

μ(U)
+ μ(Un)

1−β + φ1(K/2) +
n∑

j=K/2

μ
(
U

j
n

))

where we recall that, by assumption, for any sufficiently large n’s, the fourth term is bounded above by aK/2. The two
first terms go to zero as n diverges with a suitable choice of β < 1 so that β > 1

γ
. Then, taking K → ∞ we get by

assumption that aK/2 and φ1(K/2) vanish as well (by summability of φ). This concludes the proof of the theorem.�

7. Proofs of the results of Sections 3 and 4

Proof of Proposition 7. For any two measurable sets B ∈ σ(X0, . . . ,Xn−1) and A ∈ σ(X∞
n+k−1) with positive probabil-

ity, let

φA,B(k) := ∣∣P(X ∈ B|X ∈ A) − P(X ∈ B)
∣∣.

Defining l(i) := sup{j ≥ 1 : Tj < i} and using the regenerative property, we get

φA,B(k) =
∣∣∣∣∣
n+k∑
i=1

P(n + k − Tl(n+k) = i,X ∈ B|X ∈ A) − P(X ∈ B)

∣∣∣∣∣
=
∣∣∣∣∣

n+k∑
i=k+1

P(n + k − Tl(n+k) = i,X ∈ B|X ∈ A) +
k∑

i=1

P(n + k − Tl(n+k) = i,X ∈ B)

−
n+k∑
i=1

P(n + k − Tl(n+k) = i,X ∈ B)

∣∣∣∣∣
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=
∣∣∣∣∣

n+k∑
i=k+1

P(n + k − Tl(n+k) = i,X ∈ B|X ∈ A) −
n+k∑

i=k+1

P(n + k − Tl(n+k) = i,X ∈ B)

∣∣∣∣∣
≤

n+k∑
i=k+1

∣∣P(n + k − Tl(n+k) = i,X ∈ B|X ∈ A) − P(n + k − Tl(n+k) = i,X ∈ B)
∣∣

≤
n+k∑

i=k+1

(
P(n + k − Tl(n+k) = i|X ∈ A) + P(n + k − Tl(n+k) = i)

)
.

By definition, n + k − 1 ∈ [Tl(n+k), Tl(n+k)+1 − 1] and therefore,

P(n + k − Tl(n+k) = i|X ∈ A) ≤ sup
b∈A

P(T1 = i|X0 = b).

Thus

φA,B(k) ≤
∑
i>k

(
P(T1 = i|X0 = b) + P(T1 = i)

)

=
∑
i>k

(
q̄b(i) +

∑
a

p̄(a)q̄a(i)

)

≤ 2 sup
a∈A

∑
i>k

q̄a(i).
�

Proof of Proposition 9. In the symbolic setting, if x has prime period m we have by translation invariance

μ(An+m(x))

μ(An(x))
= μ([xn+m

1 ])
μ([xn

1 ]) = μ([xn+m
1 ])

μ([xn+m
m+1 ]) .(32)

If x is a continuity point for gm :=∏m−1
i=0 g ◦ σ i , then

varkg
m(x) := sup

{∣∣gm(y) − gm(z)
∣∣ : y, z ∈ [xk

1

]} k→∞−→ 0.

On the other hand, we can write

μ
([

xn+m
1

])= ∫
[xn+m

m+1 ]
gm
(
xm

1 y
)
dμ(y) = μ

([
xn+m
m+1

])[
gm(x) +O∗(varn−mg(x)

)]
.(33)

This means that, if gm is continuous at the periodic point x, we have that μ(An+m(x))
μ(An(x))

converges to gm(x) :=∏m−1
i=0 g(σ ix),

concluding the proof of existence and computation of p.
The existence of the limiting parameters is now proved, and according to the discussion of Section 3.7, the proof of the

second statement follows automatically using our Theorem 5. Indeed, the assumptions of this theorem are granted since
as we already said, under summable variation, the measure is ψ -mixing, and moreover, the assumption that g > 0 implies
that U

j
n = Aj(x) has exponentially decaying measure in j since a simple argument shows that μ(Aj (x)) ≤ (supg)j . �

Proof of Proposition 10. All the properties we use here, concerning the renewal measure, are proved in [3]. First, the
existence of the parameters follows from Theorem 3.2 therein. Under our conditions, the measure under study is left and
right φ-mixing with exponential rate φ (the renewal process is reversible in the stochastic process sense). Finally, since
pi ∈ [ε,1 − ε], the same holds for g, which automatically implies that U

j
n = Aj(x) has exponentially decaying measure

in j as in the preceding proof. �

Proof of Proposition 11. Let us first mention that, as observed before the statement of the proposition, if ε = 1/2, we
have that ν is the product measure with marginal ν([+1]) = ν([−1]) = 1/2. Thus, it is in particular a g-measure with
g depending on only one site and the statement, in this case, is a particular case of Proposition 9. In what follows, we
therefore focus on the cases where ε �= 1/2.
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First of all, let us observe that the example is ψ -mixing as it is a two-coordinates factor map of a product measure.
So it satisfies condition (1) of Theorem 5 concerning the mixing properties. The measure of cylinders of size n decays
exponentially fast, so the second condition of Theorem 5 is granted as well. It only remains to check the third condition,
but it holds if we are able to prove that the limit (14) holds. This is what we prove below.

Consider a point y ∈ {−1,+1}N of prime period m ≥ 1. By (32) we have to compute the limit of

ν([yn+m
1 ])

ν([yn+m
2 ])

ν([yn+m
2 ])

ν([yn+m
3 ]) . . .

ν([yn+m
m ])

ν([yn+m
m+1 ]) .

Let us start computing the limit (and proving it exists) of

ν([1yn
2 ])

ν([yn
2 ]) , n ≥ 1.

Observe that x+(y∞
2 ) and x−(y∞

2 ) are also periodic points. Let us denote by m′ their common prime period. Denote
by sn the number of ones in

x+(y∞
2

)
2, x

+(y∞
2

)
3, . . . , x

+(y∞
2

)
n+2

(that is, of the n + 1 first coordinates of x+(y∞
2 )). For technical matters, we will write n as kn(2m′ − 1) + rn where

kn := �n/(2m′ − 1)� and rn is the remaining part, strictly smaller than 2m′ − 1. Observe that, since 2m′ is a period of
x+(y∞

2 ), we have sn = kns2m′−1 + Rn where Rn := sn − kns2m′−1 < s2m′−1. Therefore

sn

n + 1
= kns2m′−1 + Rn

kn(2m′ − 1) + rn + 1
→ s2m′−1

2m′ − 1
.

On the other hand, a simple calculation (see [20]) gives that

ν([1yn+1
2 ])

ν([yn+1
2 ]) = (1 − ε)

( ε
1−ε

) + ( ε
1−ε

)2(n+1)( 1
2 − sn

n+1 )

1 + ( ε
1−ε

)2(n+1)( 1
2 − sn

n+1 )
.

We therefore have the following limits according to the values of ε and
s2m′−1
2m′−1 :

ν([1yn
2 ])

ν([yn
2 ])

n→∞−→

⎧⎪⎪⎨
⎪⎪⎩

ε if 0 <

(
1

2
− ε

)(
1

2
− s2m′−1

2m′ − 1

)
,

1 − ε if 0 >

(
1

2
− ε

)(
1

2
− s2m′−1

2m′ − 1

)
.

(34)

(Obviously, lim
ν([(−1)yn

2 ])
ν([yn

2 ]) = 1 − lim
ν([1yn

2 ])
ν([yn

2 ]) .) The same limiting value (34) holds for

ν([1yn+m
i ])

ν([yn+m
i+1 ]) , i = 3, . . . ,m.

So let k be the number of +1’s in the period of y (which we recall is of size m). According to (32) we can thus conclude,

p(2)
m =

⎧⎪⎪⎨
⎪⎪⎩

εk(1 − ε)m−k if 0 <

(
1

2
− ε

)(
1

2
− s2m′−1

2m′ − 1

)
,

(1 − ε)kεm−k if 0 >

(
1

2
− ε

)(
1

2
− s2m′−1

2m′ − 1

)
.

(35)

�

Proof of the first statement of Theorem 12. For simplicity, we do the proof with m = 2, but the general case follows
identically. By assumption μ̂ is ψ -mixing and consequently the conditions (1) and (2) of Theorem 5 are satisfied. So if
we prove that α̂k+1 exists for any k and satisfies α̂k+1 = pk for some p ∈ (0,1), then we prove at once that Theorem 5
holds and that the asymptotic distribution is Polya–Aeppli as stated.
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Recall that, for any n ≥ 1, Sn =⋃A∈An Am is the n-cylinder neighbourhood of the diagonal � = {(x, . . . , x) : x ∈
�B} ⊂ �m

B . Write

α̂k+1 := μ̂(
⋂k

i=0 σ̂−iSn)

μ̂(Sn)
= μ̂(Sn ∩ σ̂−1Sn)

μ̂(Sn)

μ̂(Sn ∩ σ̂−1Sn ∩ σ̂−2Sn)

μ̂(Sn ∩ σ̂−1Sn)
. . .

μ̂(
⋂k

i=0 σ̂−iSn)

μ̂(
⋂k−1

i=0 σ̂−iSn)

which by translation invariance writes

μ̂(Sn ∩ σ̂−1Sn)

μ̂(σ̂−1Sn)

μ̂(Sn ∩ σ̂−1Sn ∩ σ̂−2Sn)

μ̂(σ̂−1Sn ∩ σ̂−2Sn)
. . .

μ̂(
⋂k

i=0 σ̂−iSn)

μ̂(
⋂k

i=1 σ̂−iSn)
.

Now, for j = 1, . . . , k and n large enough

μ̂(
⋂j

i=0 σ̂−iSn)

μ̂(
⋂j

i=1 σ̂−iSn)
= μ̂((x, y) : xn+j

1 = y
n+j

1 )

μ̂((x, y) : xn+j

2 = y
n+j

2 )
=: un+j .

Let us assume for now that un+1 = μ̂(Sn∩σ̂−1Sn)

μ̂(Sn)
converges, and let p denote the limit. Then for any j ≥ 1, un+j =

μ̂(Sn+j−1∩σ̂−1Sn+j−1)

μ̂(Sn+j−1)
→ p and the limit defining α̂k+1 exists and it equals pk . In other words, provided the limit p exists

we always have, in the limit, a Pólya–Aeppli distribution with parameter t (1 − p), as stated by the theorem.
So it only remains to prove the existence of the limit p. Consider the projection operator � : � → {0,1}N defined

through �(x,y) = z where zi = 1xi=yi
. With this we now have to check whether

lim
n

μ̂ ◦ �−1([1n+1])
μ̂ ◦ �−1([1n]) = lim

n
Eμ̂◦�−1

(
1[1]|Fn

2

)(
1(∞)

)
exists. Using [42, Proposition 5] we only have to prove that the measure μ̂ ◦ �−1 has a continuous and strictly positive
g-function. By assumption, ĝ is strictly positive and with summable variation. By Theorem 1.1 of [50], we automati-
cally have that μ̂ ◦ �−1 has an everywhere continuous and strictly positive g-function. This concludes the proof of the
theorem. �

Proof of the second statement of Theorem 12. For simplicity, we do the proof with m = 2, but the general case follows
identically. For that reason let μ̂ be the ĝ measure on �B × �B . As above, the first two conditions of Theorem 5 are
granted under our assumptions. We will show that α̂2 exists by computing it, this will automatically grant α̂k+1 = pk and
the third condition of Theorem 5, and conclude our proof.

By conformality we have then for all finite words α,β that

μ̂
(
σ [α] × σ [β])= ∫

[α]×[β]
ĝ(x, y)−1 dμ̂(x, y).

In particular, if we put ĝk(x, y) =∏k−1
j=0 ĝ(σ j (x), σ j (y)), then for k-words α′, α′′ and n-words β ′, β ′′ one has

μ̂
([

α′β ′]× [α′′β ′′])= μ̂
([

β ′]× [β ′′])ĝk

(
α′β ′, α′′β ′′)eO(v1

n),

where v1
n =∑∞

j=n vj is the tailsum of vn = varn ĝ and ĝ(γ ′, γ ′′) = sup(x,y)∈[γ ′]×[γ ′′] ĝ(x, y).
By assumption μ̂ is ψ -mixing and consequently the conditions of Theorem 5 are satisfied if we prove that the following

limit exists

α̂k+1 = lim
n→∞

μ̂(
⋂k

i=0 σ̂−iSn)

μ̂(Sn)
.

Indeed

μ̂

(
k⋂

i=0

σ̂−iSn

)
= μ̂(Sn+k)
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=
∑

α∈Ak

∑
β∈An

μ̂
([αβ] × [αβ])

=
∑

β∈An

μ̂
([β] × [β]) ∑

α∈Ak

ĝk(αβ,αβ)eO(v1
n).

Since on the other hand μ̂(Sn) =∑|β|=n μ̂([β] × [β]) we get

α̂k+1 = lim
n→∞

∑
β∈An μ̂([β] × [β])∑α∈Ak ĝk(αβ,αβ)eO(v1

n)∑
β∈An μ̂([β] × [β]) .

For any n ≥ 1, let us define on �B the measure

νn = 1

Zn

∑
γ∈An

μ̂
([γ ] × [γ ])δγ ,

where δγ is a point mass at an arbitrarily chosen point xγ ∈ [γ ] ⊂ �B depending only on the last symbol of γ so that
xσγ = σ(xγ ) and Zn =∑|β|=n μ̂([β] × [β]) is the normalising factor. Acting on functions f : �B → R we define the
transfer operator L by

Lf (x) =
∑
a∈A

g�(ax)f (ax),

where g� : �B →R is given by g�(y) = ĝ(y, y). Then for the action of Lk on νn we get

(
Lkνn

)
(f ) =

∫ ∑
|β|=k

g�
k (βx)f (βx)dνn(x)

= 1

Zn

∑
|γ |=n

∑
|β|=k

g�
k (βxγ )μ̂

([γ ] × [γ ])f (βxγ )

= 1

Zn

∑
|α|=n+k

μ̂
([α] × [α])f (αxα)

= Zn+k

Zn

eO(v1
n)νn+k(f ),

where we used that by conformality

μ̂
([γ ] × [γ ])= ∫

[βγ ]×[βγ ]
ĝk(x, y)−1 dμ̂(x, y)

which implies μ̂([γ ] × [γ ])g�
k (βxγ ) = μ̂([βγ ] × [βγ ])eO(v1

n) as xβγ = βxγ . That is, we can write

νn = cn,ke
O(v1

k )Ln−kνk,

where cn,k is a normalising constant.
Now let ν be the unique conformal measure for e−PL, where P is the pressure of logg� (on (�B,σ )). Evidently

e−PLν = ν and there is an associated positive eigenfunction h so that e−PLh = h. For simplicity’s sake we assume the
normalisation ν(1) = ν(h) = 1. Then

e−	PL	(f ) = hν(f ) +O
(
λ	
)
,

where λ < 1 as L is quasi compact which is a consequence of exponentially decaying variation of g�. Thus

e−	P
(
L	νk

)
(f ) = e−	P νk

(
L	(f )

)= νk(h)ν(f ) +O
(
λ	
)
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and consequently for every k and function f :

lim
n→∞νn(f ) = lim

n→∞ cn,kLn−kνk(f )eO(v1
k )

= νk(h)ν(f )eO(v1
k ).

In particular for the constant function f = 1 one has 1 = limn→∞ νn(1) = νk(h)ν(1)eO(v1
k ) which implies that νk(h) =

eO(v1
k ). If we let k → ∞ we obtain that νk(h) → 1 which implies that in fact νn → ν weakly.

Finally we obtain

α̂k+1 = lim
n→∞

∑
α∈Ak

∫
�B

g�
k (αx)dνn(x) =

∑
α∈Ak

∫
g�

k (αx)dν(x) =
∫

Lk1(x) dν(x)

and consequently

α̂k+1 = ν
(
Lk1

)= ekP

since Lk(1) = ekP hν(1) + Rk where Rk is orthogonal to h, that is ν(Rk) = 0. This implies that the limiting distribution
is Pólya–Aeppli since P = P(logg�) is negative which follows from the fact that the pressure of ĝ is zero on the system
(�2

B, σ̂ ) and that the topological entropy of σ̂ is positive by the ψ -mixing property. �
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