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Abstract

We give conditions under which nonuniformly expanding maps exhibit

lower bounds of polynomial type for the decay of correlations and for a

large class of observables. We show that if the Lasota-Yorke type inequal-

ity for the transfer operator of a first return map are satisfied in a Banach

space B, and the absolutely continuous invariant measure obtained is weak

mixing, in terms of aperiodicity, then under some renewal condition, the

maps have polynomial decay of correlations for observables in B. We also

provide some general conditions that give aperiodicity for expanding maps

in higher dimensional spaces. As applications, we obtain lower bounds for

piecewise expanding maps with an indifferent fixed point and for which we

also allow non-Markov structure and unbounded distortion. The observ-

ables are functions that have bounded variation or satisfy quasi-Hölder

conditions and have their support bounded away from the neutral fixed

points.

0 Introduction

The purpose of this paper is to study polynomial decay of correlations for in-

variant measures which are absolutely continuous with respect to the Lebesgue

measure on compact subsets of Rn. Typically the maps T which we consider are

non uniformly expanding and may neither have a Markov partition nor exhibit
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bounded distortion. The main tool we use is the transfer (Perron-Frobenius)

operator on induced subsystems endowed with the first return map.

We now explain in detail the content of this paper. Let us consider a non

uniformly expanding map T defined on a compact subset X ⊂ Rn, with or

without discontinuities. Since we do not have necessarily bounded distortion

or Markov partitions, the Hölder property is not preserved under the transfer

operator. Therefore we will work on Banach spaces B embedded in L1 with

respect to the Lebesgue measure, and we will give some conditions on B under

which the results apply, see Assumption B.

Let us now take a subset X̂ ⊂ X and define the first return map T̂ . The

first ingredient of our theorem is the Lasota-Yorke inequality for the transfer

operator P̂ of T̂ with respect to the norms ‖ · ‖B and ‖ · ‖L1 . Hence, P̂ has a

fixed point ĥ that defines an absolutely continuous measure µ̂ invariant under

T̂ . The measure µ̂ can be extended to a measure µ on X invariant under T . We

may assume ergodicity for µ̂, otherwise we take an ergodic component. Then

the ergodicity of µ̂ gives ergodicity of µ. However, we also need some mixing

property for µ. Therefore our second ingredient is to require that the function

τ given by the first return time is aperiodic, which is equivalent to the weak

mixing of µ for T . The third ingredient is precise tail estimates as they are

required in the renewal theory approach. In this regard, let us call ||Rn|| the

operator norm (see below) of the n-th power of the transfer operator restricted

to the level sets with first return time τ = n; then we ask that
∑∞
k=n+1 ||Rk||

decays at least as n−β , with β > 1. Such a decay gives also an estimate, through

the exponent β, of the error term denoted by the function Fβ(n) in the basic

inequality (1.3) of Theorem A below. Whenever that error term goes to zero

faster than
∑∞
k=n+1 µ(τ > k), the latter sum gives a lower bound for the decay

of correlations and we will refer to this situation as the optimal rate: this will

be shown to hold in the situations of Section 5.

The proof of aperiodicity in Theorem B is particularly technical. We use

some results of the theory developed in the paper [ADSZ], where aperiodic-

ity is proved for a large class of interval maps, and some methods in [AD] for

skew product rigidity. We extend the aperiodicity result to the multidimen-

sional setting without Markov partitions thus pursuing the program started in

[ADSZ], which was just oriented to treat the non-Markov cases especially for

one-dimensional systems.

Several examples will be presented and discussed in detail.

In the one-dimensional case we use the set of bounded variation functions

for the Banach space B, and we find that the decay rates are of order nβ−1 if

near the fixed point the map has the form T (x) ≈ x + x1+γ , γ ∈ (0, 1) and

β = 1/γ. Upper bounds for the decay of correlations for these kinds of maps

were already given by Young [Yo2] and by Melbourne and Terhesiu, see Section

5.3 in [MT].
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We then consider a large class of maps in higher dimensions that we intro-

duced in a previous paper [HV], and in sections 4 and 5 we will specify the roles

of the derivative and of the determinant in order to get a lower bound for the

decay of correlations.

In particular we will obtain optimal rates under the assumption that all the

pre-images of some neighborhood of p do not intersect discontinuities, (see The-

orem E and examples in Subsection 5.2 for more details). This is satisfied for

instance whenever T has a Markov partition, even countable, see Remark 5.1.

Moreover in Example 5.5 and thereinafter we show the existence of these systems

with all the pre-images of some neighborhood of p not intersecting discontinu-

ities, but without any Markov structure.

We would like to point out two main issues which make the higher dimen-

sional case more complicated. The first is due to unbounded distortion of the

map. This is caused by different expansion rates in different directions as a

point move away from the indifferent fixed point even if DTp = id at the fixed

point (see Example 1, part (A) in [HV]). The second comes from the difficulty

to estimate the decreasing rates of the norm ‖Rn‖ for quasi-Hölder spaces: The-

orems D and E deal with these situations under certain hypotheses. One surely

needs more work to weaken those assumptions and achieve optimal decay for a

much larger class of maps.

1 Assumptions and statements of results

Let X ⊂ Rm be a subset with positive Lebesgue measure ν. We assume ν(X) =

1.

The transfer operator P = Pν : L1(X, ν) → L1(X, ν) is defined by
∫
ψ ◦

Tφdν =
∫
ψPφdν ∀φ ∈ L1(X, ν), ψ ∈ L∞(X, ν).

Let X̂ ⊂ X be a measurable subset of X with positive Lebesgue measure.

Recall that the first return map of T with respect to X̂ ⊂ X is defined by

T̂ (x) = T τ(x)(x), where τ(x) = min{i ≥ 1 : T ix ∈ X̂} is the return time. We

put ν̂ the normalized Lebesgue measure on X̂. Then we let P̂ = P̂ν̂ be the

transfer operator of T̂ .

Moreover we define

Rnf = 1X̂ ·P
n(f1{τ=n}) and Tnf = 1X̂ ·P

n(f1X̂) (1.1)

for any function f on X̂. For any z ∈ C, denote R(z) =

∞∑
n=1

znRn. It is clear

that P̂ = R(1) =
∑∞
n=1Rn.

For simplicity of notation, we regard the space L1(X̂, ν̂) as a subspace of

L1(X, ν) consisting of functions supported on X̂, and we denote it by L1(ν̂) or
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sometimes by L1 and when no ambiguity arises. We will denote D = {z ∈ C :

|z| < 1} and S = {z ∈ C : |z| = 1}.
Suppose that there is a seminorm | · |B for functions in L1(X̂, ν̂). Consider

the set B = B(X̂) = {f ∈ L1(X̂, ν̂) : |f |B <∞}. Define a norm on B by

‖f‖B = |f |B + ‖f‖1

for f ∈ B, where ‖f‖1 is the L1 norm. We assume that B satisfies the require-

ments stated below; the assumptions (a) to (c) will be necessary to establish the

spectral gap of the induced transfer operator, while conditions (d) to (f) will be

useful to prove aperiodicity. We first define a set U ⊂ X̂ to be almost open with

respect to ν̂ if for ν̂ almost every point x ∈ U , there is a neighborhood V (x)

such that ν̂(V (x) \ U) = 0.

Assumption B. (a) (Compactness) B is a Banach space and the inclusion

B ↪→ L1(ν̂) is compact; that is, any bounded closed set in B is compact in

L1(ν̂).

(b) (Boundedness) The inclusion B ↪→ L∞(ν̂) is bounded; that is, ∃Cb > 0

such that ‖f‖∞ ≤ Cb‖f‖B for any f ∈ B.

(c) (Algebra) B is an algebra with the usual sum and product of functions, in

particular there exists a constant Ca such that ‖fg‖B ≤ Ca‖f‖B‖g‖B for

any f, g ∈ B.

(d) (Denseness) The image of the inclusion B ↪→ L1(ν̂) is dense in L1(ν̂).

(e) (Lower semicontinuity) For any sequence {fn} ⊂ B with lim
n→∞

fn = f

ν̂-almost everywhere, |f |B ≤ lim inf
n→∞

|fn|B.

(f) (Openness) For any nonnegative function f ∈ B, the set {f > 0} is almost

open with respect to ν̂.

Remark 1.1. Assumption B(f) means that functions in B are not far from

continuous functions.

The possibility of computing a lower bound for the decay of correlations

relies on a result first established by Sarig [Sr] and improved by Gouëzel [Go].

We now state the sufficient conditions on our systems which will allow us to

apply those results and we will comment later on about such implication.

Assumption S. Let X ⊂ Rm be a compact subset and X̂ ⊂ X be a compact

subset of X.

Let T : X → X be a map whose first return map with respect to X̂ is T̂ = T τ ,

and B be a Banach space satisfying Assumption B(a) to (c). We assume the

following.
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(S1) (Quasi compactness) There exist constants B, D̂ > 0 and η̂ ∈ (0, 1) such

that for any f ∈ B, z ∈ D,

‖R(z)nf‖B ≤ |zn|
(
Bη̂n‖f‖B + D̂‖f‖1

)
. (1.2)

Note that for z = 1 we obtain the usual Lasota-Yorke inequality for the

operator P̂.

(S2) (Aperiodicity) The function eitτ given by the return time is aperiodic, that

is, the only solution for eitτ = f/f ◦ T̂ which holds almost everywhere with

a measurable function f : X̂ → S, is provided by f constant almost every-

where and t = 0. It will follow that the measure µ̂ given by µ̂(f) = ν̂(ĥf),

where ĥ is a fixed point of P̂, is ergodic since aperiodicity is equivalent to

weak-mixing (see e.g. [PP]).

(S3) (Return times tail) The B-norm of the operator Rn is summable and sat-

isfies
∑∞
k=n+1 ‖Rk‖B = O(n−β) for some β > 1.

As we said above, a useful reformulation of the theorems in [Sr] and [Go]

allows us to get the following result:

Theorem A. Let us suppose that Assumption (S) is satisfied; then there ex-

ists a constant C > 0 such that for any function f ∈ B, g ∈ L∞(X, ν) with

supp f, supp g ⊂ X̂,∣∣∣Cov(f, g ◦ Tn)−
( ∞∑
k=n+1

µ(τ > k)
)∫

fdµ

∫
gdµ

∣∣∣ ≤ CFβ(n)‖g‖∞‖f‖B, (1.3)

where Fβ(n) = 1/nβ if β > 2, (log n)/n2 if β = 2, and 1/n2β−2 if 2 > β > 1.

Comments. 1. Sarig and Gouëzel theory requires that in addition to con-

dition (S3), two more assumptions are satisfied. The first condition asks

that 1 is a simple isolated eigenvalue of R(1) and this is an immediate

consequence of the quasi-compactness of P̂ and of the ergodicity of µ̂.

2. The second assumption requires that 1 is not an eigenvalue of R(z) for

|z| = 1 with z 6= 1. Let us fix 0 < t < 2π and put z = eit; if we suppose

that R(z)f = f for some nonzero f ∈ B, by the arguments developed

in the proof of the Lemma 6.6 in [Go], that is equivalent to the equation

e−itτf ◦ T̂ = f almost everywhere. By the aperiodicity condition (S2) we

conclude that t = 0 and f is a constant µ̂-almost everywhere which is a

contradiction.

Assumption (S2) is usually difficult to check. However, for piecewise ex-

panding systems, the condition can be verified and we will give some sufficient

conditions in Theorem B below.
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The more general version of aperiodicity is the following. Let G be a locally

compact Abelian polish group. A measurable function φ : X̂ → G is aperiodic

if the only solutions for γ ◦φ = λf/f ◦T almost everywhere with γ ∈ Ĝ, |λ| = 1

and a measurable function f : X̂ → G are γ = 1, λ = 1 and f constant almost

everywhere, see [ADSZ] and references therein. Here we only consider the case

γ = id, and φ = eitτ , and G being the smallest compact subgroup of S containing

eit.

We denote by Bε(Γ) the ε neighborhood of a set Γ ⊂ X. Recall that the

notion of almost open is given before the statement of Assumption B. We now

state a few conditions which must be satisfied by all the maps considered from

now on.

Assumption T. (a) (Piecewise smoothness) There are countably many dis-

joint sets U1, U2, · · · almost open with respect to ν, with X̂ =
⋃∞
i=1 Ui a

compact set, such that for each i, T̂i := T̂ |Ui extends to a C1+α diffeomor-

phism from U i to its image, and τ |Ui is constant; we will use the symbol

T̂i to denote the extension as well.

(b) (Finite images) The collection {T̂Ui : i = 1, 2, · · · } is finite, and ν(Bε(∂T̂Ui)) =

O(ε) ∀i = 1, 2, · · · .

(c) (Expansion) There exists s ∈ (0, 1) such that d(T̂ x, T̂ y) ≥ s−1d(x, y)

∀x, y ∈ U i ∀i ≥ 1.

(d) (Topological mixing) T : X → X is topological mixing.

Remark 1.2. Conditions (b) and (c) in Assumption T correspond to condi-

tions (F) and (U) in [ADSZ]. There is there a third assumption, (A), which

is distortion and which is not necessarily guaranteed in our systems. With this

precision, we could regard the systems satisfying Assumption T(a)-(c) as higher

dimensional “AFU” systems. Returning to the finite image condition T (b), it

is used in proof of Lemma 2.1 below, to get µ(An,n0
) → 1 as n0 → ∞ and this

is a consequence of a “small image boundary” as explained in the first footnote

of the proof of Theorem B.

Remark 1.3. We mention that if T has relatively prime return times on almost

all points x ∈ X̂, then Condition (d) is satisfied. The former means that for any

neighborhood U of x, there is a point y ∈ U and return times τ ′(x) and τ ′(y) such

that T τ
′(x)(x), T τ

′(x)(x) ∈ U and the greatest common divisor (τ ′(x), τ ′(y)) = 1.

Here τ ′(x) and τ ′(y) are not necessary the first return time.

Let us take now a partition ξ of X̂ and consider a family of skew-products

of the form

T̃ = T̃S : X̂ × Y → X̂ × Y , T̃S(x, y) =
(
T̂ x, S(ξ(x))(y)

)
, (1.4)
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where (Y,F , ρ) is a Lebesgue probability space, Aut(Y ) is the collection of

its automorphisms, that is, invertible measure-preserving transformations, and

S : ξ → Aut(Y ) is arbitrary.

We then consider functions f̃ ∈ L1(ν̂ × ρ) and define

|f̃ |B̃ =

∫
Y

|f̃(·, y)|Bdρ(y), ‖f̃‖B̃ = |f̃ |B̃ + ‖f̃‖L1(ν̂×ρ).

Then we let

B̃ = {f̃ ∈ L1(ν̂ × ρ) : |f̃ |B̃ <∞}.

It is easy to see that with the norm ‖ · ‖B̃, B̃ is a Banach space.

The transfer operator P̃ = P̃ν̂×ρ acting on L1(ν̂ × ρ) is defined as the dual

of the operator f̃ → f̃ ◦ T̃ from L∞(ν̂ × ρ) to itself. Note that if Y is a space

consisting of a single point, then we can identify X̂ × Y , T̃ and P̃ with X̂, T̂

and P̂ respectively.

Theorem B. Let us suppose T̂ satisfies Assumption T(a) to (d) and B satisfies

Assumption B(d) to (f), and P̃ satisfies the Lasota-Yorke inequality

|(P̃ f̃)|B̃ ≤ η̃|f̃ |B̃ + D̃‖f̃‖L1(ν̂×ρ) (1.5)

for some η̃ ∈ (0, 1) and D̃ > 0. Then the absolutely continuous invariant

measure µ̂ obtained from the Lasota-Yorke inequality (1.2) is ergodic and eitτ is

aperiodic. Therefore Assumptions (S2) and (S3) follow.

Remark 1.4. It is well known that for C1+α, α > 1, uniformly expanding maps

or uniformly hyperbolic diffeomorphisms, the absolutely continuous invariant

measures or the SRB measure µ are ergodic if the maps are topological mixing,

see e.g. [Bo] for invertible case; the noninvertible case can be obtained similarly.

However, it is not the case if the conditions on C1+α or uniformity of hy-

perbolicity fail. In [Qu] the author gives an example of C1 uniformly expand-

ing maps of the unit circle, and in [HPT] the authors provide an example of

C∞ diffeomorphisms, where the Lebesgue measure is preserved and topological

mixing does not give ergodicity. In the proof of the theorem we in fact give

some additional conditions under which topological mixing implies ergodicity

(see Lemma 2.2).

2 Aperiodicity

The proof of Theorem B is based on a result in [ADSZ]. We briefly mention the

terminology used there.

A fibred system is a quintuple (X,A, ν, T, ξ), where (X,A, ν, T ) is a non-

singular transformation on a σ-finite measure space and ξ ⊂ A is a finite or

countable partition (mod ν) such that:
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(1) ξ∞ =
∨∞
i=0 T

−iξ generates A;

(2) every A ∈ ξ has positive measure;

(3) for every A ∈ ξ, T |A : A→ TA is bimeasurable invertible with nonsingular

inverse.

The transformation given in (1.4) is called the skew product over ξ. We will

denote with ξn the n-join ξn =
∨n−1
i=0 T

−iξ, and with ξn(x) the element (cylinder)

of the partition ξn containing the point x. Consider the corresponding transfer

operator P̃ = P̃ν×ρ. A fibred system (X,A, ν, T, ξ) with ν finite is called

skew-product rigid if for every invariant function h̃(x, y) of P̃ of an arbitrary

skew product T̃S , the set {h̃(·, y) > 0} is almost open (mod ν) for almost every

y ∈ Y . In [ADSZ], a set U being almost open (mod ν) means that for ν almost

every x ∈ U , there is a positive integer n such that ν(ξn(x) \ U) = 0. Since

the partition ξ we are interested in satisfies ν(∂A) = 0 for any A ∈ ξn and T̂

is piecewise smooth, the fact that ξ∞ generates A implies that the definition

given there is the same as we defined for Assumption B(f).

A set that can be expressed in the form T̂nξn(x), n ≥ 1 and x ∈ X̂, is called

an image set. A cylinder C of length n0 is called a cylinder of full returns, if for

almost all x ∈ C there exist nk ↗∞ such that T̂nkξnk+n0
(x) = C. In this case

we say that T̂n0(C) is a recurrent image set.

Our proof of Theorem B is based on a result given in Theorem 2 in [ADSZ]:

Theorem. Let (X,A, µ, T, ξ) be a skew-product rigid measure preserving fibred

system whose image sets are almost open. Let G be a locally compact Abelian

polish group. If γ ◦ φ = λf/f ◦ T holds almost everywhere, where φ : X → G, ξ

measurable, γ ∈ Ĝ, λ ∈ S, then f is constant on every recurrent image set.

Warning: In the proof of Theorem B and the lemmas below we will work

exclusively on the induced space X̂ and with measures ν̂ and µ̂ and density ĥ;

for this reason we will drop the hat on those notations.

Proof of Theorem B. Recall that µ is an T̂ invariant measure with density h,

where h is the fixed point of P̂ in B. By Lemma 2.2 we know that µ is ergodic;

hence we only need to prove that eitτ is aperiodic.

Let us denote with A the Borel σ-algebra inherited from Rm and take a

countable partition ξ of X̂ into {Ui} or finer. We also require that each A ∈ ξ is

almost open, and ν(Bε(∂T̂ ξ)) = O(ε), where ∂T̂ ξ = ∪A∈ξ∂(T̂A). Is it obvious

that we can take smooth surfaces as the boundary of the elements of ξ, in

addition to Assumption T(b) ∗. Since T̂ is uniformly expanding by Assumption

T(c), we know that each element of ξ∞ =
∨∞
i=0 T̂

−iξ contains at most one

∗This assumption is in fact used to get the measure of an ε-neighborhood of the boundary
of T̂ ξ of order ε.
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point.† Therefore ξ∞ generates A. We may regard that each A ∈ ξ has positive

measure, otherwise we can use X̂ \A to replace X̂. Also, for every A ∈ ξ, T̂ |A :

A→ T̂A is a diffeomorphism, and therefore T̂ |A is bimeasurable invertible with

nonsingular inverse. Hence the quintuple (X̂,A, µ, T̂ , ξ) is a measure preserving

fibred system.

The construction of ξ implies that µ(∂ξ) = ν(∂ξ) = 0; therefore µ(∂ξn) =

ν(∂ξn) = 0 for any n ≥ 1. We point out that the intersection of finite number

of almost open sets is still almost open. Moreover, the differentiability of T̂ on

each Ui implies that all elements ξn(x) of ξn are almost open, and therefore all

image sets T̂nξn(x) are almost open with respect to µ.

To get skew product rigidity, let us consider the skew product T̃S defined

in (1.4) for any (Y,F , ρ). Let P̃ = P̃ν×ρ be the transfer operator and h̃ an

invariant function, that is, P̃h̃ = h̃. By Proposition 2.3 below we know that

h̃ ∈ B̃. Hence, for ρ-almost every y ∈ Y , h̃(·, y) ∈ B. By Assumption B(f),

{h̃(·, y) > 0} is almost open mod ν. This gives the skew product rigidity.

So far we have verified all conditions in the theorem of [ADSZ] stated above.

Applying the theorem to the equation eitτ = f/f ◦ T̂ almost everywhere, where

f : X̂ → S is a measurable function, we get that f is constant on every recurrent

image sets J .

Now we prove aperiodicity, by following similar arguments in [Go]. Let us

assume that the equation eitτ = f/f ◦ T̂ holds almost everywhere for some real

number t and a measurable function f : X̂ → S. By Lemma 2.1 below we get

that X̂ contains a recurrent image set J with µ(J) > 0 and by the theorem

above, we know that f is constant, say c, almost everywhere on J. Then by

the absolute continuity of µ and the fact that {h > 0} is ν-almost open, we

can find an open set J ′ ⊂ J of positive µ-measure. Thanks to Assumption

T(d), T is topological mixing and therefore for all sufficiently large n, we have

T−nJ ′ ∩ J ′ 6= ∅. Since the intersection is open‡ , we get that µ(T−nJ ′ ∩ J ′) > 0

and as a consequence for any typical point x in T−nJ ′ ∩ J ′, there is k > 0 such

that Tnx = T̂ kx, and n =
∑k−1
i=0 τ(T̂ ix). Since eitτ = f/f ◦ T̂ along the orbit

of x, we have

eint = eit
∑k−1

0 τ(T̂ ix) =
f(x)

f(T̂ x)

f(T̂ x)

f(T̂ 2x)
· · · f(T̂ k−1x)

f(T̂ kx)
=

f(x)

f(T̂ kx)
=
c

c
= 1.

Since this is true for all large n, by replacing n by n+ 1 we get that eit = 1. It

follows that t = 0 and f = f ◦ T̂ almost everywhere which implies that f must

†In fact, if x, y ∈ ξ∞, then for any i > 0, T̂ ix and T̂ iy are always in the same elements of ξ,
and hence in the same Uni for some ni > 0. On the other hand, by Assumption T(c) we have

d(T̂ ix, T̂ iy) ≥ s−id(x, y). If d(x, y) 6= 0, then d(T̂ ix, T̂ iy) → ∞, contradicting the facts that
X̂ is compact. We in fact recall that in Lebesgue spaces a necessary and sufficient condition
for ξn → A is that there exists a set of zero measure N ⊂ X̂ such that for x, y ∈ X̂/N (with
x 6= y) there exists n ≥ 1 and U ∈ ξn such that x ∈ U but y /∈ U .
‡Strictly speaking that intersection contains open sets since T and all its powers, although

not continuous, are local diffeomorphisms, on each domain where they are injective.
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be a constant almost everywhere since µ is ergodic.

To prove Lemma 2.1, we need a result from Lemma 2 in Section 4 in [ADSZ].

We state it as the next lemma. The setting for the lemma is a conservative fibred

system and it can be applied directly to our case.

Lemma. A cylinder C ∈ ξn0
is a cylinder of full returns if and only if there

exists a set K of positive measure such that for almost every x ∈ K, there are

ni →∞ with T̂niξni+n0
(x) = C.

Lemma 2.1. There is a recurrent image set J contained in X̂ with µ(J) > 0.

Proof. We first recall that s is given in Assumption T(c); then let us take Cξ > 0

such that diamD ≤ Cξ for all D ∈ ξ and set

A′k,n0
= {x ∈ X̂ : x /∈ BCξsk+n0 (∂T̂ ξ)},

An,n0 =

n−1⋂
k=0

T̂n−kA′k,n0
.

By the construction of ξ, there is C ′ > 0 such that ν(A′k,n0
) ≥ 1 − C ′Cξsk+n0 ;

moreover assumption B(b) guarantees that ‖h‖∞ <∞. Therefore if we take C =

C ′Cξ‖h‖∞/(1− s), then µ(A′k,n0
) ≥ 1− C ′Cξ‖h‖∞sk+n0 = 1− C(1− s)sk+n0 .

Since µ is an invariant measure, µ(An,n0
) ≥ 1−C(1−s)

∑n−1
i=0 s

i+n0 ≥ 1−Csn0 .

If we choose n0 large enough, then µ(An,n0
) is bounded below by a positive

number for all n > 0, and the bound can be chosen arbitrarily close to 1 by

taking n0 sufficiently large.

Note that ξn is a partition with at most countably many elements. For each

n0 > 0, let B′n0
be the union of a finite number of elements of ξn0

such that

µ(B′n0
) > 1−Csn0/2. Then set Bn,n0

= B′n0
∩ T̂−nB′n0

; clearly, µ(Bn,n0
) ≥ 1−

Csn0 . If we now put Cn,n0
= An,n0

∩Bn,n0
, then we have µ(Cn,n0

) ≥ 1−2Csn0 .

Hence,
∑∞
n=0 µ(Cn,n0

) =∞ for all large n0.

A generalized Borel-Cantelli Lemma by Kochen and Stone (see [Ya]), gives

that for any given n0 > 0, the set of points that belong to infinitely many Cn,n0

has the measure bounded below by

lim sup
n→∞

∑
1≤i<k≤n µ(Ci,n0)µ(Ck,n0)∑
1≤i<k≤n µ(Ci,n0

∩ Ck,n0
)
.

Notice that if n0 →∞, then µ(Ci,n0)→ 1 as n0 →∞ and uniformly in i by the

previous lower bound on µ(Cn,n0). Hence the upper limit goes to 1 as n0 →∞.

If we now se

Γn0 = {x ∈ X̂ : x ∈ Cn,n0 infinitely often},

the above argument gives µ(Γn0)→ 1 as n0 →∞.

We observe that for a one-to-one map T , T (A ∩ T−1B) = B if and only if

B ⊂ TA. Since ξn(x) = ξ(x)∩ T̂−1(ξn−1(T̂ x)), and T̂ is a local diffeomorphism,

10



we know that T̂ ξn(x) = ξn−1(T̂ x) if and only if ξn−1(T̂ x) ⊂ T̂ ξ(x). Induc-

tively, T̂nξn+n0
(x) = ξn0

(T̂nx) if and only if ξn−i+n0
(T̂ ix) ⊂ T̂ ξ(T̂ i−1x) for

i = 1, · · · , n. If x ∈ An,n0
for some n, n0 > 0, then T̂n−ix /∈ BCξsi+n0 (∂T̂ ξ)

for all i = 1, · · · , n. Since the diameter of each member of ξ is less than Cξ,

by Assumption T(c), diam ξn(x) ≤ Cξs
n for any x ∈ X̂ and n ≥ 0. We get

ξn−i+n0
(T̂ ix) ⊂ T̂ ξ(T̂ i−1x) and therefore T̂nξn+n0

(x) = ξn0
(T̂nx). Conse-

quently, if x ∈ Γn0
, then x ∈ Cni,n0

= Ani,n0
∩ Bni,n0

for infinitely many

ni. Hence, T̂niξni+n0(x) = ξn0(T̂nix) and T̂nix ∈ Bn0 for infinitely many ni,

We now take n0 > 0 such that µ(Γn0) > 0; since Bn0 consists of only finitely

many elements in ξn0 , we know that there is an element C ∈ ξn0 with C ⊂ Bn0

such that

µ{x : T̂nξn+n0
(x) = ξn0

(T̂nx) = C infinitely often} > 0. (2.1)

By the above lemma from [ADSZ], C is a cylinder of full returns. Hence,

J = T̂n0C is a recurrent image set. Since µ is an invariant measure, (2.1)

implies µ(C) > 0 and therefore µ(J) > 0.

Lemma 2.2. Let us suppose that T and B satisfy Assumption T(d) and B(f)

respectively. Then there is only one absolutely continuous invariant measure µ

which is ergodic.

Proof. Suppose µ has two ergodic components µ1 and µ2 whose density func-

tions are h1 and h2 respectively. Hence, ν({h1 > 0} ∩ {h2 > 0}) = 0. Since

h1, h2 ∈ B, the sets {h1 > 0} and {h2 > 0} are almost open. We can take

open sets U1 and U2 such that ν(U1 \ {h1 > 0}) = 0 and ν(U2 \ {h1 > 0}) = 0.

Since T is topological mixing, there is n > 0 such that T−nU1 ∩U2 6= ∅. Hence,

ν(T−nU1 ∩ U2) > 0 and therefore ν(U1 ∩ TnU2) > 0. It follows that there

is k > 0 such that ν(U1 ∩ T̂ kU2) > 0. Since P̂h2 = h2, h2(x) > 0 implies

h2(T̂ kx) > 0. Hence ν(T̂ kU2 \ {h2 > 0}) = 0. Therefore, ν({h1 > 0} ∩ {h2 >

0}) ≥ ν(U1 ∩ T̂ kU2) > 0, which is a contradiction.

We are left with the proof that any fixed point h̃ of P̃ belongs to B. The

result was proved for Gibbs-Markov maps in [AD]. We show that it holds in

more general cases. To simplify the notation we will write from now on L1(ν×ρ)

instead of L1(X̂ × Y, ν × ρ).

Proposition 2.3. Suppose that B satisfies Assumption B(d) and (e), and P̃
satisfies Lasota-Yorke inequality (1.5). Then any L1(ν×ρ) function h̃ on X̂×Y
that satisfies P̃ν×ρh̃ = h̃ belongs to B̃.

Proof. By Assumption B(d), B is dense in L1(X̂, ν); it is easy to see that B̃ is

dense in L1(ν×ρ) too. Hence, for any ε > 0 we can find a nonnegative function

f̃ε ∈ B̃ such that ‖f̃ε − h̃||L1(ν×ρ) < ε. By the stochastic ergodic theorem,
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see Krengel ([Kr]), there exists a nonnegative function h̃ε ∈ L1(ν × ρ) and a

subsequence {nk} such that

lim
k→∞

1

nk

nk−1∑
`=0

P̃`f̃ε = h̃ε ν × ρ-a.e. (2.2)

and P̃h̃ε = h̃ε.

Notice that Lasota-Yorke inequality (1.5) implies that for any f̃ ∈ B̃, ` ≥ 1,

|P̃`f̃ |B̃ ≤ η̃
`|f̃ |B̃ + D̃∗‖f̃‖L1(ν×ρ) ≤ D̃2‖f̃‖B̃, (2.3)

where D̃∗ = D̃η̃/(1 − η̃) ≥ D̃(η̃ + · · · + η̃`−1) and D̃2 = 1 + D̃∗. Denote

ψk =
1

nk

nk−1∑
`=0

P̃`fε; by (2.3) ψk ≤ D̃2‖f̃‖B̃. On the other hand (2.2) implies

that lim inf
k→∞

ψk(x, y) = h̃ε(x, y) for ν-a.e. x ∈ X̂, ρ-a.e. y ∈ Y . Hence, by

Assumption B(e) and Fatou’s lemma we obtain

|h̃ε|B̃ =

∫
Y

| lim
k→∞

ψk(·, y)|Bdρ(y) ≤
∫
Y

lim inf
k→∞

|ψk(·, y)|Bdρ(y)

≤ lim inf
k→∞

∫
Y

|ψk(·, y)|Bdρ(y) = lim inf
k→∞

|ψk|B̃ ≤ D̃2||f̃ε||B̃.
(2.4)

This means that h̃ε ∈ B̃.

By Fatou’s Lemma and the fact that P̃ is a contraction on L1(ν × ρ), it

follows immediately that (2.2) and P̃h̃ = h̃ imply

‖h̃− h̃ε‖L1(ν×ρ) ≤ lim inf
k→∞

1

nk

nk−1∑
l=0

||P̃`(h̃− f̃ε)‖L1(ν×ρ) ≤ ‖h̃− f̃ε‖L1(ν×ρ) ≤ ε.

By the first inequality of (2.3) we know that for any n ≥ 1,

‖h̃ε‖B̃ = ‖P̃nh̃ε‖B̃ ≤ η̃
n‖h̃ε‖B̃ + D̃∗‖h̃ε‖L1(ν×ρ).

If we now send n to infinity we get ‖h̃ε‖B̃ ≤ D̃
∗‖h̃ε‖L1(ν×ρ) ≤ D̃∗(‖h̃‖L1(ν×ρ) +

ε). We then replace ε with a decreasing sequence cn → 0 as n→∞. Since h̃cn
converges in L1(ν × ρ) to h̃, there is a subsequence ni such that limi→∞ h̃cni = h̃,

ν × ρ-a.e.. Then by the same arguments used in (2.4), we get

|h̃− h̃cn |B̃ ≤ lim inf
i→∞

|h̃cni − h̃cn |B̃ ≤ 2 sup
0≤ε≤1

‖h̃ε‖B̃ ≤ 2D̃1(‖h̃‖L1(ν×ρ) + 1).

We have thus obtained h̃−h̃cn ∈ B̃ and as a consequence h = (h−hcn)+hcn ∈ B̃
and this completes the proof.
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3 Systems on the interval

In this section we take X = [0, 1] and ν be the Lebesgue measure on X.

We remind that for a map T : X → X and a subset X̂ ⊂ X, the correspond-

ing first return map is denoted by T̂ : X̂ → X̂; ν̂ will be again the normalized

Lebesgue measure on X̂.

Let us now assume that T : X → X is a map satisfying the following

conditions.

Assumption T′. (a) (Piecewise smoothness) There are points 0 = a0 <

a1 < · · · < aK = 1 such that for each j, Tj = T |Ij is a C2 diffeomor-

phism on its image, where Ij = (aj−1, aj).

(b) (Fixed point) T (0) = 0.

(c) (Expansion) There exists z ∈ I1 such that T (z) ∈ I1 and ∆ := inf
x∈X̂
|T ′(x)| >

2 for any x ∈ X̂, where X̂ = [z, 1].

(d) (Distortion) Γ := sup
x∈[z,1]

|T̂ ′′(x)|/|T̂ ′(x)|2 <∞.

(e) (Topological mixing) T : I → I is topological mixing.

We now set J = [0, z) and X̂ = X̂J = X \ J . I0 = TJ \ J ⊂ I1. We

also denote the first return map T̂ = T̂J by T̂ij if T̂ = T i1Tj . Further, we put

I01 = I1 \ J , I0j = Ij \ T−1
j J if j > 1, and Iij = T̂−1

i,j I0 for i > 0. Hence,

{Iij : i = 0, 1, 2, · · · } form a partition of Ij = (aj , bj) for j = 2, · · · ,K. Also, we

denote Īij = [aij , bij ] for any i = 0, 1, 2, · · · and j = 1, · · · ,K.

Recall that the variation of a real or complex valued function f on [a, b] is

defined by

V[a,b](f) := sup
ξ∈Ξ

n∑
i=1

|f(x(`))− f(x(`−1))|,

where ξ is a finite partition of [a, b] given by a = x(0) < x(1) < · · · < x(n) = b and

Ξ is the set of all such partitions. A function f ∈ L1([a, b], ν), where ν denotes

the Lebesgue measure, is of bounded variation if V[a,b](f) = infg V[a,b](g) < ∞,

where the infimum is taken over all the functions g = f ν-a.e.. Let B be the

set of functions f ∈ L1(X̂, ν̂), f : X̂ → R with VX̂(f) <∞. For f ∈ B, denote

by |f |B = VX̂(f), the total variation of f . Then we define ‖f‖B = ‖f‖1 + |f |B,

where the L1 norm is intended with respect to ν̂. It is well known that ‖ · ‖B is

a norm, and with this norm, B becomes a Banach space.

To obtain the decay rates, we also assume that there are constants 0 < γ < 1,

γ′ > γ and C̃ > 0 such that in a neighborhood of the indifferent fixed point
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p = 0,

T (x) = x+ C̃x1+γ +O(x1+γ′),

T ′(x) = 1 + C̃(1 + γ)xγ +O(xγ
′
),

T ′′(x) = C̃γ(1 + γ)xγ−1 +O(xγ
′−1).

(3.1)

For any sequences of numbers {an} and {bn}, we write an ∼ bn if lim
n→∞

an/bn =

1, and an ≈ bn if c1bn ≤ an ≤ c2bn for some constants c2 ≥ c1 > 0.

We now set:

dij = sup{|T̂ ′ij(x)|−1 : x ∈ Iij}, dn = max{dn,j : 2 ≤ j ≤ K}. (3.2)

Theorem C. Let X̂, T̂ and B be defined as above, and suppose that T satisfies

Assumption T ′ (a) to (e). Then Assumption B(a) to (f) and assumptions (S1)

to (S3) are satisfied and ‖Rn‖ = O(dn). Hence, if dn = O(n−(β+1)) for some

β > 1, then there exists C > 0 such that for any functions f ∈ B, g ∈ L∞(X, ν)

with supp f, supp g ⊂ X̂, (1.3) holds.

In particular, if T satisfies (3.1) near 0, then

∞∑
k=n+1

µ(τ > k) = O(n−( 1
γ−1))

and dn = O(n−( 1
γ+1)). Since 1

γ − 1 < 1
γ and 1

γ − 1 < 2( 1
γ − 1) we have

Cov(f, g ◦ Tn) ∼
∞∑

k=n+1

µ(τ > k)

∫
fdµ

∫
gdµ ≈ 1

n
1
γ−1

.

It is well known that if the map T allows a Markov partition, then the decay

of correlations is of order O(n−( 1
γ−1)) (see e.g. [Hu], [Sr], [LSV], [PY]). For

non-Markov case, the upper bound estimate is given in [Yo2] and in [MT].

Proof of Theorem C. Thanks to Lemma 3.1 proved below, B satisfies Assump-

tion B(a) to (f); moreover by Lemma 3.2, we know that condition S(1) is satis-

fied. Notice that all requirements of Assumption T hold, since part (a), (c) and

(d) follow from Assumption T′(a), (c) and (e) directly, and part (b) follows from

the definition of T̂ . Moreover Lemma 3.2 (iii) gives (1.5). Hence Theorem B

can be applied and therefore conditions S(2) and S(3) are satisfied.

The estimate ‖Rn‖ = O(dn) follows from Lemma 3.3: we have thus proved

the decay of correlations (1.3).

Suppose that T also satisfies (3.1); we denote with zn ∈ I1 the point such that

Tn(zn) = z. It is well known that zn ∼ (γn)−1/γ (see e.g. Lemma 3.1 in [HV]),

and then we obtain (T−n1 )′(x) = O(n−
1
γ−1); it follows that dn = O(n−

1
γ−1).

Since the density function h is bounded on X̂, µ(τ > k) ≤ C1ν(τ > k) ≤ C2zk

for some C1, C2 > 0. Hence

∞∑
k=n+1

µ(τ > k) = O(n−
1
γ+1)).
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Lemma 3.1. B is a Banach space satisfying Assumption B(a) to (f) with Ca =

Cb = 1.

Proof. These are standard facts, see for instance the proofs in Chapter 1 in

[Br].

Lemma 3.2. There exist constants η ∈ (0, 1) and D, D̄ > 0 satisfying

(i) for any f ∈ B, |P̂f |B ≤ η|f |B +D‖f‖L1(ν̂);

(ii) for any f ∈ B, ‖R(z)f‖B ≤ |z|
(
η‖f‖B + D̄‖f‖L1(ν̂)

)
; and

(iii) for any f ∈ B̃, ‖P̃ f̃‖B̃ ≤ η‖f̃‖B̃ +D‖f̃‖L1(ν̂×ρ).

Proof. (i) Let us denote xij = T̂−1
ij (x), and ĝ(xij) = |T̂ ′ij(xij)|−1; we have

P̂f(x) =

K∑
j=1

∞∑
i=0

f(T̂−1
ij x)ĝ(T̂−1

ij x)1T̂ Iij (x).

We now take a partition ξ of T̂ Iij into T̂ijaij = x(0) < x(1) < · · · < x(kij) =

T̂ijbij , where we assume T̂ijaij < T̂ijbij without loss of generality. Whenever

T̂ Iij intersects more than one intervals Ik = (ak, bk) in the case i = 0, then we

put the endpoints ak and bk into the partition. Denote x
(`)
ij = T̂−1

ij x
(`). We have

kij∑
`=1

∣∣f(x
(`)
ij )ĝ(x

(`)
ij )− f(x

(`−1)
ij )ĝ(x

(`−1)
ij )

∣∣
≤

kij∑
`=1

ĝ(x
(`)
ij )
∣∣f(x

(`)
ij )− f(x

(`−1)
ij )

∣∣+

kij∑
`=1

∣∣f(x
(`−1)
ij )

∣∣∣∣ĝ(x
(`)
ij )− ĝ(x

(`−1)
ij )

∣∣.
(3.3)

By (3.2), ĝ(x
(`)
ij ) ≤ dij and by definition

∑kij
`=1

∣∣f(x
(`−1)
ij ) − f(x

(`)
ij )
∣∣ ≤ VIij (f).

Also, by the mean value theorem and Assumption T′(d),

|g(x̂
(`)
ij )− ĝ(x

(`−1)
ij )|

x
(`)
ij − x

(`−1)
ij

≤ |ĝ′(c(`)ij )| = |T̂ ′′(c(`)ij )|/|T̂ ′(c(`)ij )|2 ≤ Γ,

where c
(`)
ij ∈ [x

(`−1)
ij , x

(`)
ij ]. Using the fact that

lim
max{|x(`)

ij −x
(`−1)
ij |}→0

kij∑
`=1

∣∣f(x
(`−1)
ij )

∣∣(x(`)
ij − x

(`−1)
ij ) =

∫ bij

aij

|f |dν̂,

we get from (3.3) that

VT̂ Iij ((f · ĝ) ◦ T̂−1
ij ) ≤ dijVIij (f) + Γ

∫
Iij

|f |dν̂. (3.4)
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Denote c = min{ν(T̂ Iij) : i = 1, 2, · · · , 1 ≤ j ≤ K}, where c > 0 because there

is only a finite number of images T̂ Iij . It can be shown that (see e.g. [Br], Ch.

3)

VX̂(P̂f) ≤ 2

K∑
j=1

∞∑
i=0

VT̂ Iij ((f · ĝ) ◦ T̂−1
ij ) + 2c−1‖f‖1.

By Assumption T′(c), dij ≤ ∆−1 for all i = 1, 2, · · · and j = 1, · · · ,K. Hence

|P̂f |B = VX̂(P̂f) ≤ 2∆−1V (f) + 2Γ

∫
|f |dν̂ + 2c−1‖f‖1 = η|f |B +D‖f‖1,

where η = 2∆−1 < 1 and D = 2Γ + 2c−1 > 0.

Part (ii) and (iii) can be proved similarly to the proofs of corresponding part

of Lemma 4.2.

Lemma 3.3. There exists a constant CR > 0 such that ‖Rn‖B ≤ CRdn for all

n > 0.

Proof. For f ∈ B, denote

Rijf = 1X̂ ·P
i(f1Iij )(x). (3.5)

Hence Ri =

K∑
j=1

Rij and P̂ =

∞∑
i=0

K∑
j=1

Rij by definition and linearity of P̂.

Assume i > 0; since T̂ij [aij , bij ] = I0 ⊂ I, by (3.2), ν̂(Iij) ≤ dij ν̂(I0) < dij .

Hence, by Assumption B(b),∫
Iij

|f |dν̂ ≤ ‖f‖∞ν̂(Iij) ≤ Cb‖f‖B · dij ν̂(I0) ≤ Cbdij‖f‖B. (3.6)

Note that VIij (f) ≤ V (f) = |f |B < ‖f‖B. By (3.4),

VT̂ Iij ((f · ĝ) ◦ T̂−1
ij ) ≤ dij‖f‖B + ΓCbdij‖f‖B = (1 + ΓCb)dij‖f‖B. (3.7)

Since Rijf(x) = 1X̂(x) · (f · ĝ) ◦ T̂−1
ij (x), we have

|Rijf |B ≤ 2VT̂ Iij ((f · ĝ) ◦ T̂−1
ij ) + 2

1

ν̂(I0)

∫
Iij

|f |dν̂.

Moreover by (3.6) and (3.7),

|Rijf |B ≤ 2(1 + ΓCb)dij‖f‖B + 2Cbdij‖f‖B.

On the other hand, by (3.5) and (3.6), we have

‖Rijf‖L1 =

∫
X̂

P̂i+1(f1Iij )dν̂ =

∫
Iij

fdν̂ ≤
∫
Iij

|f |dν̂ ≤ Cbdij‖f‖B.
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Hence, we get

‖Rijf‖B = |Rijf |B + ‖Rijf‖L1 ≤ [2(1 + ΓCb) + 3Cb]dij‖f‖B.

By the definition of Rij and dn, we have

‖Rnf‖B ≤
K∑
j=2

‖Rn−1,jf‖B ≤ K ′(2 + 2ΓCb + 3Cb)dn,

where K ′ < K is the number of preimages of I0 that are not in I1. The result

follows now with CR = K ′(2 + 2ΓCb + 3Cb).

4 Multidimensional spaces: generalities and the

role of the derivative

The main difficulty to investigate the statistical properties for higher dimen-

sional systems with an indifferent fixed point p is that near p the system could

have unbounded distortion in the following sense: there are uncountably many

points z near p such that for any neighborhood V of z, we can find ẑ ∈ V with

the ratio

|detDT−n1 (z)|/|detDT−n1 (ẑ)|

unbounded as n → ∞ (see Example in Section 2 in [HV]). For this reason we

need a more extensive analysis of the expanding features around the neutral

fixed point which will be accomplished by adding Assumption T ′′ below.

4.1 Setting and statement of results.

Let X ⊂ Rm, m ≥ 1, be again a compact subset with intX = X, d the Euclidean

distance, and ν the Lebesgue measure on X with ν(X) = 1.

Assume that T : X → X is a map satisfying the following assumptions.

Assumption T′′. (a) (Piecewise smoothness) There are finitely many dis-

joint open sets U1, · · · , UK with piecewise smooth boundary such that X =⋃K
i=1 Ui and for each i, Ti := T |Ui can be extended to a C1+α̂ diffeomor-

phism Ti : Ũi → Bε1(TiUi), where Ũi ⊃ Ui, α̂ ∈ (0, 1] and ε1 > 0.

(b) (Fixed point) There is a fixed point p ∈ U1 such that T−1p /∈ ∂Uj for any

j = 1, . . . ,K.

(c) (Topological mixing) T : X → X is topologically mixing.

Remark 4.1. Assumption T”(b) allows us to get a good structure for the first

return map around any pre-images of p different from p itself. In particular

there is an open neighborhood for each of those pre-images which is partitioned
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in level sets ordered with increasing first return time starting from 2 and with the

same (large) image for the induced map. This induction scheme turns out to be

particularly useful when we consider the transfer operator on the quasi-Hölder

function space; in this regard we also refer to our previous paper [HV].

Before continuing with the list of assumptions we need to introduce a few

more quantities and notations.

For any ε0 > 0, denote

GU (x, ε, ε0) = 2

K∑
j=1

ν(T−1
j Bε(∂TUj) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
.

From now on we assume that the indifferent fixed point p = 0.

For any x ∈ Ui, we define s(x) as the inverse of the slowest expansion near

x, that is,

s(x) = min
{
s : d(x, y) ≤ sd(Tx, Ty), y ∈ Ui, d(x, y) ≤ min{ε1, 0.1|x|}

}
.

where the factor 0.1 forces the points y to stay in a ball around x which does

not intersect the origin, though any other small factor would work as well.

Take an open neighborhood Q of p such that TQ ⊂ U1, then let

s = s(Q) = max{s(x) : x ∈ X\Q}. (4.1)

Let T̂ = T̂Q be the first return map with respect to X̂ = X̂Q = X \Q. Then

for any x ∈ Uj , we have T̂ (x) = Tj(x) if Tj(x) /∈ Q, and T̂ (x) = T i1Tj(x) for

some i > 0 if Tj(x) ∈ Q. Denote T̂ij = T i1Tj for i ≥ 0.

Further, we take Q0 = TQ \ Q. Then we denote U01 = U1 \ Q, U0j =

Uj \ T−1
j Q if j > 1, and Uij = T̂−1

ij Q0 for i > 0. Hence, {Uij : i = 0, 1, 2, · · · }
form a partition of Uj for j = 2, · · · ,K.

For 0 < ε ≤ ε0, we denote

GQ(x, ε, ε0) = 2

K∑
j=1

∞∑
i=0

ν(T̂−1
ij Bε(∂Q0) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
,

and

G(x, ε, ε0) = GU (x, ε, ε0) +GQ(x, ε, ε0), G(ε, ε0) = sup
x∈X̂

G(x, ε, ε0). (4.2)

Assumption T′′. (continued)

(d) (Expansion) T satisfies: 0 < s(x) < 1 ∀x ∈ X \ {p}.
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Moreover, there exists an open region Q with p ∈ Q ⊂ Q ⊂ TQ ⊂ TQ ⊂
U1 and constants α ∈ (0, α̂], η ∈ (0, 1), such that for all ε0 small,

sα + λ ≤ η < 1,

where s is defined in (4.1) and

λ = 2 sup
0<ε≤ε0

G(ε, ε0)

εα
εα0 . (4.3)

(e) (Distortion) For any b > 0, there exist ζ > 0 such that for any small ε0

and ε ∈ (0, ε0), we can find 0 < N = N(ε) ≤ ∞ with

|detDT−n1 (y)|
|detDT−n1 (x)|

≤ 1 + ζεα ∀y ∈ Bε(x), x ∈ Bε0(Q0), n ∈ (0, N],

and
∞∑
n=N

sup
y∈Bε(x)

|detDT−n1 (y)| ≤ bεm+α ∀x ∈ Bε0(Q0),

where α is given in part (d) and m is the dimension of the ambient space.

For sake of simplicity of notations, we may assume α̂ = α.

Remark 4.2. We stress that the measure ν(T−1
j Bε(∂TUj)) usually plays an

important role in the study of statistical properties of systems with discontinu-

ities. Here GU (x, ε, ε0) gives a quantitative measurement of the competition

between the expansion and the accumulation of discontinuities near x. We

refer to [Ss], Section 2, for more details about its geometric meaning. Fur-

thermore it is proved, still in [Ss] Lemma 2.1, that if the boundary of Ui con-

sists of piecewise C1 codimension one embedded compact submanifolds, then

GU (ε, ε0) ≤ 2NU
γm−1

γm

sε

(1− s)ε0

(
1 +o(1)

)
, where NU is the maximal number of

smooth components of the boundary of all Ui that meet in one point and γm is

the volume of the unit ball in Rm.

Remark 4.3. If T−1TQ ∩ ∂Uj = ∅ for any j, then for any small ε0, ei-

ther GQ(x, ε, ε0) = 0 or GU (x, ε, ε0) = 0, and therefore we have G(x, ε, ε0) =

max{GU (x, ε, ε0), GQ(x, ε, ε0)}.

Remark 4.4. If T has bounded distortion (see below), then GQ is roughly equal

to the ratio between the volume of Bε0(∂Q0) and the volume of Q0. Therefore

if ε0 is small enough, then sup
x∈X̂
{GQ(x, ε, ε0)} is bounded by sup

x∈X̂
{GU (x, ε, ε0)}.

Remark 4.5. We include Assumption T ′′(e) since near the fixed point the

distortion for DT1 is unbounded in general. It requires that either the distortion

of DT−n1 is small, or |detDT−n1 | itself is small.
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Remark 4.6. There are some sufficient conditions under which Assumption

T ′′(d) and (e) could be easily verified. We refer [HV] for more details, see in

particular Theorems B and C in that paper.

If near p the distortion is bounded, then Assumption T′′(e) is automatically

satisfied and it will be stated as follows (it could be regarded as the case N(ε) =

∞ for any ε ∈ (0, ε0)):

Assumption T′′. (variant)

(e′) (Bounded distortion) There exist J > 0 such that for any small ε0 and

ε ∈ (0, ε0),

|detDT−n1 (y)|
|detDT−n1 (x)|

≤ 1 + Jεα ∀y ∈ Bε(x), x ∈ Bε0(Q0), n ≥ 0.

Remark 4.7. It is well known that if dimX = m = 1, any system that has

the form given by (4.4) below near the fixed point, satisfies Assumption T′′(e′).

The systems given in Example 4.1 satisfy it too.

To estimate the decay rates, we often consider the following special cases:

there are constants γ′ > γ > 0, Ci, C
′
i > 0, i = 0, 1, 2, such that in a neighbor-

hood of the indifferent fixed point p = 0:

|x|
(
1− C ′0|x|γ +O(|x|γ

′
)
)
≤|T−1

1 x| ≤ |x|
(
1− C0|x|γ +O(|x|γ

′
)
)
,

1− C ′1|x|γ +O(|x|γ
′
) ≤‖DT−1

1 (x)‖ ≤ 1− C1|x|γ +O(|x|γ
′
),

C ′2|x|γ−1 +O(|x|γ
′−1) ≤‖D2T−1

1 (x)‖ ≤ C2|x|γ−1 +O(|x|γ
′−1).

(4.4)

where ||DT−1
1 ||, ||DT || etc., denote the operator norms.

We now define the space of functions particularly adapted to study the action

of the transfer operator on the class of maps just introduced. If Ω is a Borel

subset of X̂, we define the oscillation of f over Ω by the difference of essential

supremum and essential infimum of f over Ω:

osc(f,Ω) = Esup
Ω

f − Einf
Ω

f.

We notice that the function x→ osc(f, Bε(x)) is measurable.

For 0 < α < 1 and ε0 > 0, we define the quasi-Hölder seminorm of f with

supp f ⊂ X̂ as§

|f |B = sup
0<ε≤ε0

ε−α
∫
X̂

osc(f,Bε(x))dν̂(x), (4.5)

§Since the boundary of X̂ is piecewise smooth, we could define the space of the function
directly on X̂ instead of Rm as it was done in [Ss].
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where ν̂ is the normalized Lebsegue measure on X̂, and we take the space of

functions as

B =
{
f ∈ L1(X̂, ν̂) : |f |B <∞

}
, (4.6)

and then equip it with the norm

‖ · ‖B = ‖ · ‖L1(X̂,ν̂) + | · |B. (4.7)

Clearly, the space B does not depend on the choice of ε0, though | · |B does.

Let sij = sup
{
‖DT̂−1

ij (x)‖ : x ∈ Bε0(Q0)
}

, and sn = max
{
sn−1,j : j =

2, · · · ,K
}

.

Theorem D. Let X̂, T̂ and B be defined as above. Suppose T satisfies Assump-

tion T ′′(a) to (e). Then there exist ε0 ≥ ε1 > 0 such that Assumption B(a)

to (f) and conditions S(1) to S(3) are satisfied and ‖Rn‖ = O(sαn). Hence, if∑∞
k=n+1 s

α
n = O(n−β) for some β > 1, then there exists C > 0 such that for

any functions f ∈ B, g ∈ L∞(X, ν) with supp f, supp g ⊂ X̂, (1.3) holds.

Before giving the proof, we present an example.

Example 4.1. Assume that T satisfies Assumption T′′(a) to (d), and near the

fixed point p = 0, the map T satisfies

T (z) = z(1 + |z|γ +O(|z|γ
′
)),

where z ∈ X ⊂ Rm and γ′ > γ.

Denote zn = T−n1 z; we showed in Lemma 3.1 in [HV] that |zn| =
1

(γn)1/γ
+

O
( 1

n1/γ̄

)
, where γ̄ < γ. Using this fact we can check that T satisfies also

Assumption T′′(e ′); hence, the theorem can be applied.

If the dimensionm = 1, then Tn maps the interval [zn+1, zn] = [zn+1, T (zn+1)]

to its image [z1, z0] bijectively. It follows that ‖DT−n1 ‖ is roughly propor-

tional to |zn|1+γ/(|z0| − |z1|), since the length of the interval [zn+1, T (zn+1)]

is roughly equal to |T (zn+1)− zn+1| ∼ |zn|1+γ , see also Lemma 3.1 and Lemma

3.2 in [HV] for a more formal derivation. So sn = O
( 1

n1+1/γ

)
and

∞∑
k=n+1

sαk =

O
( 1

n
α
γ +α−1

)
. If γ ∈ (0, 1) is such that α(1/γ + 1) > 1, the series is convergent.

Also, as stated in Theorem C in the last section,

∞∑
k=n+1

µ(τ > k) = O
( 1

n
1
γ−1

)
.

So if α(1/γ + 1) > 1/γ, the sum involving sαk decreases faster. We get that the

decay rate is given by∣∣∣Cov(f, g ◦ Tn)
∣∣∣ = O

( ∞∑
k=n+1

µ(τ > k)
)

= O
( 1

nβ−1

)
,
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for f ∈ B, g ∈ L∞(X, ν) with supp f, supp g ⊂ X̂ and with β = 1
γ . This gives

the same results as in Theorem C for quasi Hölder test functions instead that

for functions of bounded variation.

On the other hand, if m ≥ 2, then T−n1 maps a sphere about the fixed

point of radius |z| to a sphere of radius |zn|, if higher order terms are ignored.

Hence, DT−n1 contracts vectors in the tangent space of the sphere at the rate

of order |zn|. To see the contracting rates along the radial direction, i.e., the

direction orthogonal to the tangent space of the spheres, we note that restricted

to each ray the map has the form T (r) = r(1 + rγ + O(rγ
′
)). Hence, by the

above arguments for one dimensional case, DT−n1 contracts vectors in the radial

direction at the rate of order |zn|1+γ . Therefore the norm ‖DT−n1 ‖ is roughly

proportional to |zn|, and sn = O
( 1

n1/γ

)
and

∞∑
k=n+1

sαk = O
( 1

n(α/γ)−1

)
. If

γ ∈ (0, 1/2) is such that α/γ > 1, the series is convergent. By defining β := α
γ−1

we can now consider the three cases β > 2, 1 < β < 2, β = 2 in order to

determine the error term Fβ(n). Let us take, for instance, β > 2, which requires

α/γ > 3.

Note that ν(τ > n) is of the same order as |zn|m, and therefore µ(τ > n) =

O
( 1

nm/γ

)
. It follows that

∞∑
k=n+1

µ(τ > k) = O
( 1

n(m/γ)−1

)
. Since the order is

higher, by (1.3), we get
∣∣∣Cov(f, g ◦ Tn)

∣∣∣ ≤ C/nβ .
4.2 Proof of Theorem D

The proof of Theorem D requires a few preparatory lemmas.

First of all and in order to deduce the spectral properties of P̂ from the

Lasota-Yorke inequality, one needs to verify Assumption B on the space of

functions B.

Lemma 4.1. B is a Banach space satisfying Assuptions B(a) to (f) with Ca =

2Cb = 2γ−1
m ε−m0 , where γm is the volume of the unit ball in Rm.

Proof. Parts (a), (b) and (c) are stated in Propositions 3.3 and 3.4 in [Ss] with

Cb = max{1, εα}/γmεm0 and Ca = 2 max{1, εα}/γmεm0 . Part (d) follows from

the fact that Hölder continuous functions with compact support in X̂ are dense

in L1(X̂, ν̂).

Let us now assume f(u) = limn→∞ fn(u) for ν̂-a.e. u ∈ Rm. Take x ∈ Rm,

and ε ∈ (0, ε0). It is easy to see that for almost every pair of y, z ∈ Bε(x), we

have

|f(y)− f(z)| ≤ lim
n→∞

|fn(y)− fn(z)| ≤ lim inf
n→∞

osc(fn, Bε(x)).

Hence, osc(f,Bε(x)) ≤ lim infn→∞ osc(fn, Bε(x)). By Fatou’s lemma, we have∫
osc(f,Bε(x))dν̂ ≤ lim inf

n→∞

∫
osc(fn, Bε(x))dν̂.
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This implies |f |B ≤ lim infn→∞ |fn|B. We get part (e).

It leaves to show part (f). For a function f ∈ B, denote

Dn(f) =
{
x ∈ Rm : lim inf

ε→0
osc(f,Bε(x)) >

1

n

}
, D(f) =

∞⋃
n=1

Dn(f).

Clearly D(f) is the set of discontinuity points of f . If ν̂(D(f)) > 0, then

there exists N > 0 such that Leb(DN (f)) > ι > 0. Notice that DN (f) =⋃
k≥1 Sk, where Sk =

⋂
n≥k{x : osc(f,B 1

n
(x)) > 1

N } is an increasing sequence

of measurable sets.

For k big enough we still have ν̂(Sk) > ι and therefore, for such a k:

|f |B ≥ sup
ε>0

ε−a
∫
DN (f)

osc(f,Bε(x))dν̂(x) ≥ sup
ε>0

ε−a
∫
Sk

osc(f,Bε(x))dν̂(x) =∞.

This means f /∈ B; in other words, any f ∈ B satisfies ν̂(D(f)) = 0.

Take any f ∈ B with f ≥ 0 almost everywhere. If f(x) = 2c > 0 for some

x /∈ D(f), then there is ε > 0 such that osc(f,Bε(x)) ≤ c. Hence, f(x′) ≥ c > 0

for almost every point x′ ∈ Bε(x). So Bε(x) \ {f > 0} has Lebesgue measure

zero. This implies that {f > 0} is almost open and therefore part (f) follows.

Before stating the next lemma, we recall that the space B depends on the

exponent α and the value of the seminorms on ε0: as we did above, we will not

index B with these two parameters. Moreover all the integrals in the next proof

will be performed over X̂.

Lemma 4.2. There exists ε∗ > 0 such that for any ε0 ∈ (0, ε∗), we can find

constants η ∈ (0, 1) and D, D̂ > 0 satisfying

(i) for any f ∈ B, |P̂f |B ≤ η|f |B +D‖f‖L1(ν̂);

(ii) for any f ∈ B, ‖R(z)f‖B ≤ |z|
(
η‖f‖B + D̂‖f‖L1(ν̂)

)
; and

(iii) for any f̃ ∈ B̃, ‖P̃ f̃‖B̃ ≤ η‖f̃‖B̃ +D‖f̃‖L1(ν̂×ρ).

Proof. By Assumption T′′ (d), sα + λ < 1. Therefore if we first choose b small

enough, we obtain ζ according to Assumption T′′(e), and then we can take ε0

small enough in order to get

η := (1 + ζεα0 )(sα + λ) + 2γ−1
m bK ′ < 1, (4.8)

where K ′ is the number of j such that Uij 6= ∅. Clearly, η is decreasing with ε0.

Let us define:

D := 2ζ + 2(1 + ζεα0 )λ/εα0 + 2γ−1
m bK ′ > 0. (4.9)

For any x ∈ X̂, let us denote xij = T̂−1
ij x, ĝij(x) = |detDT̂ij(x)|−1 and for

f ∈ B:

Rijf = 1X̂ ·P
i(f1Uij )(x). (4.10)
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Clearly,

Rijf(x) = f(xij)ĝ(xij)1Uij (xij). (4.11)

Hence Ri =
∑K
j=1Rij and P̂ =

∑∞
i=0

∑K
j=1Rij by definition and the linearity

of P̂. We also define

Gij(x, ε, ε0) = 2
ν(T̂−1

ij Bε(∂T̂Uij) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
.

Clearly, G(x, ε, ε0) = 2
∑∞
i=0

∑K
j=1Gij(G(x, ε, ε0)).

For any ε ∈ (0, ε0], take N = N(ε) > 0 as in Assumption T′′(e).

For i ≤ N(ε) and by the proof of Proposition 6.2 in [HV], we know that

osc(Rijf,Bε(x)
)

= osc
(
(fĝ) ◦ T̂−1

ij 1T̂Uij , Bε(x)
)

= osc
(
(fĝ) ◦ T̂−1

ij , Bε(x)
)
1T̂Uij(x) +

[
2 Esup
Bε(x)

(fĝ) ◦ T̂−1
ij

]
1Bε(∂T̂Uij)(x).

(4.12)

The computation in that proof also gives

osc
(
fĝ, T̂−1

ij Bε(x) ∩ Uij
)

≤(1 + ζεα) osc
(
f, Bsε(xij) ∩ Uij

)
ĝ(xij) + 2ζεα|f(xij)|ĝ(xij).

Notice that osc
(
f, Bsε(xij)∩Uij

)
≤ osc

(
f, Bsε(xij)

)
. By integrating and using

(4.11) we get ∫
osc
(
(fĝ) ◦ T̂−1

ij , Bε(·)
)
1T̂Uijdν̂

≤
∫ [

(1 + ζεα)Rij osc
(
f, Bsε(·)

)
+ 2ζεαRij |f |

]
dν̂.

(4.13)

On the other hand, by the same arguments as in Section 4 of [Ss], we get∫
2
[
Esup
Bsε(x)

(fĝ) ◦ T̂−1
ij

]
1Bε(∂T̂Uij)(x)dν̂

≤2(1 + ζεα)

∫
X̂

Gij(x, ε, ε0)
[
|f |(x) + osc(f,Bε0(x))

]
dν̂.

(4.14)

Therefore by (4.12), (4.13) and (4.14),

|Rijf |B = sup
0<ε≤ε0

ε−α
∫

osc(Rijf,Bε(·)
)
dν̂

≤ sup
0<ε≤ε0

ε−α
∫ [

(1 + ζεα)Rij osc
(
f, Bsε(·)

)
+ 2ζεαRij |f |

]
dν̂

+ sup
0<ε≤ε0

ε−α2(1 + ζεα)

∫
X̂

Gij(x, ε, ε0)
[
|f |(x) + osc(f,Bε0(x))

]
dν̂.

(4.15)
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For i > N(ε), by the definition of oscillation we obtain directly that

osc(Rijf,Bε(x)
)
≤ 2‖f‖∞ sup

T̂−1
ij Bε(x)

ĝ.

Hence, by Assumption B(b) with Cb = γ−1
m ε−m0 , we have

|Rijf |B = sup
0<ε≤ε0

ε−α
∫

osc(Rijf,Bε(·)
)
dν̂

≤2‖f‖∞ sup
0<ε≤ε0

ε−α
∫

sup
T̂−1
ij Bε(x)

ĝ dν̂

≤2(γmε
m
0 )−1(|f |B + ‖f‖1) sup

0<ε≤ε0
ε−α

∫
sup

T̂−1
ij Bε(x)

ĝ dν̂.

(4.16)

(i) We first note that for all 0 < ε ≤ ε0,

ε−α
N(ε)∑
i=0

K∑
j=1

∫
Rij osc

(
f, Bsε(·)

)
dν̂ ≤ ε−α

∫
P̂ osc

(
f, Bsε(·)

)
dν̂

≤sα(sε)−α
∫

osc
(
f, Bsε(·)

)
dν̂ ≤ sα|f |B,

(4.17)

ε−α
N(ε)∑
i=0

K∑
j=1

∫
2(1 + ζεα)Gij(·, ε, ε0)

[
|f |+ osc(f,Bε0(·))

]
dν̂

≤ε−α2(1 + ζεα)G(ε, ε0)

∫ [
|f |+ osc(f,Bε0(·))

]
dν̂

≤(1 + ζεα)λ
[
ε−α0 ‖f‖1 + |f |B

]
,

(4.18)

where we used (4.2) and (4.3). Also, by Assumption T′′(e) and Assumption

B(b) with Cb = γ−1
m ε−m+α

0 , we have that for all 0 < ε ≤ ε0:

ε−α‖f‖∞
∫ ∞∑

N(ε)

K′∑
j=1

sup
T̂−1
ij Bε(x)

ĝ dν̂ ≤ ε−α‖f‖∞ · bK ′εm+α ≤ γ−1
m bK ′‖f‖B.

(4.19)

Since P̂f(x) =
∑∞
i=0

∑K
j=1Rijf(x), by (4.15) and (4.16), and using (4.17)

to (4.19), we obtain that |P̂f |B is bounded by

sup
0<ε≤ε0

ε−α
[∫ ∞∑

i=0

K∑
j=1

osc(Rijf,Bε(x))dν̂ +

∫ ∞∑
i=0

K∑
j=1

osc(Rijf,Bε(x))dν̂
]

≤(1 + ζεα0 )sα|f |B + 2ζ‖f‖1 + (1 + ζεα0 )λ(ε−α0 ‖f‖1 + |f |B) + 2γ−1
m bK ′‖f‖B

≤[(1 + ζεα0 )(sα + λ) + 2γ−1
m bK ′]|f |B + [2ζ + 2(1 + ζεα0 )λ/εα0 + 2γ−1

m bK ′]‖f‖1.

By definition of η in (4.8) and D in (4.9) we get the desired inequality.
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(ii) We begin to note that for any real valued function f and z ∈ C, we

have osc(zf,Bε(x)) = |z| osc(f,Bε(x)). Moreover we point out that if {an} is

a sequence of positive numbers and z ∈ D, then |
∑∞
n=1 z

nan| ≤ |z|
∑∞
n=1 an.

Hence we have

|R(z)f |B ≤ |z| sup
0<ε≤ε0

ε−α
∞∑
i=0

K∑
j=1

∫
osc(Rijf,Bε(x))dν̂ ≤ |z||P̂f |B.

By part (i), the inequality becomes

|R(z)f |B ≤ |z|(η|f |B +D‖f‖1).

Since P̂ and Rn are positive operators, we get∥∥R(z)f‖1 ≤
∞∑
n=1

∥∥znRnf∥∥1
≤ |z|

∞∑
n=1

∥∥Rn|f |∥∥1
= |z|

∥∥P̂|f |∥∥
1

= |z|
∥∥f∥∥

1
,

from which

‖R(z)f‖B ≤ |z|(η‖f‖B + (D + 1)‖f‖1).

We finally get the expected result with D̂ = D + 1.

(iii) The transfer operator P̃ has the form (see also [ADSZ])

(P̃ f̃)(x, y) =

∞∑
n=0

K∑
j=1

f̃(T̂−1
ij x, S(Uij)

−1(y))g(T̂−1
ij x)1T̂Uij (x, y),

for any f̃ ∈ B̃, where S(Uij) : Y → Y are automorphisms. Let us denote:

(R̃ij f̃)(x, y) = f̃(T̂−1
ij x, S(Uij)

−1(y))g(T̂−1
ij x)1T̂Uij (x, y).

Following the same computations as above, we get formulas similar to (4.15)

and (4.16) but with Rn and T̂ij replaced by R̃n and T̃ij respectively, and f(·)
replaced by f̃(·, y). Denote y1 = S(Uij)

−1(y); instead of (4.15) and (4.16), we

get that for i < N(ε),

|R̃ij f̃(·, y)|B = sup
0<ε≤ε0

ε−α
∫

osc(R̃ij f̃(·, y1), Bε(·)
)
dν̂

≤ sup
0<ε≤ε0

ε−α
∫ [(

(1 + ζεα)R̃ij osc
(
f̃(·, y1), Bsε(·)

)
+ 2ζεαR̃ij |f̃(·, y1)|

)
+2Gij(x, ε, ε0)(1 + ζεα)

(
osc(f̃(·, y1), Bε(·)) + |f̃(·, y1)|

)]
dν̂,

and for i ≥ N(ε),

|R̃ij f̃(·, y)|B = sup
0<ε≤ε0

ε−α
∫

osc(R̃ij f̃(·, y1), Bε(·)
)
dν̂

≤2(γmε
m
0 )−1(|f̃(·, y1)|B + ‖(f̃ ·, y1)‖L1(ν))ε

−α sup
0<ε≤ε0

∫
sup

T̂−1
ij Bε(x)

ĝdν̂.
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We observe that for any x, S(Uij) : Y → Y preserves the measure ρ; we set

f̄(x) =

∫
S
f̃(x, y1)dρ(y), osc

(
f̃(·), Bε(·)

)
=

∫
S

osc
(
f̃(·, y1), Bε(·)

)
dρ(y).

By integrating with respect to y, and using Fubini’s theorem, we get

|R̃ij f̃ |B̃ ≤ sup
0<ε≤ε0

ε−α
∫ [(

(1 + ζεα)R̃ijosc
(
f̃(·), Bsε(·)

)
+ 2ζεαR̃ij |f̄(·)|

)
+2Gij(xij , ε, ε0)(1 + ζεα)

(
osc(f̃(·), Bε(·)) + |f̄(·)|

)]
dν̂

and

|R̃ij f̃ |B̃ ≤ 2(γmε
m
0 )−1(|f̃ |B̃ + ‖f̃‖L1(ν̂×ρ)) ε

−α sup
0<ε≤ε0

∫
sup

T̂−1
ij Bε(x)

ĝdν̂.

Using Fubini’s theorem again, we also have |f̃ |B̃ = sup
0<ε≤ε0

ε−α
∫

osc(f̃(·), Bε(·))dν̂,

and |f̃ |L1(ν̂×ρ) =

∫
|f̄(·)|dν̂. Using the same arguments as in the proof of part (i)

we get

|P̃ f̃(·, y)|B̃ ≤
∞∑
n=0

K∑
j=1

|R̃ij f̃ |B̃ ≤ (1 + ζεα0 )sα|f̃ |B̃ + 2ζ‖f̃‖L1(ν̂×ρ)

+(1 + ζεα0 )λ
(
|f̃ |B̃ + ε−α0 ‖f̃‖L1(ν̂×ρ)

)
+2γ−1

m bK ′
(
|f̃ |B̃ + ‖f̃‖L1(ν̂×ρ)

)
,

and therefore the result of part (iii) with the same η and D given in (4.8) and

(4.9) respectively.

Lemma 4.3. There exists a constant CR > 0 such that ‖Rn‖B ≤ CRs
α
n for all

n > 0.

Proof. Since Ri =
∑
j Rij , we only need to prove the results for Rij .

Let us take ε ∈ (0, ε0], choose any b > 0 and let N(ε) be given by Assump-

tion T′′(e).

We first consider the case n = i+ 1 ≤ N(ε).

By the definition of Rij given in (4.10), we have for any f ∈ B,∫
Rijfdν̂ =

∫
1X̂ ·P

i+1(f1Uij )dν̂ =

∫
X̂

f1Uijdν̂ =

∫
Uij

fdν̂. (4.20)

We now denote dij = sup
{
|detDT̂−1

ij (x)| : x ∈ Bε(Q0)
}

. Since for any x,

|detDT̂−1
ij (x)| ≤ ‖DT̂−1

ij (x)‖, we have dij ≤ sij . Since T̂Uij = Q0,

ν(Uij) ≤ dijν(Q0) ≤ sijν(Q0). (4.21)
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Hence by Assumption B(b),∫
Rijfdν̂ ≤ ‖f‖L∞(ν̂)ν(Uij) ≤ Cbν(Q0)sij‖f‖B. (4.22)

By similar arguments as for (4.20), we have∫
X̂

Rij osc
(
f, Bsijε(·)

)
dν̂ ≤

∫
X̂

osc
(
f, Bsijε(·)

)
1Uijdν̂ ≤ sαijεα|f |B. (4.23)

We note that for each j, T̂Uij = Q0 and the “thickness” of T̂−1
ij Bε(∂Q0) is

of order sijε, since ∂Q0 consists of piecewise smooth surfaces. So Gij(ε, ε0) ≤
CGεsij for some CG independent of i and j. Therefore we have∫

X̂

ε−α2(1 + ζεα)Gij(·, ε, ε0)
[
|f |+ osc(f,Bε0(·))

]
dν̂

≤2(1 + ζεα)CGε
1−αsij

[
‖f‖L1(ν̂) + εα0 |f |B

]
.

Hence by (4.15) we get that

|Rijf |B ≤ C ′Rsαij
[
‖f‖L1(ν̂) + |f |B

]
= C ′Rs

α
ij‖f‖B (4.24)

for C ′R = (1 + ζεα0 )(1 + 2CGε
1−α
0 ) + 2ζCbν̂(Q0).

We now consider the case n = i+1 > N(ε). As we mentioned in Remark 4.7,

in this case m ≥ 2. By definition, there is Cs > 0 such that ĝ(xij) ≤ C2
s s

2
ij for

any xij ∈ T̂−1
ij Bε(Q0) with j = 2, · · · ,K. By Assumption T′′(e) we know that

for any x ∈ Bε(Q0),(
sup

T̂−1
i,j Bε(x)

ĝ
)1/2

≤
( ∞∑
`=N(ε)

sup
T̂−1
`j Bε(x)

ĝ
)1/2

≤
√
bε(m+α)/2 ≤

√
bεα.

Therefore we obtain

sup
T̂−1
ij Bε(x)

ĝ = ( sup
T̂−1
ij Bε(x)

ĝ
)1/2

( sup
T̂−1
i,j Bε(x)

ĝ
)1/2

≤ Cssij
√
bεα

and substitute in (4.16) to get (α ≤ 1):

|Rijf |B ≤ C ′′Rsij‖f‖B ≤ C ′′Rsαij‖f‖B

for C ′′R = 2(γmε
m
0 )−1

√
bCs.

Finally, by (4.22), we have

‖Rijf‖1 ≤
∫
Rij |f |dν̂ ≤ Cbν(Q0)sij‖f‖B.

Thus we have ‖Rijf‖B = (C ′R+C ′′R+Cbν(Q0))sαij‖f‖B, which implies the result

of the lemma.

28



We are finally ready to give the proof of Theorem D.

Proof of Theorem D. We first choose ε0 > 0 as in Lemma 4.2, and define B
correspondingly by using that ε0. By Proposition 3.3 in [Ss], B is complete and

hence is a Banach space. Then Assumption B(a) to (f) follow from Lemma 4.1.

By Lemma 4.2 we know that conditions (S1) is satisfied. Assumption T′′(a),

(d) and (c) imply Assumption T (a), (c) and (d) respectively. Assumption T(b)

is implied by the construction of the first return map. Lemma 4.2(iii) gives (1.5).

Therefore all conditions for Theorem B are satisfied; hence we obtain conditions

(S2) and (S3). The fact that ‖Rn‖ = O(sαn) follows from Lemma 4.3.

5 Multidimensional spaces: the role of the de-

terminant in getting an optimal bound

In this section we put additional conditions on the map T that we studied in the

previous chapter in order to get optimal estimates for the decay of correlations

for observable supported in X̃. As we anticipated in the Introduction, if ‖Rn‖
decreases, in some norm, as |detDT−n|, then it usually has the same order as

µ(τ = n), which approaches to 0 faster than µ(τ > n). Since
∑
k≥n µ(τ > k)

gives the optimal decay rates of correlations and
∑
k≥n ‖Rk‖ determines the

order of the error terms Fβ(n), we can get lower estimates for decay rates.

5.1 Assumptions and statement of the results.

Let us suppose that T satisfies Assumption T′′(a), (d) and (e) in the last section.

We replace part (b) and (c) by the following

Assumption T′′. (b′) (Fixed point and a neighborhood) There is a fixed

point p ∈ U1 and a neighborhood V of p such that T−n(V ) ∩ ∂Uj = ∅
for any j = 1, . . . ,K and for any n ≥ 0.

(c′) (Topological exactness) T : X → X is topologically exact, that is, for any

x ∈ X, ε > 0, there is an Ñ = Ñ(x, ε) > 0 such that T ÑBε(x) = X.

Remark 5.1. Clearly maps with a Markov partition, even countable, satisfy

Assumption T”(b’) provided the neutral fixed point is in the interior of a par-

tition element. In Exercise 5.5 we will introduce a class of non-Markov maps

that satisfy T”(b’) as well.

Remark 5.2. Assumption T′′(b′) will allow us to get a better estimate for

‖Rn‖B which in turn will give us optimal bounds. To understand the difference

with the results of Section 4, we recall that there, starting from (4.23), we got the

estimate in (4.24) |Rijf |B ≤ C ′Rs
α
ij‖f‖B for some constant C ′R > 0, and hence

‖Rijf‖B decreases as the speed of sαij does. This was precisely the statement of

Lemma 4.3, where sij was given by the norm ‖DT̂−1
ij ‖ of the derivatives. With
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Assumption T′′(b′) and by considering a different and smaller Banach space

we can get the new estimates (5.10), which lead to the upper bound |Rijf |Q ≤
C ′2dij‖f‖B in (5.12), where dij is given by the determinant |detDT̂−1

ij |. On the

other hand, estimates of the norm |Rijf |H can be obtained and decrease with

the same order. Other explications and details will be given in the proof.

Since we want to reserve the symbol B for the functional space upon which

we want to get the renewal type results leading to the bounds on the decay of

correlations, we begin to rename the seminorm and the Banach space defined

in (4.6) and (4.7) with Q, instead of B. We remind that such a seminorm will

depend on α and on ε0, the latter dependence affecting only the value of the

seminorms. Then (4.7) will be now written as:

‖f‖Q = ‖f‖L1(ν̂) + |f |Q.

Recall that V is a neighborhood of p given in Assumption T ′′(b’). We

denote the preimages T−1
ik

. . . T−1
i1
V by Vi1...ik or VI where I = i1 . . . ik. We also

denote with I the set of all possible words i1 · · · ik such that T−1
ik

. . . T−1
i1
V is

well defined, where ik ∈ {1, · · · ,K} and k > 0.

For an open set O, let H := Hαε1 = Hαε1(O,H) be the set of Hölder functions

f on O that satisfy |f(x)−f(y)| ≤ Hd(x, y)α for any x, y ∈ O with d(x, y) ≤ ε1.

Let ĥ be a fixed point of the transfer operator P̂, which will be unique under

the assumptions of the theorem below. We now define B by

B := Bαε0,ε1 =
{
f ∈ Q : ∃H > 0 s.t. (f/ĥ)|VI ∈ Hαε1(VI , H) ∀I ∈ I

}
, (5.1)

and for any f ∈ B, let

|f |H := |f |Hαε1 = inf{H : (f/ĥ)|VI ∈ Hαε1(VI , H) ∀I ∈ I}.

Sublemma 5.3 and 5.4 below imply that ĥ > 0 on all VI , and therefore the

definition makes sense. Then we take | · |Q + | · |H as a seminorm for f ∈ B and

define the norm in B by

‖ · ‖B= ‖ · ‖1 + | · |Q + | · |H. (5.2)

Clearly, B ⊂ Q and ‖f‖B ≥ ‖f‖Q if f ∈ B.

We now remind that for any sequences of numbers {an} and {bn}, we use

an ∼ bn if lim
n→∞

an/bn = 1, and an ≈ bn if c1bn ≤ an ≤ c2bn for some constants

c2 ≥ c1 > 0.

Let dij = sup
{
|detDT̂−1

ij (x)| : x ∈ Bε0(Q0)
}

, and dn = max
{
dn−1,j : j =

2, · · · ,K
}

.

Theorem E. Let X̂, T̂ and B be defined as above and suppose that T satisfies

Assumption T ′′(a), (b ′), (c ′), (d) and (e). Then there exist ε0 ≥ ε1 > 0
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such that Assumption B(a) to (f) and conditions S(1) to S(4) are satisfied and

‖Rn‖B = O(d
m/(m+α)
n ). Hence, if

∑∞
k=n+1 d

m/(m+α)
n = O(n−β) for some β > 1,

then there exists C > 0 such that for any functions f ∈ B, g ∈ L∞(X, ν) with

supp f, supp g ⊂ X̂, (1.3) holds.

Moreover, if T satisfies (4.4) near p = 0, then

∞∑
k=n+1

µ(τ > k) ≈ n−(mγ −1).

In this case, if dn = O(n−β
′
) for some β′ > 1 and if

β = β′ · m

m+ α
− 1 > max{2, m

γ
− 1}, (5.3)

then

Cov(f, g ◦ Tn) ∼
∞∑

k=n+1

µ(τ > k)

∫
fdµ

∫
gdµ ≈ 1

n
m
γ −1

. (5.4)

In particular, if Assumption T ′′(e ′) in Section 4.1 stating bounded distortion

also holds, then the above statements remain true if we replace m/(m + α) in

(5.3) by 1.

Remark 5.3. Whenever T satisfies (4.4) near p, Assumption T ′′(c ′) implies

that h is bounded away from 0 on the sets {τ > n}; hence µ(τ > n) and ν(τ > n)

have the same order and
∑∞
k=n+1 µ(τ > k) ≈ n−(mγ −1). This is the case in

Example 5.1, 5.2 and 5.4 below.

On the other hand, if Assumption T ′′(c ′) only holds for an invariant subset

of X like in Example 5.3, then ĥ may be only supported on a part of the set {τ >
n}, and therefore µ(τ > n) may decrease faster. In this case,

∑∞
k=n+1 µ(τ >

k) = o(n−(mγ −1)).

5.2 Examples

Before giving the proof, we present a few examples. The first four examples

concern various decay rates, where we will always assume that T satisfies As-

sumption T ′′(a), (b ′), (c ′) and (d). Example 5.5 and thereinafter are for maps

satisfying Assumption T ′′(b ′).

Example 5.1. Let us assume m = 3, and near the fixed point p = (0, 0, 0), the

map T has the form

T (w) =
(
x(1 + |w|2 +O(|w|3)), y(1 + |w|2 +O(|w|3)), z(1 + 2|w|2 +O(|w|3)

)
where w = (x, y, z) and |w| =

√
x2 + y2 + z2.

This map is very similar to that studied in Example 1 in [HV], although it

is now in a three dimensional space. We can still use the same arguments to

show that Assumption T′′ (e) is satisfied.
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We set wn = T−n1 w; clearly, |w| + |w|3 + O(|w|4) ≤ |T (w)| ≤ |w| + 2|w|3 +

O(|w|4). By standard arguments we know that

1√
4n

+O
( 1√

n3

)
≤ |wn| ≤

1√
2n

+O
( 1√

n3

)
(see also Lemma 3.1 in [HV]). Since we are in a three dimensional space, we

now have ν(τ > k) ≈ 1

km/γ
=

1

k3/2
, and therefore

∞∑
k=n+1

ν(τ > k) ≈ 1

n1/2
.

It is easy to see that detDT (w) = 1 + 6x2 + 6y2 + 8z2 + O(|w|3). So we

have |detDT−1
1 (w)| ≤ 1− 6|w|2 +O(|w|3). By Lemma 3.2 in [HV] with r(t) =

1−6t2 +O(t3), γ = 2, C ′ = 6 and C = 1, we get that |detDT−n1 (x)| = O(1/n3).

Hence we have β′ = 3 and β = 3m/(m+α)−1 > 5/4. Since m/γ−1 = 1/2, (5.3)

holds, and therefore we have (5.4) with the decay rate of order 1/n
1
2 ; contrarily

to Example 4.1, we now got an optimal bound.

Example 5.2. Assume m = 2, and near the fixed point p = (0, 0), the map T

has the form

T (z) =
(
x(1 + |z|γ +O(|z|γ

′
)), y(1 + 2|z|γ +O(|z|γ

′
))
)

where z = (x, y), |z| =
√
x2 + y2, γ ∈ (0, 1) and γ′ > γ.

By methods similar to Example 1 in [HV] we can check that Assumption

T′′ (e) is satisfied. Denote zn = T−n1 z. Since |z|+ |z|1+γ +O(|z|γ′) ≤ |T (z)| ≤
|z|+ 2|z|γ+1 +O(|z|γ′), we have

1

(2γn)1/γ
+O

( 1

nδ

)
≤ |zn| ≤

1

(γn)1/γ
+O

( 1

nδ

)

for some δ > 1/γ. So ν(τ > k) ≈ 1

k2/γ
, and therefore

∞∑
k=n+1

ν(τ > k) ≈ 1

n
2
γ−1

.

It is possible to show that |detDT (z)| = 1 +
(3 + γ)x2 + (3 + 2γ)y2

|z|2−γ
+

O(|z|γ
′
). Therefore |detDT−1

1 (z)| ≤ 1−(3+γ)|z|γ+O(|z|γ′), and |detDT−n1 (z)| =
O(1/n1+3/γ). Hence β′ = 1 + γ/3 and β = (1 + 3/γ) · 2/(2 + α)− 1 > 2/γ − 1.

Therefore (5.3) holds, and the decay rates is of order 1/n
2
γ−1.

Example 5.3. Assume m = 2, and take the same map as in Example 1 in

[HV], namely, near the fixed point p = (0, 0), the map T has the form

T (x, y) =
(
x(1 + x2 + y2), y(1 + x2 + y2)2

)
.

The map allows an infinite absolutely continuous invariant measure. How-

ever, it can be arranged in such a way that there is an invariant component
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that supports a finite absolutely continuous invariant measure µ. Near the fixed

point, the region supporting this component has the form

{z = (x, y) : |y| < x2}.

We may regard X as this component, and T : X → X satisfies the assumptions.

We can check that the map has bounded distortion near the fixed point

restricted to this region. Hence, the map verifies Assumption T′′(e′).

Since |zn| = O(1/
√
n) and for z = (x, y), |y| ≤ x2, we get ν(τ > k) ≈ 1

k3/2
,

and

∞∑
k=n+1

ν(τ > k) ≈ 1

n1/2
.

On the other hand, |detDT (z)| = 1 + 5x2 + 7y2 + O(|z|4). Since |y| ≤
x2, |z| = |x| + O(|z|2); thus |detDT (z)| = 1 + 5|z|2 + O(|z|4), and therefore

|detDT−n1 (z)| = O(1/n5/2). So β′ = 5/2 and β = 3/2. We obtain that the

decay rate is of order 1/n1/2.

Example 5.4. Assume m ≥ 3 and near the fixed point p = (0, 0, 0), the map T

has the form

T (z) = z
(
1 + |z|γ +O(|z|γ+1)

)
,

where m > γ > 0.

These examples are comparable with those in Example 4.1, except for the

stronger topological assumptions which we now put on the maps. We know that

those maps satisfy Assumption, T′′(e′).

We set zn = T−n1 z, then we have |zn| = 1/(nγ)1/γ + O
(
1/(nγ)

1
γ+1

)
and

|detDT (z)| = 1 + (m + γ)|z|γ + O
(
|z|γ+1

)
. Hence, we get that |detDT−n1 | ≈

1/n
m
γ +1, (for the relative computations see Lemma 3.1 and 3.2 in [HV]). There-

fore β′ = m
γ + 1 and β = m/γ.

On the other hand, we see that ν(τ > k) = O
(
1/km/γ

)
, and then

∞∑
k=n+1

ν(τ >

k) ≈ 1

n
m
γ −1

. Since m > γ, the invariant measure µ is finite and β > 1. We get

that the decay rate is of order 1/n
m
γ −1.

Example 5.5. Let us take X = [−100, 100] and a partition ξ = {U0, U
+
i , U

−
i :

i = 1, . . . , 9} of X into 19 subintervals such that U0 = [−10, 10], U−i = [−10i−
10,−10i) and U+

i = (10i, 10i+ 10]. Also set ∂ξ = ∪U∈ξ∂U .

We then define a piecewise smooth expanding map T : X → X with an

indifferent fixed point p = 0 as following:

(i) T (intU±i ) = intX for i 6= −8, 8 and |T ′i (x)| ≥ 10 for all x /∈ [−3, 3] ∪ ∂ξ;

(ii) T (x) = x+ 4|x|1.5 for x ∈ [−3, 3];
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(iii) T is increasing on U±9 and maps intU±9 to intX linearly, that is, T (x) =

20(x− 95) on U+
9 and T (x) = 20(x+ 95) on U−9 ;

(iv) T (U−8 ) = [−100, e+) and T (U+
8 ) = (e−, 100], where e± ∈ E±, and E± =

{x ∈ U±9 : Tn(x) ∈ U+
9 ∪ U

−
9 ∀n ≥ 0}.

It is clear that T satisfies Assumption T′′(a), (b), (c′), (d) and (e′); moreover

(iv) above shows that the partition ξ is not Markov. By the choice of E±, the

orbits {Tn(e±) : n > 0} are contained in E+ ∩ E−, and therefore in U+
9 ∪

U−9 . Note that all possible image sets {Tn(U) : U ∈ ∨n−1
i=0 T

−i(ξ)} have the

form [−100, 100], [−100, Tn(e±)], [Tn(e±), 100] or [Tn(e±), Tn(e∓)] up to the

endpoints. So if we take V = [−2, 2], then V ∩ T k(∂U) = ∅ for any U ∈ ξ and

k ≥ 0. It follows that T−k(V ) ∩ ∂U = ∅ for any U ∈ ξ and k ≥ 0. Hence,

Assumption T′′(b′) holds.

Remark 5.4. We mention here that T |U±9 do not have to be linear. Also, the

role of U±8 and U±9 can be replaced by any pairs U±i and U±j for i, j 6= 0 and

i 6= j.

The same idea can be used to generate example of maps in higher dimen-

sional spaces. For example, in the plane we can take X = [−100, 100] ×
[−100, 100], and partition X in to squares U±±ij of size 10 × 10, except for

U0 = [−10, 10]× [−10, 10]. Near the origin we can define T (x, y) =
(
x(1 + x2 +

y2), y(1+x2 +y2)2
)

as in Example 5.3. Then we let U±±i,9 and U±±i,8 , or U±±9,j and

U±±8,j , or both, where i, j = ±0,±1, · · · ± 9, will play the same role as U±9 and

U±8 in the above example. That is, the map can be arranged in such a way that

under Tn the images of the boundaries of all sets in the partition are contained

in the region {(x, y) ∈ X : 90 ≤ |y| ≤ 100} or {(x, y) ∈ X : 90 ≤ |x| ≤ 100}, or

both. By this way, we can construct a map T that satisfies all conditions given

by Assumption T′′(a), (b′), (c′), (d) and (e).

In fact, systems satisfying Assumption T′′(a), (b′), (c′), and (d) are dense

in the set of the systems satisfying Assumption T′′(a), (b), (c′) and (d) in the

C1 topology. This means that for any system satisfying Assumption T′′(a), (b),

(c′) and (d), we can make an arbitrarily small C1 perturbation to get a map

T such that there exists a small neighborhood V of p with T
−n

(V ) ∩ ∂Uj = ∅
for any j = 1, . . . ,K and for any n ≥ 0. To see this, we first note that for any

fixed n0, we can get that T
−n

(p)∩∂Uj = ∅ for any 0 < n ≤ n0 by using a small

perturbation, and then get that T
−n
V ∩∂Uj = ∅ for any 0 < n ≤ n0 by taking V

small enough. Further, for any connected component V
(n)
i of T

−n
V , we require

that d(V
(n)
i , ∂Uj) ≥ diamV

(n)
i for any j = 1, . . . ,K. Now we consider the case

n > n0. If V
(n)
i ∩ ∂Uj 6= ∅, then we can use a small perturbation φ

(n)
i with

both d(φ
(n)
i , id) and ‖Dφ(n)

i ‖ small enough to get d(V
(n)
i , ∂Uj) ≥ diamV

(n)
i .

Notice that Assumption T′′(d) implies s < 1/4. It is easy to see that if V
(n2)
i2
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intersects the (2 diamV
(n1)
i1

)-neighborhood of some V
(n1)
i1

with n2 > n1, then

diamV
(n2)
i2

< (1/4) diamV
(n1)
i1

. Hence, we can require d(φ
(n)
i , id) and ‖Dφ(n)

i ‖
decrease with n at least by a fact 1/4 at each step. Then after a sequence of

perturbations we still have d(V
(n)
i , ∂Uj) ≥ (1/2) diamV

(n)
i for any n > 0 and

the C1 norm of the composition of the sequence of perturbations are still small.

Hence the resulting map T satisfies Assumption T′′(b′), and obviously satisfies

Assumption T′′(a), (c′), and (d) as well. We leave the details to the reader.

5.3 Proof of Theorem E

Proof of Theorem E. We begin to choose ε0 > 0 satisfying Lemma 4.2 in the

previous section, and then we take ε1 ∈ (0, ε0] as in Lemma 5.2 below. We

reduce ε1 further if necessary such that η′ := η + DH(ε0)εα1 < 1, where η < 1

is given in Lemma 4.2 and DH(ε0) > 0 is given in Lemma 5.2. Then we take

B := Bαε0,ε1 as in (5.1); with the norm given in (5.2), B satisfies Assumption B(a)

to (f) by Lemma 5.1.

Thanks to Lemmata 4.2 and 5.2, condition S(1) is satisfied with constants η

and D replaced by η′, defined as above, and D +DH(ε0)εα1 respectively, where

D is the number given in Lemma 4.2.

Assumption T′′(a), (d) and (c′) imply Assumption T (a), (c) and (d) re-

spectively. Assumption T(b) follows from the construction of the first return

map. Lemma 4.2(iii) and 5.2(iii) give (1.5). Therefore all the conditions for

Theorem B are satisfied; hence we obtain conditions S(3) and S(4).

The facts that ‖Rn‖B = O(d
m/(m+α)
n ), and ‖Rn‖B = O(dn) if Assump-

tion T′′(e′) is satisfied, follow from Lemma 5.5: therefore we have established

the decay of correlations (1.3).

If T also satisfies (4.4), then we know that for any z close to p, |T−n1 z| is

of order n−1/γ . Hence ν̂{τ > k} has the order k−m/γ , and
∑∞
k=n+1 k

−mγ =

O(n−
m
γ +1). Then the rest of the theorem is clear.

Lemma 5.1. B is a Banach space satisfying Assumption B(a) to (f) with Ca =

2Cb = 2γ−1
m ε−m+α

0 , where γm is the volume of the unit ball in Rm.

Proof. We already know that Q is a Banach space, and the proof of the com-

pleteness of B follows from standard arguments.

Now we verify Assumption B(a) to (f).

By Lemma 4.1, the unit ball of Q is compact in L1(X̂, ν̂). Since ||f ||B ≥
||f ||Q for any f ∈ B ⊂ Q, the unit ball of B is contained in the unit ball of Q.

Since B is closed in Q, the unit ball of B is also compact. This is Assumption

B(a).

Moreover, for any f ∈ Q, ‖f‖∞ ≤ Cb‖f‖Q ≤ Cb‖f‖B with Cb = γ−1
m ε−m+α

0 ;

we have thus got Assumption B(b).
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By invoking again Lemma 4.1, we have, for any f, g ∈ Q : ‖fg‖Q ≤
Ca‖f‖Q‖g‖Q, where Ca = 2γ−1

m ε−m+α
0 = 2Cb. It is easy to check that

|fg|H ≤ ‖f‖∞|g|H + ‖g‖∞|f |H ≤ Cb‖f‖Q|g|H + Cb‖g‖Q|f |H.

Hence,

‖fg‖B = ‖fg‖Q + |fg|H ≤ Ca‖f‖Q‖g‖Q + Cb‖f‖Q|g|H + Cb‖g‖Q|f |H
≤Ca

(
‖f‖Q + |f |H

)(
‖g‖Q + |g|H

)
= Ca‖f‖B‖g‖B.

Therefore Assumption B(c) follows with Ca = 2γ−1
m ε−m+α

0 = 2Cb.

Similarly, part (d) of Assumption B follows from the fact that B contains all

Hölder functions, which are in turn dense in L1(X̂, ν̂).

Assume f(x) = limn→∞ fn(x) for ν̂-a.e. x ∈ X̂. By the proof of Lemma 4.1

we have |f |Q ≤ lim infn→∞ |fn|Q; moreover for any y, z ∈ VI , where I ∈ I,

|f(y)− f(z)|
d(y, z)α

≤ lim
n→∞

|fn(y)− fn(z)|
d(y, z)α

≤ lim inf
n→∞

|fn|H.

Therefore |f |H ≤ lim infn→∞ |fn|H; since |f |B = |f |Q + |f |H, we get part (e).

Since B ⊂ Q, part (f) follows directly from the fact that Q satisfies Assump-

tion B(f).

Lemma 5.2. Let ε0 be as in Lemma 4.2. There exists DH = DH(ε0), D̄H =

D̄H(ε0) > 0 and ε− ∈ (0, ε0] such that for any ε1 ∈ (0, ε−], and by using the

notation for the Banach space introduced in (5.1):

(i) for any f ∈ Bαε0,ε1 , |P̂f |Hε1 ≤ s
α|f |Hε1 +DHε

α
1 ‖f‖Qε0 ;

(ii) for any f ∈ Bαε0,ε1 , |R(z)f |Hε1 ≤ |z|
(
sa|f |Hε1 + D̄Hε

α
1 ‖f‖Qε0

)
;

(iii) and for any f ∈ B̃αε0,ε1 |P̃ f̃ |H̃ε1 ≤ s
α|f̃ |H̃ε1 +DHε

α
1 ‖f̃‖Q̃ε0 .

Proof. (i) Let ε∗ ∈ (0, ε0], Jĥ > 0 as in the proof of Sublemma 5.4 below.

Suppose ε ∈ (0, ε∗], and |f |Hε1 = H for some f . Take x, y ∈ VI for some

I ∈ I with d(x, y) = ε ≤ ε∗. Then by Assumption T′′(e), we can take ζ > 0,

N = N(ε) > 0 for b = 1. Notice that

P̂f(x)

ĥ(x)
− P̂f(y)

ĥ(y)
=

K∑
j=1

∞∑
i=1

ĝ(xij)ĥ(xij)

ĥ(x)

(f(xij)

ĥ(xij)
− f(yij)

ĥ(yij)

)

+

K∑
j=1

N∑
i=1

f(yij)

ĥ(yij)

( ĝ(xij)ĥ(xij)

ĥ(x)
− ĝ(yij)ĥ(yij)

ĥ(y)

)

+

K∑
j=1

∞∑
i=N+1

f(yij)

ĥ(yij)

( ĝ(xij)ĥ(xij)

ĥ(x)
− ĝ(yij)ĥ(yij)

ĥ(y)

)
.

(5.5)
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Since |f |H = H, we have |f(xij)/ĥ(xij) − f(yij)/ĥ(yij)| ≤ Hd(xij , yij)
α ≤

sαHd(x, y)α. Now, P̂ĥ = ĥ implies

K∑
j=1

∞∑
i=1

ĝ(xij)ĥ(xij)/ĥ(x) = 1. (5.6)

Thus the first sum in (5.5) is bounded by sαHd(x, y)α ≤ sα|f |Hd(x, y)α.

Note that by our assumption, VI does not intersect discontinuities.¶ By

Sublemma 5.4, ĥ(y)/ĥ(x) ≤ eJĥd(x,y)α , and by Assumption T′′(e), ĝ(y)/ĝ(x) ≤
eζd(x,y)α if i ≤ N(ε). So [ĝ(yij)ĥ(yij)/ĥ(y)]/[ĝ(xij)ĥ(xij)/ĥ(x)] ≤ eζ

′d(x,y)α for

some ζ ′ > 0. We take ε− ∈ (0, ε∗] small enough such that eζε
α
1 − 1 ≤ 2ζ ′εα1 for

any ε1 ≤ (0, ε−]. Then for d(x, y) = ε ≤ ε1, we have∣∣∣ ĝ(xij)ĥ(xij)

ĥ(x)
− ĝ(yij)ĥ(yij)

ĥ(y)

∣∣∣ ≤ 2ζ ′
ĝ(xij)ĥ(xij)

ĥ(x)
· d(x, y)α. (5.7)

Therefore by (5.6), the second sum in (5.5) is bounded by

K∑
j=1

N∑
i=1

f(yij)

ĥ(yij)

ĝ(xij)ĥ(xij)

ĥ(x)
· 2ζ ′d(x, y)α ≤ 2ζ ′ĥ−1

∗ ‖f‖∞d(x, y)α,

where ĥ∗ is the essential lower bound of ĥ given by Sublemma 5.3.

By Assumption T′′(e), the third sum in (5.5) is bounded by

K∑
j=1

∞∑
i=N+1

f(yij)

ĥ(yij)

ĝ(xij)ĥ(xij)

ĥ(x)
≤ ĥ−2

∗ ‖ĥ‖∞‖f‖∞ ·K ′bεm+α

=ĥ−2
∗ ‖ĥ‖∞Cb‖f‖B ·K ′bεmd(x, y)α = CbK

′bεm1 ĥ
−2
∗ ‖ĥ‖∞‖f‖Bd(x, y)α,

where Cb is given in Lemma 4.1 which depends on ε0.

Hence the result of part (1) holds with DH = Cbĥ
−1
∗ (2ζ ′+K ′bεm1 ĥ

−1
∗ ‖ĥ‖∞).

Part (ii) and (iii) can be proved by using the same estimates with the same

adjustments as in the proof of Lemma 4.2.

Sublemma 5.3. There is a ĥ∗ > 0 such that ĥ(x) ≥ ĥ∗ for ν-a.e. x ∈ X̂.

Proof. By Lemma 3.1 in [Ss], there is a ball Bε(z) ⊂ X̂ such that Einf
Bε(x)

ĥ ≥ ĥ−

for some constant ĥ− > 0. By Assumption T′′(c′), there is Ñ > 0 such that

T ÑBε(z) ⊃ X. Then for any x ∈ X̃, there is y0 ∈ Bε(z) such that T Ñy0 = x.

¶This implies that the potential ĝij of the transfer operator is continuous. Such a potential
has in fact the form ĝij(x) = |detDT̂ij(x)|−1, where T̂ij = T i

1Tj , being T1 and Tj different
determinations of the map T. In the computation of the transfer operator, ĝ is computed in
the point T−1

j T−i
1 x, where x belongs to the sets of Hölder continuity VI which are in turn the

preimages of V . The continuty of the potential is necessary to get the invariance of the new
Banach space under the action of P̂.
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Since |detDT | is bounded above, we have g∗ := inf{g(y) : y ∈ X} > 0. Hence,

for ν̂-almost every x,

ĥ(x) = (PÑ ĥ)(x) =
∑

T Ñy=x

ĥ(y)

Ñ−1∏
i=0

g(T iy) ≥ ĥ(y0)

Ñ−1∏
i=0

g(T iy0) ≥ ĥ−gÑ∗ .

The result follows with ĥ∗ = ĥ−g
Ñ
∗ .

Sublemma 5.4. Let ε0 be as in Lemma 4.2. Then there exists Jĥ > 0 and

ε∗ ∈ (0, ε0] such that for any x, y ∈ VI with d(x, y) ≤ ε∗, I ∈ I,

ĥ(x)

ĥ(y)
≤ eJĥd(x,y)α .

Proof. Since ĥ is the unique fixed point of P̂, we know that ĥ = limn→∞ P̂n1X̂ ,

where the convergence is in L1(ν̂). Now we consider the sequence fn := P̂n1X̂ .

We will prove that there is Jĥ > 0 and ε∗ ∈ (0, ε0] such that for any n ≥ 0

and for any x, y ∈ VI , I ∈ I, with d(x, y) ≤ ε∗,

fn(y)

fn(x)
≤ eJĥd(x,y)α . (5.8)

Clearly (5.8) is true for n = 0 since f0(x) = 1 for any x. We assume that it

is true up to fn−1; we then consider fn.

Note that fn/ĥ = (1/ĥ)P̂n(h·1X̂/ĥ) = L̂n(1X̂/ĥ), where L̂ is the normalized

transfer operator defined by L̂(f) = (1/ĥ)P̂(ĥf). Then there are f∗ ≥ ĥ∗/ĥ
∗

and f∗ ≤ ĥ∗/ĥ∗ such that f∗ ≤ fn(x) ≤ f∗ for every x ∈ X̂ and n ≥ 0, where

ĥ∗ and ĥ∗ are the essential upper and lower bound of ĥ respectively. Let also

set: g∗ = infx f1(x) = infx
∑K
j=1

∑∞
i=0 ĝ(xij).

Let us set again b = 1; then put ζ > 0 as in Assumption T′′(e). Let us take

Jĥ > 2ζsα/(1− sα) so that we have (Jĥ+ ζ)sα ≤ Jĥ(1 + sα)/2. Then we choose

ε∗ ∈ (0, ε0] small enough such that for any ε ∈ [0, ε∗],

eJĥ(1+sα)εα/2 +
f∗K ′bεm+α

f∗(g∗ −K ′bεm+α)
≤ eJĥε

α

.

For any x, y in the same VI with d(x, y) =: ε ≤ ε∗, we choose N = N(ε) as in

Assumption T′′(e). Let us denote with [fn]N (x) =
∑K
j=1

∑N
i=0 ĝ(xij)fn−1(xij)

and {fn}N (x) = fn(x)− [fn]N (x) =
∑K
j=1

∑∞
i=N+1 ĝ(xij)fn−1(xij). We have

[fn]N (y)

[fn]N (x)
=

∑K
j=1

∑N
i=0 ĝ(yij)fn−1(yij)∑K

j=1

∑N
i=0 ĝ(xij)fn−1(xij)

≤ sup
1≤j≤K;0<i≤N

eζd(xij ,yij)
α

eJĥd(xij ,yij)
α

≤ e(ζ+Jĥ)sαd(x,y)α ≤ eJĥ(1+sα)εα/2.
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We also get

{fn}N (y) =

K∑
j=1

∞∑
i=N+1

ĝ(yij)fn−1(yij) ≤ f∗
K∑
j=1

∞∑
i=N+1

ĝ(yij) ≤ f∗K ′bem+α.

On the other hand,

[fn]N (x) =

K∑
j=1

∞∑
i=N+1

ĝ(yij)fn−1(yij) ≥ f∗
K∑
j=1

N∑
i=1

ĝ(yij) ≥ f∗(g∗ −K ′bem+α).

By the choice of ε∗, we obtain

fn(y)

fn(x)
≤ [fn]N (y) + {fn}N (y)

[fn]N (x)
≤ eJĥ(1+sα)εα/2 +

f∗K ′bεm+α

f∗(g∗ −K ′bεm+α)
≤ eJĥε

α

.

This implies (5.8) holds for n since we have set ε = d(x, y).

Lemma 5.5. There exists a constant CR > 0 such that ‖Rn‖B ≤ CRdm/(m+α)
n

for all n > 0.

If, moreover, T satisfies Assumption T′′(e′), then ‖Rn‖B ≤ CRdn for all

n > 0.

Proof. Since Ri =
∑
j Rij , we only need to prove the results for Rij .

Let sij(x) be the norm of ||DT̂−1
ij (x)||, and sij = max{si,j(x) : x ∈ Bε0(Q0)}.

Note that {τ > i} ⊂ T−1V for all large i. We may suppose that i is sufficiently

large so that Bsijε1(Uij) ⊂ T̂−1
ij V ; we then take f ∈ B with ‖f‖B = 1.

By using (4.20) and (4.21), we apply arguments similar to (4.22) and get

‖Rijf‖1 =

∫
Uij

|f |dν̂ ≤ ‖f‖∞ν̂(Uij) ≤ Cbν̂(Q0)dij‖f‖B. (5.9)

Next, we consider |Rijf |B. Note that for any I ∈ I, f |VI ∈ Hα(VI , H) for

some H ≤ ‖f‖B. So osc
(
f/ĥ, Bsε(·)

)
≤ 2αsαεαH ≤ 2αsαεα‖f‖B. Moreover

Sublemma 5.4 implies that osc
(
ĥ, Bε(x)

)
≤ 2αJ ′

ĥ
εα for all x with Bε(x) ∈ VI

and with J ′
ĥ
≥ Jĥ > 0. By Proposition 3.2(3) in [Ss] we now have:

osc
(
f, Bsijε(·)

)
≤ osc

(
f/ĥ, Bsijε(·)

)
ĥ∗+osc

(
ĥ, Bsijε(·)

)
‖f‖∞/ĥ∗ ≤ b1εα‖f‖B,

where b1 = 2α(Hĥ∗ + J ′
ĥ
Cbh

−1
∗ )sαij . By arguments similar to (4.20) and (4.23),∫

Rij osc
(
f, Bsijε(·))dν̂ =

∫
Uij

osc
(
f, Bsijε(·))dν̂

≤b1εα‖f‖Bν̂(Uij) ≤ b1εαdij ν̂(Q0)‖f‖B ≤ a1ε
αdij‖f‖B,

(5.10)
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where a1 = b1ν(Q0).‖ Also,

ν̂
(
T̂−1
ij Bε(∂T̂Uij)

)
=

∫
Bε(∂T̂Uij)

ĝdν̂ ≤ dij · ν̂
(
Bε(∂U0)

)
≤ dij · b2ε,

for some b2 > 0 independent of ε. Hence,

Gij(x, ε, ε0) = 2dij · b2ε/ν̂(B(1−s)ε0(x)) ≤ a2dijε, (5.11)

where a2 = 2b2/ν̂(B(1−s)ε0(x)). Note that
∫

osc(f,Bε0(xij))dν̂ ≤ εα0 |f |Q, and

‖f‖1 + εα0 |f |Q ≤ ‖f‖Q ≤ ‖f‖B. Therefore for any ε ∈ (0, ε0] and i < N(ε) and

by using (4.15), (5.10), (5.9) and (5.11) we get

|Rijf |Q ≤
[
(1 + ζεα)a1 + 2ζCbν(Q0) + 2(1 + ζεα)a2ε

1−α]dij‖f‖B
≤C ′2dij‖f‖B,

(5.12)

where C ′2 = (1 + ζεα)a1 + 2ζCbν(Q0) + 2(1 + ζεα)a2ε
1−α.

For ε ∈ (0, ε0], i > N(ε) and by Assumption T′′(e) we have dij ≤ bεm+α.

Hence, ε−a ≤ (b−1dij)
−α/(m+α). Hence by (4.16), we have

|Rijf |Q ≤2(γmε
m
0 )−1 · ‖f‖Q · ε−α · dij

≤2(γmε
m
0 )−1bα/(m+α)d

1−α/(m+α)
ij ‖f‖Q ≤ C ′′2 d

m/m+α
ij ‖f‖B,

(5.13)

where C ′′2 = 2(γmε
m
0 )−1bα/(m+α). Therefore we get that |Rijf |Q ≤ C2d

m/m+α
i ,

where C2 = max{C ′2, C ′′2 }.
Now we consider |Rijf |H. As in the proof of Lemma 5.2, for any x, y ∈ Uij ,∣∣∣Rijf(x)

ĥ(x)
− Rijf(y)

ĥ(y)

∣∣∣ ≤∣∣∣ ĝ(xij)f(xij)

ĥ(x)
− ĝ(yij)f(yij)

ĥ(y)

∣∣∣
=
ĝ(xij)ĥ(xij)

ĥ(x)

∣∣∣f(xij)

ĥ(xij)
− f(yij)

ĥ(yij)

∣∣∣
+
|f(yij)|
ĥ(yij)

∣∣∣ ĝ(xij)ĥ(xij)

ĥ(x)
− ĝ(yij)ĥ(yij)

ĥ(y)

∣∣∣.
(5.14)

Note that
∣∣∣f(xij)/ĥ(xij) − f(yij)/ĥ(yij)

∣∣∣ ≤ |f |Hd(xij , yij)
α ≤ ‖f‖Bsαijd(x, y)α

and ĝ(xij)ĥ(xij)/ĥ(x) ≤ (ĥ∗/ĥ∗)dij . Then the first term in the right hand side

of (5.14) is bounded by a3dij‖f‖Bd(x, y)α, where a3 = (ĥ∗/ĥ∗)s
α
ij .

Let us take ε = d(x, y); if i ≤ N(ε), then by (5.7),

|ĝ(xij)ĥ(xij)/ĥ(x)− ĝ(yij)ĥ(yij)/ĥ(y)| ≤ 2ζ ′(ĥ∗/ĥ∗)dijd(x, y)α.

‖The estimate (5.10) shows the difference with the analogous bound (4.23) and justifies
the introduction of the new Banach space. In fact we can now use the local Hölder property
for f to get an upper bound of the integral of the oscillation simultaneously in terms of the
volume of Uij , of ε and of the norm of f . The change of variable sending Uij to Q0, will finally
produce the determinant dij which will give a better upper bound for ||Rn||.
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Since f(yij)/ĥ(yij) ≤ ‖f‖∞/ĥ∗ ≤ Cbĥ−1
∗ ‖f‖B, the last term in (5.14) is bounded

by a4dij‖f‖Bd(x, y)α, where a4 = 2CbJ
′(ĥ∗/ĥ2

∗). Therefore we obtain |Rijf |H ≤
C ′3dij‖f‖B, where C ′3 = b1 + b2.

If i ≥ N(ε), then by the first inequality of (5.14), the left side of the inequality

is bounded by max{ĝ(xij)f(xij)/ĥ(x), ĝ(yij)ĥ(yij)/ĥ(y)} ≤ dij‖f‖∞/ĥ∗. By

the same arguments as for (5.13) we get that

|Rijf |H≤ε−αdij‖f‖∞/ĥ∗ ≤ Cbĥ−1
∗ bα/(m+α)d

m/(m+α)
ij ‖f‖B= C ′′3 d

m/(m+α)
ij ‖f‖B,

where C ′′3 = Cbĥ
−1
∗ bα/(m+α)‖f‖B. Then we conclude that |Rijf |H ≤ C3d

m/(m+α)
ij ‖f‖B,

where C3 = max{C ′3, C ′′3 }.
The conclusion of the first part follows by setting CR = C1 + C2 + C3.

If T satisfies Assumption T′′(e′), then we can regard N(ε) = ∞ for any

ε > 0. Hence we obtain ‖Rijf‖B ≤ CRdij‖f‖B with CR = C1 + C2 + C ′3.

Acknowledgments

We wish to thank Ian Melbourne for his interest in our maps, for his helpful

comments and advices.

We would like to thank also Romain Aimino who was trapped in interminable

discussions on aperiodicity and function spaces.

We finally thank the anonymous referee for a very careful reading of the paper

and whose comments and suggestions helped us to improve our article.

References

[AD] J. Aaronson and M. Denker, Local limit theorems for partial sums of sta-

tionary sequences generated by Gibbs-Markov maps, Stoch. & Dynam.,

1 (2001), 193–237

[ADSZ] J. Aaronson, M. Denker, O. Sarig and R. Zweimüller, Aperiodicity

of cocycles and conditional local limit theorems, Stoch. & Dynam., 4

(2004), 31–62
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