A SPECTRAL APPROACH FOR QUENCHED LIMIT THEOREMS
FOR RANDOM HYPERBOLIC DYNAMICAL SYSTEMS

ABSTRACT. We extend the recent spectral approach for quenched limit theorems devel-
oped for piecewise expanding dynamics under general random driving [11] to quenched
random piecewise hyperbolic dynamics.

For general ergodic sequences of maps in a neighbourhood of a hyperbolic map we
prove a quenched large deviations principle (LDP), central limit theorem (CLT), and
local central limit theorem (LCLT).
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1. INTRODUCTION

In our previous paper [11] we extended the Nagaev-Guivarc’h spectral method to obtain
limit theorems, such as the Central Limit Theorem (CLT), the Large Deviation Principle
(LDP) and the Local Central Limit Theorem (LCLT), for random dynamical systems
governed by a cocycle of maps T = wn—1y 0 ---0 Ty, oT,, assuming uniform-in-w
eventual expansivity conditions on the maps 7,,. The random driving was a general
ergodic, invertible transformation o : Q O on a probability space (£2,P), and the real
observable g was defined on the product space 2 x X — R.

Before introducing our new results, we briefly recap the essence of the Nagaev-Guivarc’h
spectral method in the deterministic setting, where one deals with a single map 7', defer-
ring to the original articles by Nagaev [27, 28] and Guivarc’h |30, 18] and to the excellent
survey |16] for more details. The spectral method uses the transfer operator £ : B O act-
ing on a Banach space B, and in particular, the twisted transfer operator L% f := L(e% f),
for f and g € B. In the situation where £’ is quasi-compact for § near zero, regularity
of the leading eigenvalues and eigenprojectors have been used to prove limit theorems
[21, 20, 29, 30, 21, 3, 30, 26, 20, 31, 14] and more, namely Berry-Esseen theorems [18, 14]
and almost-sure invariance principles [15]. The key equality was E(e?n9 f) = E((L%)"f),
where S,,g denotes the Birhkoff sum of the observable g and the expectation is taken with
respect to the unique eigenmeasure m of the adjoint of £. Since the map 6 — £ is holo-
morphic, classical perturbation theory allows one to obtain E(e?*9) = c(8)X(0)" + d,,(0),
where \(6) is the leading eigenvalue of L%, with c and \ analytic in 6, and supy |d,,(9)| — 0.
We can therefore easily compute the characteristic function and the log generating func-
tion of the process g o T™ with respect to the invariant probability measure of T" which
can be identified as the unique eigenvector of £ corresponding to the leading eigenvalue
1.

In the quenched random setting we must replace the n-th power of the twisted operator
with the twisted transfer operator cocycle £5"™ := £0,, o---0 L8 o L0 By using the
multiplicative ergodic theorem adapted to the study of such cocycles and generalizing a
theorem of Hennion and Hérve [20] to the random setting, we were able in our previous

paper [11] to show that the cocycle £ g quasi-compact for 6 near to 0. We therefore
thus obtained that for such values of 6 and for P-a.e. w € €2, the top Lyapunov exponent
A(0) (analogous to the logarithm of A(#) in the deterministic setting) of the cocycle is
analytic and given by

lim 1 log B, (e”*9))| = A(6),

n—oo M
where p,, is the equivariant probability measure on the w-fiber (see below). This result
together with the exponential decay of the norm of the elements in the complement of
the top Oseledets space, which handled the error corresponding to quantity d, above,
allowed us to achieve the desired limit theorems.

In the present paper we move from cocycles of piecewise expanding maps to cocycles

of hyperbolic maps both smooth and piecewise smooth. To our knowledge, this is the
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first time that this setting has been investigated with multiplicative ergodic theory tools.
One of the primary differences with [11] is the use of anisotropic Banach spaces here in
place of the space of functions of bounded variation in [11]. Specifically, in the smooth
hyperbolic setting and in any dimension, we use the functional analytic setup of Gouézel
and Liverani [17], and in the piecewise hyperbolic case in dimension two we use the
spaces from Demers and Liverani |[7] (as well as Demers and Zhang [8, 9]). This increased
technicality in the underlying spaces necessitates a certain amount of checking of relevant
conditions, however, we wish to highlight the fact that a wholesale change of the theory
of [11] is not required, which demonstrates the power and flexibility of our approach.
The use of transfer operators in the study of statistical properties and limit theorems for
hyperbolic dynamical systems has flourished in the last years, and |2| presents a thorough
discussion of the various spaces that have been used in the literature. Our intention in
this work has not been to find the most general version of the results, but rather to
illustrate the applicability of the methods. In fact, we expect the methods presented here
to remain applicable in some (or all) of these functional analytic scenarios.

We first consider cocycles T, ™) where the family of maps {7}, }.cq are selected from a
C"+1-neighbourhood of a topologically transitive Anosov map T of class C"*! (in Section
10 we consider piecewise hyperbolic maps also describing periodic Lorentz gas). The
random driving o : Q O is a general (ergodic, invertible) automorphism preserving a
probability measure P. If deri1(T,,T) < A for P-a.e. w €  and A is sufficiently small °

the random dynamical system generated by the cocycle T supports a measure ji, invari-
ant under the skew product 7(w,z) = (ow,T,x). We obtain this measure by explicitly
constructing the family u,, along the marginal P, namely y = fQ e, dP(w), and satisfying
the usual equivariance condition p,, o T.;1 = pi,,. Our observable g satisfies g(w,-) € C”
for P-a.e. w, ess sup,eq [|g(w, -)|lcr < 0o, and is fiberwise centred: [ g(w,z) duy(z) =0
for P-a.e. w. Our limit theorems concern random Birkhoff sums

n—1 n—1
Spg(w,x) == Zg(Ti(w,x)) = Zg(ai,Tb(f)x), (w,z) € 2 x X,n €N, (1)
i=0 i=0

We now summarize our main results for the perturbed Anosov systems described above;
we defer to the main body for more precise statements.

e A: Quenched large deviations theorem We can find ¢y > 0 and a non-random
function c: (—€g, €9) — R which is nonnegative, continuous, strictly convex, van-
ishing only at 0 and such that

1
lim —log , (Sng(w, ) > ne) = —c(e), for 0 < e < ¢y and P-a.e. w € Q.
n

n—o0

e B: Quenched central limit theorem There exists a positive variance ¥? such
that for every bounded and continuous function ¢: R — R and P-a.e. w € €2, we

have 50w 7)
. ng\W, T 2
lim ———— | du,(x) = dN(0,%7).
tin o B2 ) = [oanto. )

One of the main achievements of our previous paper was the proof of the local central
limit theorem (LCLT) in the non-arithmetic and arithmetic cases. Our basic assumption,
which for convenience we simply call (L), expresses the exponential decay of the strong

norm of the twisted operator when the parameter § = it has ¢t # 0. Moreover we showed

5The neighborhood of a given map T will be precisely quantified, and therefore the value of A as
well, as Os, (T, B1!) in section 3 for the Anosov case and as Os, (T, B) in section 10.2 for the piecewise
hyperbolic case.
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under additional assumptions that we will recall in section 8, that hypothesis (L) was
equivalent to a co-boundary condition which is better known as the aperiodicity condition.
In the present paper we prove the LCLT in the non-arithmetic case by assuming (L).
Recently Hafouta and Kifer [19] proposed a new set of assumptions which allow us to
check condition (L). We will see that some of these assumptions can be verified easily
for our systems, provided we restrict the class of the driving maps and observables (see
Corollary 9.5).

e C: Quenched local central limit theorem Let us suppose condition (L) holds;
then , for P-a.e. w € 2 and every bounded interval J C R, we have

lim sup [Sv/np, (s + Spg(w,-) € J) — e~z | J|| = 0.

1
n—00 gcR \/ﬁ
In Section 10 we consider random cocycles of piecewise hyperbolic maps of the type
considered in [7] on two-dimensional compact Riemannian manifolds. As we will ex-
plain later on and in order to apply the multiplicative ergodic theorem, we have now
less choice for the random distribution of the maps, but for instance we can deal with
countably many maps. All the preceding theorems A, B, C still hold.

Apart from [11] there are some quenched limit theorems (LDP and CLT) that have been
obtained using different methods. Kifer derives a large deviation principle |22, 23, 24|
for occupational measures using theory of equilibrium states, and a central limit theorem
via martingale methods; in both cases, he treats random subshifts of finite type and
random smooth expanding maps. Recently, Hafouta and Kifer [19] proved limit theorems
for these systems in the more general “nonconventional setting”. They used (complex)
cone techniques, where the cones were defined in the functional space upon which the
transfer operator acts. We emphasize that they don’t consider the case of hyperbolic
dynamics studied in the present paper. In fact, is not clear if their cone techniques
can be adapted to the present setting. Bakhtin [1]| is probably the closest to our work;
he proves a central limit theorem and large deviation estimates for mixing sequences of
smooth hyperbolic maps with common expanding and contracting directions, under a
variance growth condition on the Birkhoff sums. He also used cones, but living on the
tangent space of the manifold. In comparison to Bakhtin, we can additionally treat the
case of random piecewise hyperbolic maps, and moreover we exhibit explicitly the rate
function which produces asymptotic large deviation bounds; the local CLT is also new in
this setting.

2. PRELIMINARIES

Let X be a d-dimensional C* compact connected Riemannian manifold and let 7" be
a topologically transitive Anosov map of class C"™*1, where r > 2. We follow the setup of
[17]. Replacing the Riemannian metric by an adapted metric |25, we use hyperbolicity
constants 0 < v < 1 < A, where A is less than the minimal expansion along the unstable
directions, v is greater than the minimal contraction along the stable directions, and the
angles between the stable and unstable spaces (of dimensions ds, d,, respectively) are
close to /2. A collection of C™ coordinate charts ¢; : (—r;, ;) — X, i=1,..., N are
defined so that Ufil Vi ((—1i/2,73/2)%) cover X, with the r; small enough that D;(0) -
(R% x {0}) = E*(1;(0)), |¥ilcr+1, |; Hers < 1+ K, and & small enough in such a way
that the stable cone at x in R? is compatibly mapped to the stable cone at ;(x) in X.
For such values of k, the stable cone at x € X is defined as C(z) = {u+v € T, X|u €

E*(z),v L E*(z),||v|| < k||ul|}, where T, X denotes the tangent space at x and || - || is
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the (Mather) adapted metric on X. With this norm DT~!(x) expands the vectors in C(x)
by v1, (see [17], section 3 for details).
Let G;(K) denote the set of graphs of C™! functions x : (—r;, ;)% — (—r;,r;)% with
IX|cr+1 < K (and with |Dx| < ¢; so that the tangent space of the graph belongs to the
stable cone in R? mentioned above). For large enough K, the coordinate map w;loT_lowi
maps G;(K) into G,;(K') for some K’ < K. For A sufficiently large, (depending on x and
v) and § small enough that AJ < min; 7;/6, an admissible graph is a map x : B(x, Ad) —
(—27;/3,2r;/3)% with range (Id, x) € G;(K), where B(z, AJ) denotes some ball included
in (—2r;/3,2r;/3)%; the collection of admissible graphs is denoted =;.

Forpe N, p<r,g>0and h € C"(X,C), ¢ € C1X,C) we define (using the notation
in [17])

Ihlly, == sup  sup swp | [ rhew]e @ e @)
al=p x: B(z,A8)—R% peC(B(z,6),C) | / B(z,5)
1<i<N XEZ; lolca<l

Finally, for p and ¢ as above satisfying p + ¢ < r, we set
1hllpq == sup [[Allgge = sup Ay, (3)
0<k<p P'<p,g'>q+p’
The space B is defined to be the completion of C"(X,C) with respect to the norm

H ) Hp,tr
The following proposition will be useful when applying the multiplicative ergodic theorem.

Proposition 2.1. The space B”Y is separable.

Proof. The desired conclusion follows directly from [17, Remark 4.3| after we note that
C*(X,C) has a countable subset which is dense with respect to the C" norm. O

We recall from [17, Section 4] that the elements of BP? are distributions of order at
most g. More precisely, there exists C' > 0 such that any h € BP? induces a linear
functional ¢ — h(p) with the property that

|h(0)] < Cllhllpgllellcs,  for ¢ € CUX,C). (4)
In particular, for h € C" we have that
o) = [ hpdm, for o € CUX, ), (5)
X

where m denotes the Lebesgue measure on X. We say that h € BP? is nonnegative and
write h > 0 if h(p) > 0 for any ¢ € C9(X,R) such that ¢ > 0.
Let Lp: BP9 — B be the transfer operator associated to T' defined by

(Lrh)(p) =h(poT), for he B and p € CYX,C). (6)
We recall that for h € C"(X,C), Lr is the function given by
h
h= T
b (|det T|) ° @)

Take g € C"(X,C) and h € BP? Then, there exists a sequence (h,), C C"(X,C)
that converges to h in BP?. It follows that (gh,), C C"(X,C) is a Cauchy sequence in
BP4 and therefore it converges to some element of BP¢ which we denote by ¢ - h. It is
straightforward to verify that the above construction does not depend on the particular
choice of the sequence (h,),. Moreover, the action of g - h as a distribution is given by

(g-h)(p) = h(9<ﬂ)5> ¢ € CU(X,C). (8)



Moreover, one can easily verify that there exists C' > 0 such that
lg - Pllp.g < Cllgller - 1Al for g € C7(X,C) and h € B (9)
We will need the following result.

Lemma 2.2. For h € B g€ C"(X,C) one has Lp(goT -h) =g - Lrh.

Proof. Let ¢ € CUX,C). It follows from (6) and (8) that [Lr(goT - h)](p) = (go T -
h)(poT) = h(goT-poT) = Lrh(g-¢) = (9-Lrh)(¢), which yields the desired result. O

3. BUILDING THE COCYCLE L

In the sequel we will consider the case p = ¢ =1 and r > 2, but we will also require T’
to be C"*1 to be in a suitable framework for perturbations. Using the fact that the unit
ball in B! is relatively compact in B%? [17, Lemma 2.1], it follows from [17, Theorem 2.3]
that the associated transfer operator L is quasicompact on B!, 1 is a simple eigenvalue
and there are no other eigenvalues of modulus 1. This in particular implies (using the
terminology as in |6, Definition 2.6]) that Lr is exact in {h € B : h(1) = 0}. Let

M (T)={S: Sis an Anosov map of class C"*! satisfying dor+1(S,T) < €}.
We also recall (see [17, Lemmas 2.1. and 2.2] and the discussion at the beginning of §7

[17]) that there exist ¢, B > 0 and a € (0, 1) such that for any T3,...,T, € M(T), we
have

e for each n € N and h € BY!,

| Lz, 00 Lphloz < Blhlos; (10)
e for each n € N and h € B!,
| Lz, 00 Lyyh|1a < Ba"[|h]]11 + Blhloe- (11)

For 0 > 0, set

Os(T,B") = {55 B = B S e M(T) and  sup ||[Lsh — Lrhllos < 5}.
Al <1
It follows from [6, Proposition 2.10] (applied to the case where ||-|| = ||-]jo2 and |-|, =
|-|l1.1) that there exist dp > 0, D, A > 0 such that for any Lr,, ..., Ly, € Os (T, B1), we
have that

L7, 00 Ly, 0Ly bl < De™™||h|l;; for h € B satisfying h(1) = 0. (12)
On the other hand, [17, Lemma 7.1| implies that there exist 0 < ¢y < € such that
{Ls:S €M, (T} C Os, (T, B).
Remark 3.1. In order to apply |6, Proposition 2.10| instead of (11) we need to have that
£, 00 Lyyhll1y < a™[|A]l1a + BllAo.2-

However, as pointed out to us by J-P. Conze |5|, the arguments from [6] can be easily

modified in a way that the conclusion given by |6, Proposition 2.10] still holds true in our
6

case

6The proof of Proposition 2.7 in [6] on which the result of Proposition 2.10 in [6] is based, was done by
taking our B = 1. In order to make comparison with that proof we establish the correspondences among
our quantities and those in [6]. Therefore our a is identified with p and our ||h||1,1 with |f],. Then for
B > 1 it will be enough to multiply by B: (i) the exponential factors a™ in the quantities named 3(n)
and S,(n) in [6] and (ii) the norm ||hl1,1, for n = 0. Then the proofs goes exactly in the same way and
at the end our factor D will depend on B as well.
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We now build the cocycle (Q, F, P, o, BY1, L), simply referred to as £, as follows:

(1) Let (Q, F,IP) be a probability space, where €2 is a Borel subset of a separable,
complete metric space and o : {2 — ) an ergodic, invertible P-preserving trans-
formation.

(2) Let T : Q@ — M, (T) be a measurable map given by w — T,,.

3.1. Strong measurability of w +— L£,. In this section we demonstrate strong measur-
ability of the map £ : Q — Os,(T,B"!) given by w + L, := Lr,; this is required to
establish the existence of measurable Oseledets spaces for the cocycle. To prove strong
measurability of w — L, := Lg,,, we will show that the map from M., (T) to the space of
all bounded linear operators on B! defined by S + Lg is strongly continuous. For this,
let S € M, (T) and h € BY'. We must show that ||Lsh—Lsh||1; — 0as deri (S, S) — 0.
First, assume h € C". Then, we need to estimate differences of the form

/ [0(Lsh o) o(Id, x) - — / [0%(Lghoyy)] o (Id, x) - ¢
B(x,0) B(x,0)

where a, x and ¢ vary as in the definition in (2), with p = ¢ = 1. Arguing as in [17,
Lemma 7.1], and employing the corresponding notation, we write

/B . [0(Lshowy)] o(d,x) - o= Y Z / 8%hy o (Id, x;) - Fapsy-pys, (13)

18<|a| j=1 ¥ B(@:0)

where x1,...,x; are y-admissible graphs whose corresponding y-admissible leaves cover
S~H(W), with W an admissible leaf corresponding to the graph of x; h; = h o ¥;(;
{p;}j=1,., is a partition of unity subordinated to the ~-admissible leaves of y;; and
F, 5.5 are functions bounded in C718l. A similar expression holds for fB(x,é) [0%(Lgh o
wz)} o (Id, x) - ¢, with FaﬁS,j replaced by F, ;5. and x; replaced by X;, the graph
corresponding to 1/) )0 S71o S ot o (Id, x;)(B(z;,vAd)). Furthermore, if dorii (S, S)
is small enough, each X; is a graph in =), and |x; _Xj|CQ(B(IZ’A5)) < Cder1(8, S). Also,
| Fog.5.5llcatists | ags]HCqHB\ are uniformly bounded for S, S € M(T) and ||F, 45, —
F, 55llcarier = 0as dgr1 (S, S) — 0, uniformly over ¢ as in (2). Hence, as dgr+1(S, S) —

a,

0, we get
[ P00 0%) Fussy s = 0%(hs) 0 14) - Fussy 3] = 0
B(xz;,0

uniformly over x (and so x;) and ¢ as in (2). It then follows from (13) that ||[Lgh —
Lsh|i1 — 0 as der+1(S,S) — 0, as claimed.

The result for general h € BY! follows from an approximation argument by C" func-
tions, because if der+1(S,S) is sufficiently small, then |Lglli, < 14 || Lslha = M.
Indeed, let {h;};en be a sequence of C" functions such that lim; ., h; = h in B, and
let £ > 0. Then, there exists n € N such that ||h—hy,|l1,1 < 55;. Hence, ||[Lsh—Lshl|1 <
||£gh — ,Cghn||171 + ||,C§hn - ﬁghnHl,l + ||[.5hn — £5h||1,1 S % + ||,C§hn — »CShn”l,l- Since
hn € C", we have that imsup, _ (3.¢)-0 |Lgh — Lsh|l1,; < 4. Since the choice of ¢ > 0
is arbitrary, the result follows.

3.2. Quasi-compactness of the cocycle £ and existence of Oseledets splitting.
For each w € Q,n € N, let £ = Lon-1,0+-0 Ly, 0 L,. Tt follows readily from (12)
that

L8], < De ™A1y for any w € Q, n € Nand h € B4, h(1) = 0. (14)
7



Moreover, observe that (10) and (11) imply that
1£59 R0 < Bllhlloa,  [1£57All1 < Ba"||hllx + Bllhlloa, (15)
which in particular implies that
1£57h]111 < KA1 (16)
where K := Ba+ B > 0.

Proposition 3.2. There exists a unique family (hY),eq C BY! such that:
(1) L,hY = hY  for P-a.e. w e Q;
(2) hY is nonnegative and h?(1) =1 for P-a.e. w € Q;
(3) w— hY is a measurable map from Q to BY;

(4)

ess SuPeq Al 11 < oo. (17)
Proof. Let
Y = {v: Q— B" : v is measurable and ||v]|o = ess sup,,cq|lv(w)]11 < oo}

Then, Y = (Y, ||-[|~) is a Banach space. Furthermore, let Z be the subset of Y that
consists of v € Y with the property that v(w) is nonnegative and v(w)(1) = 1 for
P-a.e. w € €. It is easy to verify that Z is a closed subset of Y. Indeed, assume
that (v,)nez is a sequence in Z converging to v € Y. It follows from (4) that

(W) (%) = (W) (P)] < Cllon(w) = v(W)[[11lpler < Cllvn = vlloleler,

and thus v, (w)(¢) = v(w)(p) for ¢ € C* and P-a.e. w € Q. Thus, v(w)(p) > 0 for p >0
and v(w)(1) =1 for P-a.e. w € Q and we conclude that v € Y.
We define L: Z — Z by

(Lv)(w) = Ly1,0(07'w) weQ, veZ

It follows from (6) and (16) that L is a well-defined and continuous map on Z. Using (14),
one can easily verify (see |10, Proposition 1]) that there exists ng € N such that L™ is a
contraction on Z. Thus, L has a unique fixed point v € Z. Tt is easy to verify that the
family h0, w € Q defined h? = v(w), w € Q satisfies the desired properties. Conversely,
each family satisfying properties (1)-(4) induces a fixed point of L. which then must
coincide with 7. U

Proposition 3.3. Let (h?),cq be as in Proposition 3.2. Then h is a probability measure
on B! for P-a.e. w € Q.

Proof. Using Lemma 2.2, we have that
B () = L3 Ho-n() = I,

o nw' Yo "w o "w

(poT™,.), forwe Qand g€ C.

Hence, using the arguments as in |7, Lemma 5.3], and equations (4) and (17), we find
that there exists a constant D > 0 such that

IR (p)| < D|¢|se for P-ace. w € Qand ¢ € C*.

Since C' is dense in C°, we conclude that for P-a.e. w € Q, h? can be extended to a
bounded linear functional on C°. By the Riesz representation theorem, hl is a signed
measure. By invoking the nonnegativity of A together with h2(1) = 1, we conclude that

h is a probability measure for P-a.e. w € Q. O
8



We may apply Kingman’s subadditive ergodic theorem to form the following limits,
which are constant for P-a.e. w € (2

1
A(L) = nh_}rgo ﬁ log Hﬁa(un)Hl,h and

1
k(L) == lim —logic(£™), where

n—oo 1

ic(A) :=inf{r > 0: A(Bg, ) can be covered with finitely many balls of radius },

and Bpgi, is the unit ball in B, The cocycle L is called quasi-compact if A(L) > k(L).
Observe that (16) implies that

A(L) <0. (18)

Remark 3.4. The notion of quasicompactness for cocycles of linear operators was in-
troduced by Thieullen |32|. Its relevance stems from the fact that all known versions of
the multiplicative ergodic theorem for linear cocycles acting on Banach spaces require that
a cocycle is quasicompact (see [12, 13, 32| and references therein). As pointed out by
Buzzi |4, Section 0.2], this requirement is not equivalent to the usual (deterministic) qua-
sicompactness of the global (or annealed) transfer operator associated to the skew-product
transformation.

Lemma 3.5. The cocycle L is quasi-compact.

Proof. Observe that it follows from (4) and Proposition 3.2 that

lim sup 1 log|| LR |11 = lim sup 1 log||h2..,|l1.1 > limsup 1 logC™' =0,
n—oo 1 n—oo TN n—oo I
for P-a.e. w € Q. The above inequality together with (18) implies that A(L) = 0.

Now we argue as in the proof of [11, Theorem 3.12.|. More precisely, we choose N € N
such that Ba®™ < 1 and we consider the cocycle LY over (2, F,P, o) whose generator
is the map w — L2, Then, it is easy to verify that A(LY) = NA(L) = 0 and &(LN) =
Nk(L). On the other hand, it follows from the inequalities (15) and (16) (applied for
n = N) together with [11, Lemma 2.1] that (L") < A(LY) which immediately yields
that k(L) < A(L) = 0. We conclude that £ is quasi-compact.

U

By separability of BY!, and quasi-compactness and strong measurability of £, the
multiplicative ergodic theorem (Theorem A, [13]) yields: (i) 1 <[ < oo and a sequence
of exceptional Lyapunov exponents 0 = Ay > XAy > ... > X\, > k(L) (or in the case [ = oo,
0=X > X2 >...;lim, 00 Ay = k(L)) and (ii) a unique measurable Oseledets splitting

B = (EB Yj(w>> &V (w),

where each component of the splitting is equivariant under £, that is, L(w)(Y;(w)) =
Yj(ow) and L(w)(V(w)) C V(ow). The Y;(w) are finite-dimensional and for each y €

Yi (@) \ {0}, limyooe log [ LE7y[| = Ay For y € V(w), limyoo & log || £57y]] < w(£).

Proposition 3.6. The top Oseledets space Yi(w) of the cocycle L is one-dimensional,
and spanned by hY.

Proof. In the proof of Lemma 3.5 we have showed that h? € Y;(w) for P-a.e. w € Q. We

now claim that h? spans Y;(w) for P-a.e. w € . Indeed, assume that there exists g,, ¢
9



span{hl}, g, € Y1(w) and choose «, (8 scalars (that depend on w) such that |a|+|3] > 0
and (ah® + Bg,,)(1) = 0. Then, it follows from (14) that

1
lim — logHEU(J")(ozhg + Bgu)l11 < A <0.

n—oo M

On the other hand, since ahl + By, € Yi(w) \ {0} we have
1
lim — logl|£{” (ahd, + Bg.)lh1 = 0,
n—oo 1M

which yields a contradiction. We conclude that Y;(w) = span{h0} and thus Y;(w) is
one-dimensional for P-a.e. w € (.
O
4. QUASI-COMPACTNESS OF THE TWISTED COCYCLE L’
We build a twisted cocycle £?, by setting
L0 (h) = L, (@) . h), forweQ, §eC,and he B

We will from now write e??)h instead of €’9“~) . h. Our (centered) observable g will be
amap g: 2 x X — R such that g(w,-) € C" for w € Q,

ess sup,collg(w, -)ller < oo, (19)
and for P-a.e. w € (),

he(g9(w, ) = 0. (20)
This twisted cocycle gives us access to an w-wise moment-generating function for
Birkhoff sums of g.

Lemma 4.1. For P-a.e. w € Q, h € B" and ¢ € C*(X,C) one has
(L)) = B9 (o TL)). o)

Proof. One can follow the proof of Lemma 3.3 (part 2) [11], using the definition of the
untwisted transfer operator (6) and Lemma 2.2. O

The following lemma is required as an auxiliary result in the proof of quasi-compactness
of the twisted cocycle (Proposition 4.4).

Lemma 4.2. There exists C > 0 such that for 01,05 € Bc(0,1) :={0 € C: |0 < 1}, we
have that
ess Sup, eq| e ) — 9T | co < C6) — 6y).

Proof. By applying the mean value theorem for the map g(z) = 9 ') where z € X
is fixed and using (19), we find that

€58 SUP,,cq||e?900 @) — P29 9| Lo < Oy — 6. (22)
Furthermore, for j =1,....d
[ (e — el D) oo = [P0, g (0w, ) — €PN g (07w, oo
< |0y = 0] - | D g (0 e, o
+ 0] - |97 ) — 29T o - [ g (0w, ) oo
It now follows from (19) and (22) that

€58 5P, [V (1907 — 29T | o < €16 — 6.
10



One can now proceed and obtain the same estimates for the second derivatives of the
map €190 'w) _ 020007 "w) which implies the desired conclusion. O

We need the following basic regularity result for the operators £/ .

Proposition 4.3. There exists a continuous function K: C — (0,00) such that
1L8hlia < K(O)||hll11, for he BY, 6€C and P-a.e. w € Q. (23)

Proof. We first note that it follows from (16) that

10 h)va = || Lo (?“IR) |11 < K||e?“)n|,,, for h € BY, § € C and P-ae. w € Q.
Hence, we need to estimate [|e?9“)h]|; ;. Note that by (3),

e Rl = max{ eI R, 1?9 IR ], ).
It follows easily from (2) that
Jeenls < (max swp 1) 0 ) o (1d, X er) - Al

I<isN x: B(x,A8)—Ru
XEZ;

and
%@ h|| 7, < ( max sup (€% o gy) o (Id, )|l c2) - AT

x: B(x,A8)—Ru
XEE;

+ [ max sup I [3j(699(w") o 1;)] o (Id, X)Hcl) [R5,
x: B(x,Ad)—Ru
XEZ;

which together with (19) implies the desired conclusion. O
We can now state the main result of this section on quasi-compactness.
Proposition 4.4. For 0 close to 0, the cocycle (LY),cq is quasi-compact.

Proof. We follow closely [11, Lemma 3.13|. Observe (15) and choose N € N such that
v := Ba" < 1. Hence,

L5 MRy < ILSOR s+ 1L5D) = L8711 - (Bl
< Allhlls + Bllhllos + 155 = L8711 - [1hll11-
On the other hand, we have that

LN _ pWN) - ZLJN s (Lo = Lon-15 )LD,

It follows from (16) and (23) that
LYy < KN and (1L08) [l < K(9).

oN=Jw

Furthermore, using (16), we have that for any h € B! and P-a.e. w € Q,
128 = L) M) 11 = [1£(“Ph = h) |11 < K[|(e7) = 1)hl|,1.
Moreover,
(e = 1)hl|1 1 = max{]|(e"@) = D)A|5, (€74 — 1|75}

Now Lemma 4.2 (applied for ¢, = 6 and 6, = 0) implies that there exists C' > 0 such for
RS B@(O, 1),
(P9 — 1)hll1, < ClO|||h|ly for h € BY.
11



We conclude that

N-1
5™ = £ < Clo) Yy KN IK(0),
§=0
and therefore there exists ¥ € (0, 1) such that for any ¢ sufficiently close to 0 and h € B!,
125 |0 < AlIBll 1 + Bllhllos: (24)

Similarly, one can show that there exists B > 0 such that for any @ sufficiently close to 0
and h € B!,

122002 < Bllhllos- (25)
The conclusion of the proposition follows from (24) and (25) by arguing as in the quasi-
compactness part of the proof of |11, Theorem 3.12]. O

5. REGULARITY OF THE TOP OSELEDETS SPACE OF THE TWISTED COCYCLE

Let S’ be the space of measurable maps W:  — BY! with the property that
[Wlo := ess sup,cql[W(w)|l11 < oo.

Then, (S, ||-|l«) is a Banach space. Furthermore, let S be the set of all W € &’ such
that W(w)(1) = 0 for P-a.e. w € Q. Arguing as in the proof of Proposition 3.2, it is easy
to verify that S is a closed subspace of §’. For W € & and w € ) we will often write
W, instead of W(w).

5.1. Regularity of the cocycles.

Lemma 5.1.
(1) For P-a.e. w € Q, the map 0 — L is analytic in the norm topology of B!,
(2) The map P : Bc(0,1) x S — S, given by P(O, W), = L%, (W,-1,,) is analytic
wmn 0 and bounded, linear in W. In particular, P is C°.
(8) The map Py : Bc(0,1) x S = L£2(Q), given by P1(0, W), = (L2, (W,-1,))(1)
1s analytic in 0 and bounded, linear in W. In particular, Py is C°.

Proof. We claim that for every h € B!, the following holds:

k!
k=0

£0(h) = Lo(g(w,)*h), in BYL. (26)

To verify this, note that [17, Lemma 3.2| implies that

1£(g(w, ) )11 < Cllgw, ) llczllhllia < Cllg(w, g2l

so by (19), the RHS of (26) is a well defined element of B"!. The fact that it coincides
with £ (h) is straightforward to check, using linearity of £, the power series expansion of
e%9@) and testing against functions ¢ € C'. This concludes the proof of Lemma 5.1(1).

Let us prove Lemma 5.1(2). For each k¥ > 0 and W € S, let (¢* - W)(w,) =
g(w, ) W(w,-). Then, ¢* - W € S, because of (19) and [17, Lemma 3.2]. We claim
that

POW) =3 PO.6" W) inS. (27)
k=0
Indeed, (26) implies that
,P(ev W)w - E,P(Oa gk ’ W)w in Bl’l' (28)
k=0 "

12



Furthermore, using once again [17, Lemma 3.2|, in combination with the uniform over w
bounds (16) and (19), we have that there exists C' > 0 such that for P-a.e. w € €,

PO W)l < Z HP (0,9" - W)l < CZ-@SS sup,callg(w, )z Wil (29)

Hence, the series in (27) indeed converges in S and yields analyticity as required. The fact
that W — P(6, W), and also W — P(0, g* - W) is linear and bounded is straightforward
to check. Hence, the C'* claim follows immediately.

The proof of Lemma 5.1(3) is similar to that of Lemma 5.1(2). Indeed,

> gk
Z k’_ 0 gk : W)w 1)7 (30)

and (4) implies that [(P(0,g" - W), 1)] < C||P(0,¢* - W),|l1.1, which was bounded
uniformly over w in (29). Hence the serie ( 0) converges to P1(0, W) in L>(Q). O

5.2. An auxiliary function F' and its regularity. For § € C and W € S, set

nglw(w(ailw) + hgflw)
L0, W(o—tw) + hl_, )(1)

FO,W)(w) = —W(w) - h), wen. (31)

We define two further auxiliary functions, which will be used in the sequel. Let G: C x
S— 8 and H: Cx S — L*(Q) be given by
G(O.W)(w) :=POW +h)(w) = Lom,(Wo1 + hgr,), w € Q, (32)

H(OW)(w) =P+ h")(w) =L, W, + 02 )(1), we  (33)

It follows readily from (17) and Lemma 5.1 that G and H are well defined, and in fact
C* functions. Direct calculations, analogous to those of [11, Appendix B], yield the
following;:

Lemma 5.2. Forw € Q;0,z¢€ C; W,H € S, the following identities hold:"

(G0, W) (2) = 2Lo1,(g(0 ™ w, )TN Wy, + 1) 1,), (34)

( W)(H)o = Lo-1,(Ho10), (35)
D11G(9 W)(21,22)0 = 2’12250714«1(9(0_1% ‘)Zeeg(ailw")(wflw + hg,lw)), (36>
DG (0, W) (2, H)w = Doy G(0, W)(H, 2)s = 2Lo10(g(0 w, ) 2 1), (37)
DyG = 0. (38)

Moreover, the expressions for the derivatives of H are equal to the corresponding expres-
sion for G applied to the constant function 1.

Lemma 5.3. There exist €, R > 0 such that F: D — S s a well-defined map on
D:={0eC: |0 <e} x Bs(0,R),
where Bs(0, R) denotes the ball of radius R in S centered at 0.
"Here D,G(0,W) is a linear operator from C to S’ whose argument is denoted by z. Similar consid-

erations apply to the other differentiability operators used in the Lemma.
13



Proof. Let G and H be defined as in (32) and (33). The function H is continuous on a
neighborhood of (0,0) in C x S and obviously H(0,0)(w) = h%(1) = 1 for P-a.e. w € Q.
Hence,

[H (0, W)(w)] =1 = [H(0,0)(w) — H(,W)(w)| = 1 = [|[H(0,0) = H(0, W)]|~,

for P-a.e. w € Q. Continuity of H implies that |[H(0,0) — H(0,W)||~ < 5 for all (6, V)
in a neighborhood of (0,0) in C x § and hence, in such a neighborhood,

1
ess infueq|H (O, W)(w)| > 7

This together with (17) and a simple observation that F'(0, W)(1) = 0 immediately yields

the desired conclusion.
O

Notice that map F defined by (31) satisfies F'(6, W)(w) = G(0, W)(w)/H (6, W)(w) —
W(w) — hY. The proof of Lemma 5.3 ensures that for (6,V) in a neighbourhood D
of (0,0) € C xS, ess infueq|H(0,W)(w)| > 3. Thus, the following result is a direct
consequence of Lemma 5.2.

Proposition 5.4. The map F defined by (31) is of class C* on the neighborhood D of
(0,0) € C x S from Lemma 5.3. Moreover, for w € Q,(0,W) € D and H € S,

1 L0 Hy1,(1

_ 0 o _
PO = gyt~ Tgmyp OO W~ e
- 1 -1 . 0g(c™ w,") 0
F(@, W)w - H(a W) (w) EU*M}(Q(O_ W, )6 (WU’IUJ + ha_lw))
B 507%(9(071&)7.)eeg(a—lw,-)(wrlw+h2,lw))(1)£9_1 Wy + 10 )

[H (0, W) (w)]?
where we have identified D1 F (0, W) with its value at 1.

Lemma 5.5. Let D = {0 € C: |0| < ¢} xBs(0, R) be as in Lemma 5.3. Then, F : D — S
is C'° and the equation

F(6,W) =0 (39)

has a unique solution O(0) € S, for every 0 in a neighborhood of 0. Furthermore, O(6)
is a C'™ function of 6.

Proof. Note that F'(0,0) = 0. Furthermore, Proposition 5.4 implies that F is of class C*
on a neighborhood of (0,0). In addition, Lemma 5.2 implies that

(Do F(0,0)X)(w) = Lo1,X (07 'w) — X (w), we, XeS.

Using (14) and proceeding as in [11, Lemma 3.5|, one can show that Dy F'(0,0) is invertible
and that

(Do F(0,0)~ ZE ). X(0Tw) weQ, XS (40)

The conclusion of the lemma now follows directly from the implicit function theorem. [J
14



6. PROPERTIES OF A(f)
Let 0 < € < 1 be as in Lemma 5.3 and O(f) be as in Lemma 5.5. Let
RS =1 +0(0)(w) € B4, we. (41)

We notice that h? (1) = 1 and by Lemma 5.5, 6 + hY is continuously differentiable.
Let us define

A(6) 1= [ tog [t ()| P, (42)
and
A= RO (eP9@)y = £OR0 (7). (43)
6.1. A differentiable lower bound for A(f). Lemma 6.1 deals with differentiability
properties of A(6).

Lemma 6.1.
(1) For every 0 € Be(0,¢€), A(6) < A0).
(2) A is differentiable on a neighborhood of 0, and

o) = %< / A(O(0) (@) + hE)(glw, Je)) + O'(6) (w) () dP(w>> |

IAGI?
where R(z) denotes the real part of z and Z the complex conjugate of z.
(8) For P-a.e. w € Q, and 0 in a neighborhood of 0, the map 0 — Z,,(0) := log|\?| is
differentiable. Moreover,
R(N((O(6) (@) + 1) (glw, )ea=)) 4 O'(0) () (e)))
S [ALI? ‘
(4) (o) =o0.
Proof. The proof of part 1 is identical to the proof of Lemma 3.8 [11] replacing || - ||z with
[ lla and (L5708 ] with [£57RE (D))

The proof of part 2 is identical to the proof of Lemma 3.9 [11], using Lemma 5.5 in
place of Lemma 3.5 [11]| and replacing the final two equation blocks with:

(0(0) (W) + ) (g(w, )™ ) < CNOO) (@) + h v - lg(w, e ex
< ClO0)]~ + C,

and
|0'(0)(w) (") < CIO"B) (@)1 - €| < CO'(B)]| oo
The proof of part 3 is identical to the proof of Lemma 3.10 [11], using differentiability
of H and O in Lemmas 5.2 and 5.5.
The proof of part 4 is identical to proof of Lemma 3.11 [11]. O

6.2. One-dimensionality of Y/(w) and differentiability of A. Let Y//(w) denote the
top Oseledets subspace of the cocycle (L),cq. The proof of part 1 of the following result
can be obtained by repeating the argument as in [11, Theorem 3.12|, using Proposition
4.4. Part 2 follows by arguing as in [11, Corollary 3.14].

Proposition 6.2. For § € C near 0
(1) dim Y (w) = 1.

~

(2) A(0) = A(0). In particular, A(0) is differentiable near 0 and A’'(0) = 0.
15



6.3. Convexity of A(f). By Proposition 3.3, we can regard h° as Borel probability
measure on X which we will denote by p,. The family (u,),cq induces a probability
measure on ) x X given by

w(A x B) = / ty(B) dP(w), for measurable sets A C Q and B C X.
A

Then, p is invariant for the skew-product transformation 7: Q x X — Q x X defined by
T(w,z) = (0w, T,,(7)), weQ, reX.
Let us now establish the appropriate decay of correlations result.

Proposition 6.3. There exists D' > 0 such that

/X p(v o T77) dp

forP-a.e. we Q, neN, peC(X,C) such that [, pdu, =0 and v € C'(X,C).
Proof. We have that

/X (o T dpy = pu(p( 0 T2)) = (1 - @) (W 0 T1) = LE (s - ) ().

< D'egller - 19 llen,

Furthermore, observe that (1,-¢)(1) = [y ¢ du, = 0. Now the desired conclusion follows
readily from (4), (9), (14) and (17). O

The following result can be obtained by repeating the arguments in [10, Lemma 12.]
(and by using Proposition 6.3).

Proposition 6.4. We have that

o0

o [ g nPduten) +2Y [ gt o) due.n) @

n=1

exists and that X? > 0.

Proposition 6.5. We have that ¥* = 0 if and only if there exists r € L7,(Q x X) such
that g=r —ror.

Proof. Assume first that X2 = 0. For n € N, set

Xp(w,x) = 29(7'“(0),1’)), (w,z) € 2 x X,

By arguing as in [10, Proposition 3], one can show that the sequence (X,,)nen is bounded
in L2 (€ x X) and thus there exists a subsequence (X, ), that converges weakly to some
r € L2(Qx X). We claim that g = r —ro7. Take w =149 € L2(Q x X), where A € F
and ¢ € C'(X,C). Proceeding again as in the proof of [10, Proposition 3|, we conclude
that

/ w(g—r+ror)dy= lim w(g o) du
QxX

k—o0 Qx X

= lim [ 14 (/ ©(Gomiw 0 TIF) d,uw> dP(w)
Q X

k—o0

=0,
16



where in the last step we have used Proposition 6.3. Hence, for P-a.e. w € 2 and
p € CY(X,C), we have that

/ (gw — Ty + Tow © Tw)sp dﬂ'w =0. (45)
X

Since C*'(X, C) is dense in C'(X,C), one can easily conclude that (45) holds also for ¢ €
C(X,C). Finally, C(X,C) is dense in L?(y,,) (since i, is a Radon measure) and thus (45)
is valid for ¢ € LZ(,uw). Consequently, for P-a.e. w € €2, we have that g,—7r,+7,,071, =0,
Ho-a.e. Therefore, g=r —ror.

The converse statement can be obtained by arguing exactly as in [10, Proposition

3]. O

Proposition 6.6. Suppose that X2 > 0. Then, on a neighbourhood of 0,
(1) A is of class C* and N'(0) = ¥2.
(2) A is strictly conver.

Proof. The proof of part (1) is identical to the proof of [11, Lemma 3.15] and part (2) is
a direct consequence of part (1) and our assumption that X2 > 0. O

From now on we will assume that X2 > 0.

7. LARGE DEVIATION PRINCIPLE AND CENTRAL LIMIT THEOREM

For 6 € C sufficiently close to 0, we have that dim Y?(w) = 1, where Y?(w) now denotes
Y (w) for the sake of simplicity. Choose h? € Y(w) such that h? (1) = 1. We note that
h? is actually given by (41). Furthermore, let A’ € C be such that

LI hg, = Noh,. (46)
Note that
Al = B (eP), (47)

which coincides with (43). Let Y*? denotes the top-Oseledets space of the adjoint cocycle
L* over (Q, F,P,o~!) whose generator is the map w +— (L,-1,,)*. Next, let us fix ¢¢ € Y*?
so that ¢ (h?) = 1. We recall that one can indeed apply MET for the adjoint cocycle
and that dim Y*? = dimY?(w) = 1 (see [11, Corollary 2.5.]).

Furthermore, one can show (see [11, p. 30]) that

(L)l = Nodp (48)

Remark 7.1. The differentiability of 0 — ¢° follows similarly to the presentation in |11,
Appendix C|. The proofs of Lemmas C.J and C.6 make use of reqularity estimates (90)
and (99) in terms of variation; in the present work, these estimates may be replaced with
C' estimates. In the proof of Lemma C.2, the expression ||0°||; may be replaced with
|h (1)] and bounded by (4) in the present work.

In addition, let
B =Y’e H! and (B") =Y ’® H:’
be the Oseledets splitting of cocycles (L£?),cq and ((£%)*).eq respectively into a direct
sum of the top space and the sum of all other Oseledets subspaces.

We are now going to state and prove the first two main results of this paper; we now
remind the general assumption on the choice of the cocycle and the regularity of the
maps:

17



e General assumptions for the limit theorems: Having fixed a topologi-
cal transitive Anosov map 7' of class C™!, with r > 2, we will consider the
neighborhood O, (T, B!) and choose maps into it in order to build the cocycle
(Q, F,P,o,B%, L£). This cocycle will verify the assumptions of Section 3 and the
observable g: 2 x X — R will satisfy (19) and (20). Finally, suppose that 32 > 0.

7.1. Large deviation principle. The following lemmas link the limits of characteristic
functions of Birkhoff sums to the function A.

Lemma 7.2. Let 0 € C be sufficiently close to 0 and h € B! be such that h ¢ HY, i.e.
#% (h) # 0. Then,

lim —log )h 05ng(w ’ =

n—oo

Proof. Tdentical to the proof of Lemma 4.2 [11] with 4 € B"! in the present paper playing
the role of [ f+ dm in the proof of Lemma 4.2 [11], and (21) replacing [11, (43)]. O

Lemma 7.3. For all complex 6 in a neighborhood of 0, and P-a.e. w € 2, we have that

lim —log‘/ 05n9() dp, ()| =
n—oo N

Proof. We follow the proof of Lemma 4.3 [11], observing that
[ e dy(o) = 5,

and recalling the differentiability of the map 6 — ¢ in Remark 7.1. U

A(B).

We are now ready to state our Theorem A.

Theorem A (Quenched large deviations theorem). There exists €g > 0 and a non-random
function c: (—€g,€0) — R which is nonnegative, continuous, strictly convezx, vanishing
only at 0 and such that

1
lim —log ju,(Sng(w,) > ne) = —c(e), for0<e<e and P-a.e. w e Q.
n—oo 1,

Proof. Following the proof of Theorem A [11], by applying Proposition 6.6 and Lemma 7.3,
together with the Gértner-Ellis theorem (see [20] or Theorem 4.1 [11]), we obtain the large
deviation principle. O

7.2. Central limit theorem. The proof of the following result is completely analogous
to the proof of [11, Lemma 4.4].

Lemma 7.4. There exist C' > 0,0 < r < 1 such that for every 6 € C sufficiently close to
0, every n € N and P-a.e. w € Q, we have

L350 (g, — of,(h)RE) (1)

w

< Cr". (49)

Theorem B (Quenched central limit theorem). Let us assume that the non-random
variance Y* > 0. Then, for every bounded and continuous function ¢: R — R and
P-a.e. w € 2, we have

lim qzs(%) o) = [ 6N (0,32).

Proof. The proof is identical to the proof of Theorem B [11], with the same modifications
as those listed in the proof of Lemma 7.2. Differentiability of § +— ¢’ is used (see Remark
7.1) as well as Lemma 4.1 to obtain the coding of the Birkhoff sums via the twisted

transfer operator. Lemma 4.5 [11] is proved is proved in an identical way. U
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8. LOCAL CENTRAL LIMIT THEOREM

We begin by recalling the concept of P-continuity which we will also use in section
9.2.1. We say that our cocycle is P-continuous (a concept introduced in [32]) if the map
w +— L, is continuous on each of countably many Borel subsets of ), whose union has
full P measure. This for example happens if the map w +— T, has P-a.e. a countable
range (besides being measurable). We refer to [12] for details.

In our earlier paper [11] we proved the local central limit theorem in the non-arithmetic
case (we also separately treated the arithmetic case) under the condition that we called
(L) in the introduction, namely

e (L) For P-a.e. w € Q and for every compact interval J C R\{0} there exists
C =C(w)>0and p € (0,1) such that

1] < Cp, for t € J and > 0. (50)

Moreover under the assumption that the cocycle is P-continuous, we proved [11, Lemma
4.7.] that (L) is equivalent to the following aperiodicity condition
e For every ¢t € R, either (i) A(it) < 0 or (ii) the cocycle £¥ is quasicompact and
the equation

D Lt = it
where v € S', L denotes the adjoint of £,, and 1, € B*, only has a measurable

w

non-zero solution 1 := {¥,},co when ¢t = 0. In this case 72 = 1 and ¢, (f) =
[ fdm (up to a scalar multiplicative factor) for P-a.e. w € Q.

In our present Anosov setting the bound (50) will be replaced with the following:
|£EM]),, < Cpt, fort € J and n > 0. (51)

Still in the present setting, we can not prove at the moment the equivalence between (L)
and the aperiodicity condition although several of the technical steps which formed the
skeleton of our proof of [11, Lemma 4.7.] for expanding maps and functions of bounded
variation can be transferred to Anosov maps and the anisotropic Banach spaces used in
this work.

We now state and prove our Theorem C.

Theorem C (Quenched local central limit theorem). Let us suppose condition (L) holds.
Then, for P-a.e. w € €2 and every bounded interval J C R, we have

52
lim sup [Sv/np,(s + Spg(w,-) € J) — e =2 |J|| =0.

1
n—00 scR \/ﬁ
Proof. The proof assuming (L) follows now exactly as in the proof of Theorem C [11],
with the following minor modifications. We use Lemma 4.1 to obtain the coding of the
Birkhoff sums through powers of the twisted transfer operator. The control of term (I1T)
in the proof of Theorem C [11] uses Lemma 7.4 in place of Lemma 4.4 [11]. The control

of term (IV) in the proof of Theorem C [11] uses (L1) in place of the analogous condition
(C5) in [11]. O

9. SUFFICIENT CONDITIONS UNDER WHICH (L) HOLDS

In this section we formulate sufficient conditions under which the condition (L) holds.
This is of central importance when dealing with Theorem C, since the requirement (L)
is obviously quite difficult to verify directly in concrete situations. For this, we will rely

heavily on the work of Hafouta and Kifer [19]. More precisely, we will formulate three
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conditions (HK A1, HK A2 and HK A3 below) that in conjunction imply (L) and then
we will formulate sufficient conditions under which each of those three conditions hold.
Let us now explicity introduce these conditions:

e HK Al: The probability measure P assigns positive measure to open sets, o is
a homeomorphism and there exist wg € Q and mg € N so that ¢"™w,; = wy.
Moreover for each i € {0,1,...,mg — 1}, there exists a neighborhood of o’wy on
which the map w — T, is constant (note that on this neighborhood we also have
that the map w — L, is constant).

e HK A2: For each compact interval J C R, the family of maps w — L% where
t € J, is equicontinuous at the points w = o'wy, 0 < i < my with respect to the
operator norm, and there exists a constant B = B(J) > 1, such that P-a.e.,

L™, < B, (52)

for any n € Nand ¢t € J.
e HK A3: For any compact interval J C R that does not contain the origin, there
exists constants ¢ = ¢(J) > 0 and b = b(J) € (0,1) such that

L5 [[11 < b, (53)

for any s € N and ¢t € J, where the (deterministic) operator L;, is defined as
Lit = Eﬁ;(mo)
Under these three assumptions, it was proved in Lemma 2.10.4 [19] that condition (L)
holds.

Observe that HK A1 represents a mild requirement. Indeed, it is easily satisfied by
requiring that o is a homeomorphism that has at least one periodic point wy and by
building the cocycle in a way that w +— T, is locally constant at all points that belong to
the orbit of wy. Of course, we also need to work with P that assigns positive measure to
all open nonempty subsets of €.

9.1. Discussion regarding HK A2. We now turn to the condition HK A2. We begin
by stating the following auxiliary result.

Lemma 9.1. Let us suppose (Q, F,P,0) is an invertible and ergodic measure-preserving
dynamical system satisfying HK A1 and that for eachi € {0,1,...,mo—1}, the observable
g satisfies

lim [lg(w,) — g(o'w, )|z = 0. (54)

w—rotwy

Furthermore, let J C R be a compact interval. Then, the family of maps {w > L% 1t € J}
15 equicontinuous in all points w that belong to the orbit of wy.

Remark 9.2. Observe that it is not enough to simply prescribe that (54) holds since we
also need to make sure that this requirement is not spoiled when we center our observable
(see (20)). It turns out that under the condition HK A1, (54) is preserved under centering.
Let us first recall that (14) and (15) hold for every w € Q. Let us now modify slightly
the proof of Proposition 3.2 to ensure that under HK A1, we can say more about the top
Oseledets space of our cocycle.

Set

Y ={v:Q— B" v measurable and ||v||« := sup||v(w)||11 < oo}
weN
Then, (V,||'l|ls) s a Banach space. Let'Y be a set of all v € Y that are continuous at

points o'wy, © = 0,1,...,mg—1. We claim that Y s a closed subset of ). Indeed, take a
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sequence (vy), CY such that v, — v in Y and fix i € {0,1,...,mg — 1}. Then, we have
that

lv(w) = v(o'wo) i1 < [[o(w) = va(@)lhn + [[oa(w) = va(o'wo)lr,1
+ [vn(0'wo) — v(o'wo)l|1,
< 2[[v = vnloo + [[va(w) — va(owo)|1,1-
Take € > 0 and choose n such that

€
v — vnlleo < 3

Since v, €'Y, we have that

, £
|vn(w) = V(0" wo) |11 < 3

whenever w is sufficiently close to o'wy. Hence,
[v(w) = v(o'wo)ll1 < e,
whenever w is sufficiently close to o'wy. Therefore, v €Y and Y is closed.
Set

Z ={veY;vw)>0and v(w)(l) =1 for w e Q}.
Then, Z is a closed subset of Y (see the argument in the proof of Proposition 3.2) and
hence it is a complete metric space. We consider L: Z — Z defined by

(L) (w) = Lo1,v(07w), weN veEZ
In order to show that IL s well-defined, we only need to note that
w i Lo1,v(07w)
is continuous at o'wg, 1 € {0,...,mo—1}. However, this follows from the fact thatv € Z
(and thus v € Y) and our assumption that w — T, (and thus also w — L) is locally
constant along the orbit of wy. It follows from (14) that I has the unique fized point
h® € Z. This easily implies that
we h(g(w, ), hy = h(w)

is continuous at o'wy, i = 0,...,mg — 1 and therefore (54) will remain valid even after
centering.

Proof of Lemma 9.1. We will prove the desired equicontinuity property in wy. The argu-
ment for all other points in the orbit of wy is completely analogous. Observe that for all
w € () sufficiently close to wy, we have that £, = L,,. Therefore, for all w close to wy,
we have that

(L85 = L85,)(h) = Loy (") — etateo)p),
and thus
1L = L5 x < [ Laglli - (€79 — o) p]ly 4,
for each h € BY!. Observe that
|| (et — gitawoyp|, | =
= max{[|(¢") — Mo p| 5y () — et p|r, ).
As in the proofs of Propositions 4.3 and 4.4, we need to estimate
et — ¢ioten) o

Take x € X. By applying the mean-value theorem for the map z — €**, we see that

|eztg (w,x) eltg wo,T | < |t| |g(w l’) g(w07$)|'
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Thus,
let) —ettato o <[t - [lg(w, ) = glwo, ) lloo,
which implies that
e — eitsto)]| o < max{[t| : t € TH|g(w,-) = g(wo, )|l c2- (55)
Moreover, we have that
a]( itg(w,) eitg(wo,.)> _ Zteztg(w (g<w’ )) . Zteztg wo, )aj(g(w()’ ))
= e (g(w, ) = ite I (g(w,-)
eI (g, ) = ite D (g i, ),
for each j € {1,...,d}. By (55), we have that
|07 (e*9e) — 90| oo < max{|t]* : ¢ € THg(w, ) = g(wo, Mle2 - 9w, -)lle=
+max{[t| : t € J}H|g(w, ") — g(wo, ")llc2,
for every j € {1,...,d}. Thus,
max || (") — "0 0o < COllg(w, ) — glwo, -)llee, (56)

1<5<d

for some C' > 0 which is independent on ¢ and w. Finally, for each k,j € {1,...,d}, we
have that

akgj( itg(w,) _ eitg(wo,-)) — 2% itg(w,-)ak( (w,~))8j(g(w,-))
+ ite™ @)k (g(w, -))
+ 2619098 (g(wo, ) (g(wo, -))
— ite ™0 9 (g(w, -)).
Observe that
ite )R (g(w, ) — ite 909 (g(wy, -)) = ite IR (g(w, -))
— ite™ @Ik (g(wo, -))
+ ite™ )9k (g(wo, -))
— ite™0) R DI (g(wp, ).
Thus (using (55)),
lite™ )% (g(w, -)) — ite ™I (g(wp, o))l co
< max{|t| : t € J}|g(w, ) — glwo,")llc>
+max{|t]* 1 t € J}H|g(w, ) = gwo,")llc2llg(wo, )llc2-
On the other hand,
— 12 (g(w, ) (g(w, ) + 209 (g wo, )P (9(wo, )
—t2e19I D (g(w, )P (g(w, ) + 20 (g(w, ) (g(w, )
— 120G (g(w, ) (g(w, ) + 20D (g(wo, )P (g(w, )
(g(

— 12009 (g(wo, ) (g(w, -)) + 12109  (g(wo, )P (g(wo, -))
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Hence, (55) implies that
|=2e™9I " (g(w, )P (9(w, ) + 29098 (g(wo, -)) D (9(wo, -)) [l o
< max{[t]’ : t € J}|g(w,) — g(wo, )= - [lg(w. )12
+|g(w, ) = g(wo, )llc= - 9w, )llc2
+|g(w. ) = g(wo, )lle= - lg(wo, )llc=.
We conclude that (by increasing C') we have that
sup [ —£2e"I08 (g(w, ) (g(w, -)) + 208" (g(wo, )P (g(wo, ) o

1<k,j<d
< Cllgw,-) = glwo, -)llc=-
Thus,
et — emato]jca < Cllg(w, ) = glwo, e,
and
125 = L5, < Cllg(w, ) = glwo, )|,

for t € J and w in a neighborhood of wy. The conclusion of the lemma follows directly
from (54). O

Hence, it follows from Lemma 9.1 (together with Remark 9.2) that HK A1l and (54)
imply that the first requirement in HK A2 holds. We now consider the second requirement
in HK A2. As a direct consequence of the following lemma, we show that (52) holds
without any additional assumptions.

Lemma 9.3. For each t € R, there exist Ay, By > 0, 0 < v < 1 such that for every
n>0,h € B and P-a.e. w € 9,

125 hlly < A llhll + Billkllo-
Moreover, for each J C R compact interval, we have that

sup max{A;, B;} < oc.

ted
Proof. (Sketch). The proof follows verbatim the proof of Lemma 6.3 in [17], with two
differences. First, we work with composition of maps, but if they are close enough we can
easily adapt the deterministic arguments (we recall that this was explicitly emphasized
in |17, Section 7|, in particular allowing for a random version of |17, Lemma 3.3] to
be applied). Second, since we use the twisted operator instead of the usual one, in the
various estimates in the proof of Lemma 6.3 [17] we find the extra multiplicative factor
e*5n9(@) The proof of Lemma 6.3 [17] is done by induction on the index p and the first
step is to get a weak version of the Lasota—Yorke, namely for each ¢t € R, there exists
C; > 0 such that for every n > 0 and P-a.e. w € Q,

122 oq < Cu. (57)
We now prove (57) (with ¢ = 1) to show how to handle the additional multiplicative
factor. We use the notation as in [17, p.202]. Recall that
h(T57) !
£ ) = ) ()
|det DT ((T27) 1 ()]

)

and therefore -
ﬁg’(n)(h)(l’) — 6ZtSng( il )h<<T ) 1(‘7:))’
[det DTSV (T57) ()|
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for each h € C" and = € X. Thus,

/ LEMp .= / B - @ 0 T - Jyy T
w (TS =1 (W)

where Jy TS" is the Jacobian of TS : (TSY)"Y(W) — W and
heitSng(w,-)
det DTV|

hy, =
Let ¢; = ¢ o . pj, where py1,...,p; is a partition of unity on (Tj,"))*lw, as pro-
vided by (the random analogue of) Lemma 3.3 [17] (using v = 1), and W7y,..., W, the

corresponding admissible leaves such that (T0")~2 (W) C US_,W;. Hence, [17, (6.2)]
becomes

Note that

|det DT(M| 7L . gitSnole: - Jw T

< Cl[hfloa

CH(Wy)

.|80j |Cl(W]-)' |€z‘t5n9(w,,) |Cl

(W)

'ldet DT | e o Jyy T (W)

< '|det DT |1 Ty T

L)
It follows from |17, Lemma 6.2| that
> lldet DT - Tw TSV |or ) < C.
i<t

In addition, from the argument at the bottom of [17, p. 203, it follows that

o5lcravy) < e o TS ey - |pjlorawy) < C.

Hence, in order to complete the proof of the Weak LasotafYorke inequality, it is sufficient
to show that

|59 | ) < C. (58)
Note that

"9 | o,y =1 and
0% (59 | coawyy = [t - [0%(Sug(w, Nleoawy) < [t Z’aa o'w, TS () leoqwy)-

In order to bound |8a(g(a"w,TL‘(,Z')(-)))|CO(W7.), we proceed as in [7, (4.3)]. For each i and
x,y € W;, we have

lg(o'w, T ) — glo'w, T y)| _ |g(0'w, Tz) — g(o'w, T y)|  d(T5 2, T y)

iz y) ATz, Ty) - d@y)
< Ov'ess supeqllg(w, ),

and thus
10%(g(0’w, TSV ()| cogw;) < Cv'ess sup,eqllg(w, -)|er-

In view of (19), (58) holds. Now one can repeat arguments in [17]| to obtain the weak
Lasota—Yorke inequality for the twisted cocycle, (57). The proof of the strong Lasota—

Yorke inequality can be obtained in a similar manner. U
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9.2. Discussion regarding HK A3. In this subsection we discuss how to ensure that
HK A3 holds. We begin by emphasizing that this assumption is purely deterministic
since it deals only with (deterministic) operators £ ¢ € R\ {0}.

Let us first assume for simplicity that wy is a fixed point for ¢ and suppose that 7, is
transitive. By psgpp we will denote the unique SRB measure for 7,,,. We will show that

HK A3 holds if g(wo, -) cannot be written in the form
2m
g(wo, ) =1 o T, —w—i—Tk—l—r, (59)

for t € R\ {0}, r € R, ¢ measurable and k integer-valued maps.

In order to prove this, let us fix ¢ € R\ {0}. It follows from Lemma 9.3 (together with
the corresponding weak LY-inequality that can be established in analogous manner) that
L is quasicompact and that its spectral radius satisfies r(£Y ) < 1. Let us assume that
r(LY) = 1. Then, there exists z € C, |z| = 1 and h € B"' such that

L h = zh. (60)

We need the following auxiliary result.

Lemma 9.4. We have that h is a compler measure. In addition, h is absolutely contin-
uous with respect to psrp.

Proof. By adapting the proofs of Lemmas 3.3 and 5.3 in [7], there exists a constant C >0
such that for p € C'(X,C), we have

[h(p)] = [P g 0 TR )| < Cllhlloz (I@leo (1 + D (90 )) o) + [ D*(p 0 T ) oc)

< Cllhllos (I¢loo + 10, [D*(#)]o) »

where D?¢ denotes derivative of ¢ along the stable direction. The first inequality follows
from Lemma 3.3 [7]. The estimate for |D*(e®%n9o))| which follows from (19) and
(58) has been absorbed into C' in the second inequality. Finally the term v, has been
introduced in section 2 (and it was called v~! there since it referred to the map T'), as
the expansion rate of DTW_O1 in the stable cone. By sending n — oo, we conclude that h
is a measure.

We now prove that h < pusrp. We will follow closely the arguments in the proof of |7,
Lemma 5.5]. Let IT% denote the projection onto the eigenspace corresponding to 2. Then,
we have that

n—1
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Choose I/ € C"(X,C) such that h = IT?h’. Hence, for each ¢ € C'(X,C) we have that

n—1

)] = L0 )] < fm S, (50 ) )

:g{;nz\/ i5k9(0s) (o o T ) dm|
T}ggonZ/ (ol o T 1| dm
o tim Z ()

= [[[lco 'MSRB(|S0|)-
This easily implies that h < psgrp.

IN

| A

g

Set p = d,LLs . Observe that we can normalize h to ensure that [\ |p|dusgs = 1. For
each ¢ € C'(X, (C), it follows from (60) that

Loy (7R () = 2h(p),

and therefore
/ ") (p o T, ) pdusrp = Z/ (p 0 Toy)(p o Toy) dpisro-
X X

This easily implies that

e90) y = 2(poT,,), HsrB-a.e. (61)
Hence,
lpl = [pl o Tuy,  psrp-ace.

Then, it follows from ergodicity of usrp that |p| = 1, usgp-a.e. Hence, by writing 2
in the form z = ™ for r € R, it follows from (61) that g(wp,-) can be written in the
form (59), which yields a contradiction. We conclude that r(£% ) < 1 for t € R\ {0}.
This then implies HK A3 by applying [20, Corollary I11.13].

Assume now that wy is a periodic point for o of period my and that T, is transitive
(which also implies that 777 is transitive). Moreover, suppose that S,,,g(wo,-) cannot
be written in the form

2
Smog(w0>') :onwo _1/1+77T]€+T, (62)

for t € R\ {0}, » € R, ¥ measurable and k integer-valued. By arguing as in the case
mgo = 1, one can show that HK A3 holds.

9.3. Conclusion. We now state the following simple consequence of Theorem C and the
discussion in previous subsections that represents a more operable version of the local
central limit theorem.

Corollary 9.5. Let (Q, F,P,0,BY L) be as in Section 3 and suppose that the observable
g: Q@ x X — R satisfies (19) and (20). Moreover, we assume that:

o P assigns positive measure to open sets, o s a homeomorphism and there exist

wo € Q and my € N so that 0wy = wy. Moreover for each i € {0,1,...,my—1},

there exists a neighborhood of o'wy on which the map w s T, is constant;
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o for eachi € {0,1,...,mg— 1}, the observable g satisfies (54);
o Sp,9(wo, +) cannot be written in the form (62) fort € R\{0}, r € R, ¥ measurable
and k integer-valued.

Then, for P-a.e. w € €2 and every bounded interval J C R, we have

52
lim sup [Xv/np, (s + Spg(w,-) € J) — e w2 |J|| = 0.

1
n—oo scR \/i;;

10. PIECEWISE HYPERBOLIC DYNAMICS

In this section, we apply the previous theory to obtain statistical laws for the random
compositions T = yn—1g 0 -+ 0Ty, o T, of piecewise uniformly hyperbolic maps T,
of the type studied in [7]. The class of maps T, considered contains piecewise toral
automorphisms and piecewise hyperbolic maps with bounded derivatives; see Remark 2.2

7].

10.1. Preliminaries. We follow the construction of [7]. Let X be a two-dimensional
compact Riemannian manifold, possibly with boundary and not necessarily connected
and let T: X — X be a piecewise hyperbolic map in the sense of [7|. That is, the domain
X is broken into a finite number of pairwise disjoint open regions {X,"} with piecewise
C' boundary curves of finite length, such that [ J, X;" = X. The image of each X;" under
T is denoted X; = T(X;"); we assume that |JX; = X. The sets S* := X \ |J, X;" are
the “singularity sets” for T'and T}, respectively. Assume that 7" is a C? diffeomorphism
from the complement of ST to the complement of S~, and that for each 4, there is a C?
extension of 7' to X;7. On each X;, the map T is uniformly hyperbolic: there are two
continuous, strictly DT-invariant families of cones C* and C* defined on X \ (ST U 0X)
satisfying

DT
A = inf inf u > 1,
zex\s+vecr  |v||
DT
o= inf inf | DT ] <1,
zeX\5+tveCs ||
DT
1= inf inf 2l > 1.
Ha ceX\5-veCs |||

Assume that vectors tangent to the singularity curves in S~ are bounded away from
C?. The singularity curves and their images and preimages should not intersect at too
many points. Denote by S, (resp. S;) the set of singularity curves for 77" (resp. T™),
and let M(n) denote the maximum number of singularity curves that meet at a single
point. Assume that there is an «g and an integer ny > 0 such that Apu* > 1 and
(Au)™ > M (ng); this condition is satisfied if M (n) has polynomial growth, for example.

For each n € N, let KC,, be the set of connected components of X\ S7, and let C'(K,R)
be the set of functions ¢ € C’l(f(, R) with C' extension in a neighbourhood of K. Let
(C«;,T)/ ={p e L®X): ¢ e CYK,R) VK € K,}. If h € (Céi)’ is an element of the
dual of Ci‘i’ then L : (Céi), — (Cgy 1)’ acts on h by

Lh(p) =h(poT) VYpe Cg

n—1
In order to obtain useful spectral information from L, its action is restricted to a
Banach space B, analogous to the space BP? = BY! in Section 2. We now briefly outline

the construction of the norms on B and an associated “weak” space B,,; see [7] for details.
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The norms are defined using “admissible leaves” W in a set of admissible leaves Y. These
leaves are smooth curves in approximately the stable direction, and are analogues of the
¥; o (Id, x) defined in Section 2. Since we are going to recall several times estimates in
[7], we intend to comply with the notation there. In particular the functions x defined
on the charts will now become F' and the image of the graph of F', namely the admissible
leaves, will be denoted with Gp. For a,8,g < 1 suchthat 0 < f < a < 1—-¢q < o
let C*(W,C) denote the set of continuous complex-valued functions on W with Holder
exponent o and define the norm

|Plwaq = [W]* - [olcawey, (63)

where |WW| denotes unnormalised induced Riemannian volume of W. For h € C*(X,C)
we define the weak norm of h by

|h|, = sup  sup ‘/ hgodm'
Wes pect(we) | Jw
lPlot oy <1

and the strong norm by
1R[] = IRl + bl| 2w,
where the strong stable norm is

I|h|ls = sup  sup
WES peC!(W,C)

/W he dm‘ (64)

“P‘W,a,qgl
and the strong unstable norm is
1
[A[l, =sup  sup sup —5‘ / hordm — | hey dm', (65)
eSeo Wi,WaeX ol o1y, o) <1 € W Wo
BWLWSE gy (1.02)<e

where dy, and d, are defined precisely in §3.1 |7]. In comparison to the setting in Section
2, the norm | - |,, plays the role of || - ||,—1.4+1 = || - ||0.2, and the norm | - || plays the role

of | lpg = I [[1.1-

Let B be the completion of C*(X,C) with respect to the norm ||-||. Similarly, we define
B,, to the completion of C'(X,C) with respect to the norm |-|,.

We recall that the elements of B are distributions. More precisely, there exists C' > 0
such that any h € B induces a linear functional ¢ — h(y) with the property that

h(¢)] < Clhlulpler, for ¢ € CY(X,C), (66)

see |7, Remark 3.4] for details. In particular, for h € C'(X,C) we have that (see |7,
Remark 2.5])

h(p) = /X he, for ¢ € C1(X,C). (67)

We say that i € B is nonnegative and write h > 0 if h(¢) > 0 for any ¢ € C'(X,R) such
that ¢ > 0. Finally, we recall (see [7, Section 2.1]) that for h € L'(X,C),

h —1

Proposition 10.1. We have that

(Lh)(p) = h(poT), forh€ B andpc C'(X,C).
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Proof. For h € C'(X,C) the desired conclusion can be easily obtained from (67) and (68)
by using a change of variables. This immediately implies that the conclusion holds for
any h € B. O

10.2. Building the cocycle. This section follows the material in Section 3, replacing
(BYL )| - |l1a) with (B, - |]) and (B%2,|| - [lo2) with (B, | - |lw). We have included this
material to make the relevant references to |7] transparent.

Assume from now on that (7, ) is ergodic, where i is given by |7, Theorem 2.8.].
Moreover, assume that T is topologically mixing. Then, |7, Theorem 2.8| implies that the
associated transfer operator L is quasicompact on B, 1 is a simple eigenvalue and there
are no other eigenvalues of modulus 1. This in particular implies (using the terminology
as in [6, Definition 2.6]) that L is exact in {h € B : h(1) = 0}.

Let I'p, and X, be the sets of maps as defined in |7, Section 2.4]. It then follows
from |7, Lemma 3.5| and the discussion on |7, Section 2.4| that there exist €, B > 0 and
c € (0,1) such that for any T, ...,T,, € X,, we have that

e the unit ball in B is relatively compact in B,,;
o |Lp o...0Lph|, < B|h|, for each n € N and h € B;
o ||Lp, 0...0Lph| < Bc||h|| + B|h|, for each n € N and h € B.

For § > 0, set

Os(T,B) = {ES: B—B:SeXcand sup |[|[Ls— Ly, < 5}.

Irl<1

It follows from [6, Proposition 2.10] (applied to the case where ||-|| = || and |-|, = ||||;
see also Remark 3.1) that there exist o > 0, D, A > 0 such that for any Lp,,...,Lrp, €
Os, (T, B), we have that

L7, 0...0Lph| < De *||h|| for h € B satisfying h(1) = 0. (69)
On the other hand, [7, Lemma 6.1] implies that there exist 0 < ¢y < € such that
{ﬁg .S e XGO} C OgO(T, B)

We now build our cocycle by prescribing that for each w € €2, T,, € X, and we consider
L., which is the transfer operator associated to T,. Then, it follows readily from (69)
that

1L h|| < De||h|| for any w € Q, n € Nand h € B, h(1) = 0. (70)
In addition, we have that
L8R, < BlRl, and  [|LCB]| < Ba®|[b] + Blhl.. (71)
for every w € Q, n € N and h € B. In particular, there exists K > 0 such that
IL™h|| < K||h|| forweQ,neNandhebB. (72)

10.2.1. P-continuity of w — L,,. We assume (2 is a Borel subset of a complete separable
metric space, F is the Borel sigma-algebra and ¢ is a homeomorphism. Unfortunately,
in this (piecewise-hyperbolic) setting we are unable to establish strong measurability of
the map w — L, under the assumption that w — T, is measurable. In order to be able
to apply the weaker version of MET from [12], we ask instead that w +— T, is measurable

and that it has a countable range.
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10.2.2. Quasi-compactness of the cocycle L and existence of Oseledets splitting. By ar-
guing as in the proofs of Propositions 3.2 and 3.3, one can construct a unique family
of probability measures (h),cq C B such that ess sup cq|hY || and for P-a.e. w € Q,
L,hY = hY  One can now repeat the arguments in the proof of Proposition 3.5 to show
that £ is quasi-compact and that A(L) = 0. Consequently, the multiplicative ergodic
theorem (Theorem 17, [12]) yields the existence of a unique P-continuous Oseledets split-
ting

B = (@ Yg(“)) oV (w),

where each component of the splitting is equivariant under £,. The Y;(w) are finite-
dimensional and have corresponding (finite or infinite) sequence of Lyapunov exponents
0=\ > Xy >.... Moreover, Y;(w) is spanned by h? as in Proposition 3.6.

10.3. The twisted cocycle. Our observable will be a map g: €2 x X — R such that
g(w,-) € C! for w € Q and

M := ess sup,,cq|lg(w, )||cr < 0. (73)

We assume that g is w-fibrewise centred: for P-a.e. w € Q, h2(g(w,)) = 0.

For g € C'(X,C) and h € B, we can introduce g-h € B as in Section 2. Furthermore,
forw € Q, 0 € C,and h € Bset L (h) = L,,(e?9“)}h). We will need the following lemma
(see |8, Lemma 6.1] or |9, Lemma 5.3]).

Lemma 10.2. For h € B and g € C'(X,C), we have that
lghll < Clglea ],
for some C' > 0, independent of g and h.
The following proposition is analogous to Proposition 4.3.
Proposition 10.3. There exists a continuous function K: C — (0,00) such that
1L8h|| < K(O) ||k, forhe B, §cC and P-a.e. we . (74)
Proof. Note that it follows from (72) and Lemma 10.2 that
1£5R] = |£u(e?“Ih)| < K|e?“Ih]| < OK[e® ) |ea A,
for h € B, 0 € C and P-a.e. w € Q. Furthermore, observe that (73) implies that
99| o < MO for P-ace. w e Q.

Similarly, it follows from the mean-value theorem (applied for a map z ~— ¢%) and (73)

that
|ef9(wz) _ f9(w)|

sup < ‘9|62M|9| sup |g(w>l') — g(w7y)| < M|0|62M|9‘.
z#y |z —y| zy |z —y|

The desired conclusion follows directly from the above estimates.

Analogously to Proposition 4.4 we have:

Proposition 10.4. For 0 close to 0, the cocycle (L£%).ecq is quasicompact.
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Proof. We follow closely [11, Lemma 3.13|. Observe (71) and choose N € N such that
v := Ba" < 1. Hence,

1£55R) < L8R+ (1255 = 87| - 1A
< AllAll + Blhly + L5 = L8]] - (2]
On the other hand, we have that

N-—1
LEN) = £00 =37 L0, (Lhims = Lonor s ) LN,
=0

It follows from (72) and (74) that
LN < KNV and || 209, | < K(0Y.

oN=iw
Furthermore, using (72) and Lemma 10.2, we have that for any h € B and P-a.e. w € ,
12 = L)W = (Lo (" h = B)|| < K[[(”) = 1)h|| < OK e — 1|el|A]].

On the other hand, using (73) and applying the mean value theorem for the map z — e,
it is easy to verify that there exists C’ > 0 such that for 6 € B¢(0, 1),

%) — 1) < C'16] for P-ae. w € Q. (75)
Hence, there exists C' > 0 such that
18 — £,]| < C|f], for P-ae. we Q.
We conclude that

N-1
1£5E0 — £ < Clo] Y KNIK (6,
=0
and therefore there exists 4 € (0, 1) such that for any 6 sufficiently close to 0 and h € B,
1£EPOR] < (IRl + Blhf.- (76)

Similarly, one can show that there exists B > 0 such that for any 6 sufficiently close to 0
and h € B,

L0 0] < BBl (77)
The conclusion of the proposition follows from (76) and (77) by arguing as in [11, Theorem
3.12). O

10.4. Regularity of the top Oseledets space, convexity of A. The regularity of
the top Oseledets space of the twisted cocycles follows identically as in Section 5, with
Lemma 10.2 used in place of Lemma 3.2 [17] in the proof of Lemma 5.1. Moreover the
family of probability measures h° will allow us to define the fibred measure i, as we did
in Section 6.3.

10.5. Large deviation principle and central limit theorem. The results of Sections
6 and 7 follow verbatim with the obvious modifications. Of course, and in order to build
the cocycle, we must restrict to the neighborhood Og, (T, B). We thus obtain our main
results for piecewise hyperbolic dynamics.

Theorem D (Quenched large deviations theorem). In the setting of Section 10, there ex-
ists g > 0 and a non-random function c: (—eg, €g) — R which is nonnegative, continuous,
strictly convex, vanishing only at 0 and such that

1
lim —log e, (Sng(w, ) > ne) = —c(e), for 0 <e<e¢ and P-a.e. w e
n

n—00
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Theorem E (Quenched central limit theorem). In the setting of Section 10, assume that
the non-random variance X2, defined in (44) satisfies 2 > 0. Then, for every bounded
and continuous function ¢: R — R and P-a.e. w € Q, we have

lim ¢(%) o) = [ 6N (0,32).

(The discussion in §6.3 deals with the degenerate case X* =0).
10.6. Local central limit theorem.

Theorem F (Quenched Local central limit theorem). In the setting of Section 10, suppose
that condition (L) holds, where the functional norm in (L) is now B.
Then, for P-a.e. w € Q and every bounded interval J C R, we have

s2
lim sup [Xv/np,(s + Spg(w,-) € J) — e w2 |J|| = 0.

n—00 gcR 2T

The LCLT can also be obtained under the assumptions HK A1, A2, A3 and the hy-
pothesis of Lemma 9.1 with the obvious change of the functional space which is now
B. The Lasota—Yorke inequality for the twisted operator follows now by adapting the
analogous proof in [7] for the usual operator. Moreover, all the discussion and results in
Subsections 9.1 and 9.2 remain unchanged in this setting and consequently, we have the
analogous statement as in Corollary 9.5. We refrain from formulating it explicitly since
it is essentially the same as Corollary 9.5.
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