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a b s t r a c t

Generalized dimensions of multifractal measures are usually seen as static objects, related to the
scaling properties of suitable partition functions, or moments of measures of cells. When these
measures are invariant for the flow of a chaotic dynamical system, generalized dimensions take on a
dynamical meaning, as they provide the rate function for the large deviations of the first hitting time,
which is the (average) time required to connect any two different regions in phase space. We prove this
result rigorously under a set of stringent assumptions. As a consequence, the statistics of hitting times
provides new algorithms for the computation of the spectrum of generalized dimensions. Numerical
examples, presented along with the theory, suggest that the validity of this technique reaches far
beyond the range covered by the theorem.

We state our result within the framework of extreme value theory. This approach reveals that
hitting times are also linked to dynamical indicators such as stability of the motion and local
dimensions of the invariant measure. This suggests that one can use local dynamical indicators from
finite time series to gather information on the multifractal spectrum of generalized dimension. We
show an application of this technique to experimental data from climate dynamics.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction and summary of the paper

Generalized dimensions are a primary tool for the analysis of
multifractal measures, i.e., measures whose local densities fea-
ture a range of different scaling exponents. Interest in these
quantities originated in the eighties of the last century [1–3],
primarily for the study of chaotic attractors and fully developed
turbulence [4,5] and rapidly became important also from the
mathematical viewpoint. The combined effort of physicists and
mathematicians leads to the development of the so-called ther-
modynamical formalism [6–8] in which generalized dimensions
play a major role. For the sake of numerical experiments, but also
of application to empirical data, many different techniques have
been proposed along the years for the numerical calculation of
generalized dimensions (we just quote [2,9–14] because even a
partial list of references would require a full paper).

In this work we link generalized dimensions and the recur-
rence properties of the dynamics. In the same line of thought
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of Kac’s theorem [15], and more generally of ergodic theory,
we study the connection between a dynamical quantity, the hit-
ting time of a small set, and a static quantity, the statistical
distribution of the measure of small balls.

This approach has been initiated in [1,16,17]: generalized di-
mensions can be derived from the moments of the so-called first
return time, the length of time required for the dynamics to
return close to a chosen initial point on the attractor. Numerical
experiments in [18] showed applicability and failures of this
technique: in [19] the relation between dimensions generated
via return times and the original quantities has been examined
rigorously and in full generality, also providing explicit examples
and counter-examples.

A related result will be derived herein, by considering hitting
times [20], rather than return times: hitting times are related to
targeting small regions of phase space, starting from a different,
arbitrary point. Proposition 1 in Section 3 shows that dimensions
indexed by q ≤ 2 (the meaning of this index, which is related
to the order of moments, will be explained in the next section)
can be computed in this way. In Section 4.1, the abstract theory
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is translated into a numerical algorithm and applied to the test
cases of the Arnol’d cat map and the Hénon attractor.

A second fundamental point of this paper is to show that
generalized dimensions yield the rate function for the large de-
viations of the first hitting time of a ball of given radius. They
quantify the rate at which the probability of observing ‘‘non typ-
ical’’ values diminishes when the radius goes to zero. Our result,
Proposition 2 in Section 3, parallels a previous investigation [20]
where the target set in phase space is a dynamical cylinder, rather
than a ball. Rigorous theory is presented for the case of conformal
repellers1 but we believe that similar results hold in more general
settings. A numerical illustration of the large deviation statistics
is presented in Section 4.2, in the case of a dynamical system
evolving on the Sierpinski gasket.

To obviate the limitation of the hitting technique to a part of
the spectrum of generalized dimensions, in Section 5 we continue
the investigation of a preceding paper by some of the present
authors [23], in which the correlation dimension (the dimension
of index q = 2) was computed by means of extreme value theory
(EVT). The dynamical extremal index (DEI) appearing in the Gum-
bel’s limiting law followed as a by-product and it was interpreted
as the rate of backward contraction on the unstable subspaces, a
quantity closely related to positive Lyapunov exponents. We now
extend this technique to the case of arbitrary, positive, integer
index q. In Sections 5.1 and 5.2 the abstract theory is applied to
specific examples. The associated DEI is again related to Lyapunov
exponents, but in Section 6, via Proposition 3 and the subsequent
analysis, we show that it is also affected by the variation of the
invariant density and by the lack of uniform hyperbolicity of the
system.

We consider the rate function of the hitting time as a way
to detect and quantify the presence of rare events in the dy-
namics. These events are produced by the presence of points
where the local dimensions and the first hitting time (our sta-
tistical indicators) do not assume their typical values. Although
these non-typical points (like e.g. unstable fixed points, periodic
points) have null probability to be attained by the dynamics,
their influence in a finite region around their location affects the
convergence of statistical indicators via an exponentially small
probability of deviations from the typical values. The rate function
measures the intensity of such deviations.

To show a realization of this scenario, in Section 7 we analyze
experimental data coming from climate dynamics. In fact, our
broader goal is to implement statistical tools to investigate and
to interpret data coming from various physical situations, like
climate dynamics, but also turbulence, neuroscience and biology.
Further applications of the methods developed in this paper will
appear in forthcoming publications.

2. Definitions and statement of the principal results

2.1. Review of related literature on multifractals

Let (M, µ, T ) be a dynamical system given by a map T acting
on a metric space M with distance d(., .) and preserving a Borel
probability measure µ. If we denote by B(z, r) the ball of radius
r centered at z ∈ M , we define the spectrum Dq (q ̸= 1) of

1 These are the invariant sets of uniformly expanding C1+α maps, defined
on smooth manifolds and whose derivative is a scalar times an isometry. The
repeller arises as the attractor of pre-images of the map, see [21] for an
exhaustive description. Dynamically generated Cantor sets on the line, Iterated
Function Systems with the open set condition, disconnected hyperbolic Julia sets,
are all examples [22] of conformal repellers. It is worth mentioning that such
repellers can be coded by a subshift of a finite type and they support invariant
measures which are Gibbs equilibrium states. This makes them particularly
suited for the application of the thermodynamic formalism.

the generalized dimensions of µ by the scaling relation of the
q-correlation integral with respect to the radius r

Γµ(r, q) =

∫
M
µ(B(z, r))q−1dµ ∼r→0 rDq(q−1). (1)

For q = 1 the above is replaced by:∫
M
log(µ(B(z, r)))dµ ∼r→0 D1 log r. (2)

See [1] and [16] for the introduction of the theory, [8] for a
formal rigorous definition of the previous scaling behavior and
the books [9,21,24] for several applications to non-linear systems.

The scaling equation (1) can be made mathematically precise
by the following limit that defines the real function τ of the
index q (employing liminf and limsup to define upper and lower
quantities, when they differ):

τ (q) = lim
r→0

logΓµ(r, q)
log r

. (3)

Generalized dimensions Dq are obtained from the function τ (q)
via the equation

τ (q) = Dq(q − 1) (4)

when q ̸= 1, and by l’Hopital rule when q = 1. It is well
known that, for a large class of dynamical systems, the Legendre
transform of τ (q), namely

f (α) = min
q

{α q − τ (q)}, (5)

is the Hausdorff dimension of the set of points z ∈ M verifying:

lim
r→0

logµ(B(z, r))
log r

= α, (6)

provided the limit exists, see [8,21] and references therein. This
limit is called the local dimension of the measure µ at the
point z.

The so-called exact dimensional measures µ have a local di-
mension that is constant µ− a.e.. This dimension coincides with
the information dimension D1 [25]. Several dynamical systems
with hyperbolic properties possess an invariant measure that
is exact dimensional, whose information dimension can be ex-
pressed in terms of the Lyapunov exponents and of the metric
entropy. When the function f (α) is not singular, the space M
can be parted into uncountably many subsets characterized by
the same local dimension, which are of zero measure (except of
course that of dimension D1) but of positive Hausdorff dimension,
yielding what is called a multifractal.

When the generalized dimensions Dq vary with q, they imply
deviations of the local dimensions defined in Eq. (6) from the
expected value D1. To gauge the deviation of the observable
logµ(B(z,r))

log r from its expected value, at the finite resolution r > 0,

one considers the quantity µ
({

z ∈ M s.t. logµ(B(z,r))
log r ∈ I

})
, where

I is any interval in R, including or not the expected value D1. It has
been recently proven [26] the interesting result that in the family
of systems known as conformal repellers the previous deviations
decrease exponentially when r tends to zero, with a rate that is
given in terms of the generalized dimensions:

lim
r→0

1
log r

logµ
({

z ∈ M s.t.
logµ(B(z, r))

log r
∈ I

})
= inf

s∈I
Q (s). (7)

The rate function Q (s) is determined again by τ (q) of Eq. (3):

Q (s) = sup
q∈R

{−qs + τ (q + 1)}. (8)

In addition to the point z, let us now consider a second point
x ∈ M , and let us denote by HB(z,r)(x) the first hitting time of the
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point x in the ball B(z, r):

HB(z,r)(x) = min{n > 0 s.t. T n(x) ∈ B(z, r)}. (9)

A particular situation happens when the point x belongs to the
ball B(z, r). In this case one calls HB(z,r)(x) the time of first return
of x into B(z, r). It is convenient to define µ|B(z,r)(·), the restriction
of µ to B(z, r):

µ|B(z,r)(A) =
µ(A)

µ(B(z, r))
,

where A is any measurable set. When the invariant measure µ is
ergodic, it is well known that the first return time satisfies Kac’s
theorem [15]:

Eµ|B(z,r) (HB(z,r)) =

∫
B(z,r)

HB(z,r)(x)dµ|B(z,r)(x) =
1

µ(B(z, r))
. (10)

By using the previous result in association with the Ornstein and
Weiss theorem [27], it is possible to show that the first return
time satisfies

lim
r→0

logHB(z,r)(z)
− log r

= D1, (11)

for z chosen µ − a.e., (see [28,29]). Observe that in the above
equation we are considering the first return of the center of the
ball into the ball itself, i.e. x = z. The first return time enjoys
exponential large deviations, namely it was proven in [26] that:

µ

({
z ∈ M s.t.

logHB(z,r)(z)
− log r

∈ I
})

∼ r infs∈I Q
∗(s). (12)

The rate function Q ∗ is slightly different from the Q given above.
For its precise definition we refer again to [26] Theorem 2.5,
where the large deviation property is proven.2

The question has been asked whether a multifractal descrip-
tion of the first return time could be meaningful, by considering
the set of points where the limit in Eq. (11) is different from the
typical value D1. Yet, in the case of conformal repellers it has been
proven [30,31], that all level sets with a value different from D1
have the same Hausdorff dimension of the ambient space, see
also [32]. This is a further point in favor of using large deviations
instead of the multifractal description for studying recurrence
quantities.

2.2. Mathematical achievements of this paper

We are now ready to summarize our mathematical relevant
results and the numerical algorithms that can be deduced from
them and that will be extensively used in the next parts of
the paper. We defer to these parts for precise statements and
technical details.

Let us first return in full generality to hitting times, when the
initial condition x does not necessarily belong to a neighborhood
of the final state z. For systems with super-polynomial decay of
correlations a result analogous to Eq. (11) holds:

lim
r→0

logHB(z,r)(x)
− log r

= D1, (13)

for x and z chosen µ− a.e. [33].
The first question that we will discuss in this paper is whether

hitting times enjoy exponentially large deviations, that is,
whether and under what conditions it holds true that

µ× µ

({
(x, z) ∈ M × M s.t.

logHB(z,r)(x)
− log r

∈ I
})

∼ r infs∈I Q̂ (s),

2 Actually, even for conformal repellers, the limit in Eq. (7) must be replaced
with lim inf and lim sup and the rate functions are complicated expressions
involving τ (q).

(14)

where the rate function Q̂ presumably involves again the gen-
eralized dimensions. Notice that we weighted the event with
the product measure since there are two sources of alea, in the
choice of the starting point x and of the target point z. Such
large deviation property has interesting physical consequences.
As anticipated above, we expect that the presence of points x and
z giving limits different from D1 in Eq. (13) – which we interpret
respectively as exceptional initial conditions (x) and rare target
regions (z) – yields deviations in the limit of Eq. (13) for small r .
These deviations go to zero exponentially fast, in a well-defined
limit procedure, with a rate which is measurable and that can be
linked to the intensity of the extreme events.

The large deviations bound (14) is proven in Section 3. It can
be stated as follows:

• For a large class of systems including conformal repellers we
have

lim
r→0

1
log r

log
∫
M

∫
M
HB(z,r)(x)q−1dµ(x)dµ(z) =

{
τ (2 − q) q > 0

τ (2) q ≤ 0

• When the measure µ is not of maximal dimension, there exists
s > 0 such that

lim
r→0

1
log r

log(µ× µ)
{
logHB(z,r)(x)

− log r
> D1 + s

}
= Q̂ (D1 + s),

where Q̂ (s) = supq{qs + τ (1 − q)}.

Our second mathematical result establishes an extreme value
distribution for a specific observable, chosen appropriately so
that the parameters entering such a distribution are related to
generalized dimensions and provide a new dynamical indicator
via the evaluation of the associated extremal index. To introduce
this observable, we let T be a map acting on the space M , preserv-
ing the probability measure µ. Also consider the direct product
of q systems of the same type and call Tq the direct product
map acting on Mq and preserving the direct product measure µq.
Define the following observable on Mq:

φ(x1, x2, . . . , xq) = − log( max
i=2,...,q

d(x1, xi)), (15)

where each xi ∈ M; we also write xq = (x1, x2, . . . , xq) and
Tq(xq) = (Tx1, . . . , Txq). We consider the observable Mn(φ; xq) =

max{φ(xq), . . . , φ(T n−1
q (xq))}, and its distribution function Fn(u) =

µq({xq ∈ Mq s.t. Mn(φ; xq) ≤ u}). We can prove the following
result:

• For a large class of systems including conformal repellers, sup-
pose that t > 0 is a real positive number and un a sequence
verifying µq(φ > un) →

t
n ; then there exists a number

θq ∈ [0, 1] such that:

lim
n→∞

Fn(un) = e−θqt .

The quantity θq is called the Dynamical Extremal Index.

A sketch of the proof of this result is provided in the Appendix
and it follows analogous results by two of the authors.

The relationship between the preceding proposition and gen-
eralized dimensions is obtained by observing that

µq(φ > un) =

∫
M
dµ(x1)µ(B(x1, e−u))q−1,

which allows to write the asymptotic relation, for large n,

un ∼
− log t

Dq(q − 1)
+

log n
Dq(q − 1)

=
− log t

an
+ bn. (16)
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The real quantities an and bn can be obtained by a maximum
likelihood estimation as we will show in Section 5.

Our third mathematical result concerns the computation of the
dynamical extremal index. In the Appendix we give a general
formula (60) of geometric type. It is applied to a special case in
Section 6, to obtain the result:

• For a large class of maps including conformal repellers preserv-
ing a measure absolutely continuous with respect to Lebesgue
and with density h we have

θq = 1 −

∫ h(x)q

|DT (x)|q−1 dx∫
h(x)qdx

.

2.3. Numerical algorithms

The numerical techniques for the evaluation of the various
quantities considered in this paper are described where needed:
in particular in Sections 4 and 5 we tackle the computation of
generalized dimensions.

A different case is that of Sections 5.2 and 6, where the method
employed to compute both the generalized dimensions and the
spectrum of DEI is substantially the same used in [23] for the
determination of the correlation dimension and of θ2. It can be
summarized here in the following steps:

1. Initialization of q subsystems with different starting points
chosen at random with respect to µ. This can be done by
choosing a point at random in the basin of attraction of the
map and iterating a large number of times the dynamics.

2. Computation of a trajectory of length N by simultaneous
iteration of the q subsystem, followed at each iteration by
the computation of the observable φ. This produces a time
series of length N .

3. Estimation from the obtained time series of θq, using (for
example) the Süveges estimate [34]. This estimate requires
the choice of a high threshold that can be taken as a high
quantile of the time series.

4. Division of time into blocks of length n, selection of the
maximum in each of these blocks and computation of the
empirical distribution of this maximum.

5. Maximum likelihood estimation of the scale parameter σ
of the empirical maximum distribution (for n large enough,
the real value an in Eq. (16) is close to the inverse of this
parameter). This can be done using the Matlab function
gevfit.3

6. Computation of Dq = 1/(q − 1)σ .
7. Averaging the obtained values of Dq obtained over l trajec-

tories.

3. Large deviations for the first hitting times

Extreme value theory (EVT) can be used to determine the
probability that the system enters for the first time a small region
of the phase space (rare event) after a certain amount of time [36].
Instead of looking directly to the probability of the first occur-
rence of such rare events, one could ask whether the presence of
those events influence the convergence of the indicators towards
their expected values. This can be achieved by looking at the
deviations from typical values and the rate of such deviations can
be obtained using EVT.

We now state and prove a general result on large deviations
in the statistics of the first hitting time. The result relies on a
set of assumptions that hold true for several dynamical systems

3 Details on this function can be found at [35] and in [23].

possessing some sort of hyperbolicity and exponential decay of
correlations. We therefore consider dynamical systems (M, µ, T )
that verify the following assumptions:

• A-1: Exponential distribution of hitting times with error.
There is a constant C > 0 such that for µ-a.e. z ∈ M and
t > 0 we have⏐⏐⏐⏐µ({

x ∈ M s.t. HB(z,r)(x) ≥
t

µ(B(z, r))

})
− e−t

⏐⏐⏐⏐
≤ Cδr max(t, 1) e−t (17)

where

δr = O (µ(B(z, r))|logµ(B(z, r))|) . (18)

In particular, for t > µ(B(z, r))|logµ(B(z, r))C | we have:

µ

({
x ∈ M s.t. HB(z,r)(x) ≥

t
µ(B(z, r))

})
= exp[−t(1 + δr )](1 + ηr ), (19)

with ηr = O(µ(B(z, r))), while for t ≤ µ(B(z, r))
|logµ(B(z, r))C | we have4

µ

({
x ∈ M s.t. HB(z,r)(x) ≥

t
µ(B(z, r))

})
≥ 1 −

t
C
. (20)

Notice that the above implies that both ηr and δr depend on
the point z ∈ M .

• A-2: Exact dimensionality. The measure µ verifies Eq. (6)
and the limit value is α = D1 for µ-a.e. z.

• A-3: Uniform bound for the local measure. There exists
d∗ > 0 such that for all z ∈ M we have

µ(B(z, r)) ≤ rd
∗

. (21)

• A-4: Existence and analyticity of the correlation integrals.
For all q ∈ R the limit defining τ (q), Eq. (3), exists. Moreover
the function τ (q) is real analytic for all q ∈ R, τ (0) = −DH ,
τ (1) = 0, τ ′(q) ≥ 0 and τ ′′(q) ≤ 0. In particular τ ′′(q) < 0 if
and only if µ is not a measure of maximal entropy.

We derive the first assumption from Keller’s paper [37], where
condition (17) is proven for the so-called REPFO maps,5 which
include a large class of mixing systems with exponential decay
of correlations. Keller’s derivation of (17) contains fine estima-
tions of the quantity µ

{
HB(z,r)(x) ≥

t
µ(B(z,r))

}
for t ∼ µ(B(z, r))

|logµ(B(z, r))|, which we adopted in formulas (19) and (20).
Moreover, Keller’s conditions are even more general, since they
hold for any point z, provided the rescaled time t

µ(B(z,r)) is modi-
fied as t

κrµ(B(z,r))
, where the factor κr depends on the target point

z and converges to the extremal index at z when r goes to zero.
For the kind of ‘‘nice’’ expanding systems we are considering,
including the REPFO ones, this extremal index is equal to one
almost everywhere, see also [36] for an extensive discussion, and
this explains our choice in Eq. (20). Assumption A-4 is a strong
one and it has been proven to hold for conformal mixing repellers
endowed with Gibbs measures in [8]. This condition has also
been assumed in [26], to prove the large deviation result (12).
For the same class of conformal repellers Assumption A-3 holds
too, see Lemma 3.15 in [26]. As remarked in the Introduction,
we consider these ideal systems interesting models to establish
rigorous results that might also hold in more general settings.

4 In the proof of Proposition 1 we set the constant exponent C to unity
because its value is irrelevant for the proof.
5 REPFO stands for Rare events Perron–Frobenius operators, since the

conditions are given in terms of the spectral properties of the transfer operator.
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Proposition 1. Let us suppose that the dynamical system (M, µ, T )
verifies Assumptions (A-1)–(A-4). Then:

• For q > 0,

lim
r→0

1
log r

log
∫
M

∫
M
HB(z,r)(x)q−1dµ(x)dµ(z)

= lim
r→0

1
log r

log
∫
M
µ(B(z, r))1−qdµ(z). (22)

• For q ≤ 0,

lim
r→0

1
log r

log
∫
M

∫
M
HB(z,r)(x)q−1dµ(z)dµ(x)

= lim
r→0

1
log r

log
∫
M
µ(B(z, r))dµ(z). (23)

Proof. We follow the scheme of the proof of Theorem 3.1 in [20],
by translating its argument from cylinders to balls. We use a
simple lemma whose proof is a standard exercise:

Lemma 1. Consider a function f from M to the integer numbers
larger than, or equal to one: f : M → N+. Let 0 < A ≤ 1 and define

I(q) =

∫
M
f q(x)dµ(x). (24)

Then, when q > 0,

I(q) = 1 − lim
t→∞

tqµ ({x ∈ M s.t. f (x) > t})

+
q
Aq

∫
∞

A
tq−1µ

({
x ∈ M s.t. f (x) >

t
A

})
dt. (25)

On the other hand, when q < 0,

I(q) = −
q
Aq

∫
∞

A
tq−1µ

({
x ∈ M s.t. f (x) <

t
A

})
dt. (26)

To prove Proposition 1 we need to apply the previous lemma to
f (x) = HB(z,r)(x) and consider the integral

I(q − 1, z, r) =

∫
M
HB(z,r)(x)q−1dµ(x), (27)

which is of the form studied in the Lemma. There are three cases
to consider.

1. Case 1: q > 1, that is, q − 1 > 0 that allows to apply
formula (25). Because of assumption A-1, Eq. (17), the limit
in Eq. (25) is null. Moreover, using again Eq. (17) for t > 1,

e−t (1 − Cδr t) ≤ µ

({
x ∈ M s.t. HB(z,r)(x) ≥

t
µ(B(z, r))

})
≤ e−t (1 + Cδr t), (28)

we can bound the integrand at r.h.s. in Eq. (25):

I(q − 1, z, r) ≥
q − 1

µ(B(z, r))q−1

×

[∫
∞

1
tq−2e−tdt − Cδr

∫
∞

0
tq−1e−tdt

]
.

The last two integrals are convergent. Moreover, observe
that Eq. (18) and A-3 imply that δr is uniformly bounded
from above. Taking r small enough the term into brack-
ets becomes positive and larger than a quantity indepen-
dent of r . A similar reasoning yields an upper bound for
I(q − 1, z, r) of the same form. Since the double integral∫
M

∫
M HB(z,r)(x)q−1dµ(x)dµ(z) is the single integral of I(q −

1, z, r) with respect to dµ(z), the equality (22) follows.

2. Case 2: 0 < q < 1. Since q − 1 < 0 we employ Eq. (26):

I(q − 1, z, r) =
1 − q

µ(B(z, r))q−1

∫
∞

µ(B(z,r))
tq−2µ

×

({
x ∈ M s.t. HB(z,r)(x) <

t
µ(B(z, r))

})
dt. (29)

We use again Eq. (28) to get

I(q − 1, z, r) ≥
1 − q

µ(B(z, r))q−1

∫
∞

1
tq−2(1 − e−t (1 + Cδr t))dt

=
1 − q

µ(B(z, r))q−1 S(z, r).

In the above we have put

S(z, r) =

∫
∞

1
tq−2(1 − e−t )dt + Cδr

∫
∞

1
tq−1e−tdt,

The term S(z, r) is again composed of a constant (the first
convergent integral) and of a vanishing quantity (when
r → 0), which puts us in the position of using the previous
technique to obtain a first inequality between the two
terms of Eq. (22).
To prove the reverse inequality we begin by observing that
for t < 1 condition A-1 simply becomes |µ

({
x ∈ M s.t.

HB(z,r)(x) ≥
t

µ(B(z,r))

})
− e−t

|≤ O(δr ); then we start from
Eq. (29) and we part the integral in two, the first from
µ(B(z, r)) to one and the second from one to infinity:

I(q − 1, z, r) =
1 − q

µ(B(z, r))q−1 (J1 + J2). (30)

We use again Eq. (28) to get:

J1 =

∫ 1

µ(B(z,r))
tq−2µ

({
x ∈ M s.t. HB(z,r)(x)

<
t

µ(B(z, r))

})
dt ≤ (31)∫ 1

µ(B(z,r))
tq−2(1 − e−t

+ O(δr ))dt ≤

∫ 1

0
tq−2(1 − e−t )dt

+O(δr )
∫ 1

µ(B(z,r))
tq−2dt. (32)

The first integral in the above is a positive constant. Let us
consider the second term:

O(δr )
∫ 1

µ(B(z,r))
tq−2dt ≤

O(δr )
1 − q

µ(B(z, r))q−1

= O
(
µ(B(z, r))q|logµ(B(z, r))|

)
,

where the last equality follows from δr = O (µ(B(z, r))
|logµ(B(z, r))|), Eq. (18). Therefore, when r tends to zero,
this term vanishes.
The case of J2 is easier:

J2 =

∫
∞

1
tq−2µ

({
x ∈ M s.t. HB(z,r)(x) <

t
µ(B(z, r))

})
dt

≤

∫
∞

1
tq−2dt = C2, (33)

which is again bounded by a constant.
3. Case 3: q < 0. We use again Eq. (30), with J1 and J2 defined

in Eqs. (31) and (33), respectively. For the latter integral
the inequality (33) still holds, with a different constant C2.
To deal with the integral J1 we further split its domain
into the intervals [µ(B(z, r)), µ(B(z, r))|logµ(B(z, r))|] and
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[µ(B(z, r))|logµ(B(z, r))|, 1], thereby defining the integrals
J1,1 and J1,2, respectively.
At this point we use Eq. (20) to estimate from above the
integrand of J1,1 and Eq. (19) to do the same for J1,2. Putting
the two estimates together, we obtain

J1 ≤ C3

∫ 1

µ(B(z,r))
tq−1dt ≤

C3

|q|

[
µ(B(z, r))q − 1

]
≤

C3

|q|
µ(B(z, r))q,

(34)

where C3 is another constant independent of r and z.
To get a lower bound we write

J1 =

∫ 1

µ(B(z,r))
tq−2µ

(
HB(z,r) <

t
µ(B(z, r))

)
dt

≥

∫ 1

µ(B(z,r))
tq−2µ(HB(z,r) ≤ 1) dt

= µ(B(z, r))
∫ 1

µ(B(z,r))
tq−2dt = |q − 1|−1µ(B(z, r))q

×
[
1 − µ(B(z, r))|q−1|]

≥ |q − 1|−1µ(B(z, r))q
[
1 − rd

∗
|q−1|

]
.

In the last step we have used Eq. (21), so that the term in
the square brackets is positive and uniformly bounded for
r small enough.

By collecting all the preceding estimates, we get the desired result
for all q. ■

We are now ready to state our result on large deviations of
the first hitting time. We first recall that the free energy function
R(q), q ∈ R associated with the process logHB(z,r)(x)

− log r , is given by

R(q) = lim
r→0

1
− log r

log
∫
M

∫
M
HB(z,r)(x)qdµ(z)dµ(x), (35)

provided the limit exists. If R(q) is C2 and strictly convex on R,
its Legendre transform is called the rate function Q̂ and satisfies
Q̂ (s) = supq{qs−R(q)}; we refer to [26] for a brief review of large
deviations, see also [38]. Our previous Proposition shows that the
free energy for the first hitting time verifies R(q) = −τ (1 − q)
when q > −1. In this range of values of q, R′(q) = τ ′(1−q) > 0 (by
Assumption 2) and therefore the supremum for the rate function
Q̂ is attained for positive s by a value of q satisfying R′(q) = s. On
the other hand, Assumptions A-2 and A-4 immediately imply that
for positive s, Q̂ (s) is a smooth convex function with the minimum
at D1. Since the free energy is not smooth everywhere, being not
differentiable in q = −1, we cannot use the standard Gärtner–
Ellis theorem, but a local version of it, as it is reported in Lemma
XIII.2 in [39]. Let us put ∆ = D1 + 1, the above proves the crucial

Proposition 2. Let us suppose that µ is not a measure of maximal
dimension, which ensures that R(q) is strictly convex. Then for all
s ∈ (0, R(∆)/∆) we have

lim
r→0

1
log r

log(µ×µ)
{
logHB(z,r)(x)

− log r
> D1 + s

}
= Q̂ (D1 + s), (36)

where Q̂ (s) = supq{qs + τ (1 − q)}.

Remark 1. It is interesting to observe that the Legendre–Fenchel
transform of the free energy function R(q) introduced above al-
lows us to get the rate functions of the large deviations of differ-
ent processes, namely:

• R(q) gives the rate function Q (s) of the information dimen-
sion, see (7).

• R(−q) gives the rate function Q̂ (s) of the first hitting time,
see (36).

• R(q − 1) gives the function f (α) expressing the Hausdorff
dimension of the level sets with local dimension α, see (5).

We therefore consider R(q) an important global tool to analyze
and describe the geometric and recursive properties of dynami-
cally invariant measures.

4. Numerical determination of generalized dimensions

The numerical determination of generalized dimensions is a
principal concern when experimental data are to be examined,
or theoretical hypotheses need to be tested on model cases. Many
techniques have been proposed [10,12–14] especially to deal with
the case of negative dimensions (i.e. those corresponding to a
negative value of q) that call in cause rarified regions of the
invariant measure. Via Kac’s theorem, these latter are related to
large return times, hence rare events. For this reason a return
time approach seems particularly suited to treat this case.

4.1. Hitting time integral

In this section we follow this approach, based upon Propo-
sition 1. We assume that the data at our disposal are finite
trajectories of the dynamical system (M, µ, T ), which we label
as xj = T j(x0), where the point x0 is to be chosen on the
attractor of the dynamical system. We set as reference technique
the evaluation of the correlation integral in Eq. (1) via a Birkhoff
summation. This is effected by first finding the Birkhoff estimate
of the measure of a ball µ(B(z0, r)) via

JN (z0, r) =
1
N

N−1∑
j=0

χB(z0,r)(xj) ≃ µ(B(z0, r)). (37)

Here and in the following χA is the indicator function of the set
A. The above quantity is then raised to the power q − 1, and a
second average with respect to the point z0 is performed:

1
N ′

N ′
−1∑

l=0

[JN (T l(z0), r)]q−1
≃ Γµ(r, q). (38)

While in principle (x0, N) and (z0, N ′) can be different, one can
take advantage of the choice z0 = x0, so to use a single trajectory
for the computation. We elect not to do so, for reasons that
we will explain later. A complete discussion of the method of
correlation integrals is presented in [9].

Once the correlation integral has been estimated (remark that
Eqs. (37) and (38) are not scaling relations, but estimates that
can be made arbitrarily precise), the problem remains of finding
the scaling exponents implied in Eq. (1) or equally the function
τ (q). Two main ways exist to do this from data at finite reso-
lution r . The first is to employ extrapolation techniques of the
ratio logΓµ(r, q)/log r computed at a number of values r , such
as Levin’s algorithm or similar [40]. This is particularly useful
when the measure has a hierarchical structure. The second, more
conventional, is to try to find a linear least square fit of the
log of the correlation integral with respect to the log of r . It is
immediate to see that this is a sort of l’Hopital’s rule to find the
limit for r tending to zero in Eq. (3).

In the present context, Proposition 1 implies that, for q ≤ 2,
the function τ (q) can be equally seen as the limit of the ratio on
the left hand side of Eq. (22), after the substitution q → 2 − q. It
requires the computation of the hitting double-integral

Υµ(q, r) =

∫
M

∫
M
HB(z,r)(x)1−qdµ(x)dµ(z). (39)
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Fig. 1. Left panel: correlation integral Γµ(r, q) (green lines) and hitting integral Υµ(q, r) (red lines) evaluated numerically by the procedure of Eqs. (37)–(38) and
(40)–(41) with H = 32, N ′

= 256, 000. Lines join values with the same q, ranging from q = −1 (highest curve) to q = 2 (lowest). Right panel: slopes σq(r) extracted
from Υµ(q, r) in the left panel, following Eq. (42) (red). Values of q range from q = −1 (highest curve) to q = 2 (lowest). The blue curve is the fit given by Eq. (43)
with D2 = 2.006 and B = 1.095. Finally, values of σq(r) extracted from Γµ(q, r) are plotted in green, shifted upwards by .05 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

A Birkhoff estimate of this quantity can be obtained as follows:
first consider the inner integral in the above equation (it was
defined as I(1 − q, z, r) in Eq. (27) of the previous section). This
can be estimated as

IN (1 − q, z0, r) =
1
N

N−1∑
j=0

H1−q
B(z0,r)

(xj) ≃ I(1 − q, z0, r). (40)

In practice, it is convenient to fix N (and to stop the evaluation
of the motion) as soon as the trajectory of x0 has entered the
ball B(z0, r) H times. In so doing, N becomes a function of H , z0
and x0. This can be done also when evaluating the conventional
correlation integral, Eqs. (37) and (38). Next, we estimate the
outer integral in (39), again by a Birkhoff summation

1
N ′

N ′
−1∑

l=0

IN (1 − q, T l(z0), r) ≃ Υµ(q, r). (41)

This procedure has the advantage that the same set of data can
be used to determine an approximation to both the correlation
integral Γµ(r, q) and the hitting integral Υµ(q, r), so that the two
methods can be compared fairly.

As first example of this comparison we choose the Arnol’d cat
map on the two-torus [41], a primary example of chaotic dynam-
ical system, with the absolutely continuous invariant measure
µ given by the Lebesgue uniform measure on this manifold, so
that all generalized dimensions of the measure are equal to two.
In Fig. 1, left panel, we plot the numerically estimated integrals
Γµ(r, q) and Υµ(q, r) versus r in double logarithmic scale, for a
selected set of values of q ranging from q = −1 to q = 2 and
of r ranging from r = 10−3 to r = 10−1. The (trivially constant)
data for q = 1 separate the integrals Γµ(r, q), Υµ(r, q) that grow
from those that diminish when r tends to zero. The almost linear
shape of the curves confirms the scaling in Eq. (1) and a linear fit
as described above provides an estimate of τ (q) and hence of Dq.
Yet, a finer analysis reveals that the asymptotic behavior is not yet
achieved at finite r . In fact, in the right panel the results obtained
using the slope of each linear interpolation between successive
values of r in the figure are displayed: since values of r are equally
spaced in logarithmic scale, we define

σq(r) =
1

q − 1
logΥµ(q, ρr) − logΥµ(q, r)

log(ρr) − log r
, (42)

with ρ < 1. The values obtained are not constant: the lowest
set of data, in particular, is related to q = 2, the highest value

for which generalized dimensions can be obtained in this way.
Its value for r = 1.77 10−3 is still far from the theoretical value
D2 = 2, even if σq(r) is an acceleration procedure of the limit
in Eq. (3). Nonetheless, a further extrapolation can be performed.
Typically, convergence in these estimates is rather slow, in the
sense that a behavior of the kind

σq(r) = Dq + B/log(r) (43)

holds. Therefore, using Dq and B as fitting parameters of the
experimental data, a better estimate of Dq can be obtained. The
continuous line in the right panel of Fig. 1 plots such approxima-
tion. The obtained value of D2 is correct to three digits. Finally, for
comparison, the data obtained by using Γ in lieu of Υ – in other
words, the conventional correlation integral – are also reported,
shifted upwards by a small quantity for clarity. Recall that they
have been computed on the same raw data (trajectories) than the
former. They show a reduced precision for small values of r , in
correspondence with the smallest value in the range plotted in
figure, q = −1.

This instability is shown in Fig. 2, which reports the same
data of the right panel of Fig. 1, for q = −1. In the same
figure the analogue data obtained by using the first-return time
integral [18,19]

Γτ (q, r) =

∫
M
H1−q

B(x,r)(x) dµ(x) (44)

are also reported. They are evaluated using a small portion of the
data used in the other two cases: in fact, in this case only the
first return is concerned, rather than the H hits required by the
previous techniques. Despite the fact that a rigorous proof of this
procedure is lacking (see nonetheless [19]) data are consistent
with the expected result.

A second example, when the hypotheses of Proposition 1 are
certainly not verified, is given by the Hénon map, at standard
parameter values [42]. Fig. 3 is the analogue of Fig. 1 in this
second case, with the only difference that in the right panel
a three dimensional figure displays the quantity σq(r) versus r
and q, computed from the correlation integral Γµ(q, r) and the
hitting time integral Υµ(q, r). In both cases we observe the large
local fluctuations typical of the Hénon physical measure. More
importantly, a considerable agreement between the two sets of
data is observed, when q is smaller than two.

In the successive Fig. 4 the generalized dimension obtained
by linear least square fit over the full range of the data in Fig. 3,
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Fig. 2. As in Fig. 1: data for q = −1. Also plotted (blue) are the data obtained
by the first return time integral Γτ (q, r), Eq. (44) . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

left panel, is displayed. It is well known that, in the case of the
physical measure on the Hénon attractor, generalized dimensions
strongly depend on the range of the fit — as well as on the
sampling point chosen in this range. We do not aim to resolve this
issue, but we remark that the coincidence between the results
obtained by the correlation integral and the hitting time integral
suggests that the results of Proposition 1 hold also in this case,
which is clearly outside the scope of the hypotheses put forward
in the previous section.

Finally, still in Fig. 4, we also plot the curve D2/(q− 1), which
follows from Proposition 1 and describes the scaling of the hitting
time integral for q larger than or equal to two. As in the case of
Arnol’d cat, data for q approaching two from below are not at
convergence, while those for q significantly larger than two fit
the theoretical curve remarkably well.

These experimental data lead us to conclude that the theo-
retical method to determine generalized dimensions implied by
Proposition 1 has a practical value, but, for values of q between
one and two, convergence must be accelerated by suitable tech-
niques. We finally remark that, as conjectured in [18,19], the
same can be expected when using first return times.

Fig. 4. Generalized dimensions obtained by fitting the data in Fig. 3, left panel.
Dimensions obtained from the correlation integral are plotted in green, from
the hitting time integral in red. Plotted in blue is the curve D2/(q− 1), implied
by Proposition 1 . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

4.2. Using local dimensions computed via EVT

As described above, the key to the computation of generalized
dimensions is the estimate of the measure of balls of the same
radius r , raised to a power and averaged with respect to the
invariant measure. While dimensions are obtained via a scaling
relation of these quantities when the radius vanishes, the dis-
tribution of such measures at fixed, finite r , is also important.
This observation leads to the definition of a finite resolution local
dimension, D1,r (z), which is precisely defined by the equation:

µ(B(z, r)) = rD1,r (z). (45)

It is interesting to note the relations of this quantity to extreme
value theory. In fact, defining as observable the function

φz(x) = − log d(x, z), (46)

where z is the center of the ball in Eq. (45), and computing this
latter on a trajectory of the system, xj = T j(x0), large values of
φz(xi) correspond to passes of the motion close to the point z. By
looking at the statistics of these extreme events-near approaches,
one defines the (complementary) distribution function

F̄z(u) = µ({x ∈ M s.t. φz(x) > u}), (47)

Fig. 3. Left panel: correlation integral Γµ(r, q) (green lines) and hitting integral Υµ(q, r) (red lines) evaluated numerically by the procedure of Eqs. (37)–(38) and
(40)–(41) with H = 64, N ′

= 256,000. Lines join values with the same q, ranging from q = −5 (highest curve) to q = 4 (lowest). Right panel: slopes σq(r) versus r
and q extracted from Γµ(q, r) (green) and Υµ(q, r) (red) in the left panel, following Eq. (42) . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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which coincides with the measure of the ball of radius e−u around
the point z. From the numerical point of view, as described
in [36, Chapters 4 and 6 and references therein], one studies the
tail of this distribution, either defined by considering arguments
larger than ucut = − log rcut, or by setting a cutoff value in
the distribution itself: F̄z < 1 − p, with p close to one. This
second case yields a cutoff value rcut, which now depends on
position. Extreme value theory predicts that the tail distribution,
suitably renormalized and shifted, converges for small cutoff to an
exponential distribution, whose mean and standard deviation are
the inverse of D1,rcut (z). The latter is then numerically computed
as the inverse of the mean of such distribution. In other words,
this is an alternative procedure to Eq. (37) that can be used in
two ways.

Firstly, it can be turned into a determination of generalized
dimensions. Eq. (38) is here replaced by

Γµ(r, q) ≃
1
N

N−1∑
j=0

r (q−1)D1,r (T jx), (48)

where x is chosen µ − a.e., N is supposed to be large and
dimensions are obtained by Eqs. (3) and (4). It is sometimes both
necessary and convenient not to take the limit of vanishing r in
Eq. (3). In practical applications this is sometimes dictated by
the finite resolution of the data and the limited span of time
evolution at our disposal. In Section 7 this situation is illustrated
by applying the above procedure to the spectrum of dimensions
for the North Atlantic atmospheric circulation.

Secondly, the same computations permit to evaluate in a direct
way the large deviation function of local dimension: by taking
I = (s,∞) with s > D1 in Eq. (7), we find that µ(D1,r > s) ∼ rQ (s).
Similarly, we have that µ(D1,r < s) ∼ rQ (s) for s < D1. Fig. 5 shows
the numerically computed rate function Q (s) for the motion on a
Sierpinski gasket defined in Section 5.2, Eq. (58). By lowering the
cutoff value of r , approach to the theoretical curve is observed.
This theoretical value is given by the rate function Q (s), which is
computed as the Legendre–Fenchel transform of the free energy
R(q) = −τ (1−q). For the case of motion on the Sierpinski gasket,
the function τ (q) is explicitly given by formula (59). Numerically,
it can be obtained by the techniques described in this article,
yielding results for Q (s) more reliable than those obtained by the
direct computation of the distribution of µ(D1,r < s) : this is
undoubtedly an interesting result with potential applications to
a wide class of dynamical systems.

5. Generalized dimensions via extreme value theory

In this section we describe a further method to compute
the spectrum of the generalized dimensions for positive, integer
values of q larger than one. It has the advantage of using EVT
intrinsically and, in addition, it reveals a second spectrum of
extremal indices that also possesses a dynamical meaning. This
approach is a direct generalization of the method introduced
in [23] for the correlation dimension. It is based on the investi-
gation of close encounters, when two or more trajectories of the
system approach each other within a small distance. This defines
the extreme event that we investigate.

Let us consider the q−fold (q > 1) direct product (M, µ, T )⊗q

with the direct product map Tq = T⊗· · ·⊗T acting on the product
space Mq and the product measure µq = µ⊗ · · · ⊗µ. Define the
following observable on Mq:

φ(x1, x2, . . . , xq) = − log( max
i=2,...,q

d(x1, xi)), (49)

where each xi ∈ M . We also write xq = (x1, x2, . . . , xq) and
Tq(xq) = (Tx1, . . . , Txq).

Fig. 5. Rate function Q (s) for the motion on a Sierpinski gasket, computed from
1000 sampling points, each of which required a trajectory consisting of 106

iterates.

5.1. Statistics of exceedances

Let us first investigate the statistical distribution of the func-
tion φ, via the (complementary) distribution function F̄ (u):

F̄ (u) = µq({xq ∈ Mq s.t. φ(xq) > u}). (50)

It is easily seen that

F̄ (u) =

∫
Mq

dµq(xq)χB(x1,e−u)(xq) · · ·χB(x1,e−u)(xq)

=

∫
M
dµ(x1)µ(B(x1, e−u))q−1. (51)

Comparing Eq. (51) with Eq. (1) yields F̄ (u) ∼ e−uDq(q−1), so that
one can obtain τ (q) = (q − 1)Dq from the asymptotic behavior
of F̄ (u) for large u. This quantity can be estimated by a Birkhoff
sum, involving the trajectories of q different initial conditions of
the original system. The results of this procedure in the case of
the Arnol’d cat dynamical system are reported in Fig. 6, in simple
logarithmic scale, for values of q ranging from q = 2 to q = 8.
The linear parts of these graphs follow closely the theoretical
result F̄ (u) = µq(φ > u) = π q−1e−2u(q−1). The limitations of
the procedure are evident from the picture: for large values of
q multiple ‘‘encounters’’ become scarcer and scarcer, so that the
linear part, from which generalized dimensions can be extracted
by linear fitting, becomes increasingly narrow when the length
of the sampling trajectory is finite. Observe that the number of
iterations considered in our numerical simulation largely exceed
those typically available in real-world applications. On the other
hand, this technique is not directly affected by the curse of di-
mensionality which plagues box counting procedures (but not
the correlation integral, or hitting/return times methods, for that
matter).

To complete the analysis of the previous section we also
examine the case of the Hénon physical measure. Results are
reported in Fig. 7, in full analogy with Fig. 6. The exponential
decay is evident also here, and the slopes of the curves, together
with Eq. (56), permit to extract the data τ (2) = 1.2, τ (3) = 2.32,
τ (4) = 3.3, which imply the generalized dimensions D2 = 1.2,
D3 = 1.16 and D4 = 1.1. These values compare favorably with the
extensive calculations in [43]. Although the exponential decay of
the data for larger values of q is also evident, the data do not allow
to estimate the associated dimensions with the same precision.
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Fig. 6. Probability of large events, F̄ (u) = µq(φ > u), versus u, in the case of
the Arnol’d cat. It has been estimated via a Birkhoff average over 32 trajectories
of length 1010 . Data for q = 2 (highest curve) to q = 7 (green) and q = 8
(red, lowest) have been reported. The theoretical result for q = 8 is µq(φ >

u) = π7e−14u (blue) . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Probability of large events, F̄ (u) = µq(φ > u), versus u, in the case of the
Hénon attractor physical measure. It has been estimated via a Birkhoff average
over 32 trajectories of length 1010 . Data for q = 2 (highest curve) to q = 8
(lowest) have been reported.

5.2. Statistics of block maxima

Let us nowmove more deeply into extreme value theory. It is a
standard procedure, employed in the present context also in [23],
to consider the maximum value attained by the function φ over
a block of times of length n. That is, we define the new observable

Mn(φ; xq) = max{φ(xq), . . . , φ(T n−1
q (xq))}, (52)

and its distribution function Fn(u):

Fn(u) = µq({xq ∈ Mq s.t. Mn(φ; xq) ≤ u}). (53)

Next, let un be a sequence of real values which diverges at infinity,
for which

F̄ (un) ∼
t
n
, or alternatively, µq(φ > un) →

t
n

(54)

as n tends to infinity, where F̄ has been defined in Eq. (50) and
t is a positive number. We now show for the kind of systems
we are studying, and by using the spectral technique described

in [23], that the distribution Fn(un) will converge, for n → ∞, to
the Gumbel’s law

G(t) = e−θqt , (55)

which is one of three limiting laws prescribed by the extreme
value theory (see Chapter 3 in [36] for a general introduction to
extreme value theory). The quantity θq is called the dynamical
extremal index DEI and it will be studied in the next section.

We sketch the argument in the Appendix; here we stress
that this convergence can also be investigated numerically and
it provides an estimate of the generalized dimensions. In fact,
because of Eq. (54)

F̄ (un) ∼ e−unDq(q−1)
∼

t
n
, (56)

and

un ∼
− log t

Dq(q − 1)
+

log n
Dq(q − 1)

=
− log t

an
+ bn. (57)

The real quantities an and bn can be obtained as described in
Section 2.3, by a maximum likelihood estimation of the GEV
parameters in Fn [44]. This was also described in Section II-A
of [23], which yields the generalized dimensions Dq.

We apply this procedure to the case of an I.F.S. measure [22]
on the Sierpinski gasket, defined by the stochastic process on
the unit square M = [0, 1]2 realized by iteration of the maps fi,
i = 1, 2, 3 chosen at random with probability pi:{f1(x, y) = (x/2, (y + 1)/2), p1 = 1/4,
f2(x, y) = ((x + 1)/2, (y + 1)/2), p2 = 1/4,
f3(x, y) = (x/2, y/2), p3 = 1/2.

(58)

The distribution Fn with block size n = 5000 is estimated for
l = 20 trajectories of 2 · 108 points. In Fig. 8, left panel, the
numerically obtained generalized dimensions are compared with
the analytical values [13]:

Dq =
log2(p

q
1 + pq2 + pq3)
1 − q

. (59)

Good agreement is found for small values of q, which later wors-
ens as expected and discussed earlier. In the same Fig. 8, right
panel, we also plot the results for the case of the Lorenz 1963
model [45], a continuous-time dynamical system. Here, the dis-
tribution Fn (with n = 104) is obtained from trajectories of
108 points, simulated by the Euler method (which is clearly not
the best technique, but the focus of our investigation is differ-
ent) with step size 0.013. Dimensions estimates are obtained by
averages over 20 trajectories, uncertainties being the standard
deviations of these results.

6. The dynamical extremal index

It is now important to consider the parameter θq appearing in
the exponent of the Gumbel’s law (55); in [23] it was called the
Dynamical Extremal Index (DEI). We show in the Appendix that

θq = 1 − lim
n→∞

µq(∆
q
n ∩ T−1

q ∆
q
n)

µq(∆
q
n)

. (60)

For C2 expanding maps of the interval, which preserve an ab-
solutely continuous invariant measure µ = hdx with strictly
positive density h of bounded variation, it is possible to compute
the right hand side of (60) and get:

µq(∆q
n ∩ T−1

q ∆q
n)

=

∫
dx1h(x1)

∫
dx2h(x2) χB(x1,e−un )(x2)χB(Tx1,e−un )(Tx2) · · ·

· · ·

∫
dxqh(xq)χB(x1,e−un )(xq)χB(Tx1,e−un )(Txq). (61)
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Fig. 8. Left panel: numerical estimates of Dq for the Sierpinski gasket (blue symbols) and theoretical value (red curve). Right panel: numerical estimates of Dq for the
Lorenz 1963 model. The uncertainty is the standard deviation of the results obtained over 20 trajectories. See text for parameters and discussion . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Each of the q − 1 integrals above factorizes, and they depend on
the parameter x1. Therefore they can be treated as in the proof of
Proposition 5.5 in [46], yielding the rigorous result:

Proposition 3. Suppose that: the map T belongs to C2; it preserves
an absolutely continuous invariant measure µ = hdx, with strictly
positive density h of bounded variation; it verifies conditions P1 −

−P5 and P8 in [46].6 Then

θq = 1 −

∫ h(x)q

|DT (x)|q−1 dx∫
h(x)qdx

. (62)

This formula uses the translational invariance of the Lebesgue
measure: we refer to sections II-B and II-C in [23] for analogous
extensions to more general invariant measures and to SRB mea-
sures for attractors. We here extend the DEI introduced in [23] to
a spectrum of indicators for well behaved maps of the interval.
When the derivative of T is constant, we have a scaling of the
kind:

θq ∼ 1 − e−(q−1)h, (63)

where h = log |DT | is the Lyapunov exponent of the system.
Whenever the derivative exhibits appreciable variations, we

expect a deviation from the scaling in Eq. (63). Hence, the varia-
tion with q of the quantity

Hq =
log(1 − θq)

q − 1
(64)

reveals how far we are from the positive Lyapunov exponent.
In particular we expect that such deviation is magnified when:

• the density has a minimum at 0, which usually happens
when the derivative blows up to infinity, or when the
derivative vanishes somewhere, like in multimodal maps,

• the density is unbounded, which happens when the deriva-
tive has an eigenvalue of 1 on periodic points. This is a
typical occurrence for intermittent maps.

In both cases it is not possible to bound the second term at the
right hand side of θq in Proposition 62 between finite quantities.
More importantly, it is not clear that Eq. (62) still holds, since
it was proved under the assumptions of a bounded and strictly
positive density. As an illustration of this theory, we now give a
few examples, for which the DEI can be computed explicitly:

6 These conditions essentially ensure that the transfer operator associated
with the map T has a spectral gap and that the density h has finite oscillation
in the neighborhood of the diagonal.

• 3x− mod 1. This map has constant derivative, has Lebesgue
as an invariant measure and we have:

θq = 1 − 31−q (65)

• Markov maps. We consider the following piecewise linear
Markov map T [47]:

T (x) =

{T1(x) = 3x if x ∈ I1 = [0, 1/3),
T2(x) = 5/3 − 2x if x ∈ I2 = [1/3, 2/3),
T3(x) = −2 + 3x if x ∈ I3 = [2/3, 1).

The density h of T is given by :

h(x) =

{h1 = 3/5 if x ∈ I1,
h2 = 6/5 if x ∈ I2,
h3 = 6/5 if x ∈ I3.

The DEI θq can be easily computed by Eq. (62) and it reads:

θq = 1 −

hq1
(T ′

1)
q−1 +

hq2
(T ′

2)
q−1 +

hq3
(T ′

3)
q−1

hq
1 + hq

2 + hq
3

. (66)

• Gauss map. The Gauss map T (x) =
1
x −

[ 1
x

]
, x ∈ (0, 1], has

a.c. invariant density h(x) =
1

log 2(1+x) , which yields

θq = 1−

∑2(q−1)
k=0,k̸=q−1(−1)k

(2(q−1)
k

) 2k−q+1
−1

k−q+1 + (−1)q−1
(2(q−1)

q−1

)
log 2

21−q−1
1−q

.

(67)

• The Hemmer map. This map [48] is defined on the interval
[−1, 1] by T (x) = 1 − 2

√
|x| and it has the explicit density

h(x) =
1
2 (1 − x) and Lyapunov exponent 1/2. The particu-

larity of this density is that it vanishes in x = 1. The DEI for
this case reads

θq = 1 −
q + 1
2q

q∑
k=0

(
q
k

)
1 + (−1)k+q−1

2k + q + 1
. (68)

For maps of the interval where Eq. (62) holds, the Hq spectrum
can be extended in a first place to real values of q, for q ̸= 1, and
then H1 can be defined by continuity applying l’Hôpital rule and
we get that

H1 = lim
q→1

Hq =

∫
log |DT (x)|h(x)dx, (69)

which is the Lyapunov exponent of the system. We therefore have
a full spectrum of such indicators. We show in Fig. 9 the graphical
representation of the extended Hq spectrum of the Markovian
map defined above, that can be computed explicitly and is given
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Fig. 9. Graphical representation of the extended Hq spectrum for the Markovian
map described in the text. The limit as q goes to +∞ is log 2 ≈ 0.693 and
log 3 ≈ 1.099 as q goes to −∞, that correspond to respectively the logarithms
of the minimum and the maximum of the absolute value of the derivative.

by Eq. (66). It is easily seen that for this map, H∞ = limq→∞ Hq
is the minimum of the logarithm of the absolute value of the
derivative, whereas H−∞ = limq→−∞ Hq is the maximum of
this quantity, confirming the fact that the Hq spectrum carries
information on the expanding/hyperbolic behavior of the system
in different regions of phase space and therefore is a tool for
the study of chaotic dynamical systems. In particular, it has the
following properties:

• H1 is the Lyapunov exponent of the system, and if the
derivative does not vary too much, H2 is a good approxi-
mation of the Lyapunov exponent, as stated in [23].

• For large positive values of q, Hq characterizes those regions
of the phase space where the absolute value of the deriva-
tive is low and/or the density is high. The opposite holds for
large negative values of q.

• If the derivative is constant, so is the Hq spectrum.

6.1. Numerical computations

In support of our results, we perform numerical computations
of the θq and Hq spectra, first for the map x ↦→ 3x mod 1. The

results are reported in Fig. 10. Extremal indices are computed
following the procedure in Section 2.3, using the Süveges esti-
mator [34]. For each q, we used as a threshold the 0.997 quantile
of the distribution F (u) computed on a pre-runned trajectory of
106 points. Results compare favorably with theory for θq, but less
satisfactorily for Hq when q becomes large. In both cases, it turns
out that the fixed threshold corresponds to lower values of the
function φ. In the last case, less precise results are also probably
due to the fact that log(1 − θq) diverges as q tends to infinity.
Numerical computations for the Gauss map are performed with
the same set of parameters as before and are reported in Fig. 11.
The same discrepancy of results is found for large values of q, due
to similar reasons.

6.2. The Hq spectrum for higher dimensional systems

Although higher dimensional systems fall outside the scope
of Eq. (62), it was discussed in [23] that H2 is strongly related
to the entropy of the system (the sum of the positive Lyapunov
exponents), and appreciable variation of Hq with q is the sign of
a diversity of local hyperbolic behaviors of the system. On the
other hand, a constant Jacobian gives rise to a constant spectrum
Hq. We check this statement by computing the θq and Hq spectra
of a 2-dimensional map of constant Jacobian: the Lozi map with
standard parameters [23]. Results are shown in Fig. 12 and are
compared with the constant function equal to the positive Lya-
punov exponent of the map of around 0.47 [23]. Good agreement
is found, although some small systematic fluctuations are present,
probably due to finite effects and to the role of the contracting
subspace. We have again a discrepancy of numerical results for q
larger than 8, limiting the range of computation of the method to
small, positive and integer values of q.

7. North Atlantic atmospheric variability

In order to show the usefulness of our results in the study
of many dimensional, complex systems, we compute the gen-
eralized dimensions associated with the atmospheric circulation
over the North Atlantic. As observable, we consider the daily sea-
level pressure fields observed in the region: [lat 22.5

◦

N – 70
◦

N,
lon 70

◦

E – 50
◦

W] for the period 1948–2015, issued from the
NCEP reanalysis dataset [49]. Indeed, the sea-level pressure field
is a proxy of the mid-latitude circulation as it traces the posi-
tion of cyclones–anticyclones thanks to the rotation/stratification
properties of atmospheric flows [50].

Fig. 10. Indicators θq and Hq of the map x ↦→ 3x mod 1, obtained from averaging the results over 20 trajectories of 2 · 107 points. The uncertainty is the standard
deviation of the results. See text for further discussion.
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Fig. 11. θq and Hq of the Gauss map absolutely continuous invariant measure. Parameters of the numerical estimation are as in Fig. 10.

Fig. 12. θq and Hq of the Lozi map absolutely continuous invariant measure. We simulated trajectories of 5.107 points, and used the Süveges estimate with a
threshold corresponding to the 0.997−quantile of the observable distribution. Results are averaged over 20 trajectories, the uncertainty being the standard deviation
of the results. The red curves represent Hq = 0.47 for the right panel and θq = 1 − 0.47q−1 for the left panel . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

References [51] and [52] computed the finite time local7 di-
mensions D1,r (z) and persistence θ (z) of those fields with the
method detailed in [51], using as threshold the 98th quantile
of the observable distribution. It has been shown that those
computations introduce a valuable piece of information in the
description of the atmospheric flow at mid-latitudes. In particular
i) the minima of the local dimension D1,r (z) correspond to zonal
flow circulation regimes, where the low pressure systems are
confined to the polar regions, opposite to high pressure areas
which insist on southern latitudes, in a North–South structure, ii)
the maxima of the local dimension D1,r (z) correspond to blocked
flows, where high and low pressure structures are distributed in
East–West direction. In this region, D1,r (z) takes values between
4 and 25, depending on the spatial resolution of the sea-level
pressure field, with an average value of about 12.

In the previous sections we have described tools to compute
the generalized dimensions and to link them to local dimensions.
In principle, the method described in Section 4.2 requires the
computation of a distribution of local dimensions at a uniform
resolution rcut. The nature of data at our disposal is not suited
to an analysis at fixed resolution, since it may oversample, or
undersample the distributions of extreme events of the observ-
able φz(x) = − log(d(z, x)), depending on the point z that we are
considering. For this reason, we follow the approach described

7 Note that, in this context we also speak of daily dimension and persistence
via EVT, meaning that each z is the sea-level pressure field averaged during a
day.

in [51] and [52] and use as threshold values Tp,z for the observable
φz the p-quantile of the distribution of φz , where p is fixed. This
ensures that the extreme value statistics is computed with the
same sample statistics at all points. The effective radius consid-
ered for the computation of the generalized dimensions is then
taken to be the average of e−Tp,z over z. Applying formula (48)
to the computation of Dq, one obtains the non-linear behavior
pictured in Fig. 13. We give a summary of the results found when
adopting the above procedure with different quantiles in Table 1.
When the quantile is relatively low, a large sample of recurrences
is used (corresponding to a larger average cutoff radius). This
implies a lower spread of the distributions of D1,r (z). To the con-
trary, when the quantile is larger, the sample statistics contains
fewer recurrences and the spread in D1,r (z) increases. Note that,
although min(D1,r (z)) and max(D1,r (z)) seem to experience large
variations with different quantiles, these have to be compared
with the dimension of the phase space, which corresponds here
to the number of grid points of the sea-level pressure fields used,
1060. The relative variation is therefore very small, less than 1%.
Depending on the size of the datasets, one can then look for the
best estimates of the D1,r (z) distribution for several values of q
and look for a range of stable estimates in q space.

Generalized dimensions are a piece of information that is
typical of the invariant, ultimate measure, that is, the mathemati-
cal object that ergodic theory defines in the infinite time limit;
nonetheless, as shown in this paper and in the papers quoted
in the references, different techniques exist to extrapolate their
value from data generated from observations which are not yet
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Table 1
Values of Dq found with different quantiles. For all of them, estimates D−∞ and
D∞ match with the extrema of the local dimensions, and D1 with the average
of the local dimensions. Estimates of D2 are larger than the value of 8.9 found
with a different technique in [23].

p D−∞ = max(D1,r (z)) D1 = D1,r (z) D2 D∞ = min(D1,r (z))

0.95 20.7 11.2 9.5 6.0
0.97 24.2 12.2 10.2 6.4
0.98 25.7 13.0 10.5 6.4
0.99 29.1 14.3 11.1 6.5
0.995 39.6 15.5 11.3 6.2

Fig. 13. Dq spectrum obtained from climate data, using Eq. (48) and the
techniques described in the text. Curves are displayed for different values of
the quantile p.

asymptotic. One could call the corresponding objects penultimate,
in analogy with extreme value statistics where the adjective
penultimate is used to describe the probability distribution of
extremes of a finite size sample. Indeed, while it is well known
for a large class of systems [25] that with probability one the
local dimensions coincide with the information dimension, at
finite resolution large deviation theory estimates the likelihood
of deviations from this value. In this perspective, the spread of
the experimentally observed values of D1,r (z) can be thought
of as originating from the multifractal structure of the ultimate
invariant measure, which in turn is revealed by the non-constant
value of generalized dimensions.

8. Discussion and perspectives

In this paper we have explored the relations between the
spectrum of generalized dimensions Dq and the recurrence prop-
erties of the dynamics. In fact, the former determines the large
deviations of dynamical quantities such as return times [26] and
hitting times: [20] and Proposition 2 herein. The statistics of
hitting times ruled by Proposition 1 also opens the way to new
techniques to estimate generalized dimensions via recurrence
properties. We have also seen that many of these concepts can
be given a fruitful interpretation within extreme events theory,
with a significant potential for application to experimental data.

The relation between extreme value theory and large devia-
tions in the context of recurrence is a promising new field of
research that we plan to extend to concrete situations in natu-
ral sciences, like climate, turbulence, and neural networks. The
climate dynamics data shown in this paper are a first example
of this endeavor. Here, atmospheric extreme events (like e.g.

extratropical storms or blocking) produce large excursions of the
local dimensions D1,r (z), which in turn are associated with large
deviations of hitting and return times, in the proximity of special
points in phase space. Since the computation of local dimensions
is relatively feasible also for systems with a high number of
degrees of freedom, this can be used to trace the location of
singularities originating the multifractal Dq spectra.
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Appendix

We now sketch how the spectral theory developed in [37]
allows to get Gumbel’s law for the distribution of the maxima
considered in Section 5.2. We now define :

∆q
n = {(xq) ∈ Mq, d(x1, x2) < e−un , . . . , d(x1, xq) < e−un}. (70)

In order to establish rigorous results, we restrict ourselves to C2

expanding maps of the interval preserving an absolutely contin-
uous invariant measure µ = hdx, with density h of bounded
variation and strictly positive. The key observation is that the
distribution µq(Mn ≤ un) can be written as

µq(Mn ≤ un) =

∫
dµq1(∆q

n)c
(xq) · · · 1(∆q

n)c
(T n−1

q xq), (71)

where Sc denotes the complement of the set S. We now rewrite
the preceding formula in a more convenient way. At this regard
we first introduce the transfer operator PTq for the map Tq, which
is defined, for an observable f in some suitable Banach space
B, (for instance the space of bounded variation functions) by
the duality relation:

∫
PTq fdxq =

∫
fdxq, where dxq denotes the

q-Lebesgue measure. By repeatedly using this duality relation we
can write (71) as

µq(Mn ≤ un) =

∫
dxqP̃n

Tq,n (h(x1)h(x2) · · · h(xq)), (72)

where the perturbed operator P̃Tq,n is defined as P̃Tq,n (f ) = PTq (f
1(∆q

n)c
). When n tends to infinity the characteristic function of

(∆q
n)c tends to the identity and the operators P̃Tq,n converge to

PTq in B. If the unperturbed operator PTq has a spectral gap, which
means it allows exponential mixing for the observables in B, the
same is true for the operator P̃Tq,n and the maximal, isolated,
eigenvalue of PTq , which in our case is 1 is close to that of P̃Tq,n ,
λ̃q,n, more precisely [37]:

λ̃q,n ∼ 1 − (1 − χ0)µq(∆q
n),

where the quantity χ0 will be defined in a moment. The operator
P̃Tq,n now decomposes as the sum of a projection along the one
dimensional eigenspace associated to the eigenvalue λ̃q,n and
spanned by the density h̃(q)

n and an operator with a spectral radius
exponentially decreasing to zero and which can be neglected in
the limit of large n. This allows us to write

µq(Mn ≤ un) ∼ λ̃q,n

∫
h(x1) · · · h(xq)h̃(q)

n dxq,
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where the integral on the right hand side converges to 1 for
n → ∞. In conclusion we get by approximating λ̃q,n as above:

µq(Mn ≤ un) ∼
[
1 − (1 − χ0)µq(∆q

n)
]n

∼ exp
[
−(1 − χ0)nµq(∆q

n)
]
.

We now recall that we are under the assumption that nµq(ψ >

un) = nµq(∆
q
n) → t, n → ∞; we therefore obtain the Gumbel

law e−θqt , provided the dynamical extremal index θq is defined as

θq = 1 − χ0. (73)

The term χ0 is obtained by the previous perturbation theory
under the assumption, which is verified in our setting, that the
set {xq ∈ Mq

; x1 = xi, i = 2, . . . , q} in the product space is left
invariant by the direct product of the q maps; in particular we
have:

χ0 = lim
n→∞

µq(∆
q
n ∩ T−1

q ∆
q
n)

µq(∆
q
n)

. (74)

The deduction of the Gumbel’s law with this spectral technique
is explained in more detail in the papers [23,46]. In particular, in
the paper [46], Lemma 5.2, it was shown how the term χ0, which
in general is given by an infinite series, reduces to the value given
above. The adaptation to our case is straightforward and it can be
done along the diagonal in each plane {x1 = xj}, j ̸= 1.
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