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Abstract. We get a rigorous bound for the diffusion constant of the hamiltonian 
dynamical system generated by a sawtooth map on a cylinder. The momentum 
variable properly renormalized then behaves almost like a brownian motion in 
the limit of infinite coupling constants. The strategy of the proof is a rigorous 
reformulation of the Random Phase Approximation. 

O. Introduction 

In this paper we consider the area-preserving sawtooth map: 

A.  + 1 = A.  + Kg(O.), 
(0.1) 

0. + x = 0. + A. + 1 (mod 27~), 

where 9(0) is a 2z-periodic piecewise continuous function of zero average. This 
map is a simple model for a certain number  of physical situations: charged particles 
in magnetic fields, plasma confinement in nuclear fusion, stochastic ionization, 
etc . . . .  In fact it describes a "kicked" rotor subject to a sequence of periodic impulses 
9(0), or alternatively, since it can be written as a second order difference equation: 

0.+1 - 20. + 0._ 1 = Kg(O.)(mod 2~) (0.2) 

it describes the motion of a particl e receiving an impulse determined by a periodic 
one-dimensional potential. 

A lot of analytical and numerical work has been devoted to the study of (0.1) 
for smooth g's, the most important example being g(O) -- sin 0, namely the Chir ikov- 
Taylor "standard map" [1,2], While at small values of K the dynamics is regular 
(stability of KAM tori [3-8]) ,  it has been observed since a long time ago that for 
K large, the solutions of (0.1) admit a diffusive behavior in the phase space 
(A, 0)~R x qr. The standard argument in this respect is the so-called random phase 
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approximation (RPA) [1, 2]. If we define AA,  by AA,(A, O) = A,(A, O) - A we get a 
2~r-periodic function of A, that will be considered as a stochastic process if (A, 0) 
is considered as a random variable on the space 1" 2 with probability given by the 
normalized Haar measure /a L. Neglecting the two-point correlation function 
(9(0)9(0,(A, 0))), n > 0, where ( - )  is the expectation on I" z, the variance of AA,  is: 

((AA.) 2 ) = K 2n(g  z ). (0.3) 

The intuitive idea is that, for n > 0, the phases 0, = O.(A, O) oscillate so fast at large 
K's, that they become uncorrelated from 0. Therefore, the evolution of AA is 
diffusive and the diffusion coefficient D, defined by: 

D = lim ((AA")2) (0.4) 
. - ~  (g2)n' 

(provided the limit exists), is approximately equal to K 2, for K large. This last 
limit is called the quasi-linear diffusion coefficient and is denoted by D L. Further 
calculations [1,2, 23-27] using the formal infinite expansion for D in force-force 
correlations, give an higher-order correction of the type: 

O ~ D,s189 - JE(K) + J~(K)], (0.5) 

where J2 is the Bessel function of order 2. Amazingly enough, very little is known 
mathematically on the existence of D and the validity of (0.4) and (0.5). The main 
difficulty is the non-ergodicity of the motion due to the possible existence of islands 
of stability, so that the usual methods are useless to prove the convergence of the 
expansion involved in (0.5). 

Our aim in this paper is to take seriously the RPA method and to derive 
rigorous estimates on the diffusion coefficient. The argument leading to (0.3) is 
actually much too simple. A certain number of additional steps must be investigated 
in order to estimate how fast the correlation function converges to zero at large 
K's. To illustrate these ideas, we will consider the sawtooth map. This is because 
this latter model avoids complicated and probably inessential combinatorics. We 
must note at this point that i lK is a positive integer, this map becomes a linear auto- 
morphism of the torus and the diffusion coefficient can easily be computed using 
analytic methods ([10-11, 16-18]). However for K CZ the situation is quite different. 
While it is possible to prove the ergodicity of the map (and the proof is far from being 
trivial [-15]), the exact computation of D is still unsolved; approximate estimates 
can be found in [9] and recently a new technique based on a suitable partition 
of the phase space into "resonances" has been developed, but not all the statistical 
assumptions of this method are justified yet [,19-22]. 

Moreover the technical difficulties of establishing exponential decay of cor- 
relations from the construction of a Markov partition has stimulated a search for 
alternative, more direct techniques of estimating the rate of decay of correlations. 
The current paper is in this spirit. 

We remember that Markov partitions for dynamical systems with singularities 
(in particular billiards) have been constructed by Bunimovich and Sinai [28-30]; 
see also Levi [31] and a recent paper by Kriiger and Troubetzkoy [32]. 

Our way to estimate the diffusion coefficient is the following: we firstly recall 
the equality (0.3) that holds in the RPA and neglecting the higher-order corrections 
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to D for K large; then we introduce a continuous effective time t~[0, 1] and set 
n = [Kt], where [ ' ]  denotes the integer part. The variance of AAtK,1 scales now 
like K3t(O2) ,  so that if we define the stochastic process: 

~r(t, 09) - AAtrq(~ co = (A, 0)E"~ 2, (0.6) 

on the probability space of the initial values, we get the following limit (see 
Theorem 1.1 below): 

( ( ~ ( t ,  ~o)) 2 ) ~ t. (0.7) 

Equation (0.6) is a necessary (but not sufficient) condition for the process ~K(t, 09) 
to converge in probability to the normalized Wiener process. Let us however 
remark that AA,  measures the diffusion of the action variable in the cylinder 
R x I". After a rescaling of the discrete time n = [Kt] and a suitable normalization, 
(0.6) suggests that AAtrtl is approximately distributed for K large, as the path up 
to time t = 1 of a brownian particle (see Billingsley, p. 5 in [12]). What we prove 
in the present paper is the existence and the validity of the limit (0.7). We also get 

a rigorous finite-time estimate for the diffusion coefficient D , -  ((AA')2) after n 
( g 2 ) n  

More precisely, we will prove that the difference D~ _ lit is of order K -  1 steps. 
for times n up to [K]. DL 

The proofs of these results are based upon a detailed analysis of the two-point 
correlation function (g(O)g(O,(A,O))), and don't require ergodicity for the map. 
We believe that this method can be extended to a larger class of transformations, 
including the smooth ones. The core of the proof is a detailed control of the points 
of discontinuity of O,(A, 0), 0~[-zc,  ~), for A fixed. 

For smooth g's, these points should be replaced by a small neighbourhood of 
the critical points of 0,, where the derivative of the map becomes small. These 
latter points are responsible for islands of stability in the phase space, and for 
breaking the global ergodicity. 

We actually prove for the sawtooth map (and we guess it should also be true for 
the standard map), that those singular regions give a contribution of order K -~ 
(for some ~ >__ 2) to the correlations, which is sufficient in our probabilistic approach. 
We incidentally note that for integer K's our method recovers the exponential 
decay of the two-point correlation function as expected, showing in this case that 
the diffusion coefficient D coincides with the quasi-linear one in the limit K ---} ~ .  

1. Notations and Statements of the Results 

The sawtooth map (SM) T is defined on the cylinder R x "IF with coordinates (A, 0) 
by: 

T(A, O) = (A + Kg(O), A + 0 + Kg(O)mod 2n), (1.1) 

where K is a real positive number and 9(0), 0 ~  is a 2n-periodic piecewise linear 
function given by 9(0)= 0, for 0 ~ [ - n , n ) .  We set T"(A,O)=(A.(A,O), O.(A,O)) for 
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n~Tg. We will show in Sect. 2 that: 
n - 1  

A,(A, O) -= a + K ~ g(Os(a, 0)). (1.2) 
s=0 

In particular, the action increment AA,(A, O) = A,(A, O) - A is a 2n-periodic function 
of both variables (A, 0). Remarking that T commutes with the translation of A by 
2n, we denote by T the map induced by T on the 2-torus ql ̀2 just making A an 
angle variable in (1.1) 

7"(A, O) = (A + Kg(O) mod 2re, A + 0 + Kg(O) mod 2n). (1.3) 

dAdO 
7" preserves the Lebesgue measure # L -  on I" z. 

4n 2 
Then we introduce the probability space ~ = {I" 2, q, #L}, where q is the Borel 

a-algebra and we denote by IE, u respectively the corresponding expectation and 
variance on ~.  One easily checks that AA,  is actually defined on ~' with a zero 
expectation, and it describes a stationary process on ~ .  

Our next step is to formulate an "invariance principle" for the process AA, as 
briefly sketched in the introduction. We begin by setting n = [Kt], tel0,  1] and 
replace AArKt~ by (1.2). Using the notation ~K(t, ~0) defined in (0.6) the main result 
of this paper anticipated by (0.7) can now be restated as: 

Theorem 1.1. We have the following limit: 

l i m W (  1 tKq-a ) 
- ~ g(Os(A,O)) = lira ( (~K(t ,o))z)=t ,  (1.4) 

s=O 

where a 2 = u  2 

As pointed out in the introduction, this result suggests that the process ~K(t, og) 
converges to the normalized Wiener process (and this is called an invariance 
principle), in the following sense: the measure #L induces a family of probability 
distributions fiK on the space cg of continuous functions on [0, 1] with the uniform 
topology, according to: 

/~K(B) = ]2L{(.0~i~; ~K(t, ( .o)~B}, (1.5) 

whenever B is a measurable subset of oK. We have an invariance principle whenever 
/~K converges weakly to the Wiener measure. To prove such a result, Theorem 1.1 
is a necessary condition. A sufficient condition is given by the convergence of all 
the finite-dimensional distributions of the process. We have not investigated this 
latter point yet, and we postpone it to a future work. 

It is interesting to note that as a by-product of the proof of Theorem 1.1 we 

can estimate the diffusion coefficient. In fact, ifD, - V(AA,) and DL are respectively 
n a  2 

the diffusion coefficient at "time" n and the quasi-linear coefficient we are able to 
show: 

Proposition 1.2. For K > ~ 2  and n > O, the following estimate holds: 
2 

D, I 288 n 18 �9 (1.6) 
DLL - l j - - < K 2 - O . 5 + K + I "  
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Theorem 1.1 follows immediately from this proposition. The singularity at K - x//2 
2 

is apparent: it arises to optimize the hound for K large; in fact the key estimate 
for the proof of Proposition 1.2 is the following lemma: 

Lemma 1.3. We have for K > 0 :  [E(o(O)g(Os(A,O)))l<2n2(2+22Cs.k) for s > 2 ;  
_ _-- a 2 ---- 

3n 2 a S -- 2 ~ K + 2 + ~ + 4K 
I1E'(g(O)g(OI(A'O)))J < 1" where c,,k- a~_l( a _ 2) and a 

= K +  2 
is the (constant) positive eigenvalue of the derivative of T. 

Proof of Proposition 1.2. By an elementary calculation we get: 

I~-l]<~Jn--~-nllE(o(O)o(Oa(A,O)))+ni~=i!(1-S-n)lE(o(O)o(Os(A,O)))l. (1.7) 

n~,a : ( S )  1 l 
The term 1 - is bounded by the Riemann integral S dx(1 - x) = . Using 

s = 2  o 2 

Lemma 1.3, it is easy to conclude. O 

Here we give a sketch of the proof, that is reduced to estimate the integral of the 
product g(O)'g(O.(A, 0)) only with respect to the angle 0. An important combinatorial 
role will be played by the graph of the function O,(A, 0)-rood 2n, 0~[ - n, n), which 
we simply call F,(O) keeping A fixed. This graph is made of straight lines with 
slope O0, (namely the derivative OF,(O)/O0) which cut (whenever K r along vertical 
lines located at the discontinuity points of F,(O). This graph determines a partition 
of the basic torus [ - n ,  n) in the following way. Let S, be the set of O's in the 
interval [ - n, n) such that either F,(O) is an odd multiple of n, or 0 is a discontinuity 
points of F.(O). This set divides [ - n ,  n) into two different kinds of intervals. In 
the first ones (good intervals or o-typed), both their endpoints are continuity points 
of F.(0); in the second ones (bad interval, or b-typed) at least one of the endpoints 
is a discontinuity point of F,(O). We then split the integral: 

~g(O)o(O,(A,O))~n 

over the partition defined by S,. In each term of this decomposition, 9(0) can be 
replaced by a constant, with an error of O(K-"). Then, it remains to integrate 
g(O,(A, 0)). If we have a O-typed interval, the integral vanishes. Whereas on b-typed 
interval, the integral can be written in one of the two following forms: 

where c~, (respectively ft,) is different from n (respectively - n ) ,  and the slope 0F. 
is of order K". We will prove that, up to an error of order K - 2, one can group these 
integrals in approximately K ~-2 terms, each of which being the sum of/~(K) = O(K) 
integrals of type (i) and (ii) above, where now the boundaries ctj and fl~ 
(1 < J <= l,(K)), are distributed on • according to a well-defined rotation of the 
circle. The contribution of each sum can be estimated by Denjoy's inequality and 
gives a bound of order ! (and not K). Since each integral is multiplied by the 
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inverse of the slope of F,(O), we finally get a bound of order K -  2, which is enough 
to prove Lemma 1.3. 

2. Structures of the Discontinuities 

In this section we prepare some technical tools needed to prove Lemma 1.3. Our 
major interest is for non-integer K. It is easy to prove the following lemma by 
induction: 

Lemma 2.1. For positive n's the following relations hold: 

n--1  

A.(A, O) = A + K ~ g(O.(A, 0)), 
s = O  

n - - 1  

O.(A, O) = 0 + nA + K ~_. (n -- s)g(O.(A, 0)), 
s = O  

and similar relations hold for negative n's. 4> 

Let F,(O) be the function on 11 defined as F,(O) = O,(A, O) where A is kept fixed 
once and for all. Since F,(O + 2u) -- F,(O) + 2r~, F, is itself the lift of a function on 
the torus T. So that it is sufficient to consider the restriction of F,(O) on the interval 
[ -  re, r0. We also remark that the function ft.(O)= F,(O)-  (0 + nA)(OeR) is 2re- 
periodic. Now, the function g(O), 0eR,  is monotone increasing everywhere but on 
the set (2Z + 1)re of odd multiples of u, where the mapping T becomes discontinuous 
for K e N .  Let Disc {F,(O)} denote the set of points in [ - r : , u ) ,  where F.(O) is dis- 
continuous (including the end points). By definition, we clearly have Disc {F,(0)} = 
Disc {/~,(0)}. Therefore: 

. - - 1  

Disc {F,(0)} = U Disc {goFs(O)}. (2.1) 
S = 0  

We then remark that g oFs(O) is discontinuous at points 0 such that either 
Disc {F,(0)} :/: ~ or F,(O)= rc(mod 2re). Together with (2.1), this gives: 

Lemma 2.2. For n > 1 we get the recursion formula for the discontinuities of F,: 
. - - 1  

Disc {F,(0)} c (,J (Disc {Fs(0)})u {0E[ - 7r, rt); F ,_  1(0) = rc (mod 2~z)}. 
s = 0  

The previous lemma also shows that Disc {F,(0)} is a finite set. We will give later 
on an upper bound on its cardinality. The derivative OF, at the points of continuity 
is independent of 0 (and of A too) and is given by: 

Proposition 2.3. In the points where it is defined, the partial derivative of F,(O) with 
respect to 0 is given by: 

n - 1  a 2 n + 1  § 1 
O F . = I + K  ~" ( n - j ) O F , -  , n>O. 4> (2.2) 

i=o (a + 1)a" - 
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Proof. Starting from the formulae in Lemma 2.1, since 0g = 1 we get immediately: 
00 

n-j 
OF. = 1 + K ~, ( n - j ) O F j .  

j=0 

The generating function is the formal power series in X given by: 

V(X)=  ~ xm'OVm . 
m=O 

It follows immediately that F satisfies the following equation: 

1 X 
F(X)  = 1 - X + K ( _ - ~  F(X),  

and therefore 

F ( X ) =  
1 - X  

1 - (K + 2 )X  + X z" 

Remembering the definition of the constant a in Lemma 1.3, one can expand easily 
F in power series using 1 - (K + 2)X + X 2 = (a - X ) ( a -  1 _ X). An elementary 
calculation leads to the result. 

Corollary 2.4. We get the following estimates: 

1 1 a 
K + 2 - - - < a < K + 2  - -  a" _< 0F. < a". �9 (2.3) 

K + I  K + 2 '  a + l  - - 

Proof. Since a + a - l = K + 2 ,  it follows that K > 0 = ~ I < a < K + 2 .  Thus 
1 1 1 1 

- - < a  -1 < I=~K + 1 < a < K  + 2 - - - . H e n c e - - < a  - 1 < - g i v i n g  
K + 2  K + 2  K + 2  K + I  
the first estimate in (2.3). On the other hand, from (2.2) we get 

a2n+l + 1 a2n+l+x 
0F, = (a + 1)a" < (a + x)a" for 0 _< x < 1. Setting x = 0 we get the upper bound 

in (2.3). Using a 2"+1 + 1 > a 2"+ 1, we immediately get lower bound. �9 

We want now to get a more precise description of Disc {F,(0)}. For  n = 1, Fx(O)= 
0 + A + Kg(O), and we get Disc { F I ( 0 )  } ---- { - -  ~z}. For  n = 2, F2(0 ) ----- 0 + 2A + 2Kg(O) + 
Kg(FI(O)), so that beside 0 - - { -  n}, the discontinuities of F 2 ( 0  ) a r e  given by the 
points Os, such that Fl(Osl)= (2Jx + 1)n. We then remark that F l ( - n  + 0 ) =  
A - (K + 1)n and F ~ ( n -  O) = A + (K + 1)n, so that the total variation of F 1 is 
2n(K + 1) and we get for any fixed A: 

2n 2n 
ON; + 1 -- OF~ < -- n < Os; + 1 < ON; + 2 < "'" < Osl < "'" < On+ < n < On~ + OF~I 

with 

27[ 
0 j + l - O s = : ~ _ ,  

v r l  
N 1 + 1 < Jx__<N~ - 1. 
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The  preceding equat ions define the set of  indices N~ ;  moreove r  we also set 

: ON? + 1 ON? - -n  and = n, so that:  

2n 2n 
ON; - 0 , , ;  + 1  = ( N ~  - N 1 - 1) 0El < 2n __< (N 1 - N ;  + 1) ~F~' 

namely,  

(N~- - N~- -- 1) =< 0F 1 =< (N~- - N ;  + 1). 

We denote  by I j  = [Os; Os+ 1), for N~- < J _< N +, the intervals defined by this parti-  
t ion of [ - n, n). In  each such interval, F t  is continuous,  affine and takes on values 
in [ (2J  § 1)n, (2J + 3)n). In part icular,  goF1 and therefore F 2 also, is cont inuous 
and affine there, and the discontinuities of  F2 are exactly given by the endpoints  
of  these intervals. So: 

Disc {F2} = (Os; N ;  <_ J <_ U~ + 1}. 

In  much  the same way we get recursively a family of intervals (called intervals of 
type s - 1), giving a par t i t ion of [ -  n, hi,  and defined by: 

I j  ...... J,-, = lOs ...... J.- ,; Os ...... ss-,+ 1), 

where: 

N [  <=Jt < N ~ ,  N ; ( J ~  . . . . .  Jp_l)<=Jp<=U+(J~ . . . . .  J , - a )  2 < p < = s - 1 ,  

= 0  OSt,...,d . . . .  U + _  t + 1 ~ Oj . . . . . .  J s - 2 +  1 jl,...,js_2+l,N:_l 

having also defined: 0 s j = 0 N- ' and: 
1 , . . . ,  s - 2  J 1 , . . . , J s - 2 ,  ~ - 1  

0 -----7~. 
N +  ~ +  M + N + 1 + 1  t , " 2  , ' " , " s -  2 ,  s -  

Moreover  the indices N+(J1 . . . . .  Js -1)  are defined in such a way as to satisfy: 

( 2 N j  + 1)n < Fs(O s ...... ss-~ + 0) < (2N~- + 3)n, 

(2Ns + + 1)n < F~(O s ...... s.-~ +1 - 0) < (2N + + 3)n, 

and the new interval at the s th step are defined by: 

F~(Os ...... s . . . .  s,) = (2J~ + 1)n whenever N 7 < J~ < N + 

We call "good"  the intervals of  type (s - 1) with Js_ 1 # N+- 1. Actually the function 
F~_I(O) is m o n o t o n e  increasing with variat ion 2n on them, so that  their width is 
2n/OF,_ 1. On a "bad"  intervals with J~_ 1 = N j -1  (respectively N +_ 1), the function 
F~_ 1(0) is discont inuous at the left (respectively right) endpoint ,  or  at both. 

This latter case may  happen if there is a bad interval of type (s - 2) with length less 
2n 

than  or equal to - - .  Such an intervals can be writ ten as I s ...... J,-2 = los ...... a._ 2; 
OFs- 1 

Os,,...,s,-2+ 1), where 

O J 1 , - . - , J s -  2 ,Ns -_  I + 1 = 0 J l  , ' " , J - *  - 2 + 1 

o r  

= 0  s j = 0  OJ1 . . . . .  J s_2 ,Ns+_l  l . . . . . . .  - 2  J l , . . . , J s _ 2 , N ~ _  1 " 
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Ij, ..... js_,.N- ~ Ije...,js_,.Ns+ 1 Ij, . . . . .  j s _ l , j  Ij,.,...js_~.N~_l 

I J 1 1 
I Jr.., Js-v N+ 

I I 

0Je..., .Is_ 1, N~+2 0 Jl"'" Js-r J+l 

0Jl ..... Js-i, N~+I 0 Ji,'", Js-v J 

o j , , ,  j~_~, N~" 

0 Jl '"" Js-t. N+-I 

Fig. 1. The discontinuities of F, and the corresponding partition 

This means that I s ...... ss-~ generates only one interval of type ( s -  1) which we can 
also denote by I s , N_+ where N~ 1(J1 . . . .  Js-2) N+ - , = ~ -  a ( J 1  . . . .  , J ~ - 2 ) "  

l , . . . , d s - -  2~ s - I  

On the other hand, it is easy to see that in any good interval of type ( s -  1), 
there are approximately dFJ~?F,_ 1 good intervals of type (s). More precisely, if 
N +_ + 1 = NZ- 1(J1 . . . . .  J~-2) with J ,_ 1 ~ N:_ 1, we get: 

N~ + - N ~  - 1 <  [~FJOF~_ 1] < N~ + - N ~ -  + 1. (2.4) 

For large K this number can be estimated using Proposition 2.3: 

1 8 F ~  _ < 
Lemma 2.5. For s > 1, we get  a - < _ a. 

a2r - 1) = r 1 - 

OFs a 2s + 1 + 1 a 2s + 1 + x 

Proof.  From Proposition 2.3, we get OF,_ 1 a(a2, -  1 + 1) < a(a 2~- 1 + x) for 

0 < x _< 1. Setting x = 0, we get the upper bound. For the lower bound, 

OF~ a 2 -- 1 1 
a 

c 3 F s _  1 a ( a  z s - 1  + 1) ~ aZ( s - l ) "  

Let us call ~ , _  1 the partition of [ -  n, n] given by the intervals of type (s - 1) and 
let P,_ x be its cardinality. To get an upper bound of P~_ l we note that each 
interval I of : ~ - 2  gives at most two (possibly bad) intervals of ~ _  1 having at 
least one endpoint in common with an endpoint of I. So they give a contribution 
of 2P~_z to P,_I .  If we now subtract these latter intervals, all the remaining 
intervals of ~ _  t are good and their number is simply bounded by 2n/(2n/dF~_ 1). 
Then we get: P~-I < 2P~-2 + OF~_I. We also observe that the cardinality of 
Disc F~(O) is surely bounded by 2Ps_ ~, iterating the preceding inequality for P~_ 1 
with P0 = l, and using (2.2) we get: 
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Lemma 2.6. 
s - - 1  

#Disc Fs(0) < 2P~_ 1 < 2 ~ 2iOF~_ 1 - j  ~ 2Cs,k a~- 1 S >= 1, 
j = o  

where Cs.k was defined in Lemma 1.3, Sect. 1. 
In the next section we have to compare P~_, to aFs for ct = 1,2, 3. 
Collecting Lemma 2.6 and Proposition 2.3 we easily get: 

Lemma 2.7. For s > ~ we have P~-" < 1 + < a" 
= ~ F ~  = 

3. Proof of Lemma 1.3 

Now we have all the ingredients to prove Lemma 1.3 following the strategy 
indicated at the end of Sect. 1. We will use the notation: 

/t 

E s = 1E(g(O)g(Os(A, 0))) <= S d~ 0)), s => 1, (3.1) 

dO 
where do = - - .  

2n 
Let us decompose (3.1) into a sum over the intervals I s ...... j,  defined in Sect. 2. 

t,~(O) ) Let 0(~ be a point in this interval. We can then write g(O)= gtv s ...... s, + 

(0 - O~s~ and therefore we immediately get: 

<= E g(O~?...,,s) ~ dvg(Fs(O)) 
Jl . . .Js  la l , . . . ,ds  

+ ~" ~ dv(O - O~s~ = E(1) + E(2). (3.2) 
J J I l... s J1,...,ds 

Using Lemma 2.4, we prove that the second term is bounded by: 

2n 4x 2 
E(2)< max (llsl ..... s,I) ~ v(Is, , . . . ,s)maxlg(O)l < n < - - .  (3.3) 

J1,...,Js Jt...Js o = dEs - a s 

Now let us consider the first term E(1) in (3.2). The good intervals in the sum give 
no contribution for F, is linear and varies from - n  to n, whereas g has mean 
zero. Therefore only bad intervals must be kept, namely those for which Js = N+.  
We now get E(1)<  E(11)+ E(12), where E(11) is obtained by restricting the sum 
in E(1) to those intervals for which J s -  x = Ns + 1, and E(12) is obtained in the same 
way with now J~_ 1 =~ N+- 1. An estimate similar to (3.3) using Lemma 2.7 will give 
easily: 

E ( l l ) < m a x l 0 2 ( O ) l  ~ o(I u+ N+)<4n  2Ps-2  <8cs'kn2 (3.4) 
0 j l . . . J s _ 2 , + ,  + Jl ..... J s - 2 ,  ;-1, ; = aF s = a 2 
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~(o) , be a point in the Then we have to estimate the sums E(12). Let now ~,j .......... 
interior of I s ...... Js-2 which contains I j  ...... s . . . .  N~" A shift of the argument in E(12) 

gives: 

.~ ) g( F ~( O) ) E(12) < g(Oj ...... Js-2 Z E ~ do (0) 

Jl. -2 Js-l~cN+_le=::l=IJl,...,Js-l,N~s 

.~ , ~ (o )  ) § f+ (0 :o ,  .......... 
J1, -2Js-1 +-1 = -  

do g(F~(O)) = E(121) + E(122). (3.5) 
IJ1,...,Js- 1,N~ 

Using again the results of Sect. 2, we easily see that E(122) is bounded by: 

E(122) < 4n2p~-x < 16C~'kn2 (3.6) 
0Fs_ 20Fs = aS 

Once again we split the sums involved in E(121) into two pieces as follows: 

E(121) =< E E ( ' " )  
IJ1...Js-3Js-2=N+-2 I 

+ ~. ~ (. . .)  = E(1211) + E(1212). (3.7) 
J1...Js-3Js-2r 

The first give a contribution which is easy to estimate: 

E(1211) < 4n 2 OFs- 1 P~- 3 ~ 8cs k ~2 ' . (3.8) 
OFs-2 OFs - a 2 

Now we are ready to estimate the most difficult piece E(1212). Since g is bounded 
by n, we can estimate this piece as follows: 

E(1212)< n E , E •  E E ~ dog(F~(O)). (3.9) 
Jt . . .Js-aJs-2 Ns_ 2 Js- lr  e=• IJI,...,Js-I,N~ 

The same kind of estimate as above produces only a bound of order O(K-1) which 
is not enough. So we have to use a more sophisticated technique. In order to do 
so, let us consider the partial sum: 

Ss,,...,ss-2 = E k( ~ do g(Fs(O)) + 
J s - t C N + - t  J t , . . . ,Js- l ,N~ lat,...,Js-,,Ns+ 

do g(Vs(0))). 

(3.10) 
To deal with it we will need some more notations, namely: 

(i) ~/g- = F~(Oj ...... J~- 2 ,N;_ t  + 1 -]- 0);  ~10 = F s ( O j  ...... S~- 2,N;_ 1 + 2 - -  O) 

x + 6  dy dy 
(ii) F~(x)=Sg(y)~-+ ~ g(y) 6=rlo-r l~ ,  xeT, 

x ZT~ - n  ~ '  
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(iii) Rs(x) = x + 2~q(K) (mod  2n). This is actually the rotat ion on the circle I" 1 with 
rota t ion number:  

s--2 
I + K ~. (s- t )OF, 

as (K)=  ,=o 1 - t~F~ K -  1. (3.11) 
0Fs-  1 aFs -  a 

~ x )  

82-2~84~ I ~  

I 
- g~ 

4g 

Fig. 2. Graph of F, 

L e m m a  3.1. I f  Ts-1 = Ns+--1 - N : - x  - 1, the following identity hold: 

1 r,_,-1 S' 
ro(r/~ + 2rotes(K)) = s,,...,s,-2 0 (3.12) 

�9 Ss'" '"s~-2- OFs t=o ~Fs 

Proof. See Appendix 1. 

By inspection we can check that  Fo(x) is continuous,  piecewise linear, with zero 
average on the circle, and a bounded  total variation. The s tandard way to estimate 
the sum in (3.12) consists in using Denjoy's inequality [ 13, 14], giving an upper bound 
Var(F~) provided the rota t ion number  ~s(K) is sufficiently "well approximated"  
by a rat ional numbers  of the form P/Ts- 1. But we get: 

L e m m a  3.2. For s > 2, we get the following estimate: 

~s(K) T~_I < 3 �9 -- 1 + = (Ts_1) 2. 

1 
Proof. F r o m  Lemma 2.5, we get ~s(K) - 1 + < a - K - 2 q 

T s - 1 -  

In much the same way g s ( K ) -  1 + 

(3.13) 

1 1 

T~-I T~-I 
1 1 1 1 

> a  K - 2 4  - - -  
T s - 1  - a 2 " - "  Ts -1  T s - 1  

a 
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1 1 1 
> Now we know (see Eq. (2.4)) that T~_ 1 < a < T s_ 1 + 2 + a a2(S - 1) - a2(S - 1)" 

1 
a2(S- 2~ < Ts- 1 + 3. A simple calculation leads then to the result. �9 

�9 Lemma 3.3 (Denjoy's Inequality). Let h be a continuous function on the circle with 
bounded variation. Let ~ E R  and p / q ~  (p and q prime to each other) be numbers 
such that I~ - P/q] < e for some e > O. I f  we denote by ~X~ the smallest integer larger 
than or equal to X,  then for any x ~ T ,  we have: 

i ~ i h ( x + 2 n c a ) - q ~ h ( y ) ~  <~q2e].Var(h). <) (3.14) 

Proof. See Appendix 2. O 

Therefore we can now bound S) ...... j~_~ using (3.12) and Lemmas 3.2 and 3.3: 
t [Sj ...... j,_ ~1 < 3 Var(F~) < 6n, (3.15) 

for F~ has a zero mean over the circle and its variation is bounded by 2n. Replacing 
in (3.12) and then in (3.9), one gets for s > 2: 

E(1212)<n ~ ~, S), ..... s ' - ~ < n P s - 2 6 n <  12cs'Ur2- (3.16) 
J1...ds_3Js_2*N+_2 c~F, - OF s a 2 

T h u s  for  s _--- 2 a n d  K __> 0, we get: 

IlE(g(O)g(Os(A, 0)))1 < E(2) + E(11) + E(122) + E(1211) + E(1212) 

4n z 8cs,kn2 16cs,U t2. 8Cs,kn2 12c~,kn2 
< a s + ~ T - - +  a * + ~ - - - t  a2 <(2+22c~,k). 

(3.17) 

We can estimate I IE(g(O)g(OI(A,O)))I in much the same way. A direct calculation 
gives: 

3re z 
IE(g(O)g(Oa(A,O)))[ < l '  (3.18) 

= K +  

which achieves the proof of the main lemma. �9 

Appendices 

Appendix 1. Proof of Lemma 3.1 

We consider the formula (3.10) which gives the main term to be estimated: 
/ 

J~- , ~lq~ +- ~ \ Is l , . . . ,as-  ~,Nf IJl,. . . ,J~- l ,n+ / 

(AI.I) 
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+ 
Since in this sum, Js-2 =/=Ns-2, the interval I s ...... ss-2 is good  and its length is 

2n 
- - .  This interval is subdivided into the intervals Isl,...,ss_2,js_l, N j_  1 + 1 
~Fs-  2 
J~- 1 < N+-  1- In the sum (AI.1) only the values Js_ 1 r N~_ 1 are taken into account,  
so that  the n u m b e r  T~_ ~ of permit ted  values of  the index J~_ ~ is T~_ ~ = N + - 

s - - 1  

N~_ 1 - 1, and we have Ts_ 1 < OF~_ 1 < T~_ ~ + 2. We then set: 
( ~ f  s - 2 

(i) t = J ~ - l - ( N + l  + 1 ) ~ 0 < t <  T ~ _ ~ -  1, 
(ii) q~- = F~(O s ...... s . . . .  s~-, + 0) - (2N~ + 1)n, 

(iii) q+ = V~(O s ...... s . . . .  s~-1+ 1 - 0) - (2N + + 1)n. 

No te  that  N + m a y  depend upon  Js_ ~. We know tha t  

F~(O) = 0 + sA + sKg(O) + (s - 1)Kg(F~(O) ) + .. .  + 2Kg(F~_ 2(O)) + Kg(F~_ 1(0)), 

is piecewise affine with a cons tant  slope and that  its discontinuities are precisely 
the endpoints  of the intervals Isl,...,s~_2,s~ - . These discontinuities are due to the 
last te rm only, for F~_ t is cont inuous  on 1s,,. . . ,s~_. It  follows that: 

{ } rl]+ 1 --  rl2 = (Os~,...,s~_ ~,s~_, + 1 --  Os ...... ss- 2,J~-l) 1 + K ~, (s - j ) O F j  (mod 2n), 
j = O  

for indeed g(Fs_l(Ojb...d .... J~-i + 0 ) ) =  ~. Since I s  ...... Js-2,Js-1 is good,  using the 
formula  (2.2) we get: 

2n 
~I~+ 1 - ~l~- = {~F~ - KOF~_ 1 } - 2n~s(K)(mod 2n). (A1.2) 

~F~_ 1 

The same formula  holds for q + 
t " 

Let us now set y = F~(O) in (AI.1). Then  dy = OF~dO and y varies f rom q~ to 
_+ n, depending upon  which interval is considered. This gives 

- O(Y) + d y  . 
SJ~'"J~-  ~ OFs t=o ~, ,  

Using the definition of F~ given in Eq. (3.11 (ii)) we get immediate ly  the result. 

Appendix 2. Denjoy's Inequality 

Let h be a periodic function of per iod 1 with bounded  var ia t ion on the circle. Let  
~ e R  and p / q e Q  (p and q pr ime to each other) be numbers  such that  I ~ -  p/q] < e 
for some e > 0. If  we denote  by ~X~ the smallest  integer larger than  or equal  to 
X, then for any xClr,  we have: 

i ~ = i h ( x + ~ t ) - q ~ h ( y ) d y  <~[q2~]]Var(h). ~ (3.14) 

Wi thou t  loss of  generali ty we can assume that  0 < e < 1, p/q < ~, x = O. 
Then  if 0 < t < q is an integer, let p~ be the integer in [0, q) such that  Pt =- tv 

(mod q). I t  follows that  t e e [ p t / q ,  Pt/q + q~](mod 1). Since h has bounded  variat ion,  
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there is a finite signed measure # on I-O, 1] such that  h(y)- h(x)= #( [x ,y ] ) ,  and 
Var(h) = [I # II. It  follows that  if x~[pt/q, pt/q + 1/q), we get: 

tot (Pt/q) + qe [ q 2 e ]  -- 1 (Pt + J + 1)/q 

Ih(t~)-h(x)l= !#(dy)  < S I#(dy)l < ~ S I#(dy)l. (A2.1) 
(pt/q) j = O  (pt + j ) /q  

Note  that  (A2.1) is true also for 1/q < e, replacing the interval [Pt/q, PJq + qe] with 
the unit interval. 

Integrat ing over x on both sides we get (all the Pt are distinct since p/q is an 
irreducible fraction): 

h(~t)-q h(y)dy < ~. q ~ Ih(~t)-h(x)ldx 
t = 0 ( p , / q )  

~q2e~ -- 1 q- -  1 ( s + j +  l ) / q  ( P t +  1)/q 

< Z Z q ~ I#(dy)l ~ dx<[[qEe]]Var(h). <) 
j = 0 s = 0 (s + j ) /q  (pt/q) 
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