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Abstract. We consider the Rényi entropy function for weakly ψ-mixing systems. The first
main result of the paper establishes existence and regularity properties. The second main
result is obtaining the decay rate for the large deviation of the return time to cylinder sets;
we show that it is exponential with a rate given by the Rényi entropy function. Finally, we
also obtain bounds for the free energy.

1. Introduction
The Rényi entropies [34] were extensively studied in the 1980s because of their
connections with various generalized spectra for dimensions of dynamically invariant sets;
see, for instance, [9, 10, 16, 18, 22, 23, 31]. The commonly adopted definition generalizes
the usual measure-theoretic entropy. Let T be a transformation on a measurable space�, µ
a T -invariant probability measure on � and RA the Rényi entropy function (defined in (4)
below) associated with a finite measurable partition A of �.

Up to now, the existence of the Rényi entropy has been proved only in a few
special situations: for Bernoulli measures, Markov measures and, more generally, Gibbs
measures with Hölder continuous potentials φ. In fact, in these cases the Rényi entropies
can be expressed easily in terms of the topological pressure P(φ) of φ (see §2.2
below) independently of the partition A (provided it is generating). Also, Luczak and
Szpankowski [29] proved the existence of the Rényi entropy for instantly φ-mixing
measures (i.e. where φ(0) < 1; see below).
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The first main result of our paper, Theorem 1, shows existence of the limit (4) for
a large class of measures (namely, dynamically weakly ψ-mixing measures; see §2.1).
Moreover, we prove that for t→ 0+, the entropy RA(t) converges to the metric-theoretic
entropy h(µ) and that the function t RA(t) is locally Lipschitz continuous.

In [36], Takens and Verbitsky suggested defining the Rényi entropy of order t of
the measure-preserving transformation T as the function R̂(t)= supA RA(t), where the
supremum is taken over all finite partitions A of �. This ensures that R̂(t) is a measure-
theoretic invariant but, at the same time, becomes trivial, since it was shown that for ergodic
measures µ, the function R̂(t) is (for all t > 0) identically equal to the entropy h(µ). In
order to ‘extract new information about the dynamics from the generalized entropies’ [36],
Takens and Verbitsky introduced the correlation entropies by replacing cylinders with
dynamical (Bowen) balls. The main application of correlation entropies has been the
complete characterization of the multifractal spectrum of local entropies for expansive
homeomorphisms with specification [37] (see also [8, 33] for another approach). In fact, in
the latter case the correlation entropies coincide with the Rényi entropies RA(t) computed
with respect to any generating partition A.

The dependency of the Rényi entropy on the partition reflects some of the mixing
properties of the system, as can be seen from Theorem 4, where the behavior of RA(t) for
large values of t is related to the frequency of very short returns which, in turn, expresses
the way in which the partition models the periodic behavior of T .

In the remainder of this paper, we denote the Rényi entropy simply by R(t), assuming
that a given finite generating partition A has been chosen once and for all. The second
main result of this paper (Theorem 4 together with Corollary 5) uses the Rényi entropies
to compute the large deviations of the first returns of cylinders An of length n. For this
purpose, let us introduce the return-times function

τA(x)=min{k ≥ 1 | T k x ∈ A},

which is finite for µ-almost every x ∈ A (Poincaré’s theorem) and has expectation (on A)
equal to 1 (Kac’s theorem) when µ is ergodic.

For n = 1, 2, . . . , let us put τn(x)=miny∈An(x) τAn(x)(y), where An(x) denotes the
n-cylinder that contains x . This quantity has arisen in several different contexts.
• Since it controls the short returns, it plays a crucial role in establishing the asymptotic

(exponential) distribution of the return-times function τA(x)when the measure of the
set A goes to zero [1–3, 21, 24–26].

• It has been used to define the recurrence dimension, serving as the gauge set function
for constructing a suitable Carathéodory measure [5, 7, 32].

• It has been related to ‘algorithmic information content’ in [12].
The first result on the asymptotic behavior of τn(x) was proved in [35] (see also [6] for

a different proof): for an ergodic measure µ of positive metric entropy h(µ), we have

lim inf
n→∞

τn(x)

n
≥ 1 (1)

for µ-almost every x ∈�. For systems which enjoy the specification property, the above
limit exists and is equal to 1 almost everywhere [6, 35]. The same result holds for a large
class of maps on the interval with indifferent fixed points [20].
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The situation changes considerably for systems with zero entropy. In general, the limit
(1) does not exist anymore, and the values of the lim inf and lim sup depend upon the
arithmetic properties of the map; see [14, 27, 28] for a careful investigation of Sturmian
shifts and substitutive systems.

We will prove in §3 that the limit (1) exists almost surely and is equal to 1 even for
weakly ψ-mixing measures. This leads immediately to the natural question of computing
the large deviations for the process τn(x)/n, that is, to check the existence of the limit
defining the lower deviation function

lim
n→∞

1
n

log µ(x; τn(x)≤ [δn]) (2)

for δ ≤ 1. The case δ > 1 is not interesting: it gives the value 0 to the above limit since
τn(x)≤ n +1, where 1 is a constant independent of x and n; see §3.

The existence of the lower deviation function (2) was first established in [4] for classical
ψ-mixing measures. These are special cases of the measures considered in this paper: they
must satisfy the stronger mixing condition∣∣∣∣µ(U ∩ T−n−k V )

µ(U )µ(V )
− 1

∣∣∣∣≤ ψ(k) (3)

for all U in σ(An), all n and all V ∈ σ(A∗) (the σ -algebra generated by An), where
A∗ =

⋃
∞

j=1 A j (compare this with the definition of weakly ψ-mixing measures given
in §2 below). The rate function ψ(k), k ≥ 0, must converge to zero; moreover, to
achieve the existence of the limit (2), the additional assumption ψ(0) < 1 was required
in [4]. This, in particular, implies (see [4, Lemma 2.1]) that after having coded the
elements of the initial finite partition (of cardinality |A| = M , say) A=

⋃M
i=1 Ai over

the alphabet G = {1, 2, . . . , M}, for every string {i0, . . . , in−1} ∈ Gn (n ≥ 1) the cylinder
Ai0 ∩ T−1 Ai1 ∩ · · · ∩ T (n−1)Ain−1 has positive measure, which essentially means that the
grammar associated to the coding is complete. We shall have no need of this condition, not
even for our larger class of weakly ψ-mixing measures. The key result in [4] was to relate
the lower deviation function to the Rényi entropies for any ψ-mixing measure satisfying
the condition ψ(0) < 1, but in that paper the existence of the Rényi entropies was assumed,
since no general result was known then.

It is well-known that the deviation function can be computed as the Legendre transform
of the free energy of the process, provided that the free energy exists and is differentiable
with respect to the parameter β (see (5) below). We show in §4 that this is not the case for
our process: the free energy will be continuous but not differentiable at the point β =−γµ,
where γµ is the exponential decay rate of the measures of n-cylinders from Theorem 1.
Even if the free energy is not differentiable, one can still derive an upper bound for the
lower deviation function, which we shall show to be consistent with the rigorous expression
for the lower deviation function in terms of the Rényi entropies. It is interesting to note
that the free energy function was also computed in [4], but the proof there needed an
additional assumption, namely, the existence of a sequence of cylinders with measures
decaying exponentially to zero at a rate which is exactly the constant γµ, and whose first
return is sublinear. We do not need this hypothesis, since we will prove the existence of
such a sequence in full generality.
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2. Rényi entropy function
2.1. Existence and regularity. Let T be a transformation on the measurable space �
and µ a T -invariant probability measure on �. Assume that � has a finite measurable
partition A whose joins we denote by Ak

=
∨k−1

j=0 T− j A, k = 1, 2, . . . (the elements of

Ak are commonly referred to as n-cylinders). We assume that A is generating, i.e. that the
elements of A∞ are single points. For t > 0, we put

Zn(t)=
∑

An∈An

µ(An)
1+t

and define the Rényi entropy function RA with respect to the partition A by

RA(t)= lim inf
n→∞

1
tn
|log Zn(t)|. (4)

This section is devoted to proving existence of the limit under some weak mixing
conditions. Since the partition A is given, we will simply write R(t) for the Rényi
entropy. We say that the T -invariant probability measure µ on � is weakly ψ-mixing
with respect to the (finite) partition A if there exist positive functions ψ−, ψ+ : N→ R+,
with ψ−(k) < 1 for all k ≥10 for some 10, such that

1− ψ−(k)≤
µ(U ∩ T−n−k V )

µ(U )µ(V )
≤ 1+ ψ+(k)

for all U in σ(An), all n and all V ∈ σ(A∗) (where A∗ =
⋃
∞

j=1 A j ). From now on,
we assume that the measure µ on � is a T -invariant non-atomic probability measure
which is weakly ψ-mixing, with the functions 1− ψ− and 1+ ψ+ being subexponential,
i.e. lim supk→∞(1/k)|log(1− ψ−(k))| = 0 and lim supk→∞(1/k)log(1+ ψ+(k))= 0.
Lemma 3 shows that the measures of cylinder sets decay exponentially fast. Classical
ψ-mixing measures correspond to the special case where ψ−(k)= ψ+(k)= ψ(k) and
ψ(k)↘ 0 as k→∞ [11, 15, 17]. The classical ψ-mixing property implies, in particular,
that µ cannot have any atoms.

Put bn =maxAn∈An µ(An) and let γµ = lim infn(1/n)|log bn| be the exponential decay
rate of the measures of n-cylinders. We will now establish the following properties of the
Rényi entropy.

THEOREM 1. Assume that the (non-atomic) measure µ is weakly ψ-mixing and that the
functions 1− ψ− and 1+ ψ+ are subexponential. Then:
(I) the limit R(t)= limn→∞(1/(tn))|log Zn(t)| exists for t > 0, with convergence being

uniform for t on compact subsets of R+;
(II) the function W (t)= t R(t) is locally Lipschitz continuous;
(III) R(0)= limt→0+ R(t)= h(µ);
(IV) R(t) is monotonically decreasing on (0,∞) and R(t)→ γµ as t→∞, where

γµ = lim infn→∞(1/n)|log bn| is positive.

2.2. Examples. (I) Bernoulli shift. If � is the full shift space over a finite alphabet
{1, 2, . . . , M}, σ is the left shift transformation, the partition A is the collection of
one-element cylinders and the invariant probability measure µ is given by a probability
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The Rényi entropy function and the large deviation of short return times 163

vector Ep = (p1, p2, . . . , pM ) (where
∑

i pi = 1, pi > 0), then Zn(t)= (
∑

i p1+t
i )n and

the Rényi entropy is R(t)= (1/t)log
∑

i p1+t
i for t > 0 and equals the metric entropy

hµ =
∑

i pi |log pi | for t = 0.

(II) Markov chains. Again� is the shift space over the alphabet {1, 2, . . . , M} and A is the
usual partition of one-element cylinders. The invariant probability measure µ is now given
by an M × M stochastic matrix P (we assume P is irreducible) and probability vector
Ep, with EpP = Ep and P1= 1. The cylinder set U (x1 . . . xn) ∈An given by the n-word
x1x2 . . . xn then has the measure µ(x1 . . . xn)= px1 Px1x2 Px2x3 · · · Pxn−1xn . Hence

Zn(t)=
∑

x1x2...xn

p1+t
x1

P1+t
x1x2
· · · P1+t

xn−1xn
,

where the sum is over all (admissible) n-words. The non-negative M × M-matrix P(t)
whose entries are Pi j (t)= P1+t

i j has, by the Perron–Frobenius theorem, a single largest
positive eigenvalue λt and a strictly positive (and normalized) left eigenvector Ew(t). (Note
that λt is a continuous function of t and λ0 = 1.) Thus (with pi (t)= p1+t

i , i = 1, . . . , M),

λ−n
t Ep(t)P(t)

n
→ ( Ep · Ew(t)) Ew(t)

(exponentially fast) as n→∞. We therefore obtain that R(t)= (1/t)log λt if t is positive
and that R(0)= hµ =

∑
i j pi Pi j |log Pi j | if t = 0.

(III) Gibbs measures. [10, 36] Ifµ is a Gibbs measure for the potential function φ [13], then
the Rényi entropy R(t)= (1/t)

(
(1+ t)P(φ)− P((1+ t)φ)

)
(where P is the pressure

function) is analytic for t > 0.

2.3. Proof of Theorem 1. To prove Theorem 1, we need the following technical lemma
about ψ-mixing measures. The notation ψ± means that ψ+ applies when the argument
inside the absolute value is positive and ψ− applies when the argument inside the absolute
value is negative.

LEMMA 2. Assume there are sets B j ∈ σ(An j ), j = 1, 2, . . . , k, for some integers n j . If
µ is weakly ψ-mixing, then∣∣∣∣µ( k⋂

j=1

T−N j B j

)
−

k∏
j=1

µ(B j )

∣∣∣∣ ≤ ((1+ ψ±(1))k−1
− 1

) k∏
j=1

µ(B j ),

for all 1≥ 0, where N j = n1 + n2 + · · · + n j−1 + ( j − 1)1 with N0 = 0.

Proof. For `= 1, 2, . . . , k, put

D` =
k⋂

j=`

T−(N j−N`)B j .

In particular, note that
⋂k

j=1 T−N j B j = D1, Dk = Bk and

D` = B` ∩ T−n`−1D`+1.
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By the mixing property, |µ(D`)− µ(B`)µ(D`+1)| ≤ ψ
±(1)µ(B`)µ(D`+1); upon

repeated application this yields, by the triangle inequality,∣∣∣∣µ( k⋂
j=1

T−N j B j

)
−

k∏
j=1

µ(B j )

∣∣∣∣ ≤ ψ±(1) k−1∑
`=1

µ

(`−1⋂
j=1

T−N j B j

) k−1∏
j=`

µ(B j )

≤ ((1+ ψ±(1))k−1
− 1)

k∏
j=1

µ(B j ). 2

LEMMA 3. There exists a constant η ∈ (0, 1) such that µ(An)≤ η
n for all An ∈An and

all n.

Proof. Fix a 1> 0 and an m so that bm =maxAm∈Am µ(Am)≤ (1/2)(1+ ψ+(1))−1

(note that bm ↘ 0 as m→∞, since µ has no atoms). Then, for any n (large) and
An ∈An , one has An ⊂

⋂k−1
j=0 T−km′ Am(T jm′ An), where k = [n/m′], m′ = m +1 and

Am(T jm′ An) is the m-cylinder that contains T jm′ An ( j ≤ k − 1). By Lemma 2,

µ(An)≤ µ

(k−1⋂
j=0

T−km′ Am(T
jm′ An)

)
≤ (1+ ψ+(1))k−1

k∏
j=1

µ(Am(T
jm′ An))

≤ (1+ ψ+(1))k bk
m ≤ 2−k .

Hence η ≤ 2−1/m′ . 2

Remark 1. The exponential decay of cylinders implies, in particular, that the metric
entropy of a weakly ψ-mixing measure µ is positive. In fact, h(µ)≥ |log η|> 0.

Proof of (I). To prove that the limit that defines R(t) exists, we will show that the sequence
an = |log Zn(t)| is ‘nearly’ subadditive; a standard argument then ensures that the limit
exists.

Let m and 1≥10 (the ‘gap’) be integers, put m′ = m +1 and let n = km′ −1 be a
large integer. Put Ãn

=
∨k−1

j=0 T− jm′Am and define, for some β > 1,

Gn = {An ∈An
| µ(An)≥ e−k1βµ( Ãn)},

where Ãn =
⋂k−1

j=0 T−km′ Am(T jm′ An). Then, for every An , one has

µ

( ⋃
A′n⊂ Ãn ,A′n∈Gn

A′n

)
= µ( Ãn)− µ

( ⋃
A′n⊂ Ãn ,A′n 6∈Gn

A′n

)
≥ (1− |A|k1e−k1β )µ( Ãn),

as Ãn =
⋃

A′n⊂ Ãn ,A′n∈An A′n has k ‘gaps’, each of which is of length 1. This implies that

if |A|1e−1
β
< 1, then for every Ãn ∈ Ãn there exists an A′n ⊂ Ãn , A′n ∈An , which also

belongs to Gn . As 1≥10, we get

Zn(t) =
∑

An∈An

µ(An)
1+t
≥ e−k1β (1+t)

∑
Ãn∈Ãn

µ( Ãn)
1+t

= e−k1β (1+t)Zm(t)
k((1+O(ψ−(1)))k−1)1+t ,
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where we have used the fact that µ( Ãn)= (1+O(ψ±(1)))k−1 ∏k−1
j=0 µ(Am(T jm′ Ãn))

(the mixing property). Hence we obtain

|log Zn(t)| ≤ k|log Zm(t)| + k1β(1+ t)+ (1+ t)|log(1− ψ−(1))k−1
|

≤ k|log Zm(t)| +O(k1β(1+ t)).

If we put an = |log Zn(t)|, then an ≤ kam + ck1β and

akm′

km′
≤

am

m′
+ c

1β

m′
=

m

m′
am

m
+ c

1β

m′
.

If we put 1∼ mα so that αβ < 1, then

lim sup
n

an

n
≤

m

m +1

am

m
+O

(
1β

m

)
for all m.

Hence lim supn(an/n)≤ lim infm(am/m).
We also have

Zn(t)≤ |A|k1Zm(t)
k(1+O(ψ+(1)))(k−1)(1+t),

which implies that

|log Zn(t)| ≥ k|log Zm(t)| +O(k1(1+ t)).

This ensures uniform convergence for t in compact subsets of R+.

Proof of (II). For t > 0, let us put Hn(t)=
∑

An∈An µ(An)
1+t
|log µ(An)|; clearly, h(µ)=

limn→∞ Hn(0)/n and d Zn(t)/dt = Hn(t). We will show that the sequence Hn has an
additive-like behavior in the sense that Hkm =O(km), where the implied constant is
bounded and bounded away from 0, uniformly in k and m. This then implies the Lipschitz
property.

As above, let Ãn
=
∨k−1

j=0 T− jm′Am and, in order to cut k gaps of length 1, put

Gn = {An ∈An
| µ(An)≥ e−k1βµ( Ãn)}

for some β > 1, where Ãn ∈ Ãn is such that An ⊂ Ãn and n = km′ −1 (m′ = m +1).
The sum over An that defines Zn is split into two parts: (i) over Gn and (ii) over the
complement of Gn .

(i) On the set An
\ Gn we haveµ(An)≤ e−k1βµ( Ãn), where An ∈ Gn with An ⊂ Ãn ∈ Ãn .

Choose γ ∈ (1, β) and let G′n = {A′n ∈An
| µ(A′n)≥ e−k1γµ( Ãn)t}. Then we get that for

all An 6∈ Gn ,
µ(An)≤ e−k1βµ( Ãn)≤ e−k1β e−k1γµ(A′n),

where A′n ∈ G′n is such that A′n ⊂ Ãn (such an A′n exists since |A|1e−1
γ
< 1 for 1 large

enough). Thus∑
An 6∈Gn

|log µ(An)|µ(An)
1+t
≤ e−k(1+t)1β

∑
An 6∈Gn

|log µ(An)|µ( Ãn)
1+t

≤ e−k(1+t)(1β−1γ )
∑

A′n∈G′n

|log µ(A′n)|µ(A
′
n)

1+t

≤ e−k(1+t)(1β−1γ )Hn .
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(ii) If An ∈ Gn , then log µ(An)= log µ( Ãn)+O(k1β), and we obtain

Hn(t) =
∑

An∈An

|log µ(An)|µ(An)
1+t

=

∑
An∈Gn

(|log µ( Ãn)| +O(k1β))µ(An)
1+t
+

∑
An 6∈Gn

|log µ(An)| µ(An)
1+t

=

∑
An∈Gn

|log µ( Ãn)|µ(An)
1+t
+O(k1β)Zn +O(e−k(1+t)(1β−1γ ))Hn,

where in the last step we have used the estimate from part (i).
The mixing property µ( Ãn)= (1+O(ψ±(1)))k−1 ∏k−1

j=0 µ(Am ◦ T jm′) is applied to
the principal term, giving∑

An∈An

|log µ( Ãn)|µ(An)
1+t
=

k−1∑
j=0

X j
+O(k(ψ−(1)+ ψ+(1))),

where X j
=
∑

An∈An |log µ(Am ◦ T jm′)|µ(An)
1+t . To further examine X j , let us put

Ãn
j =A jm′−1

∨ T− jm′Am
∨ T−( j+1)m′−1An−( j+1)m′−1,

where we have opened up two gaps of length 1 (with 1≥10), the first after j blocks and
the second after j + 1 blocks ( j = 0, . . . , k − 1), with the obvious modification that for
j = 0 or k − 1 there is only a single gap. We now put

G j
n = {An ∈An

| µ(An)≥ e−1
β

µ( Ã j
n)},

where Ã j
n ∈ Ãn

j is such that An ⊂ Ã j
n . The sum in X j over An is split into two parts:

(a) over G j
n and (b) over its complement An

\ G j
n .

(a) For the sum over G j
n , the mixing property

µ( Ã j
n)= (1+O(ψ(1)))µ(A jm′−1)µ(Am ◦ T jm′)µ(An−( j+1)m′−1 ◦ T−( j+1)m′−1)

for Ã j
n ∈An

j yields∑
An∈G j

n

|log µ(Am ◦ T jm′)|µ(An)
1+t

∈ [e−(1+t)1β , |A|21]
∑

Ãn∈Ãn
j

|log µ(Am ◦ T jm′)|µ( Ã j
n)

1+t

= [e−(1+t)1β , |A|21](1+O(ψ±(1)))Z jm′−1Hm Zn−( j+1)m′−1.

(b) For the sum over An
\ G j

n , we estimate as follows:∑
An 6∈G j

n

|log µ(Am ◦ T jm′)|µ(An)
1+t

≤ |A|21e−(1+t)1β
∑

Ã j
n∈An

j

|log µ(Am ◦ T jm′)|µ( Ã j
n)

1+t

≤ |A|21e−(1+t)1β (1+O(ψ±(1)))1+t Z jm′−1Hm Zn−( j+1)m′−1.
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Similarly, one shows that Zn ∈ [|A|21e−(1+t)1β , |A|21]Z jm′−1Zm Zn−( j+1)m′−1.
Hence we get

Hn ∈

[
1
c1
, c1

] k−1∑
j=0

Z jm′−1Hm Zn−( j+1)m′−1

Zn
+O(k1β)

for some constant c1 ≈ 2|A|21e(1+t)1γ and, consequently,

Hn ∈

[
1

c2
1

, c2
1

]
k Hm +O(k1β).

This implies that

lim sup
n→∞

1
n

Hn ≤ c2
1

1
m

Hm

and, similarly,

lim inf
n→∞

1
n

Hn ≥ c−2
1

1
m

Hm .

It follows that c2c−2
1 |s| ≤W (t + s)−W (t)≤ c2c2

1|s| for small s (e.g. −t ≤ s ≤ 1), for
some positive constant c2 (which is equal to Hm(t)/m for some m).

Proof of (III). To prove existence of the limit as t→ 0, we must obtain more delicate
estimates for the near-additivity of the sequence Hn(t) for t close to 0.

With Hn(t)=
∑

An∈An µ(An)
1+t
|log µ(An)|, as above, we get

Hn+m(t) =
∑

An+m∈An+m

µ(An+m)
1+t
∣∣∣∣log

µ(An+m)

µ(Am)
+ log µ(Am)

∣∣∣∣
=

∑
An+m∈An+m

µ(An+m)
1+t
|log µ(Am)|

+
1

1+ t

∑
An+m∈An+m

µ(An+m)
1+t
∣∣∣∣log

(
µ(An+m)

µ(Am)

)1+t ∣∣∣∣
≤

∑
Am∈Am

µ(Am)
1+t
|log µ(Am)|

+
1

1+ t

∑
An∈An

Zm(t)
∑

Am∈Am

µ(Am)
1+t

Zm(t)
φ

((
µ(An+m)

µ(Am)

)1+t)
,

where An+m stands for Am ∩ T−m An and φ(s)=−slog s is concave on (0, 1) and
increasing on (0, 1/e). Thus,

Hn+m(t) ≤ Hm(t)+
Zm(t)

1+ t

∑
An∈An

φ

( ∑
Am∈Am

µ(An+m)
1+t

Zm(t)

)

≤ Hm(t)+
Zm(t)

1+ t

∑
An∈An

φ

(
µ(An)

1+t

Zm(t)

)
,
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provided that µ(An)
1+t/Zm(t)≤ 1/e for every An ∈An . Hence

Hn+m(t) ≤ Hm(t)+
1

1+ t

∑
An∈An

µ(An)
1+t
∣∣∣∣log

µ(An)
1+t

Zm(t)

∣∣∣∣
= Hm(t)+ Hn(t)+

1
1+ t

Zn(t)|log Zm(t)|,

as Zm ≤ 1. Now we apply this estimate repeatedly. In order to satisfy the condition
µ(A jm)

1+t/Zm(t)≤ 1/e for every A jm ∈A jm , j = 1, . . . , k, let us note that the measure
of the cylinder sets goes to zero by Lemma 3. Hence, for a given m, we can find
an integer J so that µ(A jm)

1+t/Zm(t)≤ 1/e for every A jm ∈A jm and all j > J .
Moreover, since W (0)= 0 and (log Zn(t))/n converge uniformly to W (t) for t ∈ (0, δ)
(where δ > 0), we can let ε > 0 and choose δ > 0 so that |W (t)|< ε/2 and N so that
|(log Zn(t))/n −W (t)|< ε/2, for all n ≥ N and t ∈ (0, δ). Hence 1≥ Zn(t)≥ e−εn for
n ≥ N and t ∈ (0, δ). Assume that m > N . Then we get almost-subadditivity for the
sequence Hn(t):

Hkm(t)= HJm(t)+ (k − J )Hm(t)+O(kεm)

and consequently, as k→∞,

lim
n→∞

Hn(t)

n
=

Hm(t)

m
+O(ε)

for every m > N . Therefore, if t ∈ (0, δ), then

W (t)= lim
n→∞

log Zn(t)

n
= lim

n→∞

1
n

∫ t

0
Hn(s) ds =

1
m

∫ t

0
Hm(s) ds +O(εt)

and, consequently,

R(0)=W ′(0)= lim
t→0+

1
tm

∫ t

0
Hm(s) ds +O(ε)=

1
m

Hm(0) ds +O(ε).

Since ε > 0 was arbitrary, we get that R(0)= limm→∞(Hm(0)/m) (we need m > Nε,
where Nε→∞ as ε→ 0+).

Proof of (IV). The fact that R is decreasing was noted in, for example, [9, 36]. Since

b1+t
n ≤ Zn(t)≤

∑
An∈An

µ(An)b
t
n = bt

n,

we obtain that |log bn|/n ≤ R(t)≤ ((1+ t)/t)|log bn|/n for all n (this estimate is true
universally, independently of mixing properties). Hence γµ ≤ R(t)≤ ((1+ t)/t)γµ for all
t > 0, where γµ is strictly positive since, by Lemma 3, γµ ≥ |log η|> 0. 2

As Lemma 3 shows, the measure of cylinder sets always decays exponentially
fast for weakly ψ-mixing measures. Clearly, if the measure of cylinder sets decays
subexponentially (i.e. γµ = 0), then the Rényi entropy R(t) is identically zero on (0,∞).
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The Rényi entropy function and the large deviation of short return times 169

3. Short return times
In the introduction, we recalled that for every ergodic measure µ with positive entropy,
lim infn→∞(τn(x)/n)≥ 1 almost everywhere. Since a weakly ψ-mixing measure µ has
positive entropy (see the remark following Lemma 3), we obtain lim infn→∞(τn(x)/n)≥ 1
for µ-almost every x ∈�. In order to get the upper bound, let x ∈� and note that by the
weak ψ-mixing property,

µ(An(x) ∩ T−n−1An(x))

µ(An(x))2
≥ 1− ψ−(1) > 0

for 1≥10. This implies that τn(x)≤ n +1 and, since 1≥10 is fixed, we obtain that
lim supn→∞(τn(x)/n)≤ 1 for every x ∈�. Hence

lim
n→∞

1
n
τn(x)= 1

almost everywhere. This section concerns the large deviations of the process τn ; in other
words, we are interested in the asymptotic behavior of the distributions

P(τn ≤ [δn])= µ({x | τn(x)≤ [δn]}).

Since τn(x) is obviously constant for all points in the same cylinder around x , we can
replace the set {x | τn(x)≤ [δn]} by

Cn(δ)= {An ∈An
| τn(An)≤ [δn]},

which measures the probability of points having very short returns, where τn(An)=

min{k ≥ 1 | An ∩ T−k An 6= ∅} = τn(x) for x ∈ An . In order to analyze the size of the set,
we follow [4] and define the sets

Bn( j)=

{
An ∈An

∣∣∣∣ j

τn(An)
∈ N

}
,

where n ∈ N and j = 1, . . . , n. Clearly, Bn( j) ∈ σ(An) for all j and, looking at the
symbolic representation of the n-cylinders in Bn( j), we note that there are two cases:
(i) if j ≤ n/2 and x is a point in Bn( j), then the first n symbols of points in it are

(x1x2 . . . x j )
n′x1x2 . . . xr ,

where n′ = [n/j] and r = n − j[n/j] (r < j);
(ii) if j > n/2 and An is an n-cylinder in Bn( j), then the first n symbols of points in it

are
x1x2 . . . xn− j x1x2 . . . x2 j−n x1x2 . . . xn− j ,

where the (remainder) middle portion is of length n − 2(n − j)= 2 j − n.
Let us put

Sn(λ)= {An ∈An
| τn(An)= [nλ]}.

The purpose of this section is to determine the decay rate of the measure of the set Sn(λ) as
n goes to infinity. As λ varies over the unit interval, we obtain the short recurrence spectrum
for the measure µ. Let us note that for every n we have that Cn(δ)=

⋂
λ<δ Sn(λ).
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Recall that W (t)= t R(t)= limn→∞(log Zn(t))/n. We define the function M(λ) on
the interval (0, 1] as follows:

M(λ)= (1− λ`)(W (`)−W (`− 1))+ δW (`− 1),

where `= [1/λ]; note that 1− λ` linearly interpolates between the values 1/(k + 1) and 0
on the interval (1/(k + 1), 1/k). The function M(λ) is continuous on (0, 1) and piecewise
affine on the intervals (1/(1+ k), 1/k), and it takes the values M(1/k)= (1/k)W (k − 1)
for k = 1, 2, . . . (in particular, M(1)= 0). The function M(λ) interpolates the function
M̂(λ)= (λ/(1+ λ))W (1/λ) between the points λ= 1/k for k = 1, 2, . . . . Changing
coordinates to t = (1+ λ)/λ, we get M̂(λ)= (1/t)W (t − 1). This function is increasing
for t > 1, as can be seen from the derivatives of the approximating functions. To wit,

d

dt

1
tn
|log Zn(t − 1)| =

1

t2 Zn(t − 1)

∑
An∈An

µ(An)
t
∣∣∣∣log

µ(An)
t

Zn(t − 1)

∣∣∣∣,
which is positive for every n. Since limn→∞(1/(tn))|log Zn(t − 1)| = (1/t)W (t − 1), we
conclude that (1/t)W (t − 1) is increasing on (1,∞). Hence M(λ) is decreasing on (0, 1).
We now prove our main result for the density of short returns.

THEOREM 4.

lim sup
n→∞

1
n
|log µ(Sn(λ))| = M(λ).

The lower bound was proven in [4]. It remains to prove the upper bound. In [4], the
bound was proven under the assumption that ψ(0) be less than one, which is essentially
satisfied only for Bernoulli measures. Here we obtain the lower bound for all weakly
ψ-mixing measures. Theorem 4 leads to the following corollary.

COROLLARY 5.

lim sup
n→∞

1
n
|log µ(Cn(δ))| = M(δ).

Proof. Clearly, Cn(δ)⊂
⋃[δn]

j=1 Bn( j), which implies that Cn(δ)⊂
⋃

0<λ≤δ Sn(λ). In fact,
the union consists of no more than n distinct sets. Hence

µ(Cn(δ))≤ n max
0<λ≤δ

µ(Sn(λ)),

which implies that lim supn→∞(1/n)|log µ(Sn(λ))| ≤min0<λ≤δ M(λ). The upper bound
follows from the fact that Sn(λ)⊂ Cn(δ) for every λ≤ δ. The statement now follows
because M is monotonically decreasing on (0, 1). 2

PROPOSITION 6.

lim sup
n→∞

1
n
|log µ(Sn(λ))| ≤ M(λ).

Let us first prove the following inequality, which is of some interest in its own right.

LEMMA 7. Let γ ∈ (0, 1). Then for all λ ∈ (0, 1) and all large enough n,

µ(Bn( j))≥ eO(nγ )Zr (w)Z j−r (w − 1),

where j = [λn] and n = w j + r with 0≤ r < j , w = [n/j].
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Proof. Using the implicit short-term periodicity of points in the set Bn( j), we will estimate
its measure from below by a product involving suitable partition functions Z∗. We treat
the two cases (A) λ ∈ (0, 1/2] and (B) λ ∈ (1/2, 1) separately.

(A) Let us first deal with the case 0< λ≤ 1/2. Put j = [λn] and w = [n/j]. Then
n = w j + r , where r < j (r = 0 if λn ∈ N and 1/λ ∈ N). For an n-cylinder An ⊂ Bn( j),
one has the decomposition

An =

(w−1⋂
k=0

T− jk A j (An)

)
∩ T−w j Ar (An),

wherew = [n/j] and A j (An) is the j-cylinder that contains the n-cylinder An . Let1≥10

be such that 1< r, j − r , and put

Ãn =

( w⋂
k=0

T− jk Ar−1(An)

)
∩

( w⋂
k=0

T− jk−r A j−r−1(An)

)
.

Here we have opened up gaps of length 1 at each occurrence of period after length j , and
then cut each period of length j into two pieces of lengths r and r − j . Since An ⊂ Ãn , we
clearly have µ( Ãn)≥ µ(An), and in order to get a comparison in the opposite direction,
we let β > 1 and put

Gn, j = {An ∈An
| An ⊂ Bn( j), µ(An)≥ e−2w1βµ( Ãn)}

for the ‘good’ n-cylinders in Bn( j) whose measures are comparable to the measure of Ãn .
Put Gn, j =

⋃
An∈Gn, j

An . Then for every An ⊂ Bn( j), one has

µ

( ⋃
A′n⊂ Ãn∩Bn( j),A′n∈An

A′n

)
≥ (1− |A|2w1e−2w1β )µ( Ãn ∩ Bn( j)),

as Ãn ∩ Bn( j)=
⋃

A′n⊂ Ãn ,A′n∈Gn, j
A′n . This implies that if |A|2w1e−2w1β < 1, then

Ãn ∩ Bn( j) 6= ∅ if and only if there exists an A′n ⊂ Ãn , A′n ∈An , which also belongs to
Gn, j . Hence

µ(Bn( j))≥ µ(Gn, j )≥ e−2w1β
∑
Ãn

µ( Ãn),

where the sum is over all Ãn for which there is an An ⊂ Bn( j). Since all An ⊂ Bn( j) are
of the form (x1 . . . x j )

wx1 . . . xr , where x1 . . . x j runs through all possible periodic words
of lengths j , we get∑

Ãn

µ( Ãn)= (1+O(ψ±(1)))2w+1

×

∑
x1...xr−1

∑
xr+1...x j−1

µ(Ar−1(x1 . . . xr−1))
w+1µ(A j−r−1(xr+1 . . . x j−1))

w

= (1+O(ψ±(1)))2w+1 Zr−1(w)Z j−r−1(w − 1),

where the sum is over all (r −1)-words x1 . . . xr−1 and all ( j − n −1)-words
xr+1 . . . x j−1, with Zm(k)=

∑
Am∈Am µ(Am)

k+1. Hence

µ(Bn( j))≥ c1e−2w1β Zr−1(w)Z j−r−1(w − 1)
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for some c1 > 0. We have to choose 1≥10 and need to have |A|1e−1
β
< 1. This

requires β to be bigger than one.
Next, we compare Zr−1(w) to Zr (w) as follows:

Zr−1(w)=
∑

x1...xr−1

µ(Ar−1(x1 . . . xr−1))
w+1
≥

1
|A|1

∑
x1...xr

µ(Ar−1(x1 . . . xr ))
w+1,

as µ(Ar (x1 . . . xr ))≤ µ(Ar−1(x1 . . . xr−1)) and #{Ar | Ar ⊂ Ar−1} ≤ |A|1. Hence
Zr−1(w)≥ |A|−1Zr (w) and, similarly, Z j−r−1(w − 1)≥ |A|−1Z j−r (w − 1). This
implies that

µ(Bn( j))≥ c1|A|−21e−2w1β Zr (w)Z j−r (w − 1)≥ c1e−c21
αβ

Zr (w)Z j−r (w − 1)

if we choose 1= [ jα] for some α ∈ (0, 1). If α is small enough, then γ ≥ αβ.

(B) Now consider the case where λ ∈ (1/2, 1). Again, we put j = [nλ] and n = j + r
(note that [1/λ] = 1). If An ⊂ Bn( j) is an n-cylinder, then An = Ar (An) ∩ T− j Ar (An) ∩

T−r An−2r (T r An), where n − 2r ≥ 0. Let 1≥10 (not too large) and define, as above,

Ãn = Ar−1(An) ∩ T− j Ar−1(An) ∩ T−r An−2r−1(T
r An)

(if n − 2r −1> 0; otherwise, just put Ãn = Ar−1(An) ∩ T− j Ar−1(An)). For β > 1, we
introduce as before the ‘good set’

Gn, j = {An ∈An
| An ⊂ Bn( j), µ(An)≥ e−1

β

µ( Ãn)}.

If |A|21e−1
β
< 1, then for every Ãn (of the form given above) there exists an An ∈ Gn, j

such that An ⊂ Ãn , and therefore

µ(Bn( j))≥ µ(Gn, j )≥ e−1
β ∑

Ãn

µ( Ãn),

where the sum is over all Ãn = Ar−1(x1 . . . xr−1) ∩ T− j Ar−1(x1 . . . xr−1) ∩

T−r Ar−1(xr+1 . . . xn− j ) (in the case where n − 2r −1> 0) and x1 . . . xr−1,
xr+1 . . . xn− j are arbitrary words. Hence

µ(Bn( j)) ≥ (1+O(ψ−(1)))2e−1
β ∑

x1...xr−1

µ(Ar−1(x1 . . . xr−1))
2

×

∑
xr+1...x j−1

µ(A j−r−1(xr+1 . . . x j−1))

= (1+O(ψ−(1)))2e−1
β

Zr−1(1)Z j−r−1(0)

= (1+O(ψ−(1)))2|A|−21e−1
β

Zr (1)Z j−r (0),

where in the last line we have used the comparison from the end of part (A). Again, we
choose 1= [ jα], where α ∈ (0, 1) can be chosen small enough so that γ ≥ αβ. 2

Proof of Proposition 6. Obviously, µ(Sn(λ))≥ Bn( j) and therefore, by Lemma 7,

log µ(Sn(λ))

n
≥−

O(nγ )
n
+

1
n

log Zr (w)+
1
n

log Z j−r (w − 1),
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where γ < 1 can be chosen arbitrarily. As n→∞, the first term goes to zero. Thus

lim inf
n→∞

1
n

log µ(Sn(λ))≥ lim inf
n→∞

1
n

log Zr (w)+ lim inf
n→∞

1
n

log Z j−r (w − 1).

Now, notice that (as n = w[λn] + r )

1
n

log Zr (w)=
r

n

1
r

log Zr (w)→ (1− λ`) W (`),

since
r

n
=

n − [λn]w

n
= 1−

[λn]

n
w→ 1− λ` and w→ `= [1/λ]

as n→∞ and W is continuous by Theorem 1. Similarly,

1
n

log Z j−r (w)=
j − r

n

1
j − r

log Z j−r (w)→ (λ(1+ `)− 1)W (`− 1),

since
j − r

n
=
[nλ] − (n − [λn])w

n
=
[nλ]

n
(1+ w)− 1→ λ (1+ `)− 1.

This implies the statement of the proposition. 2

LEMMA 8.

lim sup
n→∞

1
n
|log µ(Sn(λ))| ≥ M(λ).

Proof. Again we treat the two cases (A) λ ∈ (0, 1/2] and (B) λ ∈ (1/2, 1) separately.

(A) 0< λ≤ 1
2 . As above, we write n = w j + r , where j = [λn] and w = [n/j], with

0≤ r < j . Since all An ⊂ Bn( j) are of the form (x1 . . . x j )
wx1 . . . xr , where x1 . . . x j

runs through all possible periodic words of lengths j , we get (by summing over such An)
that∑
An

µ(An)≤ (1+ ψ+(0))2w+1
∑

x1...xr

∑
xr+1...x j

µ(Ar (x1 . . . xr ))
w+1µ(A j−r (xr+1 . . . x j ))

w,

where the sum is over all r -words x1 . . . xr and all ( j − n)-words xr+1 . . . x j . Hence

µ(Sn(λ))≤ (1+ ψ+(0))2w+1 Zr (w)Z j−r (w − 1)

and therefore, as in the proof of Proposition 6,

lim
n→∞

1
n
|log µ(Sn(λ))| ≥ lim

n→∞

1
n
|log Zr (w)| + lim

n→∞

1
n
|log Zr (w − 1)| = M(λ).

(B) λ ∈ ( 1
2 , 1). We again put j = [nλ] and n = j + r , with 0≤ r < j (as [1/λ] = 1).

If An ⊂ Bn( j) is an n-cylinder, then An = Ar (An) ∩ T− j Ar (An) ∩ T−r An−2r (T r An),
where n − 2r ≥ 0. Hence

µ(Bn( j))≤ (1+ ψ+(0))2
∑

x1...xr

µ(Ar (x1 . . . xr ))
2
∑

xr+1...x j

µ(A j−r (xr+1 . . . x j ))

for arbitrary words x1 . . . xr , xr+1 . . . xn− j . This implies that

µ(Sn(λ))≤ c1 Zr (1)Z j−r (0) (c1 > 0)

and

lim
n→∞

1
n
|log µ(Sn(λ))| ≥ lim

n→∞

1
n
|log Zr (1)| = M(λ). 2
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Proof of Theorem 4. The theorem now follows from Proposition 6 and Lemma 8. 2

Besides the exact limiting behavior we get from Theorem 4, we can also prove the
following simpler bounds.

LEMMA 9.

lim inf
n→∞

1
n
|log µ(Cn(δ))| ≤ hµ(1− δ)

for all δ ∈ (0, 1).

Proof. As before, let j = [δn], and for an n-cylinder An in Bn( j), we put Ãn =

Ar−1(An) ∩ T−r An−r (T r An) for a gap of length 1 on the segment [r −1+ 1, r ]. Let
β > 1 and

G = {An ∈An
| An ⊂ Bn( j), µ(An)≥ e−1

β

µ( Ãn)},

and observe that if |A|1e−1
β
< 1, then

Ãn ∩ Bn( j) 6= ∅ ⇐⇒ there exists A′n ∈ G with A′n ⊂ Ãn .

Hence if 1≥10, then

µ(Bn( j)) ≥ µ(G)

≥ e−1
β ∑

Ãn

µ( Ãn)

≥ (1− ψ−(1))e−1
β ∑

x1...x j−1

µ(A j−1(x1 . . . x j−1))

×

∑
x j−1+1...x j

µ(An− j (T
j (x1 . . . x j )

∞)),

where G =
⋃

An∈G An , as Ãn = A j−1(x1 . . . x j−1) ∩ An− j ((x1 . . . x j )
∞). By the

Shannon–McMillan–Breiman theorem [30], for every ε > 0 there exists a set�ε ⊂� with
measure at least 1− ε so that µ(An− j ((x1 . . . x j )

∞))≥ exp(−(n − j)(hµ + ε)) for all
sufficiently large n and all (x1 . . . x j )

∞ such that An− j ((x1 . . . x j )
∞) ∩�ε 6= ∅. Hence

µ(Cn(δ)) ≥ e−1
β

(1− ψ−(1))

×

∑
An∈G,T j An∩�ε 6=∅

µ(A j−1(T
j An))e

−(n− j)(hµ+ε)

≥ e−1
β

(1− ψ−(1))e−(n− j)(hµ+ε)

×

( ∑
x1...x j−1

µ(A j−1(x1 . . . x j−1))− ε

)
≥ e−1

β
−(n− j)(hµ+ε)(1− ψ−(1)) (1− ε)

and, consequently, limn→∞(1/n)log µ(Cn(δ))≥−(1− δ)(hµ + ε) if we take 1= [nα],
where α < 1 is such that βα < 1. Now let ε→ 0+ to get the result. 2

LEMMA 10. Let γµ be as in Theorem 1. Then

lim inf
n→∞

1
n
|log µ(Cn(δ))| ≥ γµ(1− δ).

The proof is exactly the same as that of [4, Proposition 1(a)]. It uses the mixing properties
of ψ-mixing measures without the assumption that ψ(0) < 1.
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4. Uniform decay rate of cylinders and the free energy
In this section we compute the free energy F(β) of the process τn ; it is defined by

F(β)
def
= lim

n→∞

1
n

log
∫
�

exp(βτn(An)) dµ= lim
n→∞

1
n

log
∞∑
j=1

eβ j P(τn = j) (5)

whenever the limit exists (we use the probabilists’ shorthand P(τn = j) for µ({x ∈� |
τn(x)= j})).

THEOREM 11. Let µ be a weakly ψ-mixing measure. Then

F(β)=

{
β if − γµ ≤ β < 0,
−γµ if β ≤−γµ.

Remark 2. Although F(β) is not differentiable, one may still take its Legendre transform
L F(δ) and produce an upper bound for the deviation function M(δ) (see [19]). We
immediately get

M(δ)≤ L F(δ)=−γµ(1− δ),

which is consistent with the bound obtained in Lemma 10.

Remark 3. The proof of the theorem splits into two parts. The first part consists
of obtaining an upper bound for the sum

∑
∞

j=1 eβ j P(τn = j), which is achieved
by using the mixing properties of the measure. We defer to the proof of this
bound in [4, Proposition 6], which applies verbatim to our situation (it does not
require the stringent condition ψ(0) < 1). This upper bound allows us to show
that lim supn→∞(1/n)log

∫
�

exp(βτn(An)) dµ is piecewise constant as prescribed in
Theorem 11. However, the lower bound is more interesting. Here we need an additional
property of our measure, namely the existence of a sequence of cylinders whose measures
decay exponentially to zero at a rate which is exactly the constant γµ given by Theorem 1
and whose first return is sublinear. This sequence is explicitly constructed in Lemma 13
below. We will give the proof of the lower bound after proving Lemma 13.

As before, let γµ = lim infn(1/n)|log bn| be the exponential decay rate of the measures
of n-cylinders, where bn =maxAn∈An µ(An) and 0< |log η| ≤ γµ ≤ hµ by Lemma 3.

LEMMA 12. There exists a sequence of n-cylinders An , n = 1, 2, 3, . . . , such that γµ =
limn→∞(1/n)|log µ(An)|.

Proof. We have to show that the lim inf is equal to the limit along a suitable sequence of
cylinders. For this purpose, let An j (with n j an increasing sequence) be a sequence of n j -
cylinders such that γµ = lim j (1/n j )|log µ(An j )|. Let ε > 0, and take J large enough so
that |(1/n j )|log µ(An j )| − γµ|< ε/2 for all j ≥ J . Let α ∈ (0, 1) and1= [nαj ] (1≥10

if n j is big enough), and put Ãn j+(k−1)1 =
⋂k−1

i=0 T−i(n j+1)An j ; by Lemma 2, this implies
that

µ( Ãn j+(k−1)1)= µ(An j )
k(1+O(ψ±(1)))k−1.

Now choose β > 1 so that αβ < 1, and proceed as before by defining

Gk = {Akn j+(k−1)1 ⊂ Ãkn j+(k−1)1 | µ(Akn j+(k−1)1)≥ e−k1βµ( Ãkn j+(k−1)1)}.
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Since β > 1, we have for all 1 large enough that |A|(k−1)1e−k1β < 1, which implies
that there exists at least one cylinder Akn j+(k−1)1 ⊂ Ãkn j+(k−1)1, Akn j+(k−1)1 ∈

Akn j+(k−1)1, so that µ(Akn j+(k−1)1)≥ e−k1βµ( Ãkn j+(k−1)1); therefore

log µ(Akn j+(k−1)1)

kn j + (k − 1)1
≥ −

k1β

kn j + (k − 1)1
+

k log µ(An j )

kn j + (k − 1)1
+

k log (1− ψ−(1))
kn j + (k − 1)1

≥ −2
1β

n j
+

1
1+1/n j

log µ(An j )

n j
− 2

ψ−(1)

n j

≥ −cnβα−1
j +

log µ(An j )

n j
,

where we put 1= [nαj ] and c ≈ 3+ 2γµ (as 1/(1+1/n j )≤ 1+ 21/n j for j large
enough). Hence ∣∣∣∣ |log µ(Akn j+(k−1)1)|

kn j + (k − 1)1
− γµ

∣∣∣∣< ε

2
+

c

n1−βα
j

< ε

for all k if n j is large enough, as αβ < 1. 2

LEMMA 13. There exists a sequence of cylinders B j ∈A j such that

lim
j→∞

1
j
|log µ(B j )| = γµ and lim

j→∞

1
j
τ(B j )= 0.

Proof. By Lemma 12, there exists a sequence of cylinders An ∈An such that
(1/n)|log µ(An)| → γµ as n→∞. Let ε > 0, and take N so that∣∣∣∣1n |log µ(An)| − γµ

∣∣∣∣≤ ε/3 for all n ≥ N .

Let α, α′ ∈ (0, 1) and put kn = [nα
′

], 1n = [nα]. Also write, for simplicity, n′ = n +1n

and (n + 1)′ = n + 1+1n+1. Then

kn+1(n + 1)′ −1n+1 − (knn′ −1n) ∈

{
[0, 3] if kn+1 = kn,

[kn +1n, kn +1n + 3] if kn+1 = kn + 1.

Let εn = kn+1 − kn (εn = 0, 1), and for j ∈
[
knn′ −1n, kn+1(n + 1)′ −1n+1

)
put

D j = {D ∈A(kn+εn)n′−1n | D ⊂ Ãn},

where

D̃ j =

kn+εn−1⋂
j=0

T− jn′ An ∈

kn+εn−1∨
j=0

T− jn′An .

For β > 1, we define the ‘good’ set of cylinders in Ã j whose measures are comparable to
the measure of D̃n :

G j = {D ∈A j
| µ(D)≥ exp(−(kn + εn)1

β
n )µ(D̃ j )}.
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If |A|1e−1
β
< 1, then G j 6= ∅. Hence we can find a j-cylinder B j ∈ G j such that B j ⊂ D̃ j

which, moreover, has comparable measure, i.e. µ(B j )≥ exp(−(kn + εn)1
β
n )µ(D̃ j ). By

the mixing property,

µ(D̃ j )= (1+O(ψ±(1n)))
kn+εn−1µ(An)

kn+εn ,

which implies that

log µ(B j )≥−(kn + εn)1
β
n + kn log µ(An)+ kn log (1− ψ−(1n)).

If α′ + βα < 1 and n is large enough, then (1/j)(kn + εn)1
α
n < ε/3 and (1/j)kn log(1−

ψ−(1n)) < ε/3. Hence |(1/j)|log µ(B j )| − γµ|< ε for all sufficiently large j . Moreover,
we note that τ(A′j )≤ n +1n , which implies that lim j→∞(1/j)τ (B j )= 0. 2

Proof of Theorem 11. As described in Remark 3, it will be sufficient to show that

lim inf
n→∞

1
n

log
∫
�

exp(βτn(An)) dµ≥

{
β if − γµ ≤ β < 0,
−γµ if β ≤−γµ.

We have two cases.
(i) −γµ ≤ β < 0. The result immediately follows, since

∞∑
j=1

exp(β j)P(τn = j)≥ exp(βn +1),

where 1 was introduced at the beginning of §3.
(ii) β <−γµ. In any partition An , let us choose a cylinder A′n which satisfies Lemma

13. Then
∞∑
j=1

eβ j P(τn = j)≥ exp(βτn(A
′n))µ(A′n).

But µ(A′n) decays exponentially fast to zero with a rate given by −γµ, while
(1/n)τn(A′n) goes to zero. This concludes the proof. 2
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