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Abstract 

Using a method recently proposed by Sinai and Yakhot, we obtain the equation for the probability density 
function (pdf) of the temperature increments in fully developed turbulence. The closure problem is reduced to the 
determination of two conditional expectations and can be carried out mainly by requiring isotropy and a weak 
correlation of the physical variables. As a consequence of our analysis, we show that the pdf is nearly Gaussian 
about zero and then has a stretched exponential behavior for large fluctuations. 

1. Introduction 

The intermittent nature of small scales in fully 
developed turbulence has been widely investi- 
gated over the last decade either experimentally, 
e.g. Refs. [1-3], or theoretically. Indeed, follow- 
ing Kolmogorov's  refined theory [4], a new 
generation of models based on fractal and multi- 
fractal approaches has been recently worked out, 
e.g. Refs. [5,6]. Models based on modified 
versions of the log-normal assumption have also 
been proposed; these are based on ad hoc 
probability distributions of the small scales and 
provide relatively good agreement with ex- 
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perimental  data. One of the main properties 
inferred from all of these investigations is that 
small-scale statistical distributions associated 
with either the velocity field or a passively 
advected scalar are very far from Gaussianity, 
e.g. Refs. [2,7]. Another  characteristic feature of 
the problem is that so far it was not possible to 
directly assess the intermittent nature of the 
small scales from the transport equations for the 
turbulent velocity or scalar fields. Indeed,  most 
of the models are based on global statistical 
approaches describing the mechanisms involved 
in the inertial transfer of energy from the larger 
scales to the smaller ones. 

On the contrary, in this paper, we are directly 
focusing on the conservation equation for an 
advected passive scalar in a turbulent flow. We 
generalize the Yakhot-Sinai  technique recently 
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introduced to compute the probability density 
function (pdf) for temperature advected in a 
random velocity field [8] and in Rayleigh- 
B6nard convection [9,10]. Attention is paid 
hereafter to the determination of the pdf equa- 
tion for the temperature increment AO(r,x)= 
O(x + r ) -  O(x) between two points separated by 
a vector distance r. We now briefly sketch the 
strategy of this method: starting from the con- 
servation equation for the temperature field 
O(x, t), we generalize the Yaglom formula [11] to 
the determination of the mixed temperature- 
velocity structure functions ((A0)n AU L) for 
homogeneous and isotropic turbulence (Au L de- 
notes the longitudinal velocity increment). 
Therefore, we replace the spatial mean ( . )  by 
the ensemble average and introduce a probabili- 
ty density function which is the product of the 
pdf for the temperature difference, say P(r, X), 
where X is the value of the stochastic variable, 
and the conditional probability densities of the 
velocity difference AU L and the square of the 
temperature gradient (V0) 2. 

The above generalization of the Yaglom for- 
mula for all the moments of A0 then allows us to 
write the partial differential equation for P(r, X) 
which turns out to be a linear PDE whose 
coefficients are expressed in terms of the con- 
ditional expectations of AU L and (V0) 2 respec- 
tively. Let us call q~(r, X)  and qE(r, X) these two 
conditional expectations. The closure hypothesis 
of our theory is then just lying in the determi- 
nation of the functions ql(r, X) and q2(r, X). We 
think that the main novelty of the Yakhot-Sinai 
approach consists in replacing any closure as- 
sumption on conditional probabilities by an 
equivalent assumption on conditional expecta- 
tions, which is clearly a weaker statistical re- 
quest. We will give some theoretical arguments 
to determine ql and q2; basically, we will perturb 
our conditional expectations around the situation 
of statistical independence (the two variables are 
uncorrelated) and use the local isotropy of the 
fields. Our predictions for ql and q2 are con- 
firmed by experimental observations [12]. We 

will finally solve the partial differential equation 
for P(r, X) in the asymptotic regions X ~ 0 and 

The main results of our analysis are: 
First, we show that the pdf is fairly Gaussian 

for small IXI, but has a well stretched-exponen- 
tial behavior for large IXI, as confirmed by 
several experimental observations [13,14]. The 
analysis is carried out both in the inertial range 
and in the dissipative one. 

Second, an interesting fact appears in the 
experimental determination of ql(r ,X) in the 
inertial range, namely, the q~ we find for a large 
interval of values of r is in contradiction with the 
local isotropy of the velocity and temperature 
fields. This anomaly disappears for small values 
of r where we recover ql in agreement with local 
isotropy. It is just this last ql we used in the 
solution of our differential equations, but we 
think that the discrepancy observed in the iner- 
tial range needs further investigations and under- 
standing. 

During the preparation of this work, we dis- 
covered that similar problems were addressed in 
Ref. [15]: Eq. (8) in Ref. [15] is similar to our 
starting equation (2.8), but the successive deriva- 
tions are quite different, since, for example, we 
derive a partial differential equation instead of 
an ordinary one, where the scale r plays a 
fundamental role. Moreover, we use the well- 
established statistical calculus of turbulence [11] 
and take care to guarantee the existence of the 
solution of our equation. 

The experimental analysis of the model de- 
veloped in this article will be reported in a 
forthcoming paper [12]. 

2. The model 

In this section, we generalize the Yaglom 
formula for the determination of the mixed 
moment ((A0) 2 AUL) and extend it to any mo- 
ment of the type ((A0) n AUL). We will use this 
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result to write down a PDE for the probability 
density function of A0, in section 3. 

Let us consider the conservation equation for 
temperature: 

oo(x, t) 
o ~  + u(x , t ) .VO(x , t )=  ko V20(x,t) , (2.1) 

where k 0 is the thermal diffusivity. The tempera- 
ture and velocity fields will be also computed in 
the point (x + r, t) and in that case the opera- 
tions of derivation respectively read 

(O0(~ , t ) [  ) , (2.2) 
VO(x + r, t) = \" ~ ~i=xi+ri i=1,2.3 

3 020(¢,t)  ~i=xi+ri V20(x + r, t) = ,=1 ~ a~ :2 , (2.3) 

where ~: denotes the first set of spatial coordi- 
nates. The quantity we are interested in is the 
temperature increment or 

AO(r, x, t) = O(x + r, t) - O(x, t ) .  (2.4) 

Following the approach developed in Ref. [8], 
we first define the following quantity D n for any 
integer n > 1, which is a function of the in- 
dependent variables r, x and of the time t: 

0 
Dn(r, x, t) -- ~-[ {[A0(r, x, t)] ~ } 

+ u(x, t) .V{[A0(r,  x, t)] ~} 

- koV2{[ZO(r, x, t)l~}. (2.5) 

By developing D~(r, x, t), we meet terms of the 
type 

VO(x + r, t) and V20(X ÷ r, t ) .  (2.6) 

These terms should be written as 

VxO(x + r, t) and V20(x + r, t ) ,  (2.7) 

meaning derivation with respect to the x vari- 
ables of the composite function 0(~, t)o (x + r, t). 

However, by a trivial application of the chain 
rule, the quantities (2.7) computed in the point x 
(with r regarded as a fixed parameter indepen- 
dent from x) are the same as the corresponding 
quantities (2.2) and (2.3) computed in the point 

x + r. Then, an easy calculation shown in the 
appendix gives 

D~(r, x, t) = - n [  AO(r, x, t)] ~-l 

× Au(r, x, t) .  VO(x + r, t) 

- n(n - 1)ko[AO(r, x, t)] ~-2 

× {V[AO(r,x, t)]} 2 , (2.8) 

where Au(r, x, t) = u(x + r, t) - u(x, t). We then 
average Dn(r,x,  t) over all x within R 3 in the 
stationary state. We could first average and then 
take the time derivative: this derivative would be 
zero according to the Kolmogorov similarity 
hypothesis for which the statistical characteristics 
of our fields are independent of time (see Monin 
and Yaglom [11, Vol. 2, p. 401]). In the regime 
of homogeneous and isotropic turbulence, and 
using also the property of divergencelessness of 
the velocity field and zero boundary conditions 
for all the variables and their derivatives at 
infinity, we easily get ( D ~ ( r , x ) ) =  0, which im- 
plies 

1 
( [A0(r ,  x) ]  n-1 Au(r,  x ) ' V O ( x  + r)) 

ko(n 1) 

= - ([A0(r, x)ln- (V[A0(r, (2.9) 

where we have dropped the dependence on time 
t in all the variables. The detailed derivation of 
Eqs. (2.8) and (2.9), with further comments, is 
given in the appendix, where we also indicate a 
different starting point to get Eq. (2.12) below. 

When n = 0, Do(r, x) is trivially zero; for n = 
1, Dl(r, x) is equal to --Au(r, x) .VO(x + r) and its 
mean is zero since u is solenoidal. We further 
modify (2.9) according to the well-known ten- 
sorial statistical calculus of homogeneous and 
isotropic turbulence (see e.g. Ref. [11, Vol. 2]). 
The goal is to project Eq. (2.9) along the 
direction of r. We need two additional assump- 
tions which seem very reasonable from a physical 
point of view: 

(H1) First, we require that all the fields (we 
use the notation of Ref. [11]) {Ok(x), Ol(X) U(X)}, 
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with k, /->0, are isotropic and therefore 
(Ol(x)u(x)) = 0  for I>-0. 

(H2) Second, we require that 

(O/(x) Ok(x + r) ~i(x) ~i(x) ) 

= (O~(x + r) ok(x) ~,(x + r) ~,(x + r ) ) ,  

where ~:i(x) is any component of the gradient 
field O0(x)/Oxi (see section 12.4 in Ref. [11, Vol. 
2] for similar results). 

The first hypothesis (H1) is necessary to prove 
that (see demonstration in appendix) Vn-> 0: 

( [A0(r, x)]" Au~(r, x) > 
([ r, 

= AO(r,x)]" AUL(r,x)) r '  n even 

0,  n odd,  

(2.10) 

which is known to hold in the regime of local 
isotropy for n = 1,2 [11, Vol. 2, pp. 103, 104]. 
Aue(r,x) represents the projection along the 
direction of r, and we set r = Ir[. 

With the help of the second hypothesis (H2), 
we prove in the appendix that 

([A0(r, x)l"[VO(x + r)l 2 ) 

+ ( [A0(r, x)]"[VO(x)] 2 > 

= -{ 2([AO(r'x)]"[vO(x)]2)' O, nn even,  odd.  (2.11) 

Using (2.10) and (2.11) and with straight- 
forward calculus, we prove in the appendix that 
Eq. (2.9) is equivalent to the following one 
where only the even moments are kept: 

1 (2+_~)([AO(r,x)]2, AUL(r,x) ) 
N" 2n(2n - 1) 

= - 2 ( [ A 0 ( r ,  x)12"-2[VO(x)l 2 ) 
2k 0 ( 2 + 0 ) 0  

+ z g - 2 n ( Z n - 1 )  r "~r -~r ([AO(r'x)]2")' 
(2.12) 

where we used the notation N=ko([VO(x)] 2) 
and, consequently, rescaled and renamed the 
temperature gradient according to 
[VO(x)]2---~[VO(x)]2/([VO(x)]2). Note that we 

could equivalently have written: 
([A0(r, x)] z" AUL(r, x)) = -2([A0(r, x)] 2" UL(X)>. 
AS explicitly recalled in the appendix, the iso- 
tropy of the fields implies that all the averaged 
quantities in (2.12) depend only on r. 

In the case n = 1, Eq. (2.12) reduces to the 
well-known Yaglom formula [11, Vol. 2, p. 400] 

([A0(r, x)] 2 AUL(r, x)) -- 2k 0 ~ r  ([A0(r, x)] z) 

= - 4.~r. (2.13) 

A solution of (2.13) is given in the inertial 
range, i.e. for separations such that ~ / , ~ r ~ L  
where ~1 and L are the Kolmogorov and integral 
scales respectively, by neglecting the second 
term in the LHS since this term describes the 
effect of molecular thermal conductivity [11, Vol. 
2, p. 400]. Actually, the ratio of the last term in 
Eq. (2.12) to the one in the LHS of the same 
equation is dimensionally proportional to Pr/Re,  
where Pr is the Prandtl number (here close to 1) 
and Re is the Reynolds number associated with 
the considered scale r. Thus, when r lies in the 
inertial range, P r / R e ~  1 and then we get the 
scaling 

(A0(r,  x)] 2 AUL(r , X)> = - 4 N r .  (2.14) 

We make the same assumption in the inertial 
range by neglecting the last term in the RHS of 
(2.12); the equation, in the dissipative range, 
will be treated in section 5. 

We have seen that in Eq. (2.12) we have 
normalized the square of the gradient of tem- 
perature. Equivalently, we could have used the 
normalized fields 

-~- AO(r, x) 
AO(r, x) = ([A0(r, x)] 2 ) 1/2, 

~--- AUL(r, x) 
AUe(r , x) = ([AuL(r, X)12 ) 1/2, 

but, in this case, Eq. (2.12) is more complicated, 
since the variance of the two fields depend on r 
and the derivative b/Or acts explicitly on them. 
However, if we set ourselves again in the inertial 
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range and neglect terms of the type 
d([AO(r,x)]2)/dr and d([AuL(r,x)]2)/dr (see 
Ref. [ l l ,Vol .  2, pp. 397, 400]), and if for the two 
terms ([A0(r, X)] 2) and ([AUL(r , X)] 2) we assume 
scalings respectively of the type c~r 2;3 and c2r 2/3 
where c~ and c 2 depend on N and on the mean 
kinetic energy dissipation rate ~ [11, Vol. 2, pp. 
397, 400], then it is easy to show that Eq. (2.12) 
without the last term on its RHS remains un- 
changed provided that the operator [2/r + O/Or] 
is replaced by the following one: c3(2 + r O/Or), 
where c 3 is a function of c 1 and c 2. In this paper, 
we prefer to work with the general equation 
(2.12) since it does not require any scaling for 
([AO(r,x)]2). Such a result should be deduced 
from our analysis, once the pdf is known. 

3. The statistical approach and the closure 
hypothesis 

We now introduce, following Yakhot and Sinai 
[8,9], the following stochastic variables on the 
physical space R 3 endowed with the usual vol- 
ume measure: 

X = AO(r, x), Y-- AUL(r  , X), 

Z = (V0(x)) 2 , (3.1) 

and write the corresponding pdf as 

P(r, X, Y, Z) = P(r, X) Q(r, Y, Z[X),  (3.2) 

which explicitly depends on the parameter r > 0 
(and not on r, again by isotropy) and where 
Q(" I" ) denotes a conditional probability. By 
replacing the spatial mean by the ensemble 
averaging, we can then write (2.12) as 

f X2~[(2+~r)[ql(r ,X)P(r,X)] 

_ O 2 
+ 2N-~-~ [q2(r, X) P(r, X)] 

- 2ko(2+-~r) OP(r ,X ) ]  dX 

= 0 ,  (3.3) 

where the conditional expectations q~(r, X) and 
q2(r, X) are defined by 

q,(r, X) = ~ rQ(r, Y[X) dY,  (3.4) 

q2(r, X) = f ZQ(r, ZIX) dZ.  (3.5) 

By the definition of the stochastic variables 
(3.1), the integrals in Z (respectively Y) in (3.4) 
(resPectively (3.5)) can be factorized and are 
equal to 1: we therefore only need a two-variable 
conditional probability Q(.  [. ). 

To justify Eq. (3.3) and the consequences we 
will derive from it, we make the following 
assumptions: first of all, we ask for a symmetric 
pdf in X. Then, if we return to Eq. (2.10), we 
see, looking at the proof in the appendix, that 
we proved more, namely 

([AO(r,x)]" AuL(r,x)) =0,  n o d d ,  (3.6) 

that, translated into the statistical language of 
this section, means 

f Xnq~(r,X)P(r ,X)dX=O, n odd .  (3.7) 

This implies, by the growing properties of ql and 
P stated below, that the odd part of the product 
ql P is zero, so that qlP is an even function of  X 
and a fortiori ql is even. Unfortunately we do 
not have an analog of (3.7) for qz(r, X) and 
therefore we assume that q2 is an even function 
of X too. Then, we suppose that ql and q2 have 
a polynomial growth in X and restrict ourselves 
to pdfs which are functions of a rapid decrease of 
X with, at least, a dominant exponential-decay 
behavior at infinity of the type: P(r, X) ~ e -blxl. 
These hypotheses allow us to derive with respect 
to r inside the integral when r ranges in any 
domain bounded away from zero; moreover they 
are sufficient to conclude that, as a consequence 
of the Paley-Wiener theorem, the vanishing of 
the integral (3.3) for all the even powers of X 
implies that 
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(2  +-~r)[ ql(r, X) P(r, X)] 

_ 0 2 

+ 2N ~-~ [qz(r, X) P(r, X)] 

-~0(~ +~r) ~r,~, 
= 0 .  (3.8) 

of the complete local-isotropy regime: this effect 
is more pronounced for large scales and the 
symmetry is almost completely restored for small 
scales, see ref. [12] and a further discussion 
below. In the forthcoming sections, we will 
consider q~ and q2 as even functions of X, but we 
think that the question of their symmetry must 
be better investigated. 

This equation is the main result of this paper; it 
controls the shape of the pdf of X through the 
scale r. 

Let us now suppose that an exponentially 
decaying pdf satisfies (3.8) with the RHS equal 
to an even F(X). Then, F(X) will decay ex- 
ponentially fast too and its Fourier transform 
F(A) will be real analytic and, by condition (3.3), 
will satisfy 

= 0 ,  V J - 0 ,  

thus implying that F(X)= 0 identically. 
To further illustrate this point, which is not 

sufficiently considered in the other works related 
to the Yakhot-Sinai technique, we now give a 
counter-example. Let us consider the even func- 
tion P(A) = exp( -h-2  _/~2), which is C=(R) and 
is zero with all its derivatives in h = 0 (but not 
analytic there). The Fourier transform of i~'(h) is 
a function F(X) which is analytic on the real 
axis, of rapid decrease and satisfying 
S XzoF(X) dX = O, Vn >- O. Therefore, we could 
have a rapidly decreasing pdf satisfying Eq. (3.8) 
with the RHS equal to F(X)# O. To avoid this 
problem it is sufficient to restrict the class of our 
pdf as explained before, or otherwise require 
further conditions on the pdf which allow to 
discard those cases like the counter-example 
sketched above. We will return concretely to 
these questions at the end of section 5.2. 

An observation of experiments [12] is that ql 
and q2 and P are sometimes not even functions 
of X, but show instead a weak asymmetry 
around the origin. This is probably due to a lack 

3.1. Determination of q~ 

If the joint-probability distribution function of 
the variables A0 and Au L were Gaussian, it is 
w~ll known that ql would be equal to q~(r, X) = 
C(r) X, where C(r) is the correlation coefficient 
between A0 and Au L, generally a function of r. 
This ansatz can also be viewed as the first-order 
expansion of ql in X, whenever a weak depen- 
dence of the variables Y and X is taken into 
account in the conditional probability Q(r, YIX), 
and this is in agreement with the original spirit of 
the paper by Yakhot and Sinai. Our primary 
experimental result [12] leads us to conjecture 
for ql an expression of the form 

q1(r,X)=71r~X, 0 < e < l ,  71>0  (3.9) 

at least for small X, thus recovering the same 
conditional expectation as given by joint-Gaus- 
sian statistics. 

Clearly, the scaling (3.9) is not in agreement 
with the local isotropy of our fields since ql 
should be an even function of X. Nevertheless, 
some experimental observations for r varying in 
a large interval of values in the inertial range 
confirm the validity of (3.9) also for large [X[, 
with the additional fact that the slope 7j has a 
different value according to whether X is posi- 
tive or negative; this effect becomes more and 
more prominent when r decreases and, by ap- 
proaching the dissipative range, the slope 3'1 
changes its sign for X < 0 so that ql then assumes 
the form 

ql(r, X) = -a(r) + 7 j r 'X ,  (3.10) 
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with y ~ - > 0  for X < 0  and y ~ - < 0  for X > 0 ,  
where d(r) is a positive function of r necessary to 
insure the zero mean property of ql(r, X) .  As 
anticipated before, we take in the following 
3'1 = [3'11 just to guarantee the evenness of 
ql(r, X )  and therefore to completely restore the 
local isotropy. Furthermore, we will consider 
d(r) of the form d/r  ~, with d and v positive 
constants. This choice is suggested for separa- 
tions lying in the inertial range by analytical 
considerations and experimental observations 
[12]. This form of d(r) will be only important in 
the asymptotic region ]X]--* 0; besides, we will 
take d(r )~  d = const, in the dissipative range. 
This last assumption is not really necessary for 
two reasons (and we adopt it only for mathemati- 
cal convenience): (i) first, if we also keep v > 0, 
we will simply get a steeper decaying solution in 
r; (ii) we could study the case of small IX] 
directly on Eq. (5.5), where q l ( r ,X )  is absent 
and the solution then decays as r -1. As a last 
remark, we will also consider q~ growing to 
infinity as X z in the inertial range, to show the 
influence on the exponential decay in X of the 
solution of (3.8). We summarize the different 
choices for q~ in Table 1. 

3.2. Determination o f  q2 

We now pass to the determination of qE, the 
expectation of Z = IV012/(Ivol E) conditioned to 
X =  A0. Due to the physical nature of these 

variables, it is reasonable to expect a certain 
degree of correlation among them even for small 
A0. This, and the positivity of Z, suggests for qE 
the form 

X a 
q2(r, X) = )'2 rp  + T3 r--g-, p, o', yE, y3 > 0 • 

(3.11) 

The term y2 rp must be less than one since q2 
satisfies the normalization condition 
S qE( r, X )  P(r, X) dX -- 1. The power r ~ in the 
denominator corresponds to the experimental 
observation [12] that the parabola (3.11) closes 
sharply whenever r decreases. 

Eq. (3.11) can again be viewed as the lowest- 
order symmetric expansion of q2, and we conjec- 
ture, supported by experimental evidence [12], 
such a behavior also for large IX[ with eventually 
a different exponent for X. It will be clear from 
Eq. (4.11) below, that the exponent 2 in X in the 
scaling (3.11) gives only a subexponential decay 
of the pdf at infinity and therefore the pdf does 
not answer the asymptotic request we made on 
it. This problem will be solved by requiring for 
qE an asymptotic behavior, for large X, as IXI°, 
0 -</3 -< 1; we note that such a scaling for q2 has 
been also proposed in ref. [15] with/3 ranging in 
0 _</3-  2. For our model, /3 belonging to the 
interval ]1,2] is not sufficient to guarantee the 
unicity of the solution of (3.8), since the pdf will 
decay in the subexponential way. Whenever IX[ 
is small, it will be useful to consider a slightly 
different form for q2, which allows us to separate 

Table 1 
Modelling hypotheses for the conditional expectation ql 

qt(r, X) 

IXI small IX[ large 

d d + Inertial range + --7 + 3' 1 r [X I ~ + --  
t t u 

d + • 
Dissipative range + ~ + 7' 1 r IXI ~ d 

d 
-+--~+7";r'rXl".~7";,'lxl"; ~=1, 2 

r 

d 
+-7 + 7" ?r'lXl = 7" ;r'lXl 

r 
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the variables in the solution of (3.8), as ex- 
plained in the next section. Since q2(r, X) can be 
written as 

3'3 X Q  
q2(r, X) = rP(3'2 + r~+----- ~ , 

we will suppose that the quantity 3"3/r ~÷p is a 
slowly varying function of r both in the inertial 
and dissipative ranges. In the dissipative case, we 
will require that 3'3 is much larger than the 
corresponding quantity in the inertial range and 
we will simply r e n a m e  3'3/r  ~'+p ~3 '3  = const. At 
the end of section 5.1 we will, however, re- 
consider q2 in the original form (3.11), since we 
will neglect the first term on the RHS of (3.11), 
when r---> 0 +. 

Whenever IX[ is large, and since q2 can be 
written as q2(r,X) = r-~(3'2 rp+~ + 3'3XlaJ), we 
will suppose that the quantity 3'2r p÷" varies 
slowly in r and can be considered as a constant 
that we simply call 3'2. This assumption is not 
necessary in the separation-of-variables tech- 
nique for large [X[, but it will be adopted to 
keep the same notation of the preceding ansatz 
for small IX[. In fact we could simply neglect the 
first term in the RHS of (3.11) with respect to 
the second one for large IX[. 

We summarize the different choices for q2 in 
Table 2; note that, as explained before, the 
parameter 3'3 is larger in the dissipative range. 
We again point out that the values of q2 in Table 
2 are those used, for technical reasons, in the 
analytic solution of Eq. (3.8) by separating the 
variables. Other methods, including the numeri- 

cal one, could well use the original scaling 
(3.11). 

4. Asymptotic solutions: inertial range 

4.1. General considerations 

In order to clarify all the questions addressed 
in section 3, we now solve analytically Eq. (3.8) 
in the inertial range by neglecting the last term 
on the LHS as anticipated at the end of section 
2. The solution of (3.8) in the dissipative range 
will be treated in section 5. The method we use 
is the separation-of-variables technique and it 
consists in writing a solution of (3.8) as 
P(r, X ) =  ~b(X)¢~(r), where both ~b~ and ¢, 
depend on a parameter, say a,  upon which we 
have to integrate in order to get, by superposi- 
tion, the most general solution. Therefore, 

P(r, X )  = f q~,(X) ¢~(r) C(a) d a ,  (4.1) 

where the coefficient C(a) must be determined 
by specifying, for example, the function P(r, X )  
at given r, say r 0. 

The function P(ro ,X  ) is clearly an initial 
condition of the problem and its choice, essen- 
tially of physical nature, will determine the 
asymptotic behavior of the general solution of 
(3.8). Instead we should be able to predict such 
a behavior directly from our model. We there- 
fore proceed in the following way: we invite the 
reader to come back to these considerations after 

Table 2 
Modelling hypotheses for the conditional expectation q2 

q2(r, X) 

[XI small [X I large 

Inertial range 

Dissipative range 

rP(y2 + %X 2) 

rP(T2 + T3X 2) and y3X2r -° 

r-~(~ + %lXl ~) 

r-"(~2 + ~3Ixl ") 
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sections 4 and 5, but we prefer to anticipate 
them to justify the forthcoming analysis. 

We ask, first of all, for a function ~b~(X) 
bounded around zero and decaying to zero for 
IX] ~ +oo. This last assumption will be sufficient 
to find an exponentially decaying ~b~(X) for a > 
0, thus guaranteeing the existence of all the 
moments, and this both in the inertial and 
dissipative ranges (cf. Eqs. (4.11) and (5.8) 
below). We now show how to get some infor- 
mation about the factor C(a) in (4.1); a more 
complete analysis of this type will be performed 
in ref. [12] with the numerical solution of ~b~(X), 
V X E  R. We keep for d~(X) in (4.1) directly the 
exponential leading term in the solution (4.11) 
below (the same argument holds in the dissipa- 
tive range by taking (5.8)), and compute q,,,(r) in 
the point r = r 0. Then, we assume that P(ro, X) 
has a leading asymptotically decaying term of 
type: exp(-cXq), c, q > 0. It is therefore easy to 
see that P(ro, X) can be expressed as the Laplace 
transform of a function C(a), essentially propor- 
tional to C(a). Moreover, a straightforward 
change of variable shows that C(a) can be 
obtained by antitransforming the function: 

const, x exp{-c[½(3 -/3)x]2q/(3-13)}, 
where ½(3- /3 )  is the exponent of Ixl in (4.11). 
Now, from a well-known theorem on the Lap- 
lace inverse transform [18, p. 310], only when 
q -< ½(3 - /3 ) ,  we can get a (distribution) solution 
for C(a); this shows that the various exponents 
of IX] found in (4.11), (4.12) and (5.8) give the 
steepest exponential stretching compatible with 
an exponentially decaying initial solution. In this 
sense we can claim that our model predicts the 
exponents of the stretched exponential once the 
parameter/3 is given by the asymptotic behavior 
of q2(r, X). Note, however, that also a different 
asymptotic behavior of ql(r, X) at infinity can 
change the stretched exponential, as is illustrated 
by Eq. (4.12) below. We conclude these pre- 
liminary considerations observing that a mathe- 
matical constraint on/3 is that it should not give 

a subexponential decay, as explained at the end 
of section 3.2. Probably a different analytic 
deduction of Eq. (3.8) instead of using moments 
could relax such a constraint (see also section 
5.3) [19]. 

4.2. Small Ixl 

We now solve the restricted Eq. (3.8) in the 
inertial range for small IX], assuming that/3 = 2. 
We keep ql = +d(r) (at order zero in X) with 
d(r) = d/r ~. The differential equations satisfied 
by ~b~(X) and ~a(r) are 

d2~ba(X) 4y 3 dtk=(X) 
+ X 

Y2 + "Y3 X2 dX 

2y 3 ot ) 
+ + 

d X  2 

+(3'2 

= 0  

and 

d~b~(r) 

(4.2) 

(ardP'Kl 2 - u-)~(r) (4.3) 
dr r " 

The solution of (4.2) can be written as 

where U~(X) satisfies 

dX 2 2y 2 Us(X ) = O, (4.4) 

and a local series expansion of the solution of 
(4.4) about zero gives, having chosen a < 0, 

= ( 1 _  I°J + 
2y 2 ' 

where we have neglected the other linear in- 
dependent solution by requiring that dU~(X)/ 
dXIx= 0 = 0. Returning to (4.2), we thus have at 
the second order in X 

( 1  ) 
~b,,(X) =const.  x 1 - ~ 2 ( y  3 +xla l )X2 , (4.6) 

which can be considered as a Gaussian smooth- 
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ing of the pdf in the neighborhood of  zero. The 
radial part ~0~(r) is easily obtained by solving 
(4.3): 

1 [ -iQar "+p+I ) 
¢,,(r) = const, x --5z-7_~ e x p ~ ' ~ r  ~ " (4.7) 

Eq. (5.4) below shows that the smooth scaling 
(4.6) drastically changes with a different q2 in 
the dissipative range. 

4.3. Large Igl 

The ordinary differential equations satisfied 
respectively by 0~(r) and 4L(X) are 

d~O=(r) { c~/V - , - ¢  2 + e)  
~-~ - ~ - - ~ - r  r " q~(r) 

and 

dZ~o(X) 

(4.8) 

2~/3/3 Ix[ ~- '  d4,= (X) 
dX 2 +rtx 3,2+3,31X1 ~ dX 

- 1)lxl + 
"/2 +  '31xl 

, lxl ) 
- r / x  2(3'2 + Y31X{")" 4~(X) 

= 0 ,  (4.9) 

where */x = 1 for X > 0 and ~Tx = - 1 for X < 0 
and we adopted for q2 the scaling quoted in 
Table 2. 

The solution of (4.8) is 

1 ( 
qt (r) = const, x --777, exp ' - 7  1 ~ 7 --- 7 ]  " 

r 3/1 

(4.10) 

We take the parameter ot positive; this choice is 
consistent with the decaying solution of (4.9) in 
the interval X > 0 which, in fact, by the standard 
change of variables already used in Eq. (4.4) and 
by formula (3.4.28) in Ref. [16], asymptotically 
reads 

dp~(X) = const. × ( ~ )  l/4x -3(/~+1)/4 

\ 23/3 / 3 - / 3  

X--~ +oo. (4.11) 

A function like (4.11) with X and a replaced 
respectively by IX[ and lal, a < 0 ,  is also the 
asymptotically decaying solution of (4.9) when 
X-- -*-~ .  But a negative a does not change the 
solution (4.10), since for X < 0  we have to 
replace ~,~ by y~- which is negative, and there- 
fore we get, by superposition, a symmetric pdf. 

We conclude this section with a remark: if we 
assume a different asymptotic behavior at infinity 
for ql,  we change the leading decaying term in 
the solution (4.11). For example, if we take 

+ a ~ . 2  q 1 ~ 7 ~  r a , for large IX[, and use the same 
technique that gave (4.11), we get for the lead- 
ing term of the solution of (4.9) 

the(X) ~ exp - 4 - / 3  X(4-t~)/2 ' 

(4.12) 

and then, whenever 13 = 0, which corresponds to 
q2 = const, at infinity, we get a Gaussian pdf also 
at infinity (q2 constant at infinity has been 
discussed in ref. [15]). Note that with this choice 
of q,,  /3 can now range in the interval [0, 2]. 

5. Asymptot ic  solutions:  dissipative range  

If we want to solve Eq. (3.8) in the dissipative 
range, the equation is not separable for large IX I 
anymore and we will see in a moment  how to 
supply for. On the contrary, when ]X I is small, 
we can separate the variables. Both cases will be 
treated in the following subsections. 

5.1. Small Igl 

We choose q2 as given in Table 2, with p = 1 
to simplify the computations. Moreover,  assum- 
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ing that d(r) is a slowly varying function of  r 
when r - * 0 ,  allows us to take ql = + d  = const.; 
finally our analysis will also be asymptotic for r 
tending to zero. 

The spatial factor ~b~(X) has the same solution 
as in Eq. (4.6), with the radial factor now 
satisfying the differential equation 

__dE~b~ (r) 2 __d~O~(r) (Bar d ) ~(r) 
dr ~ + r  dr +\'2k--0 r--k0' 

= 0 ,  

(5.1) 

O,(r) = whose solution can be written as 
r-lug(r), where u~(r) satisfies 

d2u~(r) (l~ar d ) 
u~(r) = 0 ( 5 . 2 )  dr z + \ 2k 0 rk  0 

To solve (5.2) we apply the classical Frobenius 
method to find a local series expansion about 
r = 0; after a long but straightforward calculation 
and multiplying finally by r -1, we find for the 
leading term 

~b~(r)=const. x(1-~olnr+~7([rlnr[) ) . 

(5.3) 

Note  that the parameter a does not appear in 
this leading-terms expansion: it enters for the 
first time as a coefficient of r 2. 

The assumption (3.11) for q2 is particularly 
close to the experimental observation that in the 
dissipative range the minimum of the parabola 
(3.11) approaches zero when r-->0 [12]. If we 
directly assume this and write q2 = r-~y3 X2, Ixl 
small, we get a new completely different solution 
for the spatial part ~b,(x) with a singularity in 
zero. In fact, the differential equation satisfied 
by ~b~(x) is now 

d2~b= (X) 4 d~b~ (X) 2 2 

d X  + 

= o ,  (5 .4 )  

which produces a diverging solution at the 
origin. This pathology agrees, in some sense, 
with the experimental observation that the pdf 

becomes more and more peaked around zero 
when r---> 0 [2,12]. 

5.2. Large IX[ 

We now return to the case of large IX[. We 
make the following observation: in the inertial 
range, the last term on the LHS of (3.8) was 
discarded, since it was neglected in Eq. (2.13), 
when n = 1. But still for the physical considera- 
tions, quoted after Eq. (2.13), it is now the first 
term in the LHS of (2.8) that is neglected in the 
dissipative range [11, Vol. 2, p. 400]. We make 
the same assumption for n > 1, and therefore our 
pdf in the dissipative range will satisfy the 
equation 

_ 0 2 

N - ~  [q2(r, X) P(r, X)] 

O O 

= o .  (5 .5 )  

Taking for q2 the scaling quoted in Table 2, with 
tr = 1 to simplify the computations, we immedi- 
ately separate the variables in (5.5) as 

d2&~ (X) 2 ,3fllX[ (X) 

+  '3lxI 

+ - 1)lxl 

= 0  

d X  

a X 

(5.6) 

and 

d2~b,,(r) 2 dqJ~ (r) a N  
dr 2 + r dr --2rko ~b~(r) = 0 .  (5.7) 

Eq. (5.7) gives a solution dominated by r -1 as in 
the solution (5.3) and with the parameter  a 
entering as a coefficient of In (r). Besides, the 
decaying solution of (5.6) for large IX[ can be 
obtained as in (4.11) for a > 0  (with the same 
sign now for X > 0 and X < 0) and reads 
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~b~(X) = const, x IX I-3~/4 

x exp[_( ° ] 2 -/3 
(5.8) 

5.3. Comments 

We now make a few comments on the solu- 
tions (4.11) and (5.8). Let us first suppose that 
the parameter /3 is the same for both ranges. 
Then the exponent of Ixl in the exponential 
factor in the inertial range is larger than the 
corresponding one in the dissipative range and 
this fact was experimentally observed in Ref. 
[13, Fig. 6]. Now, as explained in section 3, the 
fact that we need an exponentially decaying 
solution to justify the derivation of Eq. (3.8) (in 
particular its unicity) forces us to choose 13 = 0 in 
(5.8), which corresponds to q2 constant at infini- 
ty. If we relax this assumption as discussed at the 
end of section 4.1, we see that the value/3 = 1 is 
consistent with the exponent of Ixl found by 
Gagne [2] and Ching [13] in the dissipative 
range, about 0.5. It is also in agreement with the 
average value, about 1 given by Ching [13] in the 
inertial range. This parameter/3 has been taken 
as a constant both in the dissipative and inertial 
range, eventually with different values. This 
allows us to find explicit asymptotic solutions for 
Eq. (3.8). One could consider 13 as a function of 
r and try to solve Eq. (3.8), for example, 
numerically. In this case, one expects to find the 
stretching exponential varying with r such as in 
Ref. [13]. 

lence. This pdf is the solution of a PDE that 
contains two conditional expectations ql and q2. 
The function q~ quantifies the influence of the 
turbulent velocity field on the transfer of tem- 
perature from the large scales to the small ones, 
whereas q2 represents the link between tempera- 
ture and its dissipation, which is known to play 
an important role in turbulence modelling [17]. 
We showed that it is possible to conjecture the 
analytical form of the closure functions with 
physical arguments, but also by requiring a 
certain regularity of the solution of Eq. (3.8). We 
also gave the asymptotic form of this solution in 
the ranges X ~ 0  and IX[ large (respectively 
Gaussian and stretched exponential); in this case 
one only needs the asymptotic behaviors of ql 
and q2 which are experimentally more accessible. 

A careful experimental analysis is needed to 
better investigate the asymmetry of the pdf and 
to find the precise values of the various expo- 
nents ~, tr, p, /3 and v and the relations among 
them, that could give different exponential 
stretching for different values of r, as pointed out 
experimentally in Ref. [13]. A further analysis is 
also needed in the dissipative range, eventually 
injecting into the equation a small random noise 
simulating the presence of heat sources. 

Moreover, the inconsistency, clearly pointed 
out in this paper, between joint Gaussian statis- 
tics for Au L and A0 and local isotropy for the 
inertial range scales must be studied in more 
detail. 

Finally, numerical computations should extend 
our asymptotic solutions to the whole X and r 
axes. 
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Appendix. Derivation of Eq. (2.8), (2.9) and 
(2.12) 

To derive Eq. (2.8), let us define the quantity 

(AO )" = [O(x + r, t) -- O(x, t)]" . (A.1) 

We then have 

d 
O~(r, x, t) - - ~  [(A0) ] + u(x, t ) .V[ (A0)  ~] 

- koVE[(AO)"], (A.2) 

where all the operators of derivation are with 
respect to x as prescribed in (2.7). Note that our 
result equivalently holds if we replace u(x, t) 
with u(x + r, t) in (A.2). Therefore 

n - I  0 D,(r ,  x, t) = n(AO) ~ [O(x + r, t)] 

a 
- n ( A O )  " - 1  ~ 7 [ O ( x ,  t)] 

h- n(AO )n- lu(x ,  t)"~O(X q- r, t) 

- n(AO)"- lu(x ,  t).VO(x, t) 

- kon(AO)"-lvZO(x + r, t) 

+ kon(Ao)n-'v20(x, 0 
- kon(n - 1)(A0)"-21V(A0)[ z . 

(A.3) 

By adding and subtracting the quantity 

n(AO ) n - l u ( x  -I- r, t).VO(x + r, t) (A.4) 

and by using the conservation equation (2.1) 
taken in the points x and x + r ,  under the 
identification of the derivations (2.2), (2.3) and 
(2.7), we finally get Eq. (2.8), namely 

O 
O,(r ,  x, t) -~-~ [(A0)'] + u(x, t ) .V[(A0)"]  

- koV [(AO)"] 
= -n(A0) "-1Au(r, x, t).VO(x + r, t) 

- n ( n  - 1) 0(A0)"-2iV[A0]} 2 . 

(A.5) 

To derive (2,9) we now average (A.5) over the 
space. The expectation of the last two terms in 
the LHS of (A.5) is zero by divergenceless of u, 

zero boundary conditions and by isotropy. Our 
last assumption is therefore 

(-~t [(A0)"]) = 0 (A.6) 

and to justify it, we invoked, in section 2, 
stationarity and the Kolmogorov similarity hy- 
pothesis in the regime of fully developed turbu- 
lence. Notice that a direct calculation of 
(O[(AO)2])/Ot leads to the Yaglom formula 
(2.13) only if (A.6) holds (cf. the remark at the 
end of this appendix). 

The same assumption is made in Ref. [11, Vol. 
2, p. 399] where it is explicitly written (with our 
notation): "O((AO)2) /Ot=O for r<~L and suffi- 
ciently large Re and Pe (Peclet number)." 

In the derivation of Eq. (2.12) we will use the 
following properties of the four-dimensional iso- 
tropic field {0(x), u(x)}, where u(x) is a vector 
and 0 a scalar (cf. formulae (12.52) and (12.53) 
in ref. [11, Vol. 2]): 

ri  
(u,(x)O(x + r)) = (UL(X)O(x + r)) r '  (A.7) 

( ui(x + r)O(x) ) = ( UL (X + r)O(x) ) r__j_ (A.8) r ~ 

and ( UL (X)O(X + r) ) = -- ( UL (X + r)O(x) ) are 
functions depending solely on r; the subscript L 
means projection along the r-direction. 

We start by modifying the LHS of (2.9), which 
gives 

( (AO)"- lAu(r ,  x).VO(r + x))  

1 0 
- n Or i ((A0)" Aui(r, x)) , (A.9) 

where we used the convention on the summation 
of repeated indices and the property of di- 
vergencelessness of the velocity field. Now, 

< ( A 0 )  Aui(r, x ) )  

k=0 

× (<o'(r+x)[O(x)Wkui(r+x)) 

d- ( - - l  )n+k ( Ok(X) [O(X + r) ]n-kili(X) ) } . 
(A.10) 
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By applying the first hypothesis (HI) of section 2 
to the fields {[O(x)] n-k, Ok(x)U(X)} and {Ok(x), 
[O(x)]"-ku(x)} and using (A.7) and (A.8), we can 
transform (A.10) when n is even as 

( (A 0 )n Aui (r ,  x )  ) = ( (AO)n AUL(r, X) ) r i  
r ' 

(A.11) 

and we immediately see that the LHS is zero 
when n is odd. 

Taking the derivative O/dr i as prescribed by 
(A.9), we finally get for n even 

O 
Or--~i ((AO) n Aui(r, x))  

° ( i  ((ao)n auL(r,x)) ) 
Ori 

= ( 2  + ~ ) ( ( A 0 ) n  AUL(r,x)) .  (A.12) 

We now transform the RHS of (2.9); by using 
the second hypothesis (H2) of section 2 and the 
same trick as in (A.10), we immediately get 

- ( (A0)n-2 {V0(r, x)]) 2) 

= -2((AO)~-2[(VO(x)] z) 

+ n -  10ri (aO) -I o(x) , (A.13) 

where the first term in the RHS is zero for n - 2 
odd. 

Now it is straightforward to check that 

n Or~ ((A0)") = ((A0 O(x)), (A.14) 

and therefore 

0 

1 o (,_,. o ) 
= n Or----Ti \ r Or ((AO)~ ) 

1 ( 2  -~r) @r = _  + ((a0) n 
(A.15) 

which concludes the proof of Eq. (2.12). 

Remark. It is interesting to note, although it is 
not very surprising, that Eq. (2.12) can be 
obtained by directly imposing condition (A.6) 
above and then using the machinery developed 
in the second half of this appendix. 
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