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Abstract

In this paper we give new properties of the dimension introduced by
Afraimovich to characterize Poincaré recurrence and which we proposed
to call Afraimovich-Pesin’s (AP’s) dimension. We will show in particular
that AP’s dimension is a topological invariant and that it often coincides
with the asymptotic distribution of periodic points : deviations from this
behavior could suggest that the AP’s dimension is sensible to some “non-
typical” points.
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1 Introduction

The Carathéodory-Pesin construction (see [14] for a complete presentation and
historical accounts), has revealed to be a powerful unifying approach for the un-
derstanding of thermodynamical formalism and fractal properties of dynamically
defined sets. A new application of this method has recently been proposed by
Afraimovich [1] to characterize Poincaré recurrence : it basically consists in the
construction of an Hausdorff-like outer measure (with the related transition point,
or dimension), but with a few important differences. The classical Hausdorff mea-
sure (see for instance [7]) is constructed by covering a given set A with arbitrary
subsets and by taking the diameter of these subsets at a power α to build up
the Carathéodory sum. In Afraimovich’s setting, the diameter is replaced with
a decreasing function (gauge function) of the smallest first return time of the
points of each set of the covering into the set itself. We proposed in [16] to call
the related transition point, the Afraimovich-Pesin’s (AP’s) dimension of the set
A.
The comparison with the usual Hausdorff measure reveals another difference :
the choice of the type of sets in the coverings (arbitrary, open or closed sets) does
not matter in the definition of the Hausdorff dimension, whereas it does in gen-
eral for the AP’s dimension (and indeed the use of arbitrary coverings would give
us straightforward results). To understand these facts we introduce in Section 3
a large class of pre-measures and we study the behavior of the associated Borel
measures : this will produce new properties in the Carathéodory-Pesin’s setting.

The first interesting result is that for continuous dynamical systems on com-
pact spaces X, the AP’s dimension is preserved by homeomorphisms, it is thus a
topological invariant. Moreover the AP’s dimension of X coincides with the AP’s
dimension of the non-wandering set, when the map is restricted to it. These two
properties are shared with the topological entropy and it may be asked whether
it is possible to push forward this analogy. To this extent, the choice of the gauge
function will play a fundamental role. The original paper of Afraimovich dealt
with irrational rotations of the circle and for such systems the gauge function 1/t
(where t is the smallest first return time of points of a set into itself) revealed to be
a good choice to relate the AP’s dimension to some Diophantine characteristics of
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the rotations number. Some heuristic (and very natural) arguments suggested us
to introduce the gauge function e−t, particularly adapted for dynamical systems
with positive topological entropy.

With this gauge function, one can prove, as a first result, a general lower
bound :

AP ≥ lim sup
k→∞

1

k
log #Per(k), (1)

where #Per(k) is the number of periodic points with smallest period k. In the case
of subshifts of finite type with a finite alphabet, this bound becomes an equality,
and tells us that the AP’s dimension is equal to the topological entropy. The
equality in (1) persists even when the alphabet is infinite, which is an expression,
when the transition matrix is irreducible, of the Gurevič entropy.

At this point, two questions arise :

1. is the AP’s dimension always equal to the topological entropy (for example
on compact spaces) ?

2. is there always an equality in (1) with the gauge function e−t ?

The answer to the first question is negative : we produce indeed a counterexample
in Section 4.3. The second question is much more subtle and in fact unsolved.
One way to attack it would be to exhibit an example of a minimal set with
positive AP’s dimension. Although there are (many) minimal sets with positive
topological entropy, we are not able at the moment to show the same for the AP’s
dimension.

One step in the understanding of this problem is however done in Section 4.4.
We introduce there the AP’s dimension associated to an invariant measure, as
the smallest AP’s dimension over all subsets of full measure, in analogy with the
Hausdorff dimension of the measure [20]. We first prove that the AP’s dimension
of the measure is metrically invariant. Then, when the measure is aperiodic and
invariant, with the gauge function e−t, the dimension is actually equal to zero.

The question therefore arises whether the periodic points are the only re-
sponsibles of the positiveness of the AP’s dimension of a set or if other points
contribute to it.

We conclude this introduction by addressing two more axes of investigation.
Up to now, we worked with open (or closed) coverings in the construction of our
dimension : we could alternatively use dynamical partitions (i.e. cylinders) and
try to get another type of AP’s dimension as the thermodynamic limit of some
partition function. This direction has begun to be explored by Afraimovich in
the spirit of a multifractal description of invariant sets [2, 3] ; instead we related
such a thermodynamic limit to the large deviations of a local quantity which we
called in [11] the “local rate of smallest return times for cylinders”. Such a work
is still in progress.
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We finally point out that the original work of Afraimovich concerned minimal
sets : in particular he used the AP’s dimension, with the gauge function 1/t, to
classify irrational rotations. It would be interesting to push further this approach
and use the AP’s dimension as a topological invariant to classify systems with
zero topological entropy. In these cases other invariant numbers exist, like the
covering number and the complexity[5, 8, 12] , and they have been successfully
applied to systems like rotations, exchange of intervals and substitutions. The
computation of the AP’s dimension for such systems and its comparison with the
other invariants is an interesting and we think promising open field of research.

2 Preliminaries

The dynamical systems considered in this paper will be formed by a compact
metric space X with distance d, the Borel σ−algebra Σ and a continuous appli-
cation T on X; although several results remain true for discontinuous mappings
(see remark 4.1 below). We finally consider invariant Borel (regular) probability
measures µ.

The fundamental quantities investigated in this paper are Poincaré recur-
rences ; take first U a subset of X and define for each x ∈ U the first return time
into U as :

τU(x) = inf
{

k > 0
∣∣∣ T kx ∈ U

}
.

We will use the convention that if the point x never returns to U then its return
time is infinite.

For any invariant probability measure µ, Poincaré’s recurrence theorem tells
us that τU is finite for µ−almost every point in each measurable subsets U . An
improvement of this result, due to Kac [15], tells us that for any ergodic measure
µ, we have the general relation about the mean value of τU over U with respect
to µ : ∫

U

τU(x)
dµ(x)

µ(U)
=

1

µ(U)
. (2)

(remark that we do not suppose that the transformation T is invertible.)
We want here to adopt another point of view : instead of looking at the mean

return time, we are going to study the smallest possible return time into U .
The Poincaré recurrence of a point τU(x) as defined above leads us to define

the first return time of a set : it is the infimum over all return times of the points
of the set, and it can be written in three equivalent manners :

τ(U) = inf{τU(x) : x ∈ U}, (3)

τ(U) = inf{k > 0 : T kU ∩ U 6= ∅}, (4)

τ(U) = inf{k > 0 : T−kU ∩ U 6= ∅}. (5)
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We call τ(U) the Poincaré recurrence of the set U . Note that (5) shows that
τ(U) = τ(T−1U). It is also easy to verify that τ(U) is a monotonic function :

A ⊂ B ⇒ τ(A) ≥ τ(B). (6)

It is important to realize that in many cases the smallest return time of a set
τ(U) and the return time of a point of the set τU(x) will be very different : for
example, for cylinder sets of order n, the smallest return time is usually of order n,
while the mean return time will grow, by Kac’s lemma and Shannon-Mc Millan-
Breiman Theorem, as enhµ , where hµ is the metric entropy of µ. We will give in
the following sections, arguments and results to support such considerations.

As anticipated in the introduction, we will use the Poincaré recurrence of a
set to find, via the Carathéodory construction over a subset A ⊂ X, a family
of Borelian measures indexed by a parameter α. For each A, only one value of
α will distinguish unambiguously between infinite and finite measures of A : we
will show that this critical value of α, the AP’s dimension, will bring a global
information on A.

3 Carathéodory’s construction

3.1 Construction of an outer measure

For any A ⊂ X, we defineRa
≤(A, ε) (resp. Ra

=(A, ε)) the collection of all countable
coverings of A by subsets of X with diameter less or equal (resp. equal) to ε.
The upper-script a stands to show that we use arbitrary sets in our covers.

In the same way, we denote by Ro
≤ (or Ro

=) and Rf
≤ (or Rf

=) the restrictions
of the preceding collections to covers with respectively open and closed sets. In
the case X is a one dimensional smooth manifold (usually compact subset of R

or the circle), we will also consider covers by interval, denoted by Ri.
We then define a set function, that we call pre-measure, Φ : 2X → R

+ with
the property that Φ(∅) = 0. In the case Φ coincides with the diameter, we will
set Φ ≡ diam.

We then construct the Carathéodory sum

MΦ
α (A, ε) = inf

R∈R≤(A,ε)

∑
U∈R

Φ(U)α. (7)

(we do not precise here the type of sets we use in the covers ; otherwise we will
write M s,Φ

α to significate that we use the collection of covers Rs.) It is easy to
show that MΦ

α is an outer measure.
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Additionally, Φ might have some other properties :

Property (A) : for any U ⊂ V ⇒ Φ(U) ≤ Φ(V ) (monotonicity) ,

Property (B) : ∀ε > 0,∀ closed set F ⊂ X,

∃O open such that O ⊃ F, Φ(O)− Φ(F ) < ε,

Property (C) : ∀U ⊂ X, Φ(U) = Φ(U),

(where U denotes the closure of U)

Property (D) : ∀ε > 0,∃δ such that |U | < δ ⇒ Φ(U) < ε.

We now discuss how the choice of the type of covering influences the construc-
tion.

Theorem 3.1. Let Φ be a pre-measure verifying Properties (A) and (B), then
for any set A

Ma,Φ
α (A, ε) ≤ M o,Φ

α (A, ε) ≤ M f,Φ
α (A, ε), (8)

and for any compact set K

M o,Φ
α (K, ε) = M f,Φ

α (K, ε). (9)

Furthermore, if Φ has also property (C), then for any set A

Ma,Φ
α (A, ε) = M o,Φ

α (A, ε) = M f,Φ
α (A, ε). (10)

Proof. The first inequality in (8) is obvious. We now prove the second one : let
Rf = {Fi, i = 1, 2, . . . } be a countable cover of A by closed sets of diameter less
than ε. Let δ > 0, we construct a cover Ro by open sets in this way : for each Fi,
we choose by property (B) an open set Oi containing Fi such that Φ(Oi)−Φ(Fi) <
δ2−i. By remarking that the collection of coverings Ro constructed in this way
(let’s call it R1) is a subset of Ro

≤(A, ε), we can write

M f,Φ(A, ε) + δ = inf
Rf∈Rf

≤(A,ε)

∞∑
i=1,Fi∈Rf

Φ(Fi) + δ > inf
Ro∈R1

∞∑
i=1,Oi∈Ro

Φ(Oi)

≥ inf
Ro∈Ro

≤(A,ε)

∑
O∈Ro

Φ(O) = M o,Φ(A, ε).

By taking δ arbitrary small, this proves (8).
Let now Ro be a countable cover of the compact set K with open sets of diameter
less than ε. We denote with {Oi, i = 1, 2, . . . , p} a finite subcover of K and put
δ a Lebesgue number of this subcover. Then we construct a cover Rf with closed
sets of the form

Fi = Oi \ {x : d(x, X \Oi) < δ}, i = 1, 2, . . . , p.
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We can verify that the collection of all the Fi is still a cover of A : for any point
x ∈ K, there is a set Oi ∈ Ro such that d(x, X \ Oi) > δ. Thus, using the
triangular inequality, we can affirm that d(x, X \ Fi) > 0, and so x ∈ Fi. Since
the collection of all covers Rf constructed in this way (we call it R2) is a subset
of Rf

≤(K, ε), and using the monotonicity of Φ, we have

M o,Φ(K, ε) ≥ inf
Rf∈R2

#Rf∑
i=1

Φ(Fi) ≥ M f,Φ(K, ε). (11)

This shows (9).
In order to prove (10), we just need to prove M f,Φ

α (A, ε) ≤ Ma,Φ
α (A, ε). For each

countable cover Ra = {Ai, i = 1, 2, . . . } of A by arbitrary sets, we construct a
closed cover Rf = {Fi ≡ Ai} of A. The collection of covers Rf constructed in
this way (we call it R3) is a subset of Rf (A, ε), so we have

M f,Φ
α (A, ε) ≤ inf

R∈R3

∑
V ∈R

Φ(V ) = Ma,Φ
α (A, ε).

We can find a similar result as equation (10) in [17], but only for the case of
Hausdorff measures, which is covered by our theorem.

3.2 Construction of a Borelian measure ; dimensions

We now take the limit ε → 0, which exists because MΦ
α (A, ε) increases when ε

goes to zero:

mΦ
α(A) = lim

ε→0
MΦ

α (A, ε). (12)

The set function mΦ
α is a borelian measure (as shown for example in [7]).

From now on we will work exclusively with Borel subset of X.
Note that all the properties stated for the outer measure M s,Φ

α in Theorem
3.1 remain true for the corresponding Borel measure ms,Φ

α . In particular one can
improve (9) by showing that

mo,Φ
α (A) = mf,Φ

α (A)

holds for any Borel set A whenever mo,Φ
α (A) and mf,Φ

α (A) are finite (it is just an
easy consequence of the regularity of Borel measures on metric spaces and the
inner approximation by compact sets). We do not know whether this result is true
in general : one should prove the analogous of Theorem 48, p.97 in Rogers[17]
for Hausdorff measures, which in our case would become : for any λ > 0 and
any Borel set A with ms,Φ

α (A) > λ there exists a compact set K ⊂ A such that
ms,Φ

α (K) > λ (which is trivial to prove if the measures are σ−finite).



3 CARATHÉODORY’S CONSTRUCTION 8

We now come back to the pre-measures : if Φ has property (D), i.e. it
goes uniformly to zero when |U | goes to zero, then we meet all the conditions
of Carathéodory’s construction, as described by Pesin in [14]. It is well known,
then, that there exists a unique non-negative number αc(A) such that

mα(A) =

{
∞ if 0 < α < αc(A)

0 if α > αc(A)
(13)

In the cases we are interested in, property (D) might not be verified by the
pre-measure, which put us out of the usual construction. However, we still can
define a critical exponent (or dimension) : namely, we define the critical exponent
of a set A ⊂ X as

αc(A) = sup{α > 0 : mΦ
α(A) = ∞}. (14)

It is always well defined and non-negative if we adopt the convention that sup ∅ =
0 ; moreover it is monotone, that is A ⊂ B ⇒ αc(A) ≤ αc(B). Remark that this
exponent may not be “net”, that is to say that it could happen that mα(A) is
non zero for α > αc.

We now state a Lemma which will be useful in the next section :

Lemma 3.2. Let Xn be a countable sequence of subsets of X, such that each of
them has a net critical exponent αc(Xn) as defined in (13), then

αc

( ⋃
n

Xn

)
= sup

n
{αc(Xn)},

and furthermore αc(
⋃

n Xn) is a net critical exponent.

Proof. Let α > sup{αc(Xn)}, then mα(
⋃

n Xn) ≤
∑

n mα(Xn) = 0. Conversely,
suppose α < sup{αc(Xn)}, then ∃n such that mα(Xn) = ∞, so mα(

⋃
n Xn) =

∞.

We now show that, whenever the pre-measure Φ is invariant under conjuga-
tions by uniform homeomorphisms, then the measure mΦ

α and dimension αc are
also invariant under the same conjugations.

Proposition 3.1. Let (X, d) and (X ′, d′) two metric spaces (not necessarily com-
pact). Let h : X → X ′ a uniform homeomorphism. Suppose that we have the pre-
measures Φ : X → R

+ and Φ′ : X ′ → R
+ such that ∀A ⊂ X, Φ(A) = Φ′(h(A)).

Then the measures mΦ
α and mΦ′

α , constructed on X and X ′ both with open covers,
closed covers or covers by interval (in the one dimensional case only), are equal
for any α. Thus the dimensions are also equal.
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Proof. For simplicity, we suppose that we are using open covers, the proof remains
exactly the same with other type of covers (closed or by interval). We write the
uniform continuity

∀δ > 0,∃ε(δ) which goes to zero when δ → 0 such that ∀x, y ∈ X, if d(x, y) < ε(δ)
then d′(h(x), h(y)) < δ.

Let A ⊂ X and A′ ⊂ X ′ such that h(A) = A′. Let R′
≤(A′, δ) be the set of all

covering γ′ of A′ with open sets of diameter less than δ. Let h(R≤(A, ε(δ))) be
the set of all transformed coverings of A with open sets of diameter less than ε(δ),
namely h(R) ≡ {h(U), U ∈ R}. Then R′

≤(A′, δ) contains h(R≤(A, ε(δ))). This
shows that

MΦ
α (A, ε(δ)) = inf

R∈R≤(A,ε(δ))

∑
U∈R

Φ(U)α ≥ inf
R∈R′

≤(A′,δ)

∑
U∈R

Φ′(U)α = M
′Φ′

α (A′, δ).

Then,

mΦ
α(A) = lim

δ→0
MΦ

α (A, ε(δ)) ≥ m
′Φ′

α (A′).

Now, by reversing A and A′’s rules, one can apply the same idea to obtain the
opposite inequality, which yields

mΦ
α(A) = m

′Φ′

α (A′).

It is then obvious that αc(A) = α′c(A
′).

3.3 Dimension associated to a measure

In analogy with the Hausdorff dimension of the measure [20], we now introduce
the critical exponent for any Borel probability measure µ. There are two standard
ways to do that, precisely we set :

αc(µ) ≡ inf
{

αc(A)
∣∣∣ A ⊂ X, µ(A) = 1

}
, (15)

and we may also put :

α′c(µ) = sup
δ>0

inf
{

αc(A)
∣∣∣ A ⊂ X, µ(A) > 1− δ

}
. (16)

These two definitions often coincide, more precisely we have :

Lemma 3.3. Suppose that Φ(Bε(x)) is measurable with respect to µ on X and
that it goes to zero when ε goes to zero for µ−almost every x in X, then

αc(µ) = α′c(µ).
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Proof. Replace ε with a decreasing sequence εm which goes to zero for m → ∞.
Let

an = inf

{
αc(A)

∣∣∣ A ⊂ X, µ(A) > 1− 1

n

}
.

Then we choose a countable sequence Xn of sets with measure µ(Xn) > 1 − 1
n

and such that 0 < αc(Xn) − an < 1
n
. Then we apply Egorov’s theorem to each

Xn by finding a measurable subset X ′
n ⊂ Xn still of measure µ(X ′

n) > 1 − 1
n
,

on which the pre-measure has property (D) (in fact now Φ(Bεm(x)) is uniformly
convergent over X ′

n, thus ∀δ > 0, one can find mδ independent of x ∈ X ′
n such

that U ⊂ X ′
n of diameter less than εmδ

is contained in a ball of radius εmδ
and

such that Φ(U) < Φ(Bεmδ
(x)) < δ). Then, since

⋃
n X ′

n has full measure, using
Lemma 3.2, we have α′c(µ) = supn αc(X

′
n) = αc(

⋃
n X ′

n) ≥ αc(µ). The opposite
equality is trivial.

We now prove that the critical exponent of a measure is a metric invariant.

Proposition 3.2. Suppose the pre-measure Φ satisfies the hypothesis of Lemma
3.3 and is invariant under conjugations by measurable isomorphisms. Then the
critical exponent of the measure µ is invariant under the same conjugations.

Proof. Let Ψ denotes the isomorphism mod 0 between the two measurable spaces
(X, Σ, µ) and (Y, Σ′, ν). Define an as in the proof of the previous Lemma, and
choose a sequence of countable subsets Xn with measure µ(Xn) > 1 − 1

n
and

verifying 0 < αc(Xn)− an < 1
n
. By applying Lusin’s Theorem on each of the Xn

we can find a compact set X̂n ⊂ Xn still of measure µ(X̂n) > 1− 1
n

on which Ψ
becomes an homeomorphism. By Proposition 3.1 we then have

αc(X̂n) = αc

(
Ψ(X̂n)

)
and then αc(µ) = supn an = supn αc(X̂n) = supn αc(Ψ(X̂n)) ≥ αc(ν) since
ν(Ψ(X̂n)) = µ(X̂n) > 1 − 1

n
. By interchanging the role of the two spaces we

finally get the desired equality.

3.4 Capacities

We now return to covers by sets which have all the same diameter ε ; by making
the same construction as before we get another set function

RΦ
α(A, ε) = inf

R∈R=(A,ε)

∑
U∈R

Φ(U)α. (17)

(where the absence of upper-script in R= means that we do not precise the type
of covering.)
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The limit in ε does not in general exist, so we distinguish the lim sup and
lim inf and write them rΦ

α and rΦ
α . From these, we get two critical exponents,

which are called in general capacities, and we note them cap and cap. We have
the obvious inequalities

dim(A) ≤ cap(A) ≤ cap(A) (18)

for any subset A ⊂ X.
We now state a sufficient condition for the equality between dimension and

lower capacity.

Lemma 3.4. Let A a Borelian subset of X. Suppose there exists dH such that
the Hausdorff measure mdiam

dH
(A) is non zero and that rdiam

dH
(A) is finite (under

these assumptions, the number dH is the Hausdorff dimension and capacity of the
set A). Suppose that we have a pre-measure verifying 1

C
g(|U |) ≤ Φ(U) ≤ Cg(|U |)

where g is an increasing function of the diameter with g(0) = 0 and C a constant
independent of U . Then

αΦ
c (A) = capΦ(A). (19)

Proof. Since mdiam
dH

(A) > 0, there exists a constant C ′ such that, for any small

enough ε > 0, for any open countable cover {Ui} ∈ R≤(A, ε), we have
∑

i a
dH
i >

C ′ where ai ≡ |Ui|. Then for any of these covers we have

∑
i

Φ(U)α ≥ 1

C

∑
i

adH
i g(ai)

α

adH
i

≥ C ′

C
inf

i

{
g(ai)

α

adH
i

}
≥ C ′

C
inf

ε>ε′>0
{Nε′(A)g(ε′)} ≥ C ′

C2
inf

ε>ε′>0
{R(A, ε′)}.

(Where Nε(A) denotes the smallest number of open ball of diameter ε necessarily
to cover the set A.)
Thus, MΦ

α (A, ε) ≥ C′

C2 infε>ε′>0{RΦ
α(A, ε′)} and therefore mΦ

α(A) ≥ C′

C2 r
Φ(A). Us-

ing (18), we get the result.

4 Definition of Afraimovich-Pesin’s dimension

We now apply our construction to the study of Poincaré’s recurrence. Afraimovich-
Pesin’s dimension will be defined as the critical exponent with a particular pre-
measure depending on the set function τ previously defined.

Let h : N → R
+ be a non-increasing function, taking finite and non zero

values, such that h(k) −−−→
k→∞

0. Then we take Φ(U) = h(τ(U)).

Lemma 4.1. Suppose that X is a compact space, then the pre-measure Φ(U) =
h(τ(U)) has the properties (A) and (B).
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Proof. Property (A) follows at once from the monotonicity property of τ (see (6)),
and from the fact that h is a non-increasing function. We now prove property
(B) : let U be a closed subset of X and ε > 0. We consider two cases :

1. τ(U) = k < ∞ : for j = 1, . . . , k − 1, one has T jU ∩ U = ∅, and since U is
compact, and so is T jU , one has minj=1,... ,k−1 d(T jU,U) = d > 0. Then, by
uniform continuity of T , one can find an open set V containing U such that
∀j, ∀x ∈ T jV, d(x, T jU) < d

2
. Thus we can affirm that T jV ∩ V = ∅, j =

1, . . . , k− 1, which shows that τ(U) = τ(V ), and so Φ(V )−Φ(U) = 0 < ε.

2. τ(U) = ∞ : in this case, Φ(U) = 0. We choose an integer k such that
h(k) < ε, then we can apply the same argument as in the first case : we can
find an open set V containing U with τ(V ) ≥ k, and so Φ(V )− Φ(U) < ε.

We are now in the position to apply Theorem 3.1, and for that we will consider
pre-measures which are function of the Poincaré recurrence as defined in the
beginning of this section. The critical exponent will be called either dimension
for Poincaré recurrence, or Afraimovich-Pesin’s dimension.

In order to fully define AP’s dimension, we need to precise two more things :
the exact choice of the function Φ and the choice of the type of covering.

As anticipated in the introduction, the first function used by Afraimovich was
h(t) = 1

t
in the context of rotations. In this paper we concentrate on the study

of dynamical systems using the function h(t) = e−t, which seems particularly
adapted for those with positive topological entropy.

We now analyze in detail the influence of the type of covering.

4.1 The choice of the sets used in the cover

We suggested three possibilities : arbitrary covers, open covers and closed covers.
In the one dimensional case, covers by intervals are also relevant 1. We now show
that the first one gives straightforward results :

Proposition 4.1. The outer measure Ma,Φ
α constructed, with a pre-measure as

defined in the beginning of this section and using arbitrary covers, is concentrated
on the periodic points. Furthermore, with a pre-measure Φ(U) = e−τ(U), and if
the number of periodic points of smallest period k is finite for every k, then

αΦ
c (X) = limk→∞

1

k
log #Per(k),

where #Per(k) denotes the number of periodic points with smallest period k. If,
on the contrary, ∃k such that #Per(k) = +∞, then αΦ

c (X) = +∞
1since the property “a set is an interval” is a topological property, and so is invariant under

topological conjugacy.
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Proof. We define an equivalence relation for the points of X : for any x, y ∈ X,
we will say that they are equivalent if there is kx > 0 and ky > 0 for which
T kxx = T kyy. We call orbits the equivalence classes. We now define a slice of an
orbit : let x be a point of X, a slice of an orbit is a set S(x) =

⋃
k>0 T−kT kx.

It is obviously a subset of an orbit. In the case where T is invertible, a slice of
an orbit is simply one point of the orbit, whereas in the non-invertible case, it
corresponds to those points of the orbit which correspond to the same position
in time. Note that one can reconstruct the whole orbit from a slice simply by
iterating it with T and T−1, which one could not do in general from only one
point of the orbit (if T is not invertible).

Then we construct a set U by taking, for each orbit, one (and no more) point
x and then its slice S(x) (we need to use the Axiom of Choice to do that). If F
denotes the set of all periodic points, one can check that τ(U \F ) = ∞, but even
more : ∀k ∈ N, τ(T kU \F ) = ∞. Thus, the countable family of sets Uk ≡ T kU \F
is a countable cover of X \F whose members have all infinite Poincaré recurrence.
We can construct covers whose members have diameter as small as we want by
cutting in a countable number of pieces each set Uk. (This can be done by taking
their intersection with members of a cover by ball of diameter ε for example.)
This shows that Ma,Φ

α (X \ F )=0.
We now prove the second statement of the proposition. With the pre-measure

Φ(U) = e−τ(U), each periodic point of period k has a measure Ma,Φ
α (x) = e−k, thus

Ma,Φ
α (F ) =

∑
k>0 #Per(k)e−αk. We see in particular that the critical exponent

cannot be net. If αc(F ) is infinite, then the result follows immediately. Otherwise,
let α > αc(F ) and ε > 0 ; in this case, for k big enough we have #Per(k)e−αk < ε,
which immediately gives lim n→∞

1
n

log (#Per(n)) ≤ α. This still holds if we
replace α with αc(F ). For the lower bound, let now α < αc(F ) ; then the sum
is infinite which implies that ∀δ > 0 we can find a infinite number of integers k
such that #Per(k)e−αk > e−δk, thus lim n→∞

1
n

log (#Per(n)) ≥ α− δ. The result
then follows since δ is arbitrary, and by sending α to αc(F ).

We now state an easy but useful result

Lemma 4.2. Periodic points are the only atoms of the measure mΦ
α constructed

with open or closed covers.

Proof. Since a point is a compact set, one just has to prove the theorem for closed
covers. We take a non-periodic point x, then we consider the cover consisting
of the point itself ; since it is not periodic, it’s return time is infinite. Thus
mΦ

α({x}) = 0. Let’s suppose now that x is a periodic point. Then τ({x}) is equal
to the period of x, which is finite. Thus mΦ

α({x}) = h(τ({x})) is finite and non
zero.

Remark 4.1. We note that by using open and closed covers, Theorem 3.1 applies
by virtue of Lemma 4.1 and in principle we could get different values for the AP’s
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dimension but with an important exception : if the application T is continuous,
the AP’s dimensions will be the same on compact sets and even more, in the
situation discussed in Section 3.2. This will permit to get an interesting property
of the AP’s dimension for the non-wandering set (see Theorem 4.5).

However for any application T , an easy consequence of the preceding Propo-
sition is that a general bound in terms of periodic points for the AP’s dimension
constructed with open or closed covers can be stated (point 4 of Theorem 4.5).

4.2 Some properties of Afraimovich-Pesin’s dimension

The first important property, is that this dimension is a topologically invariant
number. We recall that, for example, the Hausdorff dimension depends in general
on the metric (actually, it is invariant only under Lipschitz conjugation [7]).

Theorem 4.3. For any α > 0, the Borelian measure mΦ
α and the dimension αΦ

c ,
constructed with open or closed covers and in the one dimensional case with open
or closed interval covers, are invariant under topological conjugations by uniform
homeomorphisms.

Corollary 4.4. If T is invertible, then for any α ≥ 0, mΦ
α is an invariant mea-

sure.

Proof of the Theorem. It is just a consequence of Proposition 3.1.

Proof of the Corollary. One just has to use the theorem, setting h = T .

The next theorem establishes other properties of AP’s dimension, the most
important being the one that says that AP’s dimension over X coincides with
AP’s dimension restricted to the set of non-wandering points, which is exactly
what happens for the topological entropy.

Theorem 4.5. Dimension for Poincaré recurrence has the following properties
(using open or closed covers) :

1. if we use the pre-measure Φ(U) = e−τ(U), then for any k > 0, we have
αΦ

c (T k, X) ≤ kαΦ
c (T,X),

2. if we use the pre-measure Φ(U) = 1
τ(U)

, then for any k > 0, we have

αΦ
c (T k, X) ≤ αΦ

c (T, X),

3. αΦ
c (T,X) = αΦ

c (T, NW ) = αΦ
c (T|NW , NW ), where NW denotes the set of

non-wandering points.
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4. if we use the pre-measure Φ(U) = e−τ(U), and if the number of periodic
points of smallest period k is finite for every k, then there is the lower-
bound

αΦ
c (X) ≥ limk→∞

1

k
log #Per(k),

where #Per(k) denotes the number of periodic points with smallest period
k. If, on the contrary, ∃k such that #Per(k) = +∞, then αΦ

c (X) = +∞ 2.

Remark. There are examples of diffeomorphisms of the unit disk where strict
inequality holds in the two first points of this theorem (see Section 4.3). However,
these constructions depend heavily on the combinatorics of the periodic points,
and these maps are somewhat unnatural. That is why we might think that for a
large class of dynamical systems the equality holds. We recall that for topological
entropy, the following equality holds :

htop(T
k) = khtop(T ).

The last point gives a lower-bound to AP’s dimension with the periodic points.
We recall that there exists a similar lower-bound for topological entropy for ex-
pansive maps (see, for example, [19] p.178) :

htop ≥ limk→∞
1

k
log #Fix(k),

where #Fix(k) denotes the number of fixed points of T k.

Proof. 1. First, let us remark that for any subset U ⊂ X,

kτ(T k, U) ≥ τ(T, U),

where τ(T, U) denotes the Poincaré recurrence for the application T , with
respect to U . (There is equality when τ(T, U) is a multiple of k.) Therefore,
one can write

Mα(T k, A, ε) ≡ inf
γ∈R≤(A,ε)

{ ∑
U∈γ

eατ(T k,U)

}
≤ inf

γ∈R≤(A,ε)

{ ∑
U∈γ

e
α
k

τ(T,U)

}
= Mα/k(T,A, ε).

By taking the limit ε → 0 we obtain

mα(T k, A) ≤ mα/k(T, A),

and

αc(T
k, A) ≤ kαc(T, A).

2This shows in particular that AP’s dimension of the identity map is infinite.
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2. similar proof than for the previous one, but the factor k disappears because
of the different choice of the pre-measure.

3. Let us denote W the complementary of NW , i.e. the set of all wandering
point. We recall that a point x is non-wandering if, for all open sets U
containing x, there is t such that T tU ∩ U 6= ∅. A wandering point then
is simply a point contained in an open set U that has infinite Poincaré
recurrence (i.e. τ(U) = ∞). Let ε(x) > 0 be the radius of a ball centered
on x that has infinite Poincaré recurrence. It is defined for any wandering
point x. Let R = {B(x, ε(x)), x wandering point} be a cover of W . Since X
is separable, and hence is W , we can get from this cover a countable cover
Rc. We can then use this cover as a particular cover in M o,Φ

α (W, ε) (provided
we chose ε(x) small enough, which we can always do), which yields

M o,Φ
α (W, ε) = 0.

Then obviously

mo,Φ
α (X) = mo,Φ

α (NW ) + mo,Φ
α (W ) = mo,Φ

α (NW ).

Now, since X is compact, so is NW , which implies by (9) that these equal-
ities hold also with closed covers. Then, since NW is a closed set, we can
restrict the family of closed covers to those completely contained in NW ,
which proves the last equality of the proposition.

4. this is an easy application of the second part of Theorem 4.1.

4.3 An example with αc(T
k, X) < kαc(T,X)

We give the example with Φ(U) = e−τ(U). The idea relies on a special combi-
natorics of periodic points. We construct a discrete subset of R

2 : X = {xl
k :

k odd, l = 1, . . . , Gk(2
k)}, (the function Gk(n) gives the smallest number multi-

ple of k and greater than n), and we put the points on concentric circles of radius
1
k
, with angle proportional to l. The reason why we put the points in such a

way is that we want to show an example on a compact set (here, X is compact).

We can now define the dynamics : T (xl
k) = x

l+Gk(2k)/k mod Gk(2k)
k . Obviously, any

point xl
k has period k, and there are exactly Gk(2

k) points with odd period k,
and none with even period.

One can check that αc(T,X) = limk→∞
1
k

log #Per(T, k) = log 2. Now, be-
cause all periods are odd, they will not be changed if we use the dynamics T 2

instead of T . So, AP’s dimension remains the same for T and T 2.
To make the example a little bit less artificial, one can turn it into a diffeo-

morphism of the unit disk by defining a new dynamic on the unit disk such that
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all points fall on the previously defined periodic points. Then, X is the set of
non-wandering points of the dynamic on the disk, and by Theorem 4.5 part 3,
the previous result remains.

This shows by the way that AP’s dimension and topological entropy do not
necessarily coincide (the latter is actually equal to zero here).

4.4 AP’s dimension associated to a measure

We now return to the definition of the critical exponent associated to a measure
as in Section 3.3.

Lemma 4.6. Suppose that T is a measurable endomorphism preserving an ape-
riodic probability measure µ. Let A ⊂ X, then for any N ∈ N and any ε > 0
one can find N pairwise disjoint sets Uk ⊂ A, k = 0, 1, . . . , N − 1 with Poincaré
recurrence τ(Uk) ≥ N , and such that µ(

⋃N−1
k=0 Uk) > µ(A)− ε.

Proof. Let N ∈ N and ε > 0. By Rokhlin-Halmos’ theorem 3 [6], we can find a set
U such that T−kU for k = 0, 1, . . . , N − 1 are pairwise disjoint, and furthermore
such that µ(

⋃N−1
k=0 T−kU) > 1 − ε. Obviously τ(U) ≥ N . Moreover, τ(T−kU) =

τ(U) from the definition (5). We now define Uk = A∩ T−kU and these sets have
all the desired properties.

Remark that we can choose the sets Uk compact because of the regularity of the
measure.

Theorem 4.7. Suppose that (X, T, µ) satisfies the same conditions as in Lemma
4.6 and that the box dimension of the space X is finite. Then with a pre-measure
Φ(U) = e−τ(U), the AP’s dimension associated to an aperiodic invariant proba-
bility measure µ according with definition (16) and constructed with arbitrary or
closed covers, is equal to 0.

Proof. We make use of Lemma 4.6 : Let δ > 0, we take some compact sets
Uk

n , k = 0, 1, . . . , n − 1 with Poincaré recurrences τ(Uk
n) ≥ n and such that

µ(
⋃n−1

k=0 Uk
n) > 1 − δ

2n . We write Xn =
⋃n−1

k=0 Uk
n . Then we define {Uk

n+l} in the
same way, but now with A = Xn+l−1, so that the resulting Xn+l is a subset of
Xn+l−1 and its measure is such that µ(Xn+l) ≥ µ(Xn+l−1) − δ

2n+l . We define in
this way a monotone sequence of compact sets Xn+l with measure µ(Xn+l) >
1 −

∑l
l′=0

δ
2n+l′ . We take the intersection of these sets V =

⋂∞
l=0 Xn+l and get a

compact set with measure µ(V ) > 1 − δ. For each l, the collection {Uk
n+l}k is

a cover of V by n + l closed sets for which Poincaré recurrence is at least equal
to n + l. We can cut these sets in order to obtain a cover with closed sets of

3Usually the Rokhlin-Halmos’ theorem is stated for invertible systems. The generalization
to the non-invertible case can be done using the natural extension; a more direct approach due
to E.Lesigne [unpublished] has been communicated to us by Y.Lacroix.
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diameter less than 1
n+l

. It is possible for l large enough to get a cover with less

than (n + l)1+d members, where d is a number greater than the box dimension
of the space (which is supposed to be finite). Thus, we have the upper-bound
M f,Φ

α (V, 1
n+l

) ≤ (n + l)1+de−α(n+l), and for any α > 0,

mf,Φ
α (V ) = 0.

Since the measure of V can be arbitrarily close to 1, the dimension of the measure,
following the second definition (16), is 0. This proves the theorem when we cover
with closed sets, and this remains true with arbitrary covers.

Remark 4.2. The last result can be strongly improved if we make the additional
assumption that T is continuous. In this case, inequality (3.1) in Lemma 3.3 and
Theorem 8 apply, hence the two dimensions associated to the measure are equal
to zero, using arbitrary, closed or open covers.

5 Examples

We now present some systems for which AP’s dimension can be calculated.

5.1 Systems with pre-measure Φ(U) = e−τ(U) : AP’s di-
mension for subshifts of finite type

We will work on the space Ω = {0, . . . , p− 1}N of all semi-infinite sequences ω =
ω1ω2 . . . , with the product topology. The alphabet might be infinite (p = ∞).
We consider the shift to the left σ such that σ(ω1ω2ω3 . . . ) = ω2ω3 . . . . Subshifts
of finite type are restrictions of the shift on some invariant subsets of Ω. See
[13] for a complete description of these systems. Many dynamical systems are
topologically conjugate to subshifts of finite type [10, 4].

We define n−cylinders : Cα1,... ,αn =
{

ω ∈ Ω
∣∣∣ ω1 = α1, . . . , ωn = αn

}
.

Theorem 5.1. For subshifts of finite type, with finite or infinite alphabet, such
that #Per(k) is finite for every k, we have

αc(Ω) = limk→∞
1

k
log #Per(k). (20)

When the alphabet is finite, this tells us that AP’s dimension is equal to
topological entropy. For infinite alphabet, when the subshift is irreducible, this
limit corresponds to the “loop entropy”, or Gurevič entropy [9].

Proof. If the return time of a cylinder is k, then it is easy to check that it contains
a periodic point with period k. We consider a particular cover of X : the one
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with n−cylinders. Then, in this cover, the number of cylinders with first return
time k is at most the number of periodic points with period k. Thus

MΦ
α (X, 2−n) ≤

∑
k

#Per(k)e−αk.

(we use a metric such that the diameter of an n−cylinder is 2−n.)
In the limit ε → 0, this upper-bound remains true, and using the lower bound

of Theorem 4.5 part 4, we get the result.

5.2 Systems with pre-measure Φ(U) = 1
τ(U)

When V.Afraimovich has introduced his AP’s dimension, he first studied it on
minimal sets [1]. One of the reason is that in this case, he could prove that the
pre-measure has property (D), which implies that, as in the usual Carathéodory
construction, we have a net critical exponent (see (13)).

We can give a general lower bound for AP’s dimension with pre-measure
Φ(U) = 1

τ(U)
. The idea is to use Kac’s lemma.

Theorem 5.2. Let (X,T ) be a minimal dynamical system. Let A a subset of
X. If there exists a Borelian ergodic measure µ such that µ(A) > 0, then AP’s
dimension of A, with open covers and pre-measure Φ(U) = 1

τ(U)
, is such that

αc(A) ≥ 1.

This particularly implies that

αc(X) ≥ 1.

Proof of the Theorem. Using Kac’s Lemma, we can say that for any set U , we
have τ(U) ≤

∫
U

τU(x)dµ(x)
µ(U)

= 1
µ(U)

. For any cover Rε of A with open sets of
diameter less than ε, we can write∑

U∈Rε

1

τ(U)
≥

∑
U∈Rε

µ(U) ≥ µ(A) > 0.

This shows that m1(A) > 0. Since X is minimal, there exists αc such that

mα(A) =

{
∞ if α < αc

0 if α > αc

This proves that αc ≥ 1.
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We now recall Afraimovich’s result in [1], on which we can apply our last
theorem. It concerns irrational rotations of the circle S1. Let ω an irrational
number, then we define the dynamic Tω : S1 → S1 such that Tω(x) = x + ω
mod 1. Every orbit is dense in the space and thus it is a minimal dynamical
system.

We define for any irrational number, ω the Diophantine characteristic ν(ω)
which is the supremum over all ν for which there exists an infinity of pairs of
relatively prime numbers p, q such that∣∣∣∣ω − p

q

∣∣∣∣ <
1

qν+1
.

It is well known that ν(ω) ≥ 1 [18], it can also become infinite.

Theorem 5.3 ([1]). Taking the pre-measure Φ(U) = 1
τ(U)

and using covers by
open interval, irrational rotation of the circle with a rotation number ω has AP’s
capacities

cap(S1) = ν(ω).

Therefore, we see that, when ν(ω) = 1 (for example when ω is badly approx-
imable as defined in [18]), by using Theorem 5.2 :

αc(S1) = cap(S1) = cap(S1) = 1.

An interesting question is what we would get if we consider the AP’s dimen-
sion constructed with open covers rather than interval covers. This question is
especially important in multi-dimensional rotations where we cannot anymore
consider covers by intervals. Covering by balls is possible [1], but it would not
give us an invariant number ; this is the reason why we prefer to cover with open
sets.

6 Concluding remarks

We presented in this paper some new characterizations of the Afraimovich-Pesin’s
dimension, and we addressed a certain number of open questions. We recall at
least two of them :
(i) the possible coincidence of the AP’s dimension with asymptotic growth of
number of periodic points even when we cover with open or closed sets. A pos-
sible counterexample would show the influence of some “non-generic” points on
the AP’s dimension.
(ii) the role of the AP’s dimension to classify systems with zero topological en-
tropy when we use the pre-measure Φ(U) = 1

τ(U)
.

Moreover it would be interesting to compute the AP’s dimension for more
general classes of systems, including non-continuous applications, and to have
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algorithms to evaluate the AP’s dimension numerically ; we did it for the logistic
map in [16].

As anticipated in the introduction, it would be also interesting to get (a sort
of) AP’s dimension as the thermodynamic limit of some partition function : this
could open the path to a multifractal analysis of such a dimension.

7 Acknowledgments

We are sincerely grateful to V.Afraimovich for having introduced us to this prob-
lem and for having exchanged ideas. We also thank H.Bruin for interesting dis-
cussions about AP’s dimension, and Y.Lacroix and P.Hubert for discussions and
suggestions on the Rokhlin-Halmos’ theorem.

References

[1] V. Afraimovich, Pesin’s dimension for Poincaré recurrence, Chaos 7 (1997)
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