
Discrete and Continuous Dynamical Systems

doi:10.3934/dcds.2025030

EXTREME VALUE THEORY WITH SPECTRAL TECHNIQUES:
APPLICATION TO A SIMPLE ATTRACTOR

Jason Atnip
�1

, Nicolai Haydn
�2

, and Sandro Vaienti
�∗3

1School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia

2Mathematics Department, USC, Los Angeles, 90089-2532, USA

3Université de Toulon, Aix Marseille Université, CNRS, CPT, UMR 7332, Marseille, France

Abstract. We give a brief account of application of extreme value theory in dy-
namical systems by using perturbation techniques associated to the transfer oper-
ator. We apply it to the baker’s map and we get a precise formula for the extremal
index. We also show that the statistics of the number of visits in small sets is com-
pound Poisson distributed.
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1. Introduction. Extreme value theory (EVT) has been widely studied in recent
years in application to dynamical systems both deterministic and random. A re-
view of the recent results with an exhaustive bibliography is given in our collective
work [26]. As we will see, there is a close connection between EVT and the statis-
tics of recurrence, and both could be worked out simultaneously by using per-
turbations theories of the transfer operator. This powerful approach is limited to
systems with quasi-compact transfer operators and exponential decay of correla-
tions; nevertheless it can be applied to situations where more standard techniques
meet obstructions and difficulties, in particular to:
- non-stationary and random dynamical systems,
- observable with non-trivial extremal sets,
- higher-dimensional systems.

Another big advantage of this technique is the possibility of defining in a precise
and universal way the extremal index (EI). We defer to our recent paper [7] for
a critical discussion of this issue with several explicit computations of the EI in
new situations. The germ of the perturbative technique of the transfer operator
applied to EVT is in the fundamental paper [24] by G. Keller and C. Liverani;
the explicit connection with recurrence and extreme value theory was done by G.
Keller in [23], which also contains a list of suggestions for further investigations.
We successively applied this method to i.i.d. random transformations in [5, 7], to
randomly quenched dynamical systems in [2], to coupled maps on finite lattices
in [13], and to open systems with targets and holes in [18].

The object of this note is to illustrate this technique by presenting a new ap-
plication to a bi-dimensional invertible system. We will see that the perturbative
technique could be applied in this case as well provided one could find good func-
tional spaces where the transfer operator exhibits quasi-compactness.

We will find a few limitations to a complete application of the theory and to its
generalization to a wider class of maps in higher dimensions, see Remarks 5.3 and
5.4.

When the first version of this paper circulated, the spectral technique discussed
above did not allow us to get another property related to limiting return and hit-
ting times distribution in small sets (sometimes also called target or holes), namely
the statistics of the number of visits, which usually takes the form of a compound
Poisson distribution. This has been recently achieved in [3], and it could be eas-
ily applied to the system under investigation in this paper. We will briefly quote
this technique in Section 7. As for the EVT, such a technique suffers the limitation
imposed by the shape of the target sets, and for the choice of the parameters, see
remark 5.4. The former will be particularly important for us when we decide to use
the rectangular target set, see Section 6.1. These cases could be worked out with
another technique developed by two of us, see [21], which allows for the recovery
of compound Poisson distributions for invertible maps in a higher dimension and
for arbitrarily small sets. By using this approach, we will also be able to construct
an example for the fat baker map with a compound Poisson distribution which is
neither the standard Poisson nor the Pòlya-Aeppli, which are the most common
compound distributions.

We will finally discuss the extension to the compound Poisson point process on
the real line.
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Figure 1. Action of the baker’s map on the unit square. The lower
part of the square is mapped to the left part and the upper part is
mapped to the right part.

2. A simple example: The generalized baker’s map.

2.1. The map. We now treat an example for which there are not apparently es-
tablished results for the extreme value distributions. This example, the general-
ized baker’s map, from now on simply abbreviated as baker’s map, is a proto-
type for uniformly hyperbolic transformations in more than one dimension, two
in our case, and in order to study it with the transfer operator, we will introduce
suitable anisotropic Banach spaces. Our original goal was to directly investigate
larger classes of uniformly hyperbolic maps, including Anosov ones, but, as we
said above, the generalizations do not seem straightforward; we will explain the
reason later on. With the usual probabilistic approaches, extreme value distribu-
tions have been obtained for the linear automorphisms of the torus in [8].

We will refer to the baker’s transformation studied in Section 2.1 in [10], but we
will write it in a particular case in order to make the exposition more accessible.
The baker’s transformation T (xn, yn) is defined on the unit square X = [0,1]2 ⊂ R

2

into itself by

xn+1 =
{

γaxn if yn < α
(1−γb) +γbxn if yn > α

(1)

yn+1 =
{

1
α yn if yn < α

1
υ (yn −α) if yn > α,

(2)

with υ = 1−α, γa +γb ≤ 1; see Fig. 1. To simplify some of the following formulae,
we will take α = υ = 0.5 and γa = γb < 0.5. This last value must be strictly less
than 1/2 since Lemma 5.2 requires the stable dimension ds strictly less than one,
which corresponds to a fractal invariant set (thin baker’s map). This condition will
be relaxed in example 7.5 (fat baker’s map), but using an approach different of the
spectral one leading to Lemma 5.2.

The map T is discontinuous at the horizontal line Γ : {y = α}. The singularity
curves for T l , l > 1 are given by T −lΓ , and they are constructed in this way: Take
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the preimages T −lY (α) of y = α on the y-axis according to the map

TY (y) =
{

1
α y,y < α

1
υy −

α
υ , y ≥ α.

(3)

Then, T −lΓ = {y = T −lY (α)}. Any other horizontal line will be a stable manifold
of T . The invariant non-wandering set Λ will be at the end an attractor foliated by
vertical lines which are all unstable manifolds. We denote by W s(Wu) the set of
full horizontal (vertical) stable (unstable) manifolds of length 1 just constructed.
We point out that a stable horizontal manifold Ws will originate two disjoint full
stable manifolds when iterated backward by T −1, not for the presence of singular-
ity, but because the map T −1 will only be defined on the two images of T (X) as
illustrated in Fig. 1.

2.2. The functional space. In order to obtain useful spectral information from the
transfer operator L, its action is restricted to a Banach space B. We now give the
construction of the norms on B and an associated “weak” space Bw in the case of
the baker’s map, following partly the exposition in [10]. In this case, the norms will
be constructed directly on the horizontal stable manifolds instead of admissible
leaves, which are smooth curves in approximately the stable direction, see [11]. As
we anticipated above, we follow [10], but we slightly change the definition of the
stable norms by adapting ourselves to that originally introduced in [11]. Let us
explain why. First of all, we will consider the collection Σ of all the intervals W of
length less or equal to 1 that are contained in the same stable manifold Ws ∈ W s.
We will take such a value equal to γa for reasons which will be clear in the next
considerations. Instead, in [11], Σ was the set of full horizontal line segments of
length 1 in X. The reason for our choice is that we will introduce small target sets
Bn and the preimages of such sets will cut the Ws. The smaller pieces generated in
this way will enter the three norms given below, and therefore it will be useful to
count such pieces in Σ.

We now to consider the set C% of continuous complex-valued functions over X
with Hölder exponent 0 ≤ % ≤ 1. When we set C1, we mean C% with % = 1, which
is simply Lipschitz. Given a stable leaf W and a Hölder function ϕ, we define the
norm along W as

|ϕ|C%(W ) = |ϕ|C0(W ) +H%(ϕ), H%(ϕ) = sup
x,y∈W
x,y

|ϕ(x)−ϕ(y)|
|x − y|%

.

Another norm will be considered later on, namely

|ϕ|W,% := |W |% · |ϕ|C%(W ), (4)

where |W | denotes the length of W.
We now closely follow Section 2.2 in [10] and put

|ϕ|C%(W s) = sup
W∈W s

|ϕ|C%(W ). (5)

We call C1(W s) the set of functions that are Lipschitz along stable manifolds,
i.e., for which the quantity (5) is finite. For % < 1, we set C%(W s), as the completion
of C1(W s) in the | · |C%(W s) norm. Analogously, C%(W s) denotes the completion of
C1(W s) in the | · |C%(W s) norm. One can show that |ϕ|C%(W s) is a Banach space for
0 ≤ % ≤ 1; the Banach space |ϕ|C%(Wu ) is defined similarly. By the very structure of
the map, it follows that whenever ϕ ∈ C%(W s), then ϕ ◦ T ∈ C%(W s). This allows
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one to define the transfer operator L associated with T on the dual space (C%(W s))∗

as1

(Lh)(ϕ) = h(ϕ ◦ T ), ∀ϕ ∈ C%(W s), h ∈ (C%(W s)∗.
If we denote by mL the Lebesgue measure over X and we take h ∈ C1(Wu), then

we identify hwith the measure hdmL so that h ∈ (C%(W s))∗ and Lh is now identified
with the measure having density

Lh(x) =
(

h
|detDT |

)
◦ T −1(x) =

h ◦ T −1(x)
α−1γa

, (6)

where the last equality on the r.h.s. uses the particular choices for the parameters
defining the map T . When h ∈ C1(Wu), we therefore set

h(ϕ) =
∫
X
hϕdmL, for ϕ ∈ C1(W s). (7)

We are now ready to construct the Banach spaces.
For h ∈ C1(Wu), we define the weak norm of h by

|h|w = sup
W∈Σ

sup
ϕ∈C1(W )
|ϕ|C1(W )≤1

∣∣∣∣∣∫
W
hϕdm

∣∣∣∣∣
where dm is the unnormalized Lebesgue measure along W.

We now take2 (κ,β) ∈ (0,1) with 0 < β ≤min(κ,1−κ).
The strong stable norm is defined as

‖h‖s = sup
W∈Σ

sup
ϕ∈Cκ(W )
|ϕ|W,κ≤1

∣∣∣∣∣∫
W
hϕdm

∣∣∣∣∣. (8)

We then need to define the strong unstable norm, which allows us to compare
expectations along different stable manifolds. If W1 is a subset of the stable man-
ifold Ws we could parameterize it as (sW1

, t) where sW1
is the common ordinate of

the points inW1 and t ∈ [a1,b1] ⊂ [0,1]. IfW2 is a subset of another stable manifold,
parametrized as (sW2

, t) with t ∈ [a2,b2], we pose

d(W1,W2) = |sW1
− sW2

|+ |[a1,b1]∆[a2,b2]|,

where ∆ means the symmetric difference, and for test functions ϕi ∈ C1(Wi), i =
1,2 :

dκ(ϕ1,ϕ2) = sup
t∈[a1,b1]∩[a2,b2]

|ϕ1(sW1
, t)−ϕ2(sW2

, t)|Cκ(Wi ).

The strong unstable norm of h is defined as

‖h‖u = sup
ε≤1

sup
W1,W2∈Ws
d(W1,W2)≤ε

sup
ϕi∈C1(Wi )
|ϕi |C1(W )≤1
dκ(ϕ1,ϕ2)≤ε

1
εβ

∣∣∣∣∣∣
∫
W1

hϕ1dm−
∫
W2

hϕ2dm

∣∣∣∣∣∣ , (9)

1Notice that although the map T is discontinuous, the fact that ϕ ∈ C%(W s) implies ϕ◦T ∈ C%(W s),
allows us to define the transfer operator on the space (C%(W s))∗ without the need for two scales of
space as in [11].

2The bound β ≤min(κ,1−κ) is needed in the proof of Lemma 3.1 in [10]. Notice that such a lemma
only requires β ≤ 1−κ. The additional constraint β ≤ κ comes from the fact that in the proof of Lemma
3.1 in [10], in particular in the estimate of the strong unstable norm, there are not unmatched pieces
since all the stable leaves have full length; see also footnote 3.
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Finally we can define the strong norm of h by

‖h‖ = ‖h‖s + b‖h‖u ,
where b is a small constant to be fixed later on.

We set B to be the completion of C1(Wu) with respect to the norm ‖·‖, and,
similarly, we define Bw to be the completion of C1(Wu) with respect to the norm
|·|w.

We now list a few important results whose proof can be found in [10] and which
we will use frequently in the next sections.
• (Lemma 2.4, [10]) For any β′ ∈ (β,1), we have the following sequence of con-

tinuous embeddings:

C1(X) ↪→ Cβ
′
(Wu) ↪→B ↪→Bw ↪→ (C1(W s))∗.

Moreover, the embedding B ↪→Bw is relatively compact.
• For h ∈ B and ϕ ∈ C1(W s), we have

|h(ϕ)| ≤ |h|w |ϕ|C1(W s). (10)

Moreover,
|h|w ≤ ‖h‖s. (11)

• (Lemma 4.1, [10]). The transfer operator L is a bounded, linear operator on
both B and Bw.

• (Lemma 3.1, [10]). If g ∈ C1(X) and h ∈ B, then3

‖gh‖ ≤ (5b+ 1)|g |C1(X)‖h‖. (12)

• (Theorem 2.5, [10]). L is quasi-compact as an operator on B. Its spectral
radius is 1 and its essential spectral radius is bounded by max{λκa ,αβ} < 1.

Then:
(a) L has 1 as a simple eigenvalue and all other eigenvalues have modulus
less than 1.
(b) There is a unique solution µ ∈ B of Lµ = µ with µ(1) = 1, and such a
solution is the Sinai-Bowen-Ruelle, SRB-measure. Its conditional measures
on unstable leaves are equal to arclength.
(c) There exist a < 1 and C > 0 such that for any h ∈ B with h(1) = 1, we have

‖Lnh−µ‖ ≤ Can‖h‖, ∀n ≥ 0.

3. The spectral approach for EVT.

3.1. Formulation of the problem. We now take a ball B(z, r) of center z ∈ X and
radius r and denote with B(z, r)c its complement, where d(·, ·) is the Euclidean met-
ric.

Let us consider for x ∈ X the observable4

Ξ(x) = − logd(x,z) (13)

and the function
Mn(x) := max{Ξ(x), · · · ,Ξ(T n−1x)}. (14)

3In [10], the constant on the r.h.s.of (12) is simply 3. We should modify it since the presence of
unmatched pieces adds two more contributions of the factor |g |C1(X)‖h‖s in the computation of the
strong unstable norm. Finally, the factor b comes from the very definition of the Banach norm ‖ · ‖.

4See section 8 for a discussion about the choice of the observable.
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For u ∈ R+, we are interested in the distribution of Mn ≤ u, where Mn is now
seen as a random variable on the probability space (X,µ). Notice that the event
{Mn ≤ u} is equivalent to the set {Ξ ≤ u, . . . ,Ξ ◦ T n−1 ≤ u}, which in turn coincides
with the set

En := B(z,e−u)c ∩ T −1B(z,e−u)c ∩ · · · ∩ T −(n−1)B(z,e−u)c.

We are therefore following points which will enter the ball B(z,e−u) for the first
time after at least n steps (see e.g. Eq. (67) in Section 8), and u 7→ µ(En) is the
distribution function of the maximum of the observable Ξ ◦ T j , j = 0, . . . ,n− 1. It is
well known from elementary probability that the distribution of the maximum of
a sequence of i.i.d. random variables is degenerate. One way to overcome this is to
make the boundary level u depend upon the time n in such a way the sequence un
grows to infinity and gives, hopefully, a non-degenerate limit for µ(Mn ≤ un).

From now on we set Bn = B(z,e−un ) and Bcn the complement of Bn; the depen-
dence upon the ”center” z will be discussed in Remark 5.3.
We easily have

µ(Mn ≤ un) =
∫

1Bcn(x)1Bcn(T x) · · ·1Bcn(T n−1x)dµ. (15)

By introducing the perturbed operator, for h ∈ B,

Lnh := L(1Bcnh), (16)

and we can write (15) as
µ(Mn ≤ un) = Lnnµ(1). (17)

Notice that
Lknh = L(h1Bcn1Bcn ◦ T . . .1Bcn ◦ T

k−1).

3.2. Target sets and the space B. We explicitly used the above two facts, which
require justification.

3.2.1. 1Bcn is in the Banach space B. Of course, the same proof should hold for
functions of the form 1Bcn1Bcn ◦ T . . .1Bcn ◦ T

k−1. The geometric shape of the sets
Bcn ∩ T −1Bcn ∩ · · · ∩ T −(k−1)Bcn plays an important role in the proof. Those sets are
equivalently given by

(
Bn ∪ T −1Bn ∪ · · · ∪ T −(k−1)Bn

)c
and we call B(k) one of them.

Suppose we could find a sequence {hl}l∈N in C1(X) which is Cauchy in B and such
that for any ϕ ∈ C1(W s) we have∫

hlϕdm→
∫

1B(k)ϕdm, l→∞. (18)

Then 1B(k) is in B since the latter is continuously embedded in the dual space
(C1(W s))∗, see Lemma 2.4 in [10] quoted in section 2. We now construct such a
sequence. Take a bump function φ with support in the unit ball of R2, normalized

to 1 and put φδ(x) := 1
δ2φ( xδ ), where δ designs the δ-neighborhood B

(k)
δ := {x ∈

R
2;dist(x,B(k)) ≤ δ} of B(k). Then define the convolution product

hδ := 1
B

(k)
δ
∗φδ. (19)

Then hδ is equal to 1 on B(k) and equal to zero outside the 2δ-neighborhood

B
(k)
2δ . Moreover it is straightforward to get (18). It remains to prove that {hδ}δ>0
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is Cauchy, for δ → 0. Call Uδ = B
(k)
2δ \ B

(k). To control the strong stable norm, we
observe that, if δ2 < δ1∣∣∣∣∣∫

W
(hδ1
− hδ2

)ϕdm
∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
W∩Uδ1

(hδ1
− hδ2

)ϕdm

∣∣∣∣∣∣∣ ≤ 2|W |−κ |W ∩Uδ1
| ≤ 2|W ∩Uδ1

|1−κ

(20)
There are now two cases:

(i) suppose first that |W | ≤ δ1; then (20)≤ δ1−κ
1 .

(ii) suppose now that |W | > δ1. As we will write in footnote 5, each W could meet
at most k − 1 sets of the form T −jBn, j = 1, . . . , k. These sets are ellipses with the
major axis along the stable manifolds. Therefore each W could meet at most
(k − 1) δ1−neighborhoods of the preimages T −jBn, j = 1, . . . , k. It is a simple ex-
ercise to show that the maximum intersection of W with one of the previous
δ1−neighborhoods is bounded by a constant C̃ depending only on the size of X
times (δ1)1/2. Then (20)≤ 2(k − 1)[C̃δ1/2

1 ]1−κ. In conclusion

‖hδ1
− hδ2

‖s ≤ 2(k − 1)[C̃δ1/2
1 ]1−κ.

We now compute the strong unstable norm. We proceed in two different man-
ners. First of all we could simply bound the difference

1
εβ

∣∣∣∣∣∣
∫
W1

(hδ1
− hδ2

)ϕ1dm−
∫
W2

(hδ1
− hδ2

)ϕ2dm

∣∣∣∣∣∣ (21)

by 1
εβ

4(k − 1)C̃δ1/2
1 , since the term hδ1

− hδ2
is different from zero only on the in-

tersections of the manifolds W1,W2 with a δ1-neighborhood. We now pass to a
finer estimate of (21) and we will use the same trick to control the strong unstable
norm in the Lasota-Yorke inequality, see section 4.3. We will see that giving two
stable manifolds W1,W2 at a distance at most ε, there will be two matched subsets
of those manifolds whose points have the same y-ordinate, and the x-components
belong to the same interval. The complement of the matched piece on each man-
ifold has length less or equal to ε (unmatched pieces). The contribution given by
those two unmatched pieces is 2(k − 1)ε1−β . We now parametrize the two matched
pieces, where all the points of W1 (resp. W2), have the same ordinate s1 (resp. s2)
and the abscissa t varies in the interval I1,2. Then we can write the difference of the
two integrals in (21) as∣∣∣∣∣∣

∫
I1,2

(hδ1
− hδ2

)(s1, t)ϕ1(s1, t)dt −
∫
I1,2

(hδ1
− hδ2

)(s2, t)ϕ2(s2, t)dt

∣∣∣∣∣∣ . (22)

Notice that from now on it only matters the intersection of W1,W2 with Uδ1
,

since outside it the quantity (22) is zero. We begin to control the piece
D1 :=

∫
I1,2
hδ1

(s1, t)ϕ1(s1, t)dt −
∫
I1,2
hδ1

(s2, t)ϕ2(s2, t)dt, the other one involving hδ2
,

call it D2, behaves in the same way. We split it as

D1 =
∫
I1,2

hδ1
(s1, t)ϕ1(s1, t)dt −

∫
I1,2

hδ1
(s1, t)ϕ̃1(s1, t)dt

+
∫
I1,2

hδ1
(s1, t)ϕ̃1(s1, t)dt −

∫
I1,2

hδ1
(s2, t)ϕ2(s2, t)dt,

where we put
ϕ̃1(s1, t) = ϕ2(s2, t), t ∈ I1,2.
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The absolute value of the first difference in D1 is simply bounded by ε (remem-
ber dκ(ϕ1,ϕ2) ≤ ε), times 2(k − 1)C̃δ1/2

1 . The absolute value of the second piece in

D1 is bounded by 2(k − 1)C̃δ1/2
1 times H(hδ1

)ε, where H(hδ1
) ≤ Cφ

δ3
1

is the Lipschitz

constant of hδ1
andCφ depends only onφ. By dividing for εβ we have that |D1|+|D2|

is bounded by

2(k − 1)
Ĉ

δ5/2
1

ε1−β , (23)

where Ĉ = max(C̃,Cφ). In conclusion we have (the term coming from the un-
matched pieces being incorporated in (23))

‖hδ1
− hδ1

‖u ≤min{4(k − 1)
Ĉ

δ5/2
1

ε1−β ,
1
εβ

4(k − 1)C̃δ1/2
1 }.

By interpolating we finally get

‖hδ1
− hδ1

‖u ≤ 4(k − 1)Ĉε1−(q+β)δ
3q−5/2
1 ,

where q ∈ (0,1) must be chosen such that β + q < 1 and q > 5/6.

3.2.2. 1B(k)h ∈ B. Take again a set like B(k) such that 1B(k) ∈ B; what we need is that
1B(k)h ∈ B, where h ∈ B. First of all we have to define the object 1B(k)h ∈ B. Take a
sequence {hl}l≥1 ∈ C1(Wu) converging to h in the B−norm. Whenever 1B(k)hl ∈ B,
we set

1B(k)h = lim
l→∞

1B(k)hl , (24)

provided the limit exists. So, first of all we have to show that for any l, 1B(k)hl ∈ B.
This is proved exactly in the same manner as in the previous item, where hl = 1.

We are left by showing that 1B(k)hl is Cauchy. To get it we begin to prove a
preliminary result, namely in the computation of the strong stable and unstable
norm of 1B(k)f , where 1B(k) ∈ B and f ∈ C1(Wu), such norms can be computed by
using directly the (non smooth) product 1B(k)f . By (24), if we call gl a sequence
converging to 1B(k) , we put

1B(k)f = lim
l→∞

glf ,

but now we are sure the limit exists since the sequence glf is Cauchy by (12):

‖(gl − gk)f ‖ ≤ (5b+ 1) ‖gl − gk‖ |f |C1(X).

Therefore we have that
‖glf ‖ → ‖1B(k)f ‖,

and the norm on the l.h.s. is the norm ”before” completion. So we have

‖1B(k)f ‖ = lim
l→∞

(‖glf ‖s + b‖glf ‖u) .

The result follows by replacing the strong stable and unstable norms on the
right-hand side respectively with the expressions (8) and (9) and by passing the
limit inside the integrals by dominated convergence. The same argument shows
also that for h ∈ C1(Wu),

1B(k)h(ϕ) = 1B(k)(hϕ) =
∫
X
1B(k)hlϕdm. (25)
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We now return to prove that 1B(k)hl is Cauchy by computing the norm of the
generic element 1B(k)h, h ∈ C1(Wu), directly along the stable manifolds and show-
ing that it is bounded by a constant depending only on B(k) times ‖h‖.5 If we take
a stable manifold W of length at most γa, the intersection W ∩ B(k) is given by a
finite number #(W,k) of smaller stable intervals Wi ,1 ≤ i ≤ #(W,k). The latter are
generated by removing from W the intersections with the preimages of Bn up to
order k (see the beginning of section 3.2.1). Therefores, #(W,k) ≤ k,∀W, as ex-
plained in footnote 7. By using the arguments in A2 or in A3 in the next sections,
it is straightforward to check that ||1B(k)h||s ≤ k||h||s and |1B(k)h|w ≤ k|h|w. It remains
to compute the strong unstable norm, and this reduces to bounding the difference

for a smooth h: 1
εβ

∣∣∣∣∫W1∩B(k) hϕ1dm−
∫
W2∩B(k) hϕ2dm

∣∣∣∣ ,whereW1W2,ϕ1,ϕ2 verify the

constraints given in (9). We recall that the preimages of Bn of order l ≤ k are ellip-
sis whose axis along the vertical unstable direction has length at most αl . We now
split the computation in two parts. Suppose first that ε ≥ 0.5αk . Then, a rough
estimate gives

1
εβ

∣∣∣∣∣∣
∫
W1∩B(k)

hϕ1dm−
∫
W2∩B(k)

hϕ2dm

∣∣∣∣∣∣ ≤ 4
1
αkβ
‖h‖s. (26)

Take now ε < 0.5αk . By following the strategy used in dealing with the strong
unstable norm in Sections 3.2.1 and 4.3, we split the difference above over un-
matched and matched pieces. Suppose now that #(W1, k) > #(W2, k). Then, there
could be at most #(W1, k) matched pieces given a final contribution bounded by
k‖h‖u . We now count the unmatched pieces. First, there are the two intervals
of length ≤ ε at the extremities of W1,W2. Notice that there could be at most
#(W2, k) − 1 preimages of Bn which cut both W1 and W2. Therefore, there will
be at most 2[#(W2, k) − 1] unmatched pieces generated at the intersection with
the boundaries of such preimages and the length of each of those unmatched
pieces is bounded by a constant C1(Bn, k) depending solely on the radius of the
ball Bn and on k times

√
ε, as we argued in Section 4.3. But now there will also be

[#(W1, k)]−[#(W2, k)] unmatched pieces given by preimages of Bn which cutW1 but
not W2. The length of those pieces will be again bounded by a constant C2(Bn, k)
times

√
ε. Hence, we get for ε < 0.5αk :6∣∣∣∣∣∣

∫
W1∩B(k)

hϕ1dm−
∫
W2∩B(k)

hϕ2dm

∣∣∣∣∣∣ ≤ εβk‖h‖u +
[
2εκ + [2C1(Bn, k) +C2(Bn, k)]kεκ/2

]
‖h‖s.

(27)

In conclusion, for 2β < κ we get

||1B(k)h||u ≤max{4 1
αkβ

,2 + [1 + 2C1(Bn, k) +C2(Bn, k)]k}‖h‖u ,

which immediately implies the Cauchly property for the sequence 1B(k)hl .
We finally consider (25) when h is a Borel measure µ̃ ∈ B. Suppose also that the

µ̃−measure of the boundary of B(k) is zero. This happens for instance if µ̃ is the
SRB-measure, which is our case. Then, if hl → µ̃, for a test function ϕ, we have

1B(k) µ̃(ϕ) = lim
l→∞

1B(k)hl(ϕ) = lim
l→∞

∫
1B(k)hlϕdm =

∫
1B(k)ϕdµ̃ = µ̃(1B(k)ϕ),

5Refer to Lemma 4.3 in [9] for a similar computation.
6We incorporate the exponent κ directly into the constants C1(Bn, k),C2(Bn, k).
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where the third equality follows from the Portmanteau theorem. This fact will be
explicitly used in equation (49) below.

3.3. The perturbative approach. The quasi-compacity of the operator L stated in
(Theorem 2.5, [10]) and quoted in Section 2 implies that7

L = µ⊗Z +Q, (28)

where again µ = Lµ is the SRB measure in B normalized in such a way that µ(1) = 1
and spans the one-dimensional eigenspace corresponding to the eigenvalue 1; Z is
the generator of the one-dimensional eigenspace of L∗ in the dual space B∗ corre-
sponding to the eigenvalue 1, and is normalized in such a way that Z(µ) = 1; andQ
is a linear operator on B with spectral radius sp(Q) strictly less than one. We now
introduce the assumptions which allow us to apply the perturbative technique of
Keller and Liverani [24]. They are split in two blocks: A0, A2, and A3 are needed
to get the quasi-compact decomposition (31), which extends to the perturbed op-
erators Ln the same decomposition for L required by A1. The assumptions A4 and
A5 together with (31) are finally needed to apply the perturbative technique in
[24] we referred to at the beginning of this section.
• A0 B is continuously embedded into Bw.
• A1 The unperturbed operator L is quasi-compact in the sense expressed by

(28).
• A2 There are constants 0 < ρ < 1,D1,D2,D3 > 0, and ρ < M, such that ∀n

sufficiently large, ∀h ∈ B, and ∀k ∈N, we have

|Lknh|w ≤D1M
k |h|w, (29)

||Lknh|| ≤D2ρ
k ||h||+D3M

k |h|w. (30)

This will be proved below.
• A3 We can bound the weak norm of (L − Ln)h, with h ∈ B, in terms of the

norm of h as
|(L−Ln)h|w ≤ χn||h||

where χn is a sequence converging to zero. We give immediately the proof
of this fact since it is achieved by a simple adaptation of the computation
of the strong stable norm in the proof of item A2 below. Looking at the
notations and at the steps of such a demonstration, we have to control the
term

∫
W

(L −Ln)hϕdm =
∫
W
L(1Bnh)ϕdm =

∑
i=1,2

∫
Wi∩Bn

h(y)ϕ(T y)αdm(y) ≤
‖h‖s |Bn|κ. Then, χn = |Bn|κ.

Thanks to assumptions A2 (uniform Lasota-Yorke inequalities) and A3 (close-
ness of the operators in the triple norm), we can apply the spectral theory in
[25]8 and get that the decomposition (28) holds for n large enough, namely

λ−1
n Ln = µn ⊗Zn +Qn, (31)

Lnµn = λnµn, (32)

ZnLn = λnZn, (33)

Qn(µn) = 0, ZnQn = 0, (34)

7If ϕ is a test function, equation (28) means that (Lh)(ϕ) = Z(h)µ(ϕ) +Q(h)(ϕ).
8This spectral theory also requires that if z is in the spectrum of Ln and |z| > s, then z is not in the

residual spectrum of Ln. This last fact is guaranteed by A0, which implies that the spectral radius of
Ln is bounded by s.
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where λn ∈ C, µn ∈ B, Zn ∈ B∗, Qn ∈ B, and supn sp(Qn) ≤ sp(Q). We observe
that the previous assumptions (31)–(34) imply that Zn(µn) = 1,∀n. Moreover,
µn can be normalized in such a way that µn(1) = 1 and Z(µn) = 1; see [24].

We now state assumption A4, leaving A5 to Section 6.1.
• A4 If we define

∆n = Z(L−Ln)(µ), (35)

and for h ∈ B
ηn := sup

||h||≤1
|Z(L(h1Bn ))|, (36)

we must assume that
lim
n→∞

ηn = 0, (37)

ηn||L(1Bnµ)|| ≤ const ∆n. (38)

Notice that A0 and A1 are the content of the aforementioned Lemma 2.4 and
Theorem 2.5 in [10]; it remains to prove A2 and A4. The proofs, especially that of
A2, are quite long and we will defer them to the following sections.

4. Proof of A2. We start by noticing that the proof we present is also valid for the
unperturbed operator, and this will be explicitly used in the following. The proof
is basically the same as the proof of Proposition 4.2 in [10], with the difference that
we allow subsets of the stable manifolds of length less than γa. By the density of
C1(Wu) in both B and Bw, it will be enough to take that h is such a smaller space.
We have to control integrals of the type

∫
W
Lnhϕdm, where W ∈ Σ and ϕ ∈ C1(W )

(resp. Cκ(W )), according to the estimate of the weak (resp. strong) norm.

4.1. Weak norm. Let us start with the weak norm and consider, for instance, L3
n.

We have ∫
W
L3
nhϕdm =

∫
W

(h1Bcn1Bcn ◦ T 1Bcn ◦ T
2)(T −3x)ϕ(x)

α−3γ3
a

dm(x). (39)

We successively perform three changes of variable along the backward images
of W each with Jacobian γa, which will cancel the factor γ3

a in the denominator in
(39). But, we must now understand how those backward images are produced.

Since |W | ≤ γa, its inverse image will give rise to at most two pieces A1,A2 of
respective lengths a1, a2 such that a1 +a2 ≤ |W |γa . But now, T −2W is equal to T −2(A1∪
A2) and T −1(A1) (resp. T −1(A2)) will produce the pieces B1,B2 (resp. C1,C2). If we
denote by b1,2, c1,2 the length of those pieces, we have b1 + b2 ≤

a1
γa
, c1 + c2 ≤

a2
γa
.

Our last step consists of iterating backward B1,2,C1,2. Each of them will be
expanded by a factor γa, so we get

(39) =
∑
∗∈{1,2}

α3
∫
T −1B∗

(h1Bcn1Bcn ◦ T 1Bcn ◦ T
2)(x)ϕ(T 3x)dm(x)+

∑
∗∈{1,2}

α3
∫
T −1C∗

(h1Bcn1Bcn ◦ T 1Bcn ◦ T
2)(x)ϕ(T 3x)dm(x),

where the measure m is again the unnormalized Lebesgue measure. We now cut
the eight intervals T −1B∗,T

−1C∗ into pieces of length |W |. For instance, T −1B1 will
give b1

γa |W |
pieces of length |W | plus two pieces of length less than |W |. But, in the
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present case, we have to twice add 3 to those pieces for the presence of 9Bcn . Then,
we split the previous eight integrals over those smaller pieces, which we denote

with W̃ (n)
j , where 1 ≤ j ≤M3, and M3 = 1

γa |W |
(b1 + b2 + c1 + c2) + 23(1 + 3) is just an

upper bound of the number of the smaller pieces after three backward iterations.
Then, we can write

(39) ≤ α3
M3∑
j=1

∫
W̃

(n)
j

h(x)ϕ(T 3x)dm(x)

Using the preceding bounds on the couples b1,2, c1,2 and aL,R, we see that M3 ≤
1

|W |γ3
a
|W |+ 23(1 + 3). By iterating backward k times, the cardinality becomes

Mk ≤
1

γka
+ 2k(1 + k).

In order to compute the weak norm of L3
n, we must take a test function ϕ veri-

fying |ϕ|C1(W ) ≤ 1. If we now take two points y1, y2 ∈ W̃
(n)
j , we have

|ϕ(T 3x)−ϕ(T 3y)|
|x − y|

=
|ϕ(T 3x)−ϕ(T 3y)|
|T 3x − T 3y|

|T 3x − T 3y|
|x − y|

≤H1(ϕ)γ3
a ≤H1(ϕ)

where H1(ϕ) is the Hölder exponent of ϕ (on W ). Therefore,

|ϕ ◦ T 3|
C1(W̃ (n)

j )
= |ϕ ◦ T 3|

C0(W̃ (n)
j )

+H1(ϕ ◦ T 3) ≤ 1.

By multiplying and dividing the integral in (39) by |ϕ ◦ T 3|
C1(W̃ (n)

j )
, we finally

get, for any k ≥ 1 and remembering that α = 1/2,

|Lknh|w ≤
( αγa

)k
+ 1 + k

 |h|w. (40)

Remark 4.1. The kind of partitioning we consider above, namely by cutting the preim-
ages into pieces of length |W |, was not really necessary to estimate the weak norm, but it
is particularly adapted to control the strong stable norm, see below. For this reason, we
anticipated it here. We will see how one could have proceeded more directly in estimat-
ing the strong unstable norm; in this case one gets a weaker bound on the cardinality of
the preimages, nevertheless this will not significantly improve the final result.

4.2. Strong stable norm. To compute the strong stable norm, we closely follow
the same calculations of Section 4.1 in [10] and we write, still for the third iterate
of the perturbed operator and using the notations above,∫

W
L3
nhϕdm = α3


M3∑
j

∫
W̃

(n)
j

h(y)[ϕ(T 3y)−ϕj,n]dm(y) +
∫
W̃

(n)
j

h(y)ϕj,ndm(y)

 ,
(41)

9If we consider higher iterates of L, for instance of order k, we should control terms like W ∩Bcn ∩
T −1Bcn ∩ · · · ∩ T −(k−1)Bcn, where W is a piece of stable manifold. Notice that each preimage T −lBn, l =
1, . . . , k − 1, is contained in 2l disjoint horizontal rectangles. Therefore, W could meet at most k − 1 of
such rectangles of different generation and hence at most k − 1 preimages of Bn. This implies that the
complement in W of such intersection is at most composed by k connected intervals
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where

ϕj,n =
1

|W̃ (n)
j |

∫
W̃

(n)
j

ϕ(T 3y)dm(y).

Since |ϕj,n| ≤ supW |ϕ|, we immediately have that the rightmost term in (41) is
bounded by the right-hand side of (40). Instead, the first piece on the right-hand
side is bounded by

α3
M3∑
j

‖h‖s |ϕ ◦ T 3 −ϕj,n|W̃ (n)
j ,κ

=
M3∑
j

α3‖h‖s |W̃
(n)
j |

κ |ϕ ◦ T 3 −ϕj,n|Cκ(W̃ (n)
j )

(42)

But, |ϕ ◦T 3 −ϕj,n|Cκ(W (n)
j )

= |ϕ ◦T 3 −ϕj,n|C0(W (n)
j )

+ supx,y
|ϕ(T 3x)−ϕ(T 3y)|

|x−y|κ . We now

treat the last term on the right-hand side, the first giving the same result after

having noticed that |ϕ ◦T 3−ϕj,n| = |ϕ(T 3x)−ϕ(T 3x∗)|, x∗ being some point in W (n)
j

by the mean value theorem, and having multiplied and divided it by |T
3x−T 3y|κ
|x−y|κ .We

have
|ϕ(T 3x)−ϕ(T 3y)|

|x − y|κ
=
|ϕ(T 3x)−ϕ(T 3y)|
|T 3x − T 3y|κ

|T 3x − T 3y|κ

|x − y|κ
≤

Hκ(ϕ)γ3κ
a ≤ γ3κ

a |ϕ|Cκ(W ) = γ3κ
a |W |−κ |ϕ|W,κ ≤ γ3κ

a |W |−κ,
where Hκ(ϕ) is the Hölder exponent of ϕ (on W ). The sum (42) is therefore
bounded by

2α3γ3κ
a |W |−κ

M3∑
j

‖h‖s |W
(n)
j |

κ. (43)

By construction, all the intervals |W (n)
j | ≤ |W |

10. By using the bound on the
cardinality of such intervals given by Mk , we finally get

‖Lknh‖s ≤
( αγa

)k
+ 1 + k

 |h|w + ‖h‖s
[
2(αγκ−1

a )k + 2γkκa (1 + k)
]
.

4.3. Strong unstable norm. In order to treat the strong unstable norm, we follow
Section 4.3 in [11] adapted to our case, which is considerably easier. Therefore, we
take two stable manifolds W1,2 at distance at most ε, and ϕi on Wi , i = 1,2 with
|ϕi |C1(Wi ) ≤ 1. Call U1 ⊂ W1 and U2 ⊂ W2 the connected intervals parametrized
respectively by (sW1

, t) and (sW2
, t), with t belonging to the same interval. We call

these two pieces matched. We refer to V1,2 as the two unmatched pieces in W1,2.

Notice that the length of these two pieces is less than ε. Now, by U (j)
1,k ,U

(j)
2,k , j =

1, . . .2k , we define the two preimages of order k ofU1 andU2, respectively, with the
same history, which means that if s

U
(j)
1,k
, s
U

(j)
2,k

are the common ordinates of the points

in respectively U (j)
1,k and U (j)

2,k , then s
U

(j)
1,k

and s
U

(j)
2,k

belong to the same inverse branch

of the map T kY given in (3). Due to the linearity of the map, the sets U (j)
1,k and U (j)

2,k

will again be matched, and d(U (j)
1,k ,U

(j)
2,k) = |s

U
(j)
1,k
− s

U
(j)
2,k
| ≤ αkd(U1,U2) ≤ αkε. Since

U
(j)
1,k and U (j)

2,k could contain each at most k preimages of the ball Bn, we could have

10It is at this point where the partitioning we argued in Remark 4.1 becomes useful.
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at most 2k matched intervals insideU (j)
1,k andU (j)

2,k . CallU (j,l)
1,k andU (j,l)

2,k , l = 1, . . . ,2k,
those smaller matched pieces.

The points of U (j,l)
1,k (resp. of U (j,l)

2,k ), will be parametrized as (s(j,l)1,k , t), t ∈ U
(j,l)
1,k

(resp. (s(j,l)2,t , t ∈U
(j,l)
2,k ))11. We have to control pieces of the type

1
εβ

∫
U

(j,l)
1,k

h(s1,k , t)ϕ1(T k(s1,k , t))dt −
∫
U

(j,l)
2,k

h(s2,k , t)ϕ2(T k(s2,k , t))dt

 . (44)

We now introduce the auxiliary function

ϕ2(sW2
, t) = ϕ1(sW1

, t), t ∈U1
12.

Then, we bound (44) as

1
εβ

∣∣∣∣∣∣∣
∫
U

(j,l)
1,k

h(s(j,l)1,k , t)ϕ1(T k(s(j,l)1,k , t))dt −
∫
U

(j,l)
2,k

h(s(j,l)2,k , t)ϕ2(T k(s(j,l)2,k , t))dt

∣∣∣∣∣∣∣+
1
εβ

∣∣∣∣∣∣∣
∫
U

(j,l)
1,k

h(s(j,l)2,k , t)[ϕ2(T k(s(j,l)2,k , t))dt −ϕ2(T k(s(j,l)2,k , t))]dt

∣∣∣∣∣∣∣ = (I) + (II)

We begin by treating the first piece (I): Notice that T k(s(j,l)2,k , t) is a point of the

form (sW2
, t∗), t∗ ∈ U2, and therefore ϕ2(T k(s(j,l)2,k , t)) = ϕ2(sW2

, t∗) = ϕ1(sW1
, t∗) =

ϕ1(T k(s(j,l)1,k , t)) since the points (s(j,l)1,k , t) and (s(j,l)2,k , t) are aligned on the same ver-
tical line. Notice now that |ϕ1 ◦ T k |C1(U1,k ) ≤ 1, (we did a similar computation
for the strong stable norm), and moreover dq(ϕ1 ◦ T k ,ϕ2 ◦ T k) = 0. We also have

d(U (j,l)
1,k ,U

(j,l)
2,k ) ≤ αkε < ε, which finally implies (I) ≤ αkβ‖h‖u . We now pass to esti-

mate (II) using the strong stable norm as

(II) ≤ 1
εβ
‖h‖s |U

(j,l)
1,k |

κ |ϕ2 ◦ T k −ϕ1 ◦ T k |Cκ(U1,k ).

We now have, using estimates as above,

|ϕ2 ◦ T k −ϕ1 ◦ T k |Cκ(U1,k ) = |ϕ2 ◦ T k −ϕ1 ◦ T k |C0(U1,k )+

sup
y1,y2∈U

(j,l)
1,k ,x,y

|ϕ2 ◦ T k(y1)−ϕ1 ◦ T k(y1)−ϕ2 ◦ T k(y2) +ϕ1 ◦ T k(y2)|
|y1 − y2|κ

≤

|ϕ2 −ϕ1|C0(U1) +γkκa Hκ(ϕ1 −ϕ2) = dκ(ϕ1,ϕ2) ≤ ε.,
where Hκ is computed on U1. Therefore,

(II) ≤ ε1−βγ−kκa ‖h‖s.
For the unmatched pieces, we have to take into account those generated by

the 2k preimages of V1,2, but also the unmatched pieces in the U (j)
m,k ,m = 1,2, j =

1, . . . ,2k .
Let us consider first the pieces generated by the 2k preimages of V1,2: Their

total number is at most 2k2k . If we call one of them V(k) and suppose it belongs

11With abuse of notation, U
(j,l)
1,k and U

(j,l)
2,k denote the segments of stable manifolds, where s

(j,l)
1,t

(resp. s
(j,l)
2,t ) is the common ordinate of the points in U

(j,l)
1,k (resp. in U

(j,l)
2,k )

12Same convention for U1 as in the previous footnote.
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to the backward images of W1, we must estimate the strong stable norm of the

quantity 1
εβ

∣∣∣∣∣∫V(k)
h(y)ϕ(T ky)dm(y)

∣∣∣∣∣ . We multiply it by |V(k)|κ |ϕ ◦ T k |Cκ(Vk ). But, |ϕ ◦

T k |Cκ(V(k)) ≤ |ϕ|C0(W1) +Hκ(ϕ)γkκa ≤ 1, and |V(k)|κ ≤ εκγ−kκa . We now consider the

unmatched pieces in U
(j)
m,k ,m = 1,2. These are generated by the intersections of

the preimages of the ball Bn with the preimages of W1,2. These intersections could

affect one or both of the stable segments U (j)
m,k . As soon as an intersection occurs,

it could generate at most three unmatched pieces (the intersection itself and two
short segments on both sides of the intersection). Therefore, we could have at most

6k unmatched pieces for the couple U (j)
m,k . About their size, we use the convexity

argument given in Section 6.3 in [11]. If an intersection occurs with one or both

the U (j)
m,k , it also happens between the ball Bn and some backward iterate of order

l ≤ k of the couple W1,2. In this case, the intersection will be of order
√
ε, namely

CBn
√
ε (our Bn is a real ball), where the constant CBn < 1 depends on the radius of

Bn, and therefore the backward intersections with U (j)
m,k will be of order (

√
εγ−1

a )k .
Putting these contributions together and asking for

κ > 2β,

we have, since αk = 2−k ,

‖Lknh‖u ≤ 2kαkβ‖h‖u + 12kγ−kκa ‖h‖s
In conclusion, for k ≥ 1 we get

‖Lknh‖ = ‖Lknh‖s + b‖Lknh‖u ≤ (45)( αγa
)k

+ 1 + k

 |h|w +
[
2(αγκ−1

a )k + 2γkκa (1 + k)
]
‖h‖s + b

(
2kαkβ‖h‖u + 12kγ−kκa ‖h‖s

)
.

(46)

We now put gk :=
[(

α
γa

)k
+ 1 + k

]
and uκ := αγκ−1

a . Then, we say that uκ < 1,

which needs

κ > 1−
logα
logγa

.

Then, we can rewrite (46) as

‖Lknh‖ ≤ gk |h|w + [2(2 + k)ukκ + 12bkγ−kκa ]‖h‖s + 2bkαkβ‖h‖u . (47)

Then, we choose b such that13

b <
(2 + k)ukκ
kγ−kκa

,

which allows us to rewrite (47) as

‖Lknh‖ ≤ gk |h|w + 4(2 + k)ukκ‖h‖s + 2bkαkβ‖h‖u .
Then, we pose

σ = max
(
uκ,α

β
)
< 1,

which gives
‖Lknh‖ ≤ gk |h|w + rkσ

k‖h‖,

13We will see in a moment that this choice will be done for a particular k.
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where we set rk = 4(2 + k).
We now fix a value of k, say k0, such that

ρ := (rk0
σ k0 )

1
k0 < 1

and we replace k with k0 in the bound above for b. With these positions and by
using blocks of length k0, it is immediate to rewrite (46) for any k > 0 as

‖Lknh‖ ≤ ρk‖h‖+Mk |h|w,

where M := g
1
k 0
k0

(1− rk0
σ k0 )−1, and this proves (30).

Remark 4.2. We summarize the bounds we imposed on the relevant quantities we used
up to now: We have, since α = 1/2:
• 0 < β < 1−κ and 2β < κ. This first requires β < 1/3.
• β + q < 1, with q ∈ (0,1), and q > 5/6, which implies β < 1/6.
• κ > 1− logα

logγa
= 1 + log2

logγa
.

• Finally, we will see below that κ > α logα−1+(1−α) log(1−α)−1

logγ−1
a

= − log2
logγa.

This is verified by several couples of the parameters κ,γa. For instance, for any
1/2 < κ < 1, we could take γa = 1/4. Alternatively, by choosing κ = 3/4, we could
take 2−4 < γa < 2−4/3.

Warning: From now on we will consider the baker’s map (1) with the parame-
ters α = v = 0.5 and γa satisfying the constraints given in the previous remark
4.2.

5. Proof of A4. We now aim to justify A4. We remind that Z is the unique solution
of the eigenvalue equation L∗Z = Z, where L∗ is the dual of the transfer operator.
By setting

Z(h) := h(1), h ∈ B, (48)
we have for h ∈ B,

L∗Z(h) = Z(Lh) = (Lh)(1) = h(1 ◦ T ) = h(1) = Z(h).

Coming back to ∆n, we see immediately that

∆n = Z(L(1Bnµ)) = L(1Bnµ)(1) =
∫

1Bn dµ = µ(Bn). (49)

The term ||L(1Bnµ)|| can be handled very easily using the Lasota-Yorke inequality
which we proved in item A2 above. In fact, it follows from (30) that there are two
constants C1,C2 depending only on the map such that

||L(1Bnµ)|| ≤ C1||1Bnµ||+C2|1Bnµ|w.

Lemma 5.1. There exists two constants Ĉ1, Ĉ2 independent of n such that

||1Bnµ|| ≤ Ĉ1||µ|| and |1Bnµ|w ≤ Ĉ2|µ|w. (50)

Proof. The proof follows closely the arguments given in Section 3.2.2 to bound the
quantity 1B(k)h, but we should now be more careful in getting constants which do
not depend about upon Bn. Notice that, contrary to Section 3.2.2, we take here the
intersection of W with the ball Bn, not with its preimages. With this in mind, it is
immediate to check that ||1Bnµ||s ≤ ||µ||s and |1Bnµ|w ≤ |µ|w. It remains to compute
the strong unstable norm, and this reduces to bound the difference for a smooth
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h: Dn := 1
εβ
In, where In :=

∣∣∣∣∫W1∩Bn
hϕ1dm−

∫
W2∩Bn

hϕ2dm
∣∣∣∣ , and W1W2,ϕ1, and ϕ2

verify the constraints given in (9). We split the argument into in two parts. We
call rn the radius of the ball Bn, and we begin to take ε ≥ 0.5rn. Then, we have the
rough bound

In ≤ 2 rn ‖h‖s ⇒ Dn ≤ 21+κ‖h‖sεκ−β < 21+κ‖h‖s,

since β < κ. Then we consider ε < 0.5rn;. We split the difference in In over un-
matched and matched pieces. There could be at most one matched piece inside Bn
giving the contribution ‖h‖u . If the matched piece is inside Bn, there could be at
most two unmatched pieces. They have length ≤ ε if they are on the extremities of
the two stable manifolds inside Bn. Otherwise, they are generated when the two
stable manifolds meet the boundary of Bn. It is a simple exercise to see that the
sum of the lengths of those unmatched pieces is bounded by the maximum differ-
ence of the lengths of two horizontal chords whose vertical distance is ε, and that
value is less then or equal to 2

√
2rnε ≤ 2

√
2ε.

Finally, there could be an unmatched piece when only one manifold crosses Bn,
and for the same argument as above, its length is bounded by 2

√
2ε. Summing all

those contributions, when ε < 0.5rn, we get

In ≤ εβ‖h‖u + 2εκ‖h‖s + 21+ κ
2 ε

κ
2 ‖h‖s⇒ Dn ≤ ‖h‖u + 2‖h‖s + 21+ κ

2 ‖h‖s,

since 2β < κ.

By setting

C3 := C1Ĉ1||µ||+C2Ĉ2|µ|w,
we are led to prove that (see (38)) ηnC3 ≤ const ∆n, namely

ηn ≤ const ∆n = const µ(Bn). (51)

Before continuing, we have to focus on µ(Bn) = µ(B(z,e−un )). It is well known that
for µ-almost z and by taking the radius sufficiently small, depending on the value
ι, e−un(d+ι) ≤ µ(B(z,e−un ) ≤ e−un(d−ι), where ι > 0 is arbitrarily small. This follows
from the existence of the limit

lim
r→0+

logµ(B(x,r))
logr

= d, for x chosen µ-a.e., (52)

and the quantity d is the Hausdorff dimension of the measure µ, which, in our case
reads as [27], equation (3.24):

d = 1 + ds, where ds :=
α logα−1 + (1−α) log(1−α)−1

logγ−1
a

.

We now have the following lemmma.

Lemma 5.2. Assume κ > ds.
Then,

ηn ≤ 2dγ−1
a eµ(Bn).

Proof. By density, it will be enough to prove the lemma for h ∈ C1(X). We have

Z(L(h 1Bn )) =
∫
h 1Bndm.
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By disintegrating along the stable partitionW s, we get,∫
h 1Bn dmL =

∫
ξ
dλ(ξ)

∫
Wξ

(1Bnh)(x)dm(x)

 . (53)

We now cut the stable manifold Wξ in pieces of length γa in order to compute
the strong stable norm on each of them, and we take |W̃ξ | as the largest intersection
of such pieces with Bn. We immediately get

(53) ≤
∫
ξ
dλ(ξ)

[
dγ−1
a e|W̃ξ |κ‖h‖s

]
≤ e−unκdγ−1

a e||h||sλ(ξ;Bn ∩Wξ , ∅),

where λ is the quotient measure on the space of stable leaves Wξ belonging to
W s, and indexed by ξ; see for instance [28], Appendix A. By the definition of
disintegration, we have that

λ(ξ;Bn ∩Wξ , ∅) =mL(
⋃

Wξ ,Bn ∩Wξ , ∅) = 2e−un ,

and therefore
ηn ≤ 2dγ−1

a ee−un(κ+1).

We finally have

ηn ≤ 2dγ−1
a ee−un(κ+1) ≤ 2dγ−1

a ee−un(d+ι) ≤ 2dγ−1
a eµ(Bn),

provided we choose
κ > d + ι− 1 (54)

which can be satisfied by assumption.

Remark 5.3. The local comparison between the Lebesgue and the SRB measure of a ball
of center z obliged us to choose z µ-almost everywhere because, in this way, we have a
precise value for the locally constant dimension d. We are therefore discarding several
points, possibly periodic, where the limiting distribution for the Gumbel law (see the
next section) could exhibit extremal indices different from 1.

Remark 5.4. For invertible, piecewise differentiable hyperbolic maps in dimension 2,
the construction of the Banach space imposes that κ < 1; for billiard maps associated
with Lorentz gases, [12], it even verifies κ ≤ 1/6. This could make difficult to check
condition (54) for invariant sets with large d, like Anosov diffeomorphisms for instance.
In some sense, this difficulty was already raised in Section 4.5 in the Keller’s paper
[23], where an estimate like ours in terms of the Hölder exponent κ was given, and the
subsequent question of the comparison with the SRB measure was addressed.

6. The limiting law.

6.1. Gumbel law. We have now all the tools to compute the asymptotic behavior
of Ln. We need one more ingredient which will constitute our last assumption:

• A5 Let us suppose that the following limit exists, for any k ≥ 0

qk = lim
n→∞

qk,n := lim
n→∞

Z
(
[(L−Ln)Lkn(L−Ln)]µ

)
∆n

(55)

Notice that

qk,n =
µ(Bn ∩ T −1Bcn ∩ · · · ∩ T −kBcn ∩ T −(k+1)Bn)

µ(Bn)
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and therefore, by the Poincaré recurrence theorem,
∞∑
k=0

qk,n = 1.

Therefore, if the limits (55) exist, the quantity

θ = 1−
∞∑
k=0

qk , (56)

is well defined and verifies
0 ≤ θ ≤ 1.

It is called the extremal index, and it modulates the exponent of the Gumbel law
as we will see in a moment. We have, in fact, by Theorem 2.1 of [24]

λn = 1−θ∆n = exp(−θ∆n + o(∆n)),

or equivalently
λnn = exp(−θn∆n +no(∆n)).

Therefore, we have

µ(Mn ≤ un) = Lnnµ(1) = λnn[µn(1)Zn(µ) +Qnn(µ)(1)],

and consequently

µ(Mn ≤ un) = exp(−θn∆n +no(∆n))[O(1) +Qnn(µ)(1)],

since µn(1) = 1 and it has been proved in [24], Lemma 6.1, Zn(µ)→ 1 for n→∞.
At this point, we need an important assumption, which basically reduces to fixing
the sequence un and allow us to get a non-degenerate limit for the distribution of
Mn. We in fact ask that

n ∆n→ τ, n→∞, (57)
where τ is a positive real number. With this assumption, using (10) and (11), we
have

|Qnn(µ)(1)| ≤ const sp(Q)n||µ|| → 0.
In conclusion, we get the Gumbel law

lim
n→∞

µ(Mn ≤ un) = e−θτ .

6.2. The extremal index. We are now ready to compute the qk,n, which will de-
termine the extremal index. Let us first suppose that the center of the ball Bn is
not a periodic point. Then, the points T j (z), j = 1, · · · , k will be disjoint from z. Let
us take the ball so small that is does not cross the set T j Γ , j = 1, · · · , k, where Γ is
the discontinuity line (y = α). In this way, the images of Bn will be ellipses with
the long axis along the unstable manifold and the short axis stretched by a factor
γk . By continuity and taking n large enough, we can manage that all the iterates of
Bn up to T k will be disjoint from Bn, and for such, n the numerator of qk,n will be
zero. At this point, we can state the following result.

Proposition 6.1. Let T be the baker’s transformation and consider the functionMn(x) :=
max{Ξ(x), . . . ,Ξ(T n−1x)}, where Ξ(x) = − logd(x,z), and z is chosen µ-almost every-
where with respect to the SRB measure µ. Then, if z is not periodic, we have

lim
n→∞

µ(Mn ≤ un) = e−τ ,

where the boundary level un is chosen to satisfy nµ(B(z,e−un ))→ τ for some positive τ.
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Suppose now that z is a periodic point of minimal period p. Of course, the next
considerations make sense if the limit (52) exists. By doing as above, we can stay
away from the discontinuity lines up to p iterates and look simply to T −p(Bn)∩Bn.
Since the map acts linearly, thepreimage p of Bn would be an ellipse with center
z and symmetric w.r.t. the unstable manifold passing through z. So, we have to
compute the SRB measure of the intersection of the ellipse with the ball shown in
Figure 2.

It turns out that this computation is not easy. The natural idea would be to
disintegrate the SRB measure along the unstable manifolds belonging to the un-
stable partitionWu . We index such fibers as Wν , and we set ζ(ν) as the associated
quotient measure. Let us recall that the conditional measures along leaves Wν are
normalized Lebesgue measures, which we denote with lν . If we call Ein the region
of the ellipse inside the ball Bn, we have to compute∫

lν(Ein ∩Wν)dζ(ν)∫
lν(Bn ∩Wν)dζ(ν)

. (58)

Although simple geometry allows us to compute easily the length of Ein ∩Wν
and Bn ∩Wν , and since they vary with Wν , it is not at the end clear how to per-
form the integral with respect to the quotient measure, especially because we need
asymptotic estimates, not bounds. We therefore proceed by introducing a differ-
ent metric, a nice trick which was already used in [8]. We use the l∞ norm on
R

2 for which |(x,y)|∞ = max{|x|, |y|}. In this way, the ball Bn will become a square
with sides of length rn := e−un and T −p(Bn) will be a rectangle with the long side of
length γ−pa rn and the short side of length αprn. This rectangle will be placed sym-
metrically with respect to the square as indicated in Figure 3. The ratio (58) can
now be computed easily since the length in the integrals are constant, and we get
αp. We will see that the value computed in this way is the right one, see Proposi-
tion 7.3, but in principle we cannot apply the spectral technique since the geometric
shape of the rectangles does not allow to show that the characteristic function of
such rectangles is in B, and also it does not fit the convexity requirement which
we used to control the unmatched pieces in the strong unstable norm. We will
introduce in Section 7.2 below a different technique which will allow us to get the
extremal index even when the target sets are rectangles.

7. Poisson statistics.

7.1. The spectral approach. As mentioned in the introduction, the spectral tech-
nique has been recently generalized to study the statistics of the number of visits
in balls shrinking around a point [3]. We briefly introduce such an approach, and
the reader will see that we can easily adapt it to the baker’s map. The starting
point is to consider the following counting function:

N τ
Bn

(x) =
bτ/µ(Bn)c∑

i=0

1Bn ◦ T
i(x),

where τ is a positive parameter and x ∈ X. The goal is to study the distribution of
this discrete random variable in the limit n→∞. With the spectral approach, we
will rather look at the characteristic function of such a variable.
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Figure 2. Computation of the extremal index around periodic
point with the Euclidean metric. The vertical line is an unstable
manifold. We should compute the green area inside the circle.

Figure 3. Computation of the extremal index around periodic
point with the l∞ metric. We should compute the green area in-
side the square.

We begin to define Sn,k :=
∑k
i=01Bn ◦ T

i and take Sn,(τ,n) := N τ
Bn
. We then define

the perturbed operator

Ln,s(h) = L(eis1Bnh), s ∈R, h ∈ B.

A simple computation shows that

Lkn,s(µ)(1) =
∫
eisSn,kdµ,

which suggests getting information on the characteristic function of Sn,k by the
behavior of the top eigenvalue λn,s of the perturbed operator Ln,s. At this point,
the analysis proceeds in the same manner as for the perturbed operator Ln, and
we sketch here the main steps. The difference between the two operators is now
quantified by

∆n,s := Z(L−Ln,s)(µ) = (1− eis)µ(Bn),

and
λn,s = 1− θ̃(s)(1− eis)µ(Bn) + o(µ(Bn)). (59)
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The quantity θ̃(s) plays the role of the extremal index, and is defined according
to the formula (55), which in the present case reduces to θ̃(s) = 1−

∑∞
k=0 qk(s),where

qk(s) = lim
n→∞

1
1− eis

k∑
`=0

(1− eis)2ei`sβ
(k)
n (`) = (1− eis)

k∑
`=0

ei`sβk(`), (60)

β
(k)
n (`) :=

µ(x;x ∈ Bn,T k+1(x) ∈ Bn,
∑k
j=11Bn(T jx) = `)

µ(Bn)
. (61)

and we suppose that the limit βk(`) := limn→∞β
(k)
n (`) exists. Then, we have

θ̃(s) = 1− (1− eis)
∞∑
k=0

k∑
`=0

ei`sβk(`),

and the exponential decay of correlation of the measure µ allows us to show that
the series

∑∞
k=0

∑k
`=0βk(`) converges absolutely14, and therefore θ̃(s) is C∞ in the

neighborhood of 0. If we now return to the eigenvalue (59), we exponentiate it
to the power n, and we again using the threshold condition (57), nµ(Bn)→ τ, we
finally get

lim
n→∞

∫
eisSn,(τ,n)dµ = e−θ̃(s)(1−eis)τ := Σ(s).

Since Σ(s) is continuous in s = 0, it is the characteristic function of some ran-
dom variable Z, possibly defined on a different probability space (Ω,F ,P). The
variable Z is clearly non-negative and integer valued and it is also infinitely di-
visible since e−θ̃(s)(1−eis)τ = (e−θ̃(s)(1−eis)τ/m)m, for any m. This implies that Z has a
compound Poisson (CP) distribution, see [14] or [3] for more references; namely,
it may be written as Z :=

∑N
j=1Xj , where the Xj are i.i.d. random variables defined

on same probability space, and N is Poisson distributed with intensity κ and Xj
has distribution P(Xj = l) = ρl ; moreover, N is independent of all Xj . We call the
sequence (ρ)l≥1 the cluster size distribution of Z. Among the CP distributions, two
are particularly important: the standard Poisson distribution and the Pòlya-Aeppli
distribution. For the standard Poisson ρ1 = 1, for Pòlya-Aeppli the distribution of
Xj is geometrical, namely ρl = η(1 − η)l ,η ∈ (0,1). For such distributions the as-
sociated characteristic functions are perfectly known. To determine them for our
baker’s system, one should prove the existence and compute the quantities (61),
which are of geometric and dynamical nature. This will be done in the next section
in the context of a more probabilistic approach to Poisson-like statistics. Actually,
the quantities computed in the next section are not exactly those in (61), but it is
not difficult to modify their derivation to get (61) and therefore reprove Proposi-
tion 7.2 with the spectral approach. As we said in the introduction and in Section
6.2, we will present the alternative probabilistic approach since it will allow us to
cover a wider class of target sets and also to get example 7.5, which shows a CP
distribution different from the standard Poisson and the Pòlya-Aeppli.

7.2. The probabilistic approach. We now use a recent technique developed in
[21] and apply it to our baker’s map. We will recover the usual dichotomy and get
a pure Poisson distribution when the points are not periodic, and a Pólya-Aeppli

14See Section 3 in [3] for the proof of this convergence which applies to our case as well.
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distribution around periodic points with the parameter giving the geometric dis-
tribution of the size of the clusters which coincide with the extremal index com-
puted in the preceding section. This last result is achieved in particular if we use
the l∞ metric. This result is not surprising. What is interesting is the great flex-
ibility of the technique of the proof, which allows us to easily get the expected
properties. In order to apply the theory in [21], we need to verify a certain number
of assumptions, but we otherwise refer to the aforementioned paper for precise
definitions. Here, we recall the most important requirements and prove in detail
one of them.

Warning: The next considerations are carried over with the Euclidean metric which
is more natural for applications. As for the visits to periodic points, we will use
the l∞ metric and the following computations are even easier.

Decay of correlation. There exists a decay function C(k) so that∣∣∣∣∣∫
M
G(H ◦ T k)dµ−µ(G)µ(H)

∣∣∣∣∣ ≤ C(k)‖G‖Lip‖H‖∞ ∀k ∈N,

for functionsH which are constant on local stable leavesWs of T and the functions
G : M → R being Lipschitz continuous. This is ensured by Theorem 2.5 in [10],
where the role of H is taken by the test functions in Cκ(W,C) and G ∈ B, which is
the completion of Lipschitz functions on X. The decay is exponential.

Cylinder sets. The proof requires the existence, for each n ≥ 1, of a partition of

each unstable leaf in subsets ξ(k)
n , called n-cylinders (or cylinders of rank n), and

indexed with k, where T n is defined and the image T nξ(k)
n is an unstable leaf of

full length for each k. These cylinders are obtained by taking the 2n preimages of
Γ = {y = α} by the map TY restricted to each leaf. In the following, we will take
α = 1/2 to simplify the exposition.

Exact dimensionality of the SRB measure. This uses the existence of the limit (52).
We shall need the following result.

Lemma 7.1. (Annulus type condition) Let w > 1. If x is a point for which the dimen-
sion limit (52) exists for a positive d, then there exists a δ > 0 so that

µ(B(x,r + rw) \B(x,r))
µ(B(x,r))

=O(rδ),

for all r > 0 small enough.

Now we can apply the results of Section 7.4 in [21] to prove the following result,
which tracks the number of visits a trajectory of the point x ∈ X makes to the set
U on a suitable normalized orbit segment.

Proposition 7.2. Consider the counting function

N τ
Bn

(z) =
bτ/µ(Bn)c∑

i=0

1Bn ◦ T
i(x),

where τ is a positive parameter and z is a point for which limit (52) exists and
nµ(B(z,e−un ))→ τ .
• If z is not a periodic point, using the Euclidean metric we get a pure Poisson

distribution:

µ(N τ
Bn

= k)→ e−ττk

k!
, n→∞.
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• If z is a periodic point of minimal period p, using the l∞ metric we get a compound
Poisson distribution (Pólya-Aeppli):

µ(N τ
Bn

= k)→ e−Θτ
k∑
j=1

(1−Θ)k−jΘ2j τ
j

j!

(
k − 1
j − 1

)
, n→∞,

where Θ is given by Θ = 1− limn→∞
µ(T −pBn∩Bn)

µ(Bn) .

Proof of Lemma 7.1. We have to prove the lemma in the two cases when (I) the
norm is `2 and (II) the norm is `∞ and the ball is geometrically a square.
(I) We now use the Euclidean metric and denote by A the annulus A = B(x,r +
rw) \ B(x,r) where w > 1. By disintegrating the SRB measure along the unstable
manifolds, we have

µ(A) =
∫
lν(A∩Wν)dζ(ν).

We now split the subsets on each unstable manifold on the cylinders of rank n
and condition with respect to the Lebesgue measure on them15:

lν(A∩Wν) =
∑

ξn;ξn∩A,∅

lν(A∩Wν ∩ ξn)
lν(ξn)

lν(ξn). (62)

We then iterate forward each cylinder with T n. They will become of full length
equal to 1, and subsequently we get l′ν(T nξn) = 1 for some Wν′ . Since the action of
T is locally linear and expanding by a factor 2n (with the given choice of α = 1

2 ) on
the unstable leaves and therefore has zero distortion, we have

lν(A∩Wν ∩ ξn)
lν(ξn)

=
lν′ (T n(A∩Wν ∩ ξn))

lν′ (T nξn)
= lν′ (T

n(A)∩Wν′ ),

so that T n(A∩Wν ∩ ξn) ⊂Wν′ . Therefore,

lν(A∩Wν) =
∑

ξn;ξn∩A,∅
lν′ (T

n(A∩Wν ∩ ξn))lν(ξn).

By elementary geometry, we see that the largest intersection ofAwith the unsta-
ble leaves will produce a piece of length O(r

w+1
2 ). Therefore, lν′ (T n(A∩Wν ∩ξn)) =

O(2nr
w+1

2 ), and

µ(A) =O(2nr
w+1

2 )
∫ ∑

ξn;ξn∩A,∅
lν(ξn)dζ(ν).

We now observe that in order to have our result, it will be enough to get it with
a decreasing sequence rn, n → ∞, of exponential type, rn = b−t(n),b > 1, and t(n)
increasing to infinity. We put rn = 2−n. With this choice and remembering that 2−n

is also the length of the n-cylinders, we have⋃
ξn;ξn∩A,∅

ξn ⊂ B(x,rn + rwn + 2−n) = B(x,2rn + rwn ) ⊂ B(x,3rn),

which, as the cylinders ξn are disjoint, yields the estimate for the integral above:

µ(A) =O(2nr
w+1

2
n rd−εn ).

15We simply use here ξn instead of ξ
(k)
n since the computation over k is replaced by the sum.
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Now, by the exact dimensionality of the SRB measure, one has for any ε > 0 and
by renaming rn as r

(2r + rw)d+ε ≤ µ(B(x,2r + rw)) ≤ (2r + rw)d−ε

for all r small enough, i.e. n large enough. With this, we can divide µ(A) by the
measure of the ball of radius r, and obtain the estimate

µ(A)
µ(B(x,r))

=O(r
w−1

2 +d−ε−d−ε) =O(r
w−1

2 −2ε) =O(r
w−1

4 ),

since w > 1, and provided ε is small enough.
(II) Now we shall use the `∞-distance and again denote by A the annulus B(x,r +
rw) \ B(x,r). Since we are in two dimensions, we can cover the annulus by balls
B(yj ,2rw) of radii 2rw, with centers yj for j = 1, . . . ,N . The number of balls needed
N is bounded by 8 r

rw . For any ε > 0, there exists a constant c1 so that µ(B(yj ,2rw)) ≤
c1r

w(d−ε) for all r small enough. Thus,

µ(A) ≤ 8c1r
1+w(d−1−ε)

and since µ(B(x,r)) ≥ c3r
d+ε for some c3 > 0, we obtain

µ(A)
µ(B(x,r))

≤ c4r
(d−1)(w−1)−ε(w+1).

The exponent δ = (d − 1)(w − 1)− ε(w + 1) is positive as d,w > 1 and ε > 0 can be
chosen sufficiently small.

Proof of Proposition 7.2. We can now prove the proposition by applying Theorem 1
from [21] and verify its Assumptions (I) to (VI) as follows:
(I) Let In be the collection of inverse branchesϕ of the n-th iterate T n of the map T .
Then, evidently, if ϕ,ϕ′ ∈ In are two distinct inverse branches, their intersection
ϕ(X)∩ϕ′(X) has zero measure. Therefore, the number of overlaps of ‘n-cylinders’
ϕ(X) is bounded by L = 1.
(II) This condition is easily satisfied since decay of correlations is exponential as
the transfer operator is quasi compact.
(III) The set Gn of uniform expansion covers the entire space X as there is no ‘bad’
set Gcn of non-uniformly contracting inverse branches. Consequently, we get expo-
nential contraction of maxϕ∈In diamϕ(X) of the n-cylinder sets ϕ(X). Moreover,

the distortion supϕ∈I supx,y∈ϕ(X)
Jn(x)
Jn(y) is uniformly bounded, where Jn is the Jaco-

bian of T n restricted to the unstable direction.
(IV) The dimension of the invariant measure is equal to d = 1 + ds, where ds < 1 is
given above. So, we can choose d0 > 0 and d1 <∞ so that d0 < d < d1.
(V) The dimension of the restricted measure on the unstable leaves equals u0 = 1
as it is Lebesgue.
(VI) This condition was verified in Lemma 7.1.

This shows that the condition of Theorem 1 of [21] is satisfied.
If x is an aperiodic point, then min{j ≥ 1 : Bρ(x)∩ T jBρ(x) , ∅} goes to infinity

as ρ = e−un → 0. Thus, for the coefficients

λ`(L) = lim
ρ→0

P(ZL = `)
P(ZL ≥ 1)

we obtain that for every L, λ1 = 1 and λ` = 0 for all ` = 2,3, . . . , where ZL =∑L
j=11Bρ(x) ◦ T j is the hit counter on the finite orbit segment of length L. This
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implies that N τ
Bn

converges in distribution to a standard Poisson random variable
with parameter τ .

Let x be a periodic point with minimal period p, and let B̃ρ be a square of size ρ
centered at x and whose sides are aligned with the stable and unstable directions,
respectively. Then, for ` = 2,3, . . .

α̂` = lim
L→∞

lim
ρ→0

P(Z̃L ≥ `|B̃ρ) = lim
ρ→0

µ(B̃ρ ∩ T −(`−1)pB̃ρ)

µ(B̃ρ)
=

lim
ρ→0

µ(B̃ρ ∩ T −pB̃ρ)

µ(B̃ρ)

`−1

which implies that α̂` = α̂`−1
2 , where Z̃L =

∑L
j=11B̃ρ(x) ◦T j . Then, for α` = α̂` − α̂`+1,

we thus obtain by [21] that λ` = α`−α`+1
α1

= (1−θ)Θ`−1, where 1−Θ = α1 = 1−α̂2 is the
extremal index. Hence,N τ

Bn
converges in distribution to a Pólya-Aeppli distributed

random variable.

It is worth mentioning that the previous result gives also an alternative way to
prove EVT for the baker’s map, which is recovered when k = 0, as the limiting
distribution of µ(N τ

Bn
= 0). Let us state it explicitly.

Proposition 7.3. Let T be the baker’s transformation and consider the functionMn(x) :=
max{φ(x), . . . ,φ(T n−1x)}, where φ(x) = − logd∞(x,z), and z is chosen µ-almost every-
where with respect to the SRB measure µ. Then, if z is a periodic point of minimal period
p verifying (52), we have

lim
n→∞

µ(Mn ≤ un) = e−θτ ,

where nµ(B(z,e−un ))→ τ and
θ = 1−αp.

Remark 7.4. Propositions 6.1 and 7.3 show that for a typical (non-periodic) point
z, the limiting distribution of the maximum is purely exponential. The baker’s
map is probably the easiest example of a singular attractor. It is annoying that we
could not compute analytically the extremal index with respect to the Euclidean
metric, which is the metric usually accessible in simulations and physical observa-
tions. With references to Figures 2 and 3 respectively, the area of an extremely thin
green ellipse within the blue circle is asymptotically equivalent to the area of an
extremely thin green rectangle within the blue square, so, taking into account the
ratio between the areas of the blue circle and the blue square, the limit as p→∞
of the extremal index for the Euclidean holes can be calculated.16

Example 7.5. The second statement of Proposition 7.2 about periodic points re-
quires the neighborhoods Bn to be chosen in a dynamically relevant way. Here,
they turn out to be squares (or rectangles). If the measure has some mixing prop-
erties with respect to a partition, then the sets Bn can be taken to be cylinder sets
as it was done in [20] for periodic points, and in [19] Corollary 1 for non-periodic
points. Here, we show that for Euclidean balls, one cannot in general expect the
limiting distribution at periodic points to be Pólya-Aeppli, and therefore cannot
be described by the single value of the extremal index.

We assume that all parameters are equal, that is γa = γb = α = β = 1
2 . This is the

fat baker’s map for which the Lebesgue measure on [0,1]2 is the SRB measure µ.

16We thank the anonymous referee for this observation.
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Let x be a periodic point with minimal period p. Then, µ(B(x,r)) = r2π and

µ

 k⋂
i=0

T −ipB(x,r)

 = 4r22−kp(1 +O(2−2kp)).

This yields

α̂k+1 = lim
r→0

µ
(⋂k

i=0T
−ipB(x,r)

)
µ(B(x,r))

=
4
π

arctan2−kp =
4
π

2−kp(1 +O(2−2kp))

for k = 1,2, . . . . According to [21] Theorem 2, we then define the values αk =
α̂k − α̂k+1 where the value α1 is the extremal index, i.e. θ = α1. If the limiting
distribution is Pólya-Aeppli, then the probabilities λk = αk−αk+1

α1
, k = 1,2, . . . , are

geometrically distributed and must satisfy λk = θ(1 − θ)k−1, which is equivalent
to saying that α̂k+1 = (1 − θ)k for k = 0,1,2, . . . (see [21] Theorem 2). Evidently,
this condition is violated in the present case, and we conclude that the limiting
distribution given by the values α̂k is not Pólya-Aeppli and in fact obeys another
compound Poisson distribution.

7.3. Compound point processes. The compound Poisson distribution could be
enriched by defining the rare event point process (REPP). Let us first introduce a
few objects. Take Il = [al ,bl), l = 1, . . . , k,al ,bl ∈R+

0 , a finite number of disjoint semi-
open intervals of the non-negative real axis, and call J = ∪kl=1Il their union. If r is a
positive real number, we write rJ = ∪kl=1rIl = ∪kl=1[ral , rbl). We denote with |Il | the
length of the interval Il , which coincides with its Lebesgue measure Leb(Il). The
REPP counts the number of visits to the set Bn during the rescaled time period vnJ

Nn(·)(J) =
∑

l∈vnJ∩N0

1Bn(T l ·), (63)

where vn is taken as

vn =
⌊

τ
µ(Bn)

⌋
, τ > 0.

Our REPP belongs to the class of the point processes on R
+
0 ; see [22] for all

the properties of point processes used below. They are given by any measurable
map N : (X,FX ,µ) → Np([0,∞)), where (X,FX ,µ) is the probability space of our
original dynamical system with the invariant measure µ and the Borel σ -algebra
FX , and Np([0,∞)) denotes the set of counting measures c on R

+
0 endowed with

the σ -algebraMp(R+
0 ),which is the smallest σ -algebra making all evaluation maps

c→ c(B), from Np([0,∞))→ [0,∞] measurable for all B ∈ R+
0 . Any counting mea-

sure c has the form c =
∑∞
i=1 δxi , xi ∈ [0,∞). The distribution of N , denoted µN , is

the measure (µ ◦N−1) = (µ[N ∈ ·]) onMp(R+
0 ). The set Np([0,∞)) becomes a topo-

logical space with the vague topology, i.e. the sequence cn converges to c whenever
cn(φ)→ c(φ) for any continuous function φ : R+

0 → R with compact support. We
also say that the sequence of point processes Nn converges in distribution to the
point process N , eventually defined on another probability space (X ′ ,F ′X′ ,µ

′), if
µNn converges weakly to µ′N , that is, for every continuous function ϕ defined on
Np([0,∞)), we have limn→∞

∫
ϕdµ ◦N−1

n =
∫
ϕdµ′ ◦N−1. In this case, we will write

Nn
µ
−→N.
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If we now return to our REPP (63), we will see that a very common result is to

get Nn
µ
−→ Ñ , where

µ(x,Ñ (x)(Il) = kl ,1 ≤ l ≤ n) =
n∏
l=1

e−τLeb(Il ) τ
klLeb(Il)kl

kl !
, (64)

for any disjoint bounded sets I1, . . . , In and non-negative integers k1, . . . , kn,which is
called the standard Poisson point process. In general, our REPP processes converge
in distribution to a compound point process (CPP). We say that the point process
N : (X ′ ,F ′X′ ,µ

′)→Np([0,∞)) is a CPP with intensity parameter t, and cluster size
distribution (λl)l≥1 if it satisfies:

• For any finite sequence of measurable sets B1, . . . ,Bk in F ′X′ and mutually dis-
joint, the random variables N (·)(Bi), i = 1, . . . , k, are independent.

• For any measurable set B ∈ F ′X′ , the random variable N (·)(B) is a CP random
variable with intensity tLeb(B), t > 0 and cluster size distribution (ρl)l≥1, see
the definition in Section 7.

From now on we will simply write N (·) instead of N (x)(·), and we consider it as
a CPP. In order to study the convergence of our REPP Nn to the CPP N , two equiv-
alent criteria are available. Before stating them, we should recall the definition of
the Laplace transform for a general point process R : (X ′ ,F ′M ′ ,µ

′)→Np([0,∞))

ψR(y1, . . . , yk) = Eµ′

(
e−

∑k
l=1 ylR(Il )

)
, (65)

for all non-negative values y1, . . . , yk , each choice of k disjoint intervals Ii = [ai ,bi),
i = 1, . . . , k. In the case of a CPP N with intensity parameter t and cluster size
distribution (ρl)l≥1, we get

ψN (y1, . . . , yk) = e−t
∑k
l=1(1−ϕ(yl ))Leb(Il ), (66)

where ϕ(y) =
∑∞
i=0 e

−yiρi is the Laplace transform of the cluster size distribution
(ρl)l≥1.

Therefore in order to establish the convergence in distribution of the REPP Nn
toward the CPP N , it will be sufficient to show [22]:
- (C1): that for any k disjoint intervals Ii = [ai ,bi), i = 1, . . . , k, the joint distribution
of Nn converges to the joint distribution of N, namely

(Nn(I1), . . .Nn(Ik))→ (N (I1), . . .N (Ik)) .

-(C2): the convergence of the Laplace transforms

ψNn(y1, . . . , yζ) = E

(
e−

∑k
l=1 ylNn(Il )

)
→ ψN (y1, . . . , yk) = e−t

∑k
l=1(1−ϕ(yl ))Leb(Il ),

as n→∞.
The criterion (C1) lends itself to being studied with the probabilistic approach

of [21] as two of us recently showed in ([1], Theorem 3); see also [15] for a dif-
ferent method. The criterion (C2) is naturally adapted to the spectral approach
(just replacing characteristic functions with Laplace transforms), and the complete
treatment, involving two of us, will appear soon [4]. Both criteria allow to extend
immediately Proposition 7.2 to the point process framework, giving the following
propostion.
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Proposition 7.6. Consider the counting measure

Nn(·)(J) =
∑

l∈vnJ∩N0

1Bn(T l ·)

where τ is a positive parameter, vn =
⌊

τ
µ(Bn)

⌋
, and z is a point for which the limit (52)

exists and nµ(B(z,e−un ))→ τ .
• If z is not a periodic point, using the Euclidean metric, then Nn converges in

distribution to a standard Poisson point process of intensity τ ; see (64) for the
finite size distributions.

• If z is a periodic point of minimal period p, using the l∞ metric, we get a com-
pound point process of Pólya-Aeppli type, namely a CPP with intensity τθ and
cluster size distribution θ(1 − θ)l , l ≥ 1, where θ is given as above by θ = 1 −
limn→∞

µ(T −pBn∩Bn)
µ(Bn) .

8. Generalization to other observable and connection with hitting time. One
could possibly wonder if the observable (13), Ξ(x) = − logd(x,z), plays an essential
role in the theory. The answer is more nuanced. Let us consider a measurable
function Φ : X → R ∪ ±{∞} and construct the new process Φ ◦ T j , j ≥ 0. We are
interested in the extreme value distribution (EVD):

Wn = µ(Mn ≤ un),

where
Mn(x) := max

0≤j≤n−1
{Φ(T jx)}.

We will return in a moment on the choice for sequence un. Let us introduce the
set

Bn := {Φ ≥ un},
which we continue to call a ball. For instance, another commonly used observable
is

Φ(x) = x−
1
α , α > 0;

in this case, Bn is simply a closed euclidean ball around zero of radius u−αn ; see
Appendix A for a brief account of EVD for different types of observables.

Define now the quantity for any x ∈ X:

tBn
(x) := inf{j ≥ 1;Φ(T jx) ∈ Bn},

which gives the first hitting time to the ball Bn when we start from the point x. By
the invariance of the SRB measure µ, it is easy to show that

µ(tBn > n) =Wn = µ(Mn ≤ un), (67)

which establishes an important link between the law of extremes and the distri-
bution of the hitting times (this also enlightens again why the EVD is recovered
when k = 0 in the Poisson distribution, see Proposition 7.3).

Given the general observable Φ , the spectral analysis of Section 3 proceeds for-
mally as we did in the previous chapters, but in order to get the final results, we
need to check the following points:
(i) 1Bn ∈ B, and we saw that the geometrical shape of Bn matters.
(ii) Condition A2 must be checked taking into account again the geometrical na-
ture of Bn.
(iii) In dealing with condition, A4 we now have to compare sup||h||≤1 |Z(L(h1Bn ))|,
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see equation (36), with ∆n = µ(Bn). In doing that with the help of Lemma 5.1, we
use again the local structure of the set Bn.
(iv) Finally, we have to prove the convergence of qk , (55), to get the extremal index.
This last condition requires the important scaling

nµ(Bn)→ τ,

for some positive τ, which fixes as well the choice of un.

Appendix A. Observables and corresponding extreme value laws. The main
classical result of extreme value theory is given in the next theorem due to Gne-
denko [17] and Fisher and Tippett [16]. The theorem deals with a sequence of
i.i.d. random variables, and we denote again with Mn the maximum over the first
n variables.

Theorem A.1. If X0,X1, . . . is a sequence of i.i.d. random variables and there exists
linear normalizing sequences (an)n∈N and (bn)n∈N, with an > 0 for all n, such that

P(an(Mn − bn) ≤ y)→ G(y),

where the convergence occurs at continuity points of G, and G is nondegenerate, then
G(y) = e−τ(y), where τ(y) is one of the following three types (for some β,γ > 0):
(1) τ1(y) = e−y , y ∈R;
(2) τ2(y) = y−β , y > 0;
(3) τ3(y) = (y)γ , y > 0.

We now give conditions on the choice of the observable to get sufficient and
necessary conditions in order to get a nondegenerate EVD still in the i.i.d. setting.
For the reader’s convenience, we quote Section 4.2.1 of the book [26], for the choice
of the function Φ introduced in Section 8. It has the form, for x ∈ X,

Φ(x) = g(dist(x,ζ)),

where ζ ∈ X is a chosen point and the function g : [0,+∞)→R∪{+∞} is such that 0
is a global maximum (g(0) may be∞). g is a strictly decreasing bijection g : V →W
in a neighborhood V of 0, and has one of the following three types of behavior:
• Type g1: There exists some strictly positive function h :W →R such that, for

all y ∈R,

lim
s→g1(0)

g−1
1 (s+ yh(s))

g−1
1 (s)

= e−y .

• Type g2: g2(0) = +∞, and there exists β > 0 such that, for all y > 0,

lim
s→+∞

g−1
2 (sy)

g−1
2 (s)

= y−β .

• Type g3: g3(0) =D < +∞, and there exists γ > 0 such that, for all y > 0,

lim
s→+∞

g−1
3 (D − sy)

g−1
3 (D − s)

= yγ .

Examples of each one of the three types are as follows:
1. g1(x) = − logx, in this case h = 1.
2. g2(x) = x−1/α for some α > 0, in this case β = α.
3. g3(x) =D − x1/α for some D ∈R and α > 0, in this case γ = α.
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Type 1 gives the Gumbel law, type 2 gives the Fréchet law, and finally type 3
furnishes the Weibull law.

A great amount of work has been done to extend such a result from the i.i.d. set-
ting first to stationary, and then to non-stationary processes. Whenever the latter
arise in the dynamical systems setting, we refer to the book [26] for an exhaustive
presentation of the results: The spectral approach used in this article is one of
them. As a final remark, we notice that, by expressing our scaling sequence un as
un = bn + y

an
, we will recover one of the previous three distributions as a function

of the parameter y.
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