
A SPECTRAL APPROACH FOR QUENCHED LIMIT THEOREMS

FOR RANDOM HYPERBOLIC DYNAMICAL SYSTEMS

Abstract. We extend the recent spectral approach for quenched limit theorems devel-
oped for piecewise expanding dynamics under general random driving [11] to quenched
random piecewise hyperbolic dynamics.

For general ergodic sequences of maps in a neighbourhood of a hyperbolic map we
prove a quenched large deviations principle (LDP), central limit theorem (CLT), and
local central limit theorem (LCLT).
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1. Introduction

In our previous paper [11] we extended the Nagaev-Guivarc'h spectral method to obtain
limit theorems, such as the Central Limit Theorem (CLT), the Large Deviation Principle
(LDP) and the Local Central Limit Theorem (LCLT), for random dynamical systems

governed by a cocycle of maps T
(n)
ω := Tσn−1ω ◦ · · · ◦ Tσω ◦ Tω, assuming uniform-in-ω

eventual expansivity conditions on the maps Tω. The random driving was a general
ergodic, invertible transformation σ : Ω 	 on a probability space (Ω,P), and the real
observable g was de�ned on the product space Ω×X → R.
Before introducing our new results, we brie�y recap the essence of the Nagaev-Guivarc'h

spectral method in the deterministic setting, where one deals with a single map T , defer-
ring to the original articles by Nagaev [27, 28] and Guivarc'h [30, 18] and to the excellent
survey [16] for more details. The spectral method uses the transfer operator L : B 	 act-
ing on a Banach space B, and in particular, the twisted transfer operator Lθf := L(eθgf),
for f and g ∈ B. In the situation where Lθ is quasi-compact for θ near zero, regularity
of the leading eigenvalues and eigenprojectors have been used to prove limit theorems
[21, 20, 29, 30, 21, 3, 30, 26, 20, 31, 14] and more, namely Berry-Esseen theorems [18, 14]
and almost-sure invariance principles [15]. The key equality was E(eθSngf) = E((Lθ)nf),
where Sng denotes the Birhko� sum of the observable g and the expectation is taken with
respect to the unique eigenmeasure m of the adjoint of L. Since the map θ 7→ Lθ is holo-
morphic, classical perturbation theory allows one to obtain E(eθSng) = c(θ)λ(θ)n + dn(θ),
where λ(θ) is the leading eigenvalue of Lθ, with c and λ analytic in θ, and supθ |dn(θ)| → 0.
We can therefore easily compute the characteristic function and the log generating func-
tion of the process g ◦ T n with respect to the invariant probability measure of T which
can be identi�ed as the unique eigenvector of L corresponding to the leading eigenvalue
1.
In the quenched random setting we must replace the n-th power of the twisted operator

with the twisted transfer operator cocycle Lθ,(n)
ω := Lθσn−1ω ◦ · · · ◦ Lθσω ◦ Lθω. By using the

multiplicative ergodic theorem adapted to the study of such cocycles and generalizing a
theorem of Hennion and Hérve [20] to the random setting, we were able in our previous

paper [11] to show that the cocycle Lθ,(n)
ω is quasi-compact for θ near to 0. We therefore

thus obtained that for such values of θ and for P-a.e. ω ∈ Ω, the top Lyapunov exponent
Λ(θ) (analogous to the logarithm of λ(θ) in the deterministic setting) of the cocycle is
analytic and given by

lim
n→∞

1

n
log |Eµω(eθSng(ω,·))| = Λ(θ),

where µω is the equivariant probability measure on the ω-�ber (see below). This result
together with the exponential decay of the norm of the elements in the complement of
the top Oseledets space, which handled the error corresponding to quantity dn above,
allowed us to achieve the desired limit theorems.
In the present paper we move from cocycles of piecewise expanding maps to cocycles

of hyperbolic maps both smooth and piecewise smooth. To our knowledge, this is the
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�rst time that this setting has been investigated with multiplicative ergodic theory tools.
One of the primary di�erences with [11] is the use of anisotropic Banach spaces here in
place of the space of functions of bounded variation in [11]. Speci�cally, in the smooth
hyperbolic setting and in any dimension, we use the functional analytic setup of Gouëzel
and Liverani [17], and in the piecewise hyperbolic case in dimension two we use the
spaces from Demers and Liverani [7] (as well as Demers and Zhang [8, 9]). This increased
technicality in the underlying spaces necessitates a certain amount of checking of relevant
conditions, however, we wish to highlight the fact that a wholesale change of the theory
of [11] is not required, which demonstrates the power and �exibility of our approach.
The use of transfer operators in the study of statistical properties and limit theorems for
hyperbolic dynamical systems has �ourished in the last years, and [2] presents a thorough
discussion of the various spaces that have been used in the literature. Our intention in
this work has not been to �nd the most general version of the results, but rather to
illustrate the applicability of the methods. In fact, we expect the methods presented here
to remain applicable in some (or all) of these functional analytic scenarios.

We �rst consider cocycles T
(n)
ω where the family of maps {Tω}ω∈Ω are selected from a

Cr+1-neighbourhood of a topologically transitive Anosov map T of class Cr+1 (in Section
10 we consider piecewise hyperbolic maps also describing periodic Lorentz gas). The
random driving σ : Ω 	 is a general (ergodic, invertible) automorphism preserving a
probability measure P. If dCr+1(Tω, T ) < ∆ for P-a.e. ω ∈ Ω and ∆ is su�ciently small 5

the random dynamical system generated by the cocycle T
(n)
ω supports a measure µ, invari-

ant under the skew product τ(ω, x) = (σω, Tωx). We obtain this measure by explicitly
constructing the family µω along the marginal P, namely µ =

∫
Ω
µω dP(ω), and satisfying

the usual equivariance condition µω ◦ T−1
ω = µσω. Our observable g satis�es g(ω, ·) ∈ Cr

for P-a.e. ω, ess supω∈Ω ‖g(ω, ·)‖Cr <∞, and is �berwise centred:
∫
X
g(ω, x) dµω(x) = 0

for P-a.e. ω. Our limit theorems concern random Birkho� sums

Sng(ω, x) :=
n−1∑
i=0

g(τ i(ω, x)) =
n−1∑
i=0

g(σi, T (i)
ω x), (ω, x) ∈ Ω×X,n ∈ N. (1)

We now summarize our main results for the perturbed Anosov systems described above;
we defer to the main body for more precise statements.

• A: Quenched large deviations theoremWe can �nd ε0 > 0 and a non-random
function c : (−ε0, ε0)→ R which is nonnegative, continuous, strictly convex, van-
ishing only at 0 and such that

lim
n→∞

1

n
log µω(Sng(ω, ·) > nε) = −c(ε), for 0 < ε < ε0 and P-a.e. ω ∈ Ω.

• B: Quenched central limit theorem There exists a positive variance Σ2 such
that for every bounded and continuous function φ : R→ R and P-a.e. ω ∈ Ω, we
have

lim
n→∞

∫
φ

(
Sng(ω, x)√

n

)
dµω(x) =

∫
φ dN (0,Σ2).

One of the main achievements of our previous paper was the proof of the local central
limit theorem (LCLT) in the non-arithmetic and arithmetic cases. Our basic assumption,
which for convenience we simply call (L), expresses the exponential decay of the strong
norm of the twisted operator when the parameter θ = it has t 6= 0. Moreover we showed

5The neighborhood of a given map T will be precisely quanti�ed, and therefore the value of ∆ as
well, as Oδ0(T,B1,1) in section 3 for the Anosov case and as Oδ0(T,B) in section 10.2 for the piecewise
hyperbolic case.
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under additional assumptions that we will recall in section 8, that hypothesis (L) was
equivalent to a co-boundary condition which is better known as the aperiodicity condition.
In the present paper we prove the LCLT in the non-arithmetic case by assuming (L).
Recently Hafouta and Kifer [19] proposed a new set of assumptions which allow us to
check condition (L). We will see that some of these assumptions can be veri�ed easily
for our systems, provided we restrict the class of the driving maps and observables (see
Corollary 9.5).

• C: Quenched local central limit theorem Let us suppose condition (L) holds;
then , for P-a.e. ω ∈ Ω and every bounded interval J ⊂ R, we have

lim
n→∞

sup
s∈R

∣∣∣∣Σ√nµω(s+ Sng(ω, ·) ∈ J)− 1√
2π
e−

s2

2nΣ2 |J |
∣∣∣∣ = 0.

In Section 10 we consider random cocycles of piecewise hyperbolic maps of the type
considered in [7] on two-dimensional compact Riemannian manifolds. As we will ex-
plain later on and in order to apply the multiplicative ergodic theorem, we have now
less choice for the random distribution of the maps, but for instance we can deal with
countably many maps. All the preceding theorems A, B, C still hold.

Apart from [11] there are some quenched limit theorems (LDP and CLT) that have been
obtained using di�erent methods. Kifer derives a large deviation principle [22, 23, 24]
for occupational measures using theory of equilibrium states, and a central limit theorem
via martingale methods; in both cases, he treats random subshifts of �nite type and
random smooth expanding maps. Recently, Hafouta and Kifer [19] proved limit theorems
for these systems in the more general �nonconventional setting�. They used (complex)
cone techniques, where the cones were de�ned in the functional space upon which the
transfer operator acts. We emphasize that they don't consider the case of hyperbolic
dynamics studied in the present paper. In fact, is not clear if their cone techniques
can be adapted to the present setting. Bakhtin [1] is probably the closest to our work;
he proves a central limit theorem and large deviation estimates for mixing sequences of
smooth hyperbolic maps with common expanding and contracting directions, under a
variance growth condition on the Birkho� sums. He also used cones, but living on the
tangent space of the manifold. In comparison to Bakhtin, we can additionally treat the
case of random piecewise hyperbolic maps, and moreover we exhibit explicitly the rate
function which produces asymptotic large deviation bounds; the local CLT is also new in
this setting.

2. Preliminaries

Let X be a d-dimensional C∞ compact connected Riemannian manifold and let T be
a topologically transitive Anosov map of class Cr+1, where r > 2. We follow the setup of
[17]. Replacing the Riemannian metric by an adapted metric [25], we use hyperbolicity
constants 0 < ν < 1 < λ, where λ is less than the minimal expansion along the unstable
directions, ν is greater than the minimal contraction along the stable directions, and the
angles between the stable and unstable spaces (of dimensions ds, du, respectively) are
close to π/2. A collection of C∞ coordinate charts ψi : (−ri, ri)d → X, i = 1, . . . , N are

de�ned so that
⋃N
i=1 ψi((−ri/2, ri/2)d) cover X, with the ri small enough that Dψi(0) ·

(Rds × {0}) = Es(ψi(0)), |ψi|Cr+1 , |ψ−1
i |Cr+1 ≤ 1 + κ, and κ small enough in such a way

that the stable cone at x in Rd is compatibly mapped to the stable cone at ψi(x) in X.
For such values of κ, the stable cone at x ∈ X is de�ned as C(x) = {u + v ∈ TxX|u ∈
Es(x), v ⊥ Es(x), ||v|| ≤ κ||u||}, where TxX denotes the tangent space at x and || · || is
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the (Mather) adapted metric on X.With this norm DT−1(x) expands the vectors in C(x)
by ν−1, (see [17], section 3 for details).
Let Gi(K) denote the set of graphs of Cr+1 functions χ : (−ri, ri)ds → (−ri, ri)du with
|χ|Cr+1 ≤ K (and with |Dχ| ≤ ci so that the tangent space of the graph belongs to the
stable cone in Rd mentioned above). For large enoughK, the coordinate map ψ−1

j ◦T−1◦ψi
maps Gi(K) into Gj(K

′) for some K ′ < K. For A su�ciently large, (depending on κ and
ν) and δ small enough that Aδ < mini ri/6, an admissible graph is a map χ : B̄(x,Aδ)→
(−2ri/3, 2ri/3)du , with range (Id, χ) ∈ Gi(K), where B̄(x,Aδ) denotes some ball included
in (−2ri/3, 2ri/3)ds ; the collection of admissible graphs is denoted Ξi.
For p ∈ N, p ≤ r, q ≥ 0 and h ∈ Cr(X,C), ϕ ∈ Cq(X,C) we de�ne (using the notation

in [17])

‖h‖∼p,q := sup
|α|=p

1≤i≤N

sup
χ : B(x,Aδ)→Rdu

χ∈Ξi

sup
ϕ∈Cq0 (B(x,δ),C)
|ϕ|Cq≤1

∣∣∣∣ ∫
B(x,δ)

[
∂α(h ◦ ψi)

]
◦ (Id, χ) · ϕ

∣∣∣∣. (2)

Finally, for p and q as above satisfying p+ q < r, we set

‖h‖p,q := sup
0≤k≤p

‖h‖∼k,q+k = sup
p′≤p,q′≥q+p′

‖h‖∼p′,q′ . (3)

The space Bp,q is de�ned to be the completion of Cr(X,C) with respect to the norm
‖·‖p,q.
The following proposition will be useful when applying the multiplicative ergodic theorem.

Proposition 2.1. The space Bp,q is separable.

Proof. The desired conclusion follows directly from [17, Remark 4.3] after we note that
C∞(X,C) has a countable subset which is dense with respect to the Cr norm. �

We recall from [17, Section 4] that the elements of Bp,q are distributions of order at
most q. More precisely, there exists C > 0 such that any h ∈ Bp,q induces a linear
functional ϕ→ h(ϕ) with the property that

|h(ϕ)| ≤ C‖h‖p,q‖ϕ‖Cq , for ϕ ∈ Cq(X,C). (4)

In particular, for h ∈ Cr we have that

h(ϕ) =

∫
X

hϕ dm, for ϕ ∈ Cq(X,C), (5)

where m denotes the Lebesgue measure on X. We say that h ∈ Bp,q is nonnegative and
write h ≥ 0 if h(ϕ) ≥ 0 for any ϕ ∈ Cq(X,R) such that ϕ ≥ 0.
Let LT : Bp,q → Bp,q be the transfer operator associated to T de�ned by

(LTh)(ϕ) = h(ϕ ◦ T ), for h ∈ Bp,q and ϕ ∈ Cq(X,C). (6)

We recall that for h ∈ Cr(X,C), LT is the function given by

LTh =

(
h

|detT |

)
◦ T−1. (7)

Take g ∈ Cr(X,C) and h ∈ Bp,q. Then, there exists a sequence (hn)n ⊂ Cr(X,C)
that converges to h in Bp,q. It follows that (ghn)n ⊂ Cr(X,C) is a Cauchy sequence in
Bp,q and therefore it converges to some element of Bp,q which we denote by g · h. It is
straightforward to verify that the above construction does not depend on the particular
choice of the sequence (hn)n. Moreover, the action of g · h as a distribution is given by

(g · h)(ϕ) = h(gϕ), ϕ ∈ Cq(X,C). (8)
5



Moreover, one can easily verify that there exists C > 0 such that

‖g · h‖p,q ≤ C‖g‖Cr · ‖h‖p,q for g ∈ Cr(X,C) and h ∈ Bp,q. (9)

We will need the following result.

Lemma 2.2. For h ∈ Bp,q, g ∈ Cr(X,C) one has LT (g ◦ T · h) = g · LTh.

Proof. Let ϕ ∈ Cq(X,C). It follows from (6) and (8) that [LT (g ◦ T · h)](ϕ) = (g ◦ T ·
h)(ϕ◦T ) = h(g◦T ·ϕ◦T ) = LTh(g ·ϕ) = (g ·LTh)(ϕ), which yields the desired result. �

3. Building the cocycle L

In the sequel we will consider the case p = q = 1 and r > 2, but we will also require T
to be Cr+1, to be in a suitable framework for perturbations. Using the fact that the unit
ball in B1,1 is relatively compact in B0,2 [17, Lemma 2.1], it follows from [17, Theorem 2.3]
that the associated transfer operator LT is quasicompact on B1,1, 1 is a simple eigenvalue
and there are no other eigenvalues of modulus 1. This in particular implies (using the
terminology as in [6, De�nition 2.6]) that LT is exact in {h ∈ B1,1 : h(1) = 0}. Let

Mε(T ) = {S : S is an Anosov map of class Cr+1 satisfying dCr+1(S, T ) < ε}.
We also recall (see [17, Lemmas 2.1. and 2.2] and the discussion at the beginning of �7
[17]) that there exist ε, B > 0 and a ∈ (0, 1) such that for any T1, . . . , Tn ∈ Mε(T ), we
have

• for each n ∈ N and h ∈ B1,1,

‖LTn ◦ · · · ◦ LT1h‖0,2 ≤ B‖h‖0,2; (10)

• for each n ∈ N and h ∈ B1,1,

‖LTn ◦ · · · ◦ LT1h‖1,1 ≤ Ban‖h‖1,1 +B‖h‖0,2. (11)

For δ > 0, set

Oδ(T,B1,1) =

{
LS : B1,1 → B1,1 : S ∈Mε(T ) and sup

‖h‖1,1≤1

‖LSh− LTh‖0,2 ≤ δ

}
.

It follows from [6, Proposition 2.10] (applied to the case where ‖·‖ = ‖·‖0,2 and |·|v =
‖·‖1,1) that there exist δ0 > 0, D,λ > 0 such that for any LT1 , . . . ,LTn ∈ Oδ0(T,B1,1), we
have that

‖LTn ◦ · · · ◦ LT2 ◦ LT1h‖1,1 ≤ De−λn‖h‖1,1 for h ∈ B1,1 satisfying h(1) = 0. (12)

On the other hand, [17, Lemma 7.1] implies that there exist 0 < ε0 ≤ ε such that

{LS : S ∈Mε0(T )} ⊂ Oδ0(T,B1,1).

Remark 3.1. In order to apply [6, Proposition 2.10] instead of (11) we need to have that

‖LTn ◦ · · · ◦ LT1h‖1,1 ≤ an‖h‖1,1 +B‖h‖0,2.

However, as pointed out to us by J-P. Conze [5], the arguments from [6] can be easily
modi�ed in a way that the conclusion given by [6, Proposition 2.10] still holds true in our
case 6

6The proof of Proposition 2.7 in [6] on which the result of Proposition 2.10 in [6] is based, was done by
taking our B = 1. In order to make comparison with that proof we establish the correspondences among
our quantities and those in [6]. Therefore our a is identi�ed with ρ and our ‖h‖1,1 with |f |v. Then for
B > 1 it will be enough to multiply by B: (i) the exponential factors an in the quantities named β(n)
and βq(n) in [6] and (ii) the norm ‖h‖1,1, for n = 0. Then the proofs goes exactly in the same way and
at the end our factor D will depend on B as well.
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We now build the cocycle (Ω,F ,P, σ,B1,1,L), simply referred to as L, as follows:
(1) Let (Ω,F ,P) be a probability space, where Ω is a Borel subset of a separable,

complete metric space and σ : Ω → Ω an ergodic, invertible P-preserving trans-
formation.

(2) Let T : Ω→Mε0(T ) be a measurable map given by ω 7→ Tω.

3.1. Strong measurability of ω 7→ Lω. In this section we demonstrate strong measur-
ability of the map L : Ω → Oδ0(T,B1,1) given by ω 7→ Lω := LTω ; this is required to
establish the existence of measurable Oseledets spaces for the cocycle. To prove strong
measurability of ω 7→ Lω := LTω , we will show that the map fromMε0(T ) to the space of
all bounded linear operators on B1,1 de�ned by S 7→ LS is strongly continuous. For this,
let S ∈Mε0(T ) and h ∈ B1,1. We must show that ‖LS̃h−LSh‖1,1 → 0 as dCr+1(S̃, S)→ 0.
First, assume h ∈ Cr. Then, we need to estimate di�erences of the form∣∣∣∣ ∫

B(x,δ)

[
∂α(LSh ◦ ψi)

]
◦ (Id, χ) · ϕ−

∫
B(x,δ)

[
∂α(LS̃h ◦ ψi)

]
◦ (Id, χ) · ϕ

∣∣∣∣,
where α, χ and ϕ vary as in the de�nition in (2), with p = q = 1. Arguing as in [17,
Lemma 7.1], and employing the corresponding notation, we write∫

B(x,δ)

[
∂α(LSh ◦ ψi)

]
◦ (Id, χ) · ϕ =

∑
|β|≤|α|

l∑
j=1

∫
B(xj ,δ)

∂βh̃j ◦ (Id, χj) · Fα,β,S,j · ρj, (13)

where χ1, . . . , χl are γ-admissible graphs whose corresponding γ-admissible leaves cover
S−1(W ), with W an admissible leaf corresponding to the graph of χ; h̃j = h ◦ ψi(j);
{ρj}j=1,...,l is a partition of unity subordinated to the γ-admissible leaves of χj; and
Fα,β,S,j are functions bounded in Cq+|β|. A similar expression holds for

∫
B(x,δ)

[
∂α(LS̃h ◦

ψi)
]
◦ (Id, χ) · ϕ, with Fα,β,S,j replaced by Fα,β,S̃,j and χj replaced by χ̃j, the graph

corresponding to ψ−1
i(j) ◦ S̃−1 ◦ S ◦ ψi(j) ◦ (Id, χj)(B(xj, γAδ)). Furthermore, if dCr+1(S, S̃)

is small enough, each χ̃j is a graph in Ξi(j), and |χj− χ̃j|C2(B̄(xj ,Aδ)) < CdCr+1(S, S̃). Also,

‖Fα,β,S,j‖Cq+|β| , ‖Fα,β,S̃,j‖Cq+|β| are uniformly bounded for S, S̃ ∈ Mε(T ) and ‖Fα,β,S,j −
Fα,β,S̃,j‖Cq+|β| → 0 as dCr+1(S̃, S)→ 0, uniformly over ϕ as in (2). Hence, as dCr+1(S̃, S)→
0, we get∣∣∣ ∫

B(xj ,δ)

∂β(h̃j) ◦ (Id, χ̃j) · Fα,β,S̃,j · ρj − ∂
β(h̃j) ◦ (Id, χj) · Fα,β,S,j · ρj

∣∣∣→ 0,

uniformly over χ (and so χj) and ϕ as in (2). It then follows from (13) that ‖LS̃h −
LSh‖1,1 → 0 as dCr+1(S̃, S)→ 0, as claimed.
The result for general h ∈ B1,1 follows from an approximation argument by Cr func-

tions, because if dCr+1(S, S̃) is su�ciently small, then ‖LS̃‖1,1 ≤ 1 + ‖LS‖1,1 =: M .
Indeed, let {hj}j∈N be a sequence of Cr functions such that limj→∞ hj = h in B1,1, and
let t > 0. Then, there exists n ∈ N such that ‖h−hn‖1,1 <

t
3M

. Hence, ‖LS̃h−LSh‖1,1 ≤
‖LS̃h−LS̃hn‖1,1 + ‖LS̃hn−LShn‖1,1 + ‖LShn−LSh‖1,1 ≤ 2t

3
+ ‖LS̃hn−LShn‖1,1. Since

hn ∈ Cr, we have that lim supdCr+1 (S̃,S)→0 ‖LS̃h−LSh‖1,1 ≤ 2t
3
. Since the choice of t > 0

is arbitrary, the result follows.

3.2. Quasi-compactness of the cocycle L and existence of Oseledets splitting.

For each ω ∈ Ω, n ∈ N, let L(n)
ω := Lσn−1ω ◦ · · · ◦ Lσω ◦ Lω. It follows readily from (12)

that

‖L(n)
ω h‖1,1 ≤ De−λn‖h‖1,1 for any ω ∈ Ω, n ∈ N and h ∈ B1,1, h(1) = 0. (14)
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Moreover, observe that (10) and (11) imply that

‖L(n)
ω h‖0,2 ≤ B‖h‖0,2, ‖L(n)

ω h‖1,1 ≤ Ban‖h‖1,1 +B‖h‖0,2, (15)

which in particular implies that

‖L(n)
ω h‖1,1 ≤ K‖h‖1,1 (16)

where K := Ba+B > 0.

Proposition 3.2. There exists a unique family (h0
ω)ω∈Ω ⊂ B1,1 such that:

(1) Lωh0
ω = h0

σω for P-a.e. ω ∈ Ω;
(2) h0

ω is nonnegative and h0
ω(1) = 1 for P-a.e. ω ∈ Ω;

(3) ω → h0
ω is a measurable map from Ω to B1,1;

(4)

ess supω∈Ω‖h0
ω‖1,1 <∞. (17)

Proof. Let

Y = {v : Ω→ B1,1 : v is measurable and ‖v‖∞ := ess supω∈Ω‖v(ω)‖1,1 <∞}.

Then, Y = (Y, ‖·‖∞) is a Banach space. Furthermore, let Z be the subset of Y that
consists of v ∈ Y with the property that v(ω) is nonnegative and v(ω)(1) = 1 for
P-a.e. ω ∈ Ω. It is easy to verify that Z is a closed subset of Y . Indeed, assume
that (vn)n∈Z is a sequence in Z converging to v ∈ Y . It follows from (4) that

|v(ω)(ϕ)− vn(ω)(ϕ)| ≤ C‖vn(ω)− v(ω)‖1,1|ϕ|C1 ≤ C‖vn − v‖∞|ϕ|C1 ,

and thus vn(ω)(ϕ)→ v(ω)(ϕ) for ϕ ∈ C1 and P-a.e. ω ∈ Ω. Thus, v(ω)(ϕ) ≥ 0 for ϕ ≥ 0
and v(ω)(1) = 1 for P-a.e. ω ∈ Ω and we conclude that v ∈ Y .
We de�ne L : Z → Z by

(Lv)(ω) = Lσ−1ωv(σ−1ω) ω ∈ Ω, v ∈ Z.

It follows from (6) and (16) that L is a well-de�ned and continuous map on Z. Using (14),
one can easily verify (see [10, Proposition 1]) that there exists n0 ∈ N such that Ln0 is a
contraction on Z. Thus, L has a unique �xed point v̄ ∈ Z. It is easy to verify that the
family h0

ω, ω ∈ Ω de�ned h0
ω = v̄(ω), ω ∈ Ω satis�es the desired properties. Conversely,

each family satisfying properties (1)-(4) induces a �xed point of L which then must
coincide with v̄. �

Proposition 3.3. Let (h0
ω)ω∈Ω be as in Proposition 3.2. Then h0

ω is a probability measure
on B1,1 for P-a.e. ω ∈ Ω.

Proof. Using Lemma 2.2, we have that

h0
ω(ϕ) = L(n)

σ−nωh
0
σ−nω(ϕ) = h0

σ−nω(ϕ ◦ T (n)

σ−nω), for ω ∈ Ω and ϕ ∈ C1.

Hence, using the arguments as in [7, Lemma 5.3], and equations (4) and (17), we �nd
that there exists a constant D > 0 such that

|h0
ω(ϕ)| ≤ D|ϕ|∞ for P-a.e. ω ∈ Ω and ϕ ∈ C1.

Since C1 is dense in C0, we conclude that for P-a.e. ω ∈ Ω, h0
ω can be extended to a

bounded linear functional on C0. By the Riesz representation theorem, h0
ω is a signed

measure. By invoking the nonnegativity of h0
ω together with h0

ω(1) = 1, we conclude that
h0
ω is a probability measure for P-a.e. ω ∈ Ω. �
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We may apply Kingman's subadditive ergodic theorem to form the following limits,
which are constant for P-a.e. ω ∈ Ω:

Λ(L) := lim
n→∞

1

n
log ‖L(n)

ω ‖1,1, and

κ(L) := lim
n→∞

1

n
log ic(L(n)

ω ), where

ic(A) := inf{r > 0 : A(BB1,1) can be covered with �nitely many balls of radius r},
and BB1,1 is the unit ball in B1,1. The cocycle L is called quasi-compact if Λ(L) > κ(L).
Observe that (16) implies that

Λ(L) ≤ 0. (18)

Remark 3.4. The notion of quasicompactness for cocycles of linear operators was in-
troduced by Thieullen [32]. Its relevance stems from the fact that all known versions of
the multiplicative ergodic theorem for linear cocycles acting on Banach spaces require that
a cocycle is quasicompact (see [12, 13, 32] and references therein). As pointed out by
Buzzi [4, Section 0.2], this requirement is not equivalent to the usual (deterministic) qua-
sicompactness of the global (or annealed) transfer operator associated to the skew-product
transformation.

Lemma 3.5. The cocycle L is quasi-compact.

Proof. Observe that it follows from (4) and Proposition 3.2 that

lim sup
n→∞

1

n
log‖L(n)

ω h0
ω‖1,1 = lim sup

n→∞

1

n
log‖h0

σnω‖1,1 ≥ lim sup
n→∞

1

n
logC−1 = 0,

for P-a.e. ω ∈ Ω. The above inequality together with (18) implies that Λ(L) = 0.
Now we argue as in the proof of [11, Theorem 3.12.]. More precisely, we choose N ∈ N

such that BaN < 1 and we consider the cocycle LN over (Ω,F ,P, σN) whose generator

is the map ω 7→ L(N)
ω . Then, it is easy to verify that Λ(LN) = NΛ(L) = 0 and κ(LN) =

Nκ(L). On the other hand, it follows from the inequalities (15) and (16) (applied for
n = N) together with [11, Lemma 2.1] that κ(LN) < Λ(LN) which immediately yields
that κ(L) < Λ(L) = 0. We conclude that L is quasi-compact.

�

By separability of B1,1, and quasi-compactness and strong measurability of L, the
multiplicative ergodic theorem (Theorem A, [13]) yields: (i) 1 ≤ l ≤ ∞ and a sequence
of exceptional Lyapunov exponents 0 = λ1 > λ2 > . . . > λl > κ(L) (or in the case l =∞,
0 = λ1 > λ2 > . . .; limn→∞ λn = κ(L)) and (ii) a unique measurable Oseledets splitting

B1,1 =

(
l⊕

j=1

Yj(ω)

)
⊕ V (ω),

where each component of the splitting is equivariant under Lω, that is, L(ω)(Yj(ω)) =
Yj(σω) and L(ω)(V (ω)) ⊂ V (σω). The Yj(ω) are �nite-dimensional and for each y ∈
Yj(ω) \ {0}, limn→∞

1
n

log ‖L(n)
ω y‖ = λj. For y ∈ V (ω), limn→∞

1
n

log ‖L(n)
ω y‖ ≤ κ(L).

Proposition 3.6. The top Oseledets space Y1(ω) of the cocycle L is one-dimensional,
and spanned by h0

ω.

Proof. In the proof of Lemma 3.5 we have showed that h0
ω ∈ Y1(ω) for P-a.e. ω ∈ Ω. We

now claim that h0
ω spans Y1(ω) for P-a.e. ω ∈ Ω. Indeed, assume that there exists gω /∈
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span{h0
ω}, gω ∈ Y1(ω) and choose α, β scalars (that depend on ω) such that |α|+ |β| > 0

and (αh0
ω + βgω)(1) = 0. Then, it follows from (14) that

lim
n→∞

1

n
log‖L(n)

ω (αh0
ω + βgω)‖1,1 ≤ −λ < 0.

On the other hand, since αh0
ω + βgω ∈ Y1(ω) \ {0} we have

lim
n→∞

1

n
log‖L(n)

ω (αh0
ω + βgω)‖1,1 = 0,

which yields a contradiction. We conclude that Y1(ω) = span{h0
ω} and thus Y1(ω) is

one-dimensional for P-a.e. ω ∈ Ω.
�

4. Quasi-compactness of the twisted cocycle Lθ

We build a twisted cocycle Lθ, by setting

Lθω(h) = Lω(eθg(ω,·) · h), for ω ∈ Ω, θ ∈ C, and h ∈ B1,1.

We will from now write eθg(ω,·)h instead of eθg(ω,·) · h. Our (centered) observable g will be
a map g : Ω×X → R such that g(ω, ·) ∈ Cr for ω ∈ Ω,

ess supω∈Ω‖g(ω, ·)‖Cr <∞, (19)

and for P-a.e. ω ∈ Ω,
h0
ω(g(ω, ·)) = 0. (20)

This twisted cocycle gives us access to an ω-wise moment-generating function for
Birkho� sums of g.

Lemma 4.1. For P-a.e. ω ∈ Ω, h ∈ B1,1 and ϕ ∈ C1(X,C) one has

(Lθ,(n)
ω h)(ϕ) = h(eθSng(ω,·)(ϕ ◦ T nω )). (21)

Proof. One can follow the proof of Lemma 3.3 (part 2) [11], using the de�nition of the
untwisted transfer operator (6) and Lemma 2.2. �

The following lemma is required as an auxiliary result in the proof of quasi-compactness
of the twisted cocycle (Proposition 4.4).

Lemma 4.2. There exists C > 0 such that for θ1, θ2 ∈ BC(0, 1) := {θ ∈ C : |θ| < 1}, we
have that

ess supω∈Ω‖eθ1g(σ
−1ω,·) − eθ2g(σ−1ω,·)‖C2 ≤ C|θ1 − θ2|.

Proof. By applying the mean value theorem for the map g(z) = ezg(σ
−1ω,x), where x ∈ X

is �xed and using (19), we �nd that

ess supω∈Ω‖eθ1g(σ
−1ω,·) − eθ2g(σ−1ω,·)‖C0 ≤ C|θ1 − θ2|. (22)

Furthermore, for j = 1, . . . , d

‖∂j(eθ1g(σ−1ω,·) − eθ2g(σ−1ω,·))‖C0 = ‖eθ1g(σ−1ω,·)θ1∂
jg(σ−1ω, ·)− eθ2g(σ−1ω,·)θ2∂

jg(σ−1ω, ·)‖C0

≤ |θ1 − θ2| · ‖eθ1g(σ
−1ω,·)∂jg(σ−1ω, ·)‖C0

+ |θ2| · ‖eθ1g(σ
−1ω,·) − eθ2g(σ−1ω,·)‖C0 · ‖∂jg(σ−1ω, ·)‖C0 .

It now follows from (19) and (22) that

ess supω∈Ω‖∂j(eθ1g(σ
−1ω,·) − eθ2g(σ−1ω,·))‖C0 ≤ C|θ1 − θ2|.
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One can now proceed and obtain the same estimates for the second derivatives of the
map eθ1g(σ

−1ω,·) − eθ2g(σ−1ω,·) which implies the desired conclusion. �

We need the following basic regularity result for the operators Lθω.

Proposition 4.3. There exists a continuous function K : C→ (0,∞) such that

‖Lθωh‖1,1 ≤ K(θ)‖h‖1,1, for h ∈ B1,1, θ ∈ C and P-a.e. ω ∈ Ω. (23)

Proof. We �rst note that it follows from (16) that

‖Lθωh‖1,1 = ‖Lω(eθg(ω,·)h)‖1,1 ≤ K‖eθg(ω,·)h‖1,1, for h ∈ B1,1, θ ∈ C and P-a.e. ω ∈ Ω.

Hence, we need to estimate ‖eθg(ω,·)h‖1,1. Note that by (3),

‖eθg(ω,·)h‖1,1 = max{‖eθg(ω,·)h‖∼0,1, ‖eθg(ω,·)h‖∼1,2}.
It follows easily from (2) that

‖eθg(ω,·)h‖∼0,1 ≤
(

max
1≤i≤N

sup
χ : B(x,Aδ)→Rdu

χ∈Ξi

‖(eθg(ω,·) ◦ ψi) ◦ (Id, χ)‖C1

)
· ‖h‖∼0,1

and

‖eθg(ω,·)h‖∼1,2 ≤
(

max
1≤i≤N

sup
χ : B(x,Aδ)→Rdu

χ∈Ξi

‖(eθg(ω,·) ◦ ψi) ◦ (Id, χ)‖C2

)
· ‖h‖∼1,2

+

(
max
1≤j≤d
1≤i≤N

sup
χ : B(x,Aδ)→Rdu

χ∈Ξi

‖
[
∂j(eθg(ω,·) ◦ ψi)] ◦ (Id, χ)‖C1

)
· ‖h‖∼0,1,

which together with (19) implies the desired conclusion. �

We can now state the main result of this section on quasi-compactness.

Proposition 4.4. For θ close to 0, the cocycle (Lθω)ω∈Ω is quasi-compact.

Proof. We follow closely [11, Lemma 3.13]. Observe (15) and choose N ∈ N such that
γ := BaN < 1. Hence,

‖Lθ,(N)
ω h‖1,1 ≤ ‖L(N)

ω h‖1,1 + ‖Lθ,(N)
ω − L(N)

ω ‖1,1 · ‖h‖1,1

≤ γ‖h‖1,1 +B‖h‖0,2 + ‖Lθ,(N)
ω − L(N)

ω ‖1,1 · ‖h‖1,1.

On the other hand, we have that

Lθ,(N)
ω − L(N)

ω =
N−1∑
j=0

Lθ,(j)
σN−jω

(LθσN−1−jω − LσN−1−jω)L(N−1−j)
ω .

It follows from (16) and (23) that

‖L(N−1−j)
ω ‖1,1 ≤ KN−1−j and ‖Lθ,(j)

σN−jω
‖1,1 ≤ K(θ)j.

Furthermore, using (16), we have that for any h ∈ B1,1 and P-a.e. ω ∈ Ω,

‖(Lθω − Lω)(h)‖1,1 = ‖Lω(eθg(ω,·)h− h)‖1,1 ≤ K‖(eθg(ω,·) − 1)h‖1,1.

Moreover,

‖(eθg(ω,·) − 1)h‖1,1 = max{‖(eθg(ω,·) − 1)h‖∼0,1, ‖(eθg(ω,·) − 1)h‖∼1,2}.
Now Lemma 4.2 (applied for θ1 = θ and θ2 = 0) implies that there exists C > 0 such for
θ ∈ BC(0, 1),

‖(eθg(ω,·) − 1)h‖1,1 ≤ C|θ|‖h‖1,1 for h ∈ B1,1.
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We conclude that

‖Lθ,(N)
ω − L(N)

ω ‖1,1 ≤ C|θ|
N−1∑
j=0

KN−1−jK(θ)j,

and therefore there exists γ̃ ∈ (0, 1) such that for any θ su�ciently close to 0 and h ∈ B1,1,

‖Lθ,(N)
ω h‖1,1 ≤ γ̃‖h‖1,1 +B‖h‖0,2. (24)

Similarly, one can show that there exists B̃ > 0 such that for any θ su�ciently close to 0
and h ∈ B1,1,

‖Lθωh‖0,2 ≤ B̃‖h‖0,2. (25)

The conclusion of the proposition follows from (24) and (25) by arguing as in the quasi-
compactness part of the proof of [11, Theorem 3.12]. �

5. Regularity of the top Oseledets space of the twisted cocycle

Let S ′ be the space of measurable maps W : Ω→ B1,1 with the property that

‖W‖∞ := ess supω∈Ω‖W(ω)‖1,1 <∞.
Then, (S ′, ‖·‖∞) is a Banach space. Furthermore, let S be the set of all W ∈ S ′ such
that W(ω)(1) = 0 for P-a.e. ω ∈ Ω. Arguing as in the proof of Proposition 3.2, it is easy
to verify that S is a closed subspace of S ′. For W ∈ S ′ and ω ∈ Ω we will often write
Wω instead of W(ω).

5.1. Regularity of the cocycles.

Lemma 5.1.

(1) For P-a.e. ω ∈ Ω, the map θ 7→ Lθω is analytic in the norm topology of B1,1.
(2) The map P : BC(0, 1) × S → S, given by P(θ,W)ω = Lθσ−1ω(Wσ−1ω) is analytic

in θ and bounded, linear in W. In particular, P is C∞.
(3) The map P1 : BC(0, 1) × S → L∞(Ω), given by P1(θ,W)ω = (Lθσ−1ω(Wσ−1ω))(1)

is analytic in θ and bounded, linear in W. In particular, P1 is C∞.

Proof. We claim that for every h ∈ B1,1, the following holds:

Lθω(h) =
∞∑
k=0

θk

k!
Lω(g(ω, ·)kh), in B1,1. (26)

To verify this, note that [17, Lemma 3.2] implies that

‖Lω(g(ω, ·)kh)‖1,1 ≤ C‖g(ω, ·)k‖C2‖h‖1,1 ≤ C‖g(ω, ·)‖kC2‖h‖1,1,

so by (19), the RHS of (26) is a well de�ned element of B1,1. The fact that it coincides
with Lθω(h) is straightforward to check, using linearity of Lω, the power series expansion of
eθg(ω,·), and testing against functions ϕ ∈ C1. This concludes the proof of Lemma 5.1(1).
Let us prove Lemma 5.1(2). For each k ≥ 0 and W ∈ S, let (gk · W)(ω, ·) :=

g(ω, ·)kW(ω, ·). Then, gk · W ∈ S, because of (19) and [17, Lemma 3.2]. We claim
that

P(θ,W) =
∞∑
k=0

θk

k!
P(0, gk · W) in S. (27)

Indeed, (26) implies that

P(θ,W)ω =
∞∑
k=0

θk

k!
P(0, gk · W)ω in B1,1. (28)
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Furthermore, using once again [17, Lemma 3.2], in combination with the uniform over ω
bounds (16) and (19), we have that there exists C > 0 such that for P-a.e. ω ∈ Ω,

‖P(θ,W)ω‖1,1 ≤
∞∑
k=0

θk

k!
‖P(0, gk · W)ω‖1,1 ≤ C

∞∑
k=0

θk

k!
ess supω∈Ω‖g(ω, ·)‖kC2‖W‖∞. (29)

Hence, the series in (27) indeed converges in S and yields analyticity as required. The fact
that W 7→ P(θ,W), and also W 7→ P(0, gk ·W) is linear and bounded is straightforward
to check. Hence, the C∞ claim follows immediately.
The proof of Lemma 5.1(3) is similar to that of Lemma 5.1(2). Indeed,

P1(θ,W)ω =
∞∑
k=0

θk

k!
〈P(0, gk · W)ω, 1〉, (30)

and (4) implies that |〈P(0, gk · W)ω, 1〉| ≤ C‖P(0, gk · W)ω‖1,1, which was bounded
uniformly over ω in (29). Hence, the series (30) converges to P1(θ,W) in L∞(Ω). �

5.2. An auxiliary function F and its regularity. For θ ∈ C and W ∈ S, set

F (θ,W)(ω) =
Lθσ−1ω(W(σ−1ω) + h0

σ−1ω)

Lθσ−1ω(W(σ−1ω) + h0
σ−1ω)(1)

−W(ω)− h0
ω, ω ∈ Ω. (31)

We de�ne two further auxiliary functions, which will be used in the sequel. Let G : C×
S → S ′ and H : C× S → L∞(Ω) be given by

G(θ,W)(ω) := P(θ,W + h0)(ω) = Lθσ−1ω(Wσ−1ω + h0
σ−1ω), ω ∈ Ω, (32)

H(θ,W)(ω) := P1(θ,W + h0)(ω) = Lθσ−1ω(Wσ−1ω + h0
σ−1ω)(1), ω ∈ Ω. (33)

It follows readily from (17) and Lemma 5.1 that G and H are well de�ned, and in fact
C∞ functions. Direct calculations, analogous to those of [11, Appendix B], yield the
following:

Lemma 5.2. For ω ∈ Ω; θ, z ∈ C; W ,H ∈ S, the following identities hold:7

D1G(θ,W)(z)ω = zLσ−1ω(g(σ−1ω, ·)eθg(σ−1ω,·)(Wσ−1ω + h0
σ−1ω)), (34)

D2G(θ,W)(H)ω = Lθσ−1ω(Hσ−1ω), (35)

D11G(θ,W)(z1, z2)ω = z1z2Lσ−1ω(g(σ−1ω, ·)2eθg(σ
−1ω,·)(Wσ−1ω + h0

σ−1ω)), (36)

D12G(θ,W)(z,H)ω = D21G(θ,W)(H, z)ω = zLσ−1ω(g(σ−1ω, ·)eθg(σ−1ω,·)Hσ−1ω), (37)

D22G = 0. (38)

Moreover, the expressions for the derivatives of H are equal to the corresponding expres-
sion for G applied to the constant function 1.

Lemma 5.3. There exist ε, R > 0 such that F : D → S is a well-de�ned map on

D := {θ ∈ C : |θ| < ε} ×BS(0, R),

where BS(0, R) denotes the ball of radius R in S centered at 0.

7Here D1G(θ,W) is a linear operator from C to S ′ whose argument is denoted by z. Similar consid-
erations apply to the other di�erentiability operators used in the Lemma.
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Proof. Let G and H be de�ned as in (32) and (33). The function H is continuous on a
neighborhood of (0, 0) in C× S and obviously H(0, 0)(ω) = h0

ω(1) = 1 for P-a.e. ω ∈ Ω.
Hence,

|H(θ,W)(ω)| ≥ 1− |H(0, 0)(ω)−H(θ,W)(ω)| ≥ 1− ‖H(0, 0)−H(θ,W)‖L∞ ,

for P-a.e. ω ∈ Ω. Continuity of H implies that ‖H(0, 0)−H(θ,W)‖L∞ ≤ 1
2
for all (θ,W)

in a neighborhood of (0, 0) in C× S and hence, in such a neighborhood,

ess infω∈Ω|H(θ,W)(ω)| ≥ 1

2
.

This together with (17) and a simple observation that F (θ,W)(1) = 0 immediately yields
the desired conclusion.

�

Notice that map F de�ned by (31) satis�es F (θ,W)(ω) = G(θ,W)(ω)/H(θ,W)(ω)−
W(ω) − h0

ω. The proof of Lemma 5.3 ensures that for (θ,W) in a neighbourhood D
of (0, 0) ∈ C × S, ess infω∈Ω|H(θ,W)(ω)| ≥ 1

2
. Thus, the following result is a direct

consequence of Lemma 5.2.

Proposition 5.4. The map F de�ned by (31) is of class C∞ on the neighborhood D of
(0, 0) ∈ C× S from Lemma 5.3. Moreover, for ω ∈ Ω, (θ,W) ∈ D and H ∈ S,

D2F (θ,W)(H)ω =
1

H(θ,W)(ω)
Lθσ−1ωHσ−1ω −

Lθσ−1ωHσ−1ω(1)

[H(θ,W)(ω)]2
G(θ,W)ω −Hω,

D1F (θ,W)ω =
1

H(θ,W)(ω)
Lσ−1ω(g(σ−1ω, ·)eθg(σ−1ω,·)(Wσ−1ω + h0

σ−1ω))

−
Lσ−1ω(g(σ−1ω, ·)eθg(σ−1ω,·)(Wσ−1ω + h0

σ−1ω))(1)

[H(θ,W)(ω)]2
Lθσ−1ω(Wσ−1ω + h0

σ−1ω),

where we have identi�ed D1F (θ,W) with its value at 1.

Lemma 5.5. Let D = {θ ∈ C : |θ| < ε}×BS(0, R) be as in Lemma 5.3. Then, F : D → S
is C∞ and the equation

F (θ,W) = 0 (39)

has a unique solution O(θ) ∈ S, for every θ in a neighborhood of 0. Furthermore, O(θ)
is a C∞ function of θ.

Proof. Note that F (0, 0) = 0. Furthermore, Proposition 5.4 implies that F is of class C∞

on a neighborhood of (0, 0). In addition, Lemma 5.2 implies that

(D2F (0, 0)X )(ω) = Lσ−1ωX (σ−1ω)−X (ω), ω ∈ Ω, X ∈ S.

Using (14) and proceeding as in [11, Lemma 3.5], one can show thatD2F (0, 0) is invertible
and that

(D2F (0, 0)−1X )(ω) = −
∞∑
j=0

L(j)

σ−jωX (σ−jω) ω ∈ Ω, X ∈ S. (40)

The conclusion of the lemma now follows directly from the implicit function theorem. �
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6. Properties of Λ(θ)

Let 0 < ε < 1 be as in Lemma 5.3 and O(θ) be as in Lemma 5.5. Let

hθω := h0
ω +O(θ)(ω) ∈ B1,1, ω ∈ Ω. (41)

We notice that hθω(1) = 1 and by Lemma 5.5, θ 7→ hθ is continuously di�erentiable.
Let us de�ne

Λ̂(θ) :=

∫
log
∣∣∣hθω(eθg(ω,·))

∣∣∣ dP(ω), (42)

and
λθω := hθω(eθg(ω,·)) = Lθωhθω(1). (43)

6.1. A di�erentiable lower bound for Λ(θ). Lemma 6.1 deals with di�erentiability

properties of Λ̂(θ).

Lemma 6.1.

(1) For every θ ∈ BC(0, ε), Λ̂(θ) ≤ Λ(θ).

(2) Λ̂ is di�erentiable on a neighborhood of 0, and

Λ̂′(θ) = <

(∫
λθω((O(θ)(ω) + h0

ω)(g(ω, ·)eθg(ω,·)) +O′(θ)(ω)(eθg(ω,·)))

|λθω|2
dP(ω)

)
,

where <(z) denotes the real part of z and z the complex conjugate of z.
(3) For P-a.e. ω ∈ Ω, and θ in a neighborhood of 0, the map θ 7→ Zω(θ) := log|λθω| is

di�erentiable. Moreover,

Z ′ω(θ) =
<
(
λθω((O(θ)(ω) + h0

ω)(g(ω, ·)eθg(ω,·)) +O′(θ)(ω)(eθg(ω,·)))
)

|λθω|2
.

(4) Λ̂′(0) = 0.

Proof. The proof of part 1 is identical to the proof of Lemma 3.8 [11] replacing ‖ ·‖B with
‖ · ‖1,1 and ‖Lθ,(n)

ω vθω‖1 with |Lθ,(n)
ω hθω(1)|.

The proof of part 2 is identical to the proof of Lemma 3.9 [11], using Lemma 5.5 in
place of Lemma 3.5 [11] and replacing the �nal two equation blocks with:

|(O(θ)(ω) + h0
ω)(g(ω, ·)eθg(ω,·))| ≤ C‖O(θ)(ω) + h0

ω‖1,1 · ‖g(ω, ·)eθg(ω,·)‖C1

≤ C‖O(θ)‖∞ + C,

and
|O′(θ)(ω)(eθg(ω,·))| ≤ C‖O′(θ)(ω)‖1,1 · ‖eθg(ω,·)‖C1 ≤ C‖O′(θ)‖∞.

The proof of part 3 is identical to the proof of Lemma 3.10 [11], using di�erentiability
of H and O in Lemmas 5.2 and 5.5.
The proof of part 4 is identical to proof of Lemma 3.11 [11]. �

6.2. One-dimensionality of Y θ
1 (ω) and di�erentiability of Λ. Let Y θ

1 (ω) denote the
top Oseledets subspace of the cocycle (Lθω)ω∈Ω. The proof of part 1 of the following result
can be obtained by repeating the argument as in [11, Theorem 3.12], using Proposition
4.4. Part 2 follows by arguing as in [11, Corollary 3.14].

Proposition 6.2. For θ ∈ C near 0

(1) dimY θ
1 (ω) = 1.

(2) Λ(θ) = Λ̂(θ). In particular, Λ(θ) is di�erentiable near 0 and Λ′(0) = 0.
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6.3. Convexity of Λ(θ). By Proposition 3.3, we can regard h0
ω as Borel probability

measure on X which we will denote by µω. The family (µω)ω∈Ω induces a probability
measure on Ω×X given by

µ(A×B) =

∫
A

µω(B) dP(ω), for measurable sets A ⊂ Ω and B ⊂ X.

Then, µ is invariant for the skew-product transformation τ : Ω×X → Ω×X de�ned by

τ(ω, x) = (σω, Tω(x)), ω ∈ Ω, x ∈ X.

Let us now establish the appropriate decay of correlations result.

Proposition 6.3. There exists D′ > 0 such that∣∣∣∣ ∫
X

ϕ(ψ ◦ T nω ) dµω

∣∣∣∣ ≤ D′e−λn‖ϕ‖Cr · ‖ψ‖C1 ,

for P-a.e. ω ∈ Ω, n ∈ N, ϕ ∈ Cr(X,C) such that
∫
X
ϕdµω = 0 and ψ ∈ C1(X,C).

Proof. We have that∫
X

ϕ(ψ ◦ T nω ) dµω = µω(ϕ(ψ ◦ T nω )) = (µω · ϕ)(ψ ◦ T nω ) = L(n)
ω (µω · ϕ)(ψ).

Furthermore, observe that (µω ·ϕ)(1) =
∫
X
ϕdµω = 0. Now the desired conclusion follows

readily from (4), (9), (14) and (17). �

The following result can be obtained by repeating the arguments in [10, Lemma 12.]
(and by using Proposition 6.3).

Proposition 6.4. We have that

Σ2 :=

∫
Ω×X

g(ω, x)2 dµ(ω, x) + 2
∞∑
n=1

∫
Ω×X

g(ω, x)g(τn(ω, x)) dµ(ω, x) (44)

exists and that Σ2 ≥ 0.

Proposition 6.5. We have that Σ2 = 0 if and only if there exists r ∈ L2
µ(Ω ×X) such

that g = r − r ◦ τ.

Proof. Assume �rst that Σ2 = 0. For n ∈ N, set

Xn(ω, x) =
n−1∑
k=0

g(τ k(ω, x)), (ω, x) ∈ Ω×X.

By arguing as in [10, Proposition 3], one can show that the sequence (Xn)n∈N is bounded
in L2

µ(Ω×X) and thus there exists a subsequence (Xnk)k that converges weakly to some
r ∈ L2

µ(Ω×X). We claim that g = r− r ◦ τ . Take w = 1A ·ϕ ∈ L2
µ(Ω×X), where A ∈ F

and ϕ ∈ C1(X,C). Proceeding again as in the proof of [10, Proposition 3], we conclude
that ∫

Ω×X
w(g − r + r ◦ τ) dµ = lim

k→∞

∫
Ω×X

w(g ◦ τnk) dµ

= lim
k→∞

∫
Ω

1A

(∫
X

ϕ(gσnkω ◦ T nkω ) dµω

)
dP(ω)

= 0,
16



where in the last step we have used Proposition 6.3. Hence, for P-a.e. ω ∈ Ω and
ϕ ∈ C1(X,C), we have that∫

X

(gω − rω + rσω ◦ Tω)ϕdµω = 0. (45)

Since C1(X,C) is dense in C(X,C), one can easily conclude that (45) holds also for ϕ ∈
C(X,C). Finally, C(X,C) is dense in L2(µω) (since µω is a Radon measure) and thus (45)
is valid for ϕ ∈ L2(µω). Consequently, for P-a.e. ω ∈ Ω, we have that gω−rω+rσω◦Tω = 0,
µω-a.e. Therefore, g = r − r ◦ τ .
The converse statement can be obtained by arguing exactly as in [10, Proposition

3]. �

Proposition 6.6. Suppose that Σ2 > 0. Then, on a neighbourhood of 0,

(1) Λ is of class C2 and Λ′′(0) = Σ2.
(2) Λ is strictly convex.

Proof. The proof of part (1) is identical to the proof of [11, Lemma 3.15] and part (2) is
a direct consequence of part (1) and our assumption that Σ2 > 0. �

From now on we will assume that Σ2 > 0.

7. Large deviation principle and central limit theorem

For θ ∈ C su�ciently close to 0, we have that dimY θ(ω) = 1, where Y θ(ω) now denotes
Y θ

1 (ω) for the sake of simplicity. Choose hθω ∈ Y θ
1 (ω) such that hθω(1) = 1. We note that

hθω is actually given by (41). Furthermore, let λθω ∈ C be such that

Lθωhθω = λθωh
θ
σω. (46)

Note that

λθω = hθω(eθg(ω,·)), (47)

which coincides with (43). Let Y ∗ θω denotes the top-Oseledets space of the adjoint cocycle
L∗ over (Ω,F ,P, σ−1) whose generator is the map ω 7→ (Lσ−1ω)∗. Next, let us �x φθω ∈ Y ∗ θω
so that φθω(hθω) = 1. We recall that one can indeed apply MET for the adjoint cocycle
and that dimY ∗ θω = dimY θ(ω) = 1 (see [11, Corollary 2.5.]).
Furthermore, one can show (see [11, p. 30]) that

(Lθω)∗φθσω = λθωφ
θ
ω. (48)

Remark 7.1. The di�erentiability of θ 7→ φθ follows similarly to the presentation in [11,
Appendix C]. The proofs of Lemmas C.4 and C.6 make use of regularity estimates (90)
and (99) in terms of variation; in the present work, these estimates may be replaced with
C1 estimates. In the proof of Lemma C.2, the expression ‖v0

ω‖1 may be replaced with
|h0
ω(1)| and bounded by (4) in the present work.

In addition, let

B1,1 = Y θ
ω ⊕Hθ

ω and (B1,1)∗ = Y ∗ θω ⊕H∗ θω
be the Oseledets splitting of cocycles (Lθω)ω∈Ω and ((Lθω)∗)ω∈Ω respectively into a direct
sum of the top space and the sum of all other Oseledets subspaces.

We are now going to state and prove the �rst two main results of this paper; we now
remind the general assumption on the choice of the cocycle and the regularity of the
maps:
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• General assumptions for the limit theorems: Having �xed a topologi-
cal transitive Anosov map T of class Cr+1, with r > 2, we will consider the
neighborhood Oδ0(T,B1,1) and choose maps into it in order to build the cocycle
(Ω,F ,P, σ,B1,1,L). This cocycle will verify the assumptions of Section 3 and the
observable g : Ω×X → R will satisfy (19) and (20). Finally, suppose that Σ2 > 0.

7.1. Large deviation principle. The following lemmas link the limits of characteristic
functions of Birkho� sums to the function Λ.

Lemma 7.2. Let θ ∈ C be su�ciently close to 0 and h ∈ B1,1 be such that h /∈ Hθ
ω, i.e.

φθω(h) 6= 0. Then,

lim
n→∞

1

n
log
∣∣∣h(eθSng(ω,·))

∣∣∣ = Λ(θ).

Proof. Identical to the proof of Lemma 4.2 [11] with h ∈ B1,1 in the present paper playing
the role of

∫
f · dm in the proof of Lemma 4.2 [11], and (21) replacing [11, (43)]. �

Lemma 7.3. For all complex θ in a neighborhood of 0, and P-a.e. ω ∈ Ω, we have that

lim
n→∞

1

n
log
∣∣∣ ∫ eθSng(ω,x) dµω(x)

∣∣∣ = Λ(θ).

Proof. We follow the proof of Lemma 4.3 [11], observing that∫
eθSng(ω,x) dµω(x) = h0

ω(eθSng(ω,·)),

and recalling the di�erentiability of the map θ 7→ φθ in Remark 7.1. �

We are now ready to state our Theorem A.

Theorem A (Quenched large deviations theorem). There exists ε0 > 0 and a non-random
function c : (−ε0, ε0) → R which is nonnegative, continuous, strictly convex, vanishing
only at 0 and such that

lim
n→∞

1

n
log µω(Sng(ω, ·) > nε) = −c(ε), for 0 < ε < ε0 and P-a.e. ω ∈ Ω.

Proof. Following the proof of Theorem A [11], by applying Proposition 6.6 and Lemma 7.3,
together with the Gärtner-Ellis theorem (see [20] or Theorem 4.1 [11]), we obtain the large
deviation principle. �

7.2. Central limit theorem. The proof of the following result is completely analogous
to the proof of [11, Lemma 4.4].

Lemma 7.4. There exist C > 0, 0 < r < 1 such that for every θ ∈ C su�ciently close to
0, every n ∈ N and P-a.e. ω ∈ Ω, we have∣∣∣Lθ,(n)

ω (h0
ω − φθω(h0

ω)hθω)(1)
∣∣∣ ≤ Crn. (49)

Theorem B (Quenched central limit theorem). Let us assume that the non-random
variance Σ2 > 0. Then, for every bounded and continuous function φ : R → R and
P-a.e. ω ∈ Ω, we have

lim
n→∞

∫
φ

(
Sng(ω, x)√

n

)
dµω(x) =

∫
φ dN (0,Σ2).

Proof. The proof is identical to the proof of Theorem B [11], with the same modi�cations
as those listed in the proof of Lemma 7.2. Di�erentiability of θ 7→ φθ is used (see Remark
7.1) as well as Lemma 4.1 to obtain the coding of the Birkho� sums via the twisted
transfer operator. Lemma 4.5 [11] is proved is proved in an identical way. �
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8. Local central limit theorem

We begin by recalling the concept of P-continuity which we will also use in section
9.2.1. We say that our cocycle is P-continuous (a concept introduced in [32]) if the map
ω 7→ Lω is continuous on each of countably many Borel subsets of Ω, whose union has
full P measure. This for example happens if the map ω 7→ Tω has P-a.e. a countable
range (besides being measurable). We refer to [12] for details.
In our earlier paper [11] we proved the local central limit theorem in the non-arithmetic

case (we also separately treated the arithmetic case) under the condition that we called
(L) in the introduction, namely

• (L) For P-a.e. ω ∈ Ω and for every compact interval J ⊂ R\{0} there exists
C = C(ω) > 0 and ρ ∈ (0, 1) such that

||Lit,(n)||B ≤ Cρn, for t ∈ J and n ≥ 0. (50)

Moreover under the assumption that the cocycle is P-continuous, we proved [11, Lemma
4.7.] that (L) is equivalent to the following aperiodicity condition

• For every t ∈ R, either (i) Λ(it) < 0 or (ii) the cocycle Litω is quasicompact and
the equation

eitg(ω,x)L∗ωψσω = γitωψω,

where γitω ∈ S1, L∗ω denotes the adjoint of Lω and ψω ∈ B∗, only has a measurable
non-zero solution ψ := {ψω}ω∈Ω when t = 0. In this case γ0

ω = 1 and ψω(f) =∫
fdm (up to a scalar multiplicative factor) for P-a.e. ω ∈ Ω.

In our present Anosov setting the bound (50) will be replaced with the following:

‖Lit,(n)
ω ‖1,1 ≤ Cρn, for t ∈ J and n ≥ 0. (51)

Still in the present setting, we can not prove at the moment the equivalence between (L)
and the aperiodicity condition although several of the technical steps which formed the
skeleton of our proof of [11, Lemma 4.7.] for expanding maps and functions of bounded
variation can be transferred to Anosov maps and the anisotropic Banach spaces used in
this work.
We now state and prove our Theorem C.

Theorem C (Quenched local central limit theorem). Let us suppose condition (L) holds.
Then, for P-a.e. ω ∈ Ω and every bounded interval J ⊂ R, we have

lim
n→∞

sup
s∈R

∣∣∣∣Σ√nµω(s+ Sng(ω, ·) ∈ J)− 1√
2π
e−

s2

2nΣ2 |J |
∣∣∣∣ = 0.

Proof. The proof assuming (L) follows now exactly as in the proof of Theorem C [11],
with the following minor modi�cations. We use Lemma 4.1 to obtain the coding of the
Birkho� sums through powers of the twisted transfer operator. The control of term (III)
in the proof of Theorem C [11] uses Lemma 7.4 in place of Lemma 4.4 [11]. The control
of term (IV) in the proof of Theorem C [11] uses (L1) in place of the analogous condition
(C5) in [11]. �

9. Sufficient conditions under which (L) holds

In this section we formulate su�cient conditions under which the condition (L) holds.
This is of central importance when dealing with Theorem C, since the requirement (L)
is obviously quite di�cult to verify directly in concrete situations. For this, we will rely
heavily on the work of Hafouta and Kifer [19]. More precisely, we will formulate three
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conditions (HK A1, HK A2 and HK A3 below) that in conjunction imply (L) and then
we will formulate su�cient conditions under which each of those three conditions hold.
Let us now explicity introduce these conditions:

• HK A1: The probability measure P assigns positive measure to open sets, σ is
a homeomorphism and there exist ω0 ∈ Ω and m0 ∈ N so that σm0ω0 = ω0.
Moreover for each i ∈ {0, 1, . . . ,m0 − 1}, there exists a neighborhood of σiω0 on
which the map ω 7→ Tω is constant (note that on this neighborhood we also have
that the map ω 7→ Lω is constant).
• HK A2: For each compact interval J ⊂ R, the family of maps ω 7→ Litω , where
t ∈ J , is equicontinuous at the points ω = σiω0, 0 ≤ i ≤ m0 with respect to the
operator norm, and there exists a constant B = B(J) ≥ 1, such that P-a.e.,

‖Lit,(n)
ω ‖1,1 ≤ B, (52)

for any n ∈ N and t ∈ J.
• HK A3: For any compact interval J ⊂ R that does not contain the origin, there
exists constants c = c(J) > 0 and b = b(J) ∈ (0, 1) such that

‖Lsit‖1,1 ≤ cbs, (53)

for any s ∈ N and t ∈ J , where the (deterministic) operator Lit is de�ned as

Lit := Lit,(m0)
ω0 .

Under these three assumptions, it was proved in Lemma 2.10.4 [19] that condition (L)
holds.
Observe that HK A1 represents a mild requirement. Indeed, it is easily satis�ed by

requiring that σ is a homeomorphism that has at least one periodic point ω0 and by
building the cocycle in a way that ω 7→ Tω is locally constant at all points that belong to
the orbit of ω0. Of course, we also need to work with P that assigns positive measure to
all open nonempty subsets of Ω.

9.1. Discussion regarding HK A2. We now turn to the condition HK A2. We begin
by stating the following auxiliary result.

Lemma 9.1. Let us suppose (Ω,F ,P, σ) is an invertible and ergodic measure-preserving
dynamical system satisfying HK A1 and that for each i ∈ {0, 1, . . . ,m0−1}, the observable
g satis�es

lim
ω→σiω0

‖g(ω, ·)− g(σiω0, ·)‖C2 = 0. (54)

Furthermore, let J ⊂ R be a compact interval. Then, the family of maps {ω 7→ Litω : t ∈ J}
is equicontinuous in all points ω that belong to the orbit of ω0.

Remark 9.2. Observe that it is not enough to simply prescribe that (54) holds since we
also need to make sure that this requirement is not spoiled when we center our observable
(see (20)). It turns out that under the condition HK A1, (54) is preserved under centering.
Let us �rst recall that (14) and (15) hold for every ω ∈ Ω. Let us now modify slightly
the proof of Proposition 3.2 to ensure that under HK A1, we can say more about the top
Oseledets space of our cocycle.
Set

Y = {v : Ω→ B1,1 : v measurable and ‖v‖∞ := sup
ω∈Ω
‖v(ω)‖1,1 <∞}.

Then, (Y , ‖·‖∞) is a Banach space. Let Y be a set of all v ∈ Y that are continuous at
points σiω0, i = 0, 1, . . . ,m0− 1. We claim that Y is a closed subset of Y. Indeed, take a
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sequence (vn)n ⊂ Y such that vn → v in Y and �x i ∈ {0, 1, . . . ,m0 − 1}. Then, we have
that

‖v(ω)− v(σiω0)‖1,1 ≤ ‖v(ω)− vn(ω)‖1,1 + ‖vn(ω)− vn(σiω0)‖1,1

+ ‖vn(σiω0)− v(σiω0)‖1,1

≤ 2‖v − vn‖∞ + ‖vn(ω)− vn(σiω0)‖1,1.

Take ε > 0 and choose n such that

‖v − vn‖∞ <
ε

3
.

Since vn ∈ Y , we have that

‖vn(ω)− vn(σiω0)‖1,1 <
ε

3
,

whenever ω is su�ciently close to σiω0. Hence,

‖v(ω)− v(σiω0)‖1,1 < ε,

whenever ω is su�ciently close to σiω0. Therefore, v ∈ Y and Y is closed.
Set

Z := {v ∈ Y ; v(ω) ≥ 0 and v(ω)(1) = 1 for ω ∈ Ω}.
Then, Z is a closed subset of Y (see the argument in the proof of Proposition 3.2) and
hence it is a complete metric space. We consider L : Z → Z de�ned by

(Lv)(ω) = Lσ−1ωv(σ−1ω), ω ∈ Ω, v ∈ Z.
In order to show that L is well-de�ned, we only need to note that

ω 7→ Lσ−1ωv(σ−1ω)

is continuous at σiω0, i ∈ {0, . . . ,m0−1}. However, this follows from the fact that v ∈ Z
(and thus v ∈ Y ) and our assumption that ω 7→ Tω (and thus also ω 7→ Lω) is locally
constant along the orbit of ω0. It follows from (14) that L has the unique �xed point
h0 ∈ Z. This easily implies that

ω 7→ h0
ω(g(ω, ·)), h0

ω := h0(ω)

is continuous at σiω0, i = 0, . . . ,m0 − 1 and therefore (54) will remain valid even after
centering.

Proof of Lemma 9.1. We will prove the desired equicontinuity property in ω0. The argu-
ment for all other points in the orbit of ω0 is completely analogous. Observe that for all
ω ∈ Ω su�ciently close to ω0, we have that Lω = Lω0 . Therefore, for all ω close to ω0,
we have that

(Litω − Litω0
)(h) = Lω0((eitg(ω,·) − eitg(ω0,·))h),

and thus
‖(Litω − Litω0

)(h)‖1,1 ≤ ‖Lω0‖1,1 · ‖(eitg(ω,·) − eitg(ω0,·))h‖1,1,

for each h ∈ B1,1. Observe that

‖(eitg(ω,·) − eitg(ω0,·))h‖1,1 =

= max{‖(eitg(ω,·) − eitg(ω0,·))h‖∼0,1, ‖(eitg(ω,·) − eitg(ω0,·))h‖∼1,2}.
As in the proofs of Propositions 4.3 and 4.4, we need to estimate

‖eitg(ω,·) − eitg(ω0,·)‖C2 .

Take x ∈ X. By applying the mean-value theorem for the map z 7→ eitz, we see that

|eitg(ω,x) − eitg(ω0,x)| ≤ |t| · |g(ω, x)− g(ω0, x)|.
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Thus,

‖eitg(ω,·) − eitg(ω0,·)‖C0 ≤ |t| · ‖g(ω, ·)− g(ω0, ·)‖C0 ,

which implies that

‖eitg(ω,·) − eitg(ω0,·)‖C0 ≤ max{|t| : t ∈ J}‖g(ω, ·)− g(ω0, ·)‖C2 . (55)

Moreover, we have that

∂j(eitg(ω,·) − eitg(ω0,·)) = iteitg(ω,·)∂j(g(ω, ·))− iteitg(ω0,·)∂j(g(ω0, ·))
= iteitg(ω,·)∂j(g(ω, ·))− iteitg(ω0,·)∂j(g(ω, ·))

+ iteitg(ω0,·)∂j(g(ω, ·))− iteitg(ω0,·)∂j(g(ω0, ·)),

for each j ∈ {1, . . . , d}. By (55), we have that

‖∂j(eitg(ω,·) − eitg(ω0,·))‖C0 ≤ max{|t|2 : t ∈ J}‖g(ω, ·)− g(ω0, ·)‖C2 · ‖g(ω, ·)‖C2

+ max{|t| : t ∈ J}‖g(ω, ·)− g(ω0, ·)‖C2 ,

for every j ∈ {1, . . . , d}. Thus,

max
1≤j≤d

‖∂j(eitg(ω,·) − eitg(ω0,·))‖C0 ≤ C‖g(ω, ·)− g(ω0, ·)‖C2 , (56)

for some C > 0 which is independent on t and ω. Finally, for each k, j ∈ {1, . . . , d}, we
have that

∂k∂j(eitg(ω,·) − eitg(ω0,·)) = −t2eitg(ω,·)∂k(g(ω, ·))∂j(g(ω, ·))
+ iteitg(ω,·)∂k∂j(g(ω, ·))
+ t2eitg(ω0,·)∂k(g(ω0, ·))∂j(g(ω0, ·))
− iteitg(ω0,·)∂k∂j(g(ω0, ·)).

Observe that

iteitg(ω,·)∂k∂j(g(ω, ·))− iteitg(ω0,·)∂k∂j(g(ω0, ·)) = iteitg(ω,·)∂k∂j(g(ω, ·))
− iteitg(ω,·)∂k∂j(g(ω0, ·))
+ iteitg(ω,·)∂k∂j(g(ω0, ·))
− iteitg(ω0,·)∂k∂j(g(ω0, ·)).

Thus (using (55)),

‖iteitg(ω,·)∂k∂j(g(ω, ·))− iteitg(ω0,·)∂k∂j(g(ω0, ·))‖C0

≤ max{|t| : t ∈ J}‖g(ω, ·)− g(ω0, ·)‖C2

+ max{|t|2 : t ∈ J}‖g(ω, ·)− g(ω0, ·)‖C2‖g(ω0, ·)‖C2 .

On the other hand,

− t2eitg(ω,·)∂k(g(ω, ·))∂j(g(ω, ·)) + t2eitg(ω0,·)∂k(g(ω0, ·))∂j(g(ω0, ·))
= −t2eitg(ω,·)∂k(g(ω, ·))∂j(g(ω, ·)) + t2eitg(ω0,·)∂k(g(ω, ·))∂j(g(ω, ·))
− t2eitg(ω0,·)∂k(g(ω, ·))∂j(g(ω, ·)) + t2eitg(ω0,·)∂k(g(ω0, ·))∂j(g(ω, ·))
− t2eitg(ω0,·)∂k(g(ω0, ·))∂j(g(ω, ·)) + t2eitg(ω0,·)∂k(g(ω0, ·))∂j(g(ω0, ·))
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Hence, (55) implies that

‖−t2eitg(ω,·)∂k(g(ω, ·))∂j(g(ω, ·)) + t2eitg(ω0,·)∂k(g(ω0, ·))∂j(g(ω0, ·))‖C0

≤ max{|t|3 : t ∈ J}‖g(ω, ·)− g(ω0, ·)‖C2 · ‖g(ω, ·)‖2
C2

+ t2‖g(ω, ·)− g(ω0, ·)‖C2 · ‖g(ω, ·)‖C2

+ t2‖g(ω, ·)− g(ω0, ·)‖C2 · ‖g(ω0, ·)‖C2 .

We conclude that (by increasing C) we have that

sup
1≤k,j≤d

‖−t2eitg(ω,·)∂k(g(ω, ·))∂j(g(ω, ·)) + t2eitg(ω0,·)∂k(g(ω0, ·))∂j(g(ω0, ·))‖C0

≤ C‖g(ω, ·)− g(ω0, ·)‖C2 .

Thus,
‖eitg(ω,·) − eitg(ω0,·)‖C2 ≤ C‖g(ω, ·)− g(ω0, ·)‖C2 ,

and
‖Litω − Litω0

‖ ≤ C‖g(ω, ·)− g(ω0, ·)‖C2 ,

for t ∈ J and ω in a neighborhood of ω0. The conclusion of the lemma follows directly
from (54). �

Hence, it follows from Lemma 9.1 (together with Remark 9.2) that HK A1 and (54)
imply that the �rst requirement in HK A2 holds. We now consider the second requirement
in HK A2. As a direct consequence of the following lemma, we show that (52) holds
without any additional assumptions.

Lemma 9.3. For each t ∈ R, there exist At, Bt > 0, 0 < γt < 1 such that for every
n ≥ 0, h ∈ B1,1 and P-a.e. ω ∈ Ω,

‖Lit,(n)
ω h‖1,1 ≤ Atγ

n
t ‖h‖1,1 +Bt‖h‖0,2.

Moreover, for each J ⊂ R compact interval, we have that

sup
t∈J

max{At, Bt} <∞.

Proof. (Sketch). The proof follows verbatim the proof of Lemma 6.3 in [17], with two
di�erences. First, we work with composition of maps, but if they are close enough we can
easily adapt the deterministic arguments (we recall that this was explicitly emphasized
in [17, Section 7], in particular allowing for a random version of [17, Lemma 3.3] to
be applied). Second, since we use the twisted operator instead of the usual one, in the
various estimates in the proof of Lemma 6.3 [17] we �nd the extra multiplicative factor
eitSng(ω,·). The proof of Lemma 6.3 [17] is done by induction on the index p and the �rst
step is to get a weak version of the Lasota�Yorke, namely for each t ∈ R, there exists
Ct ≥ 0 such that for every n ≥ 0 and P-a.e. ω ∈ Ω,

‖Lit,(n)
ω ‖0,q ≤ Ct. (57)

We now prove (57) (with q = 1) to show how to handle the additional multiplicative
factor. We use the notation as in [17, p.202]. Recall that

L(n)
ω (h)(x) =

h((T
(n)
ω )−1(x))

|detDT
(n)
ω ((T

(n)
ω )−1(x))|

,

and therefore

Lit,(n)
ω (h)(x) =

eitSng(ω,(T
(n)
ω )−1(x))h((T

(n)
ω )−1(x))

|detDT
(n)
ω ((T

(n)
ω )−1(x))|

,
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for each h ∈ Cr and x ∈ X. Thus,∫
W

Lit,(n)
ω h · ϕ =

∫
(T

(n)
ω )−1(W )

h̄n · ϕ ◦ T (n)
ω · JWT (n)

ω ,

where JWT
(n)
ω is the Jacobian of T

(n)
ω : (T

(n)
ω )−1(W )→ W and

h̄n :=
heitSng(ω,·)

|detDT
(n)
ω |

.

Let ϕj = ϕ ◦ T (n)
ω · ρj, where ρ1, . . . , ρ` is a partition of unity on (T

(n)
ω )−1W , as pro-

vided by (the random analogue of) Lemma 3.3 [17] (using γ = 1), and W1, . . . ,W` the

corresponding admissible leaves such that (T
(n)
ω )−1(W ) ⊂ ∪`j=1Wj. Hence, [17, (6.2)]

becomes∣∣∣∣ ∫
Wj

h̄n · ϕj · JWT (n)
ω

∣∣∣∣ ≤ C‖h‖0,1

∣∣∣∣|detDT (n)
ω |−1 · eitSng(ω,·) · ϕj · JWT (n)

ω

∣∣∣∣
C1(Wj)

.

Note that∣∣∣∣|detDT (n)
ω |−1·eitSng(ω,·)·ϕj·JWT (n)

ω

∣∣∣∣
C1(Wj)

≤
∣∣∣∣|detDT (n)

ω |−1·JWT (n)
ω

∣∣∣∣
C1(Wj)

·|ϕj|C1(Wj)·|eitSng(ω,·)|C1(Wj).

It follows from [17, Lemma 6.2] that∑
j≤`

||detDT (n)
ω |−1 · JWT (n)

ω |C1(Wj) ≤ C.

In addition, from the argument at the bottom of [17, p. 203], it follows that

|ϕj|C1(Wj) ≤ |ϕ ◦ T (n)
ω |C1(Wj) · |ρj|C1(Wj) ≤ C.

Hence, in order to complete the proof of the weak Lasota�Yorke inequality, it is su�cient
to show that

|eitSng(ω,·)|C1(Wj) ≤ C. (58)

Note that

|eitSng(ω,·)|C0(Wj) = 1 and

|∂α(eitSng(ω,·))|C0(Wj) = |t| · |∂α(Sng(ω, ·))|C0(Wj) ≤ |t|
n−1∑
i=0

|∂α(g(σiω, T (i)
ω (·)))|C0(Wj).

In order to bound |∂α(g(σiω, T
(i)
ω (·)))|C0(Wj), we proceed as in [7, (4.3)]. For each i and

x, y ∈ Wj, we have

|g(σiω, T
(i)
ω x)− g(σiω, T

(i)
ω y)|

d(x, y)
=
|g(σiω, T

(i)
ω x)− g(σiω, T

(i)
ω y)|

d(T
(i)
ω x, T

(i)
ω y)

· d(T
(i)
ω x, T

(i)
ω y)

d(x, y)

≤ Cνi ess supω∈Ω‖g(ω, ·)‖C1 ,

and thus

|∂α(g(σiω, T (i)
ω (·)))|C0(Wj) ≤ Cνi ess supω∈Ω‖g(ω, ·)‖C1 .

In view of (19), (58) holds. Now one can repeat arguments in [17] to obtain the weak
Lasota�Yorke inequality for the twisted cocycle, (57). The proof of the strong Lasota�
Yorke inequality can be obtained in a similar manner. �
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9.2. Discussion regarding HK A3. In this subsection we discuss how to ensure that
HK A3 holds. We begin by emphasizing that this assumption is purely deterministic

since it deals only with (deterministic) operators Lit,(m0)
ω0 , t ∈ R \ {0}.

Let us �rst assume for simplicity that ω0 is a �xed point for σ and suppose that Tω0 is
transitive. By µSRB we will denote the unique SRB measure for Tω0 . We will show that
HK A3 holds if g(ω0, ·) cannot be written in the form

g(ω0, ·) = ψ ◦ Tω0 − ψ +
2π

t
k + r, (59)

for t ∈ R \ {0}, r ∈ R, ψ measurable and k integer-valued maps.
In order to prove this, let us �x t ∈ R \ {0}. It follows from Lemma 9.3 (together with

the corresponding weak LY-inequality that can be established in analogous manner) that
Litω0

is quasicompact and that its spectral radius satis�es r(Litω0
) ≤ 1. Let us assume that

r(Litω0
) = 1. Then, there exists z ∈ C, |z| = 1 and h ∈ B1,1 such that

Litω0
h = zh. (60)

We need the following auxiliary result.

Lemma 9.4. We have that h is a complex measure. In addition, h is absolutely contin-
uous with respect to µSRB.

Proof. By adapting the proofs of Lemmas 3.3 and 5.3 in [7], there exists a constant Ĉ > 0
such that for ϕ ∈ C1(X,C), we have

|h(ϕ)| = |h(eitSng(ω0,·)ϕ ◦ T nω0
)| ≤ Ĉ||h||0,2

(
|ϕ|∞(1 + |Ds(eitSng(ω0,·))|∞) + |Ds(ϕ ◦ T nω0

)|∞
)

≤ Ĉ||h||0,2
(
|ϕ|∞ + νnω0

|Ds(ϕ)|∞
)
,

where Dsφ denotes derivative of φ along the stable direction. The �rst inequality follows
from Lemma 3.3 [7]. The estimate for |Ds(eitSng(ω0,·))|∞, which follows from (19) and

(58) has been absorbed into Ĉ in the second inequality. Finally the term ν−1
ω0

has been
introduced in section 2 (and it was called ν−1 there since it referred to the map T ), as
the expansion rate of DT−1

ω0
in the stable cone. By sending n → ∞, we conclude that h

is a measure.
We now prove that h� µSRB. We will follow closely the arguments in the proof of [7,

Lemma 5.5]. Let Πit
z denote the projection onto the eigenspace corresponding to z. Then,

we have that

lim
n→∞

1

n

n−1∑
k=0

z−k(Litω0
)k = Πit

z .
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Choose h′ ∈ Cr(X,C) such that h = Πit
z h
′. Hence, for each ϕ ∈ C1(X,C) we have that

|h(ϕ)| = |Πit
z h
′(ϕ)| ≤ lim

n→∞

1

n

n−1∑
k=0

|Lkω0
(eitSkg(ω0,·)h′)(ϕ)|

= lim
n→∞

1

n

n−1∑
k=0

|
∫
X

eitSkg(ω0,·)(ϕ ◦ T kω0
)h′ dm|

≤ lim
n→∞

1

n

n−1∑
k=0

∫
X

(|ϕ| ◦ T kω0
)|h′| dm

≤ ‖h′‖C0 lim
n→∞

1

n

n−1∑
k=0

(Lkω0
1)(|ϕ|)

= ‖h′‖C0 · µSRB(|ϕ|).
This easily implies that h� µSRB.

�

Set ρ := dh
dµSRB

. Observe that we can normalize h to ensure that
∫
X
|ρ| dµSRB = 1. For

each ϕ ∈ C1(X,C), it follows from (60) that

Lω0(eitg(ω0,·)h)(ϕ) = zh(ϕ),

and therefore ∫
X

eitg(ω0,·)(ϕ ◦ Tω0)ρ dµSRB = z

∫
X

(ϕ ◦ Tω0)(ρ ◦ Tω0) dµSRB.

This easily implies that

eitg(ω0,·)ρ = z(ρ ◦ Tω0), µSRB-a.e. (61)

Hence,
|ρ| = |ρ| ◦ Tω0 , µSRB-a.e.

Then, it follows from ergodicity of µSRB that |ρ| = 1, µSRB-a.e. Hence, by writing z
in the form z = eir for r ∈ R, it follows from (61) that g(ω0, ·) can be written in the
form (59), which yields a contradiction. We conclude that r(Litω0

) < 1 for t ∈ R \ {0}.
This then implies HK A3 by applying [20, Corollary III.13].
Assume now that ω0 is a periodic point for σ of period m0 and that Tω0 is transitive

(which also implies that Tm0
ω0

is transitive). Moreover, suppose that Sm0g(ω0, ·) cannot
be written in the form

Sm0g(ω0, ·) = ψ ◦ Tω0 − ψ +
2π

t
k + r, (62)

for t ∈ R \ {0}, r ∈ R, ψ measurable and k integer-valued. By arguing as in the case
m0 = 1, one can show that HK A3 holds.

9.3. Conclusion. We now state the following simple consequence of Theorem C and the
discussion in previous subsections that represents a more operable version of the local
central limit theorem.

Corollary 9.5. Let (Ω,F ,P, σ,B1,1,L) be as in Section 3 and suppose that the observable
g : Ω×X → R satis�es (19) and (20). Moreover, we assume that:

• P assigns positive measure to open sets, σ is a homeomorphism and there exist
ω0 ∈ Ω and m0 ∈ N so that σm0ω0 = ω0. Moreover for each i ∈ {0, 1, . . . ,m0− 1},
there exists a neighborhood of σiω0 on which the map ω 7→ Tω is constant;
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• for each i ∈ {0, 1, . . . ,m0 − 1}, the observable g satis�es (54);
• Sm0g(ω0, ·) cannot be written in the form (62) for t ∈ R\{0}, r ∈ R, ψ measurable
and k integer-valued.

Then, for P-a.e. ω ∈ Ω and every bounded interval J ⊂ R, we have

lim
n→∞

sup
s∈R

∣∣∣∣Σ√nµω(s+ Sng(ω, ·) ∈ J)− 1√
2π
e−

s2

2nΣ2 |J |
∣∣∣∣ = 0.

10. Piecewise hyperbolic dynamics

In this section, we apply the previous theory to obtain statistical laws for the random

compositions T
(n)
ω = Tσn−1ω ◦ · · · ◦ Tσω ◦ Tω of piecewise uniformly hyperbolic maps Tω

of the type studied in [7]. The class of maps Tω considered contains piecewise toral
automorphisms and piecewise hyperbolic maps with bounded derivatives; see Remark 2.2
[7].

10.1. Preliminaries. We follow the construction of [7]. Let X be a two-dimensional
compact Riemannian manifold, possibly with boundary and not necessarily connected
and let T : X → X be a piecewise hyperbolic map in the sense of [7]. That is, the domain
X is broken into a �nite number of pairwise disjoint open regions {X+

i } with piecewise

C1 boundary curves of �nite length, such that
⋃
iX

+
i = X. The image of each X+

i under

T is denoted X−i = T (X+
i ); we assume that

⋃
X−i = X. The sets S± := X \

⋃
iX
±
i are

the �singularity sets� for T and T−1, respectively. Assume that T is a C2 di�eomorphism
from the complement of S+ to the complement of S−, and that for each i, there is a C2

extension of T to X+
i . On each Xi, the map T is uniformly hyperbolic: there are two

continuous, strictly DT -invariant families of cones Cs and Cu de�ned on X \ (S+ ∪ ∂X)
satisfying

λ := inf
x∈X\S+

inf
v∈Cu

‖DTv‖
‖v‖

> 1,

µ := inf
x∈X\S+

inf
v∈Cs
‖DTv‖
‖v‖

< 1,

µ−1
+ := inf

x∈X\S−
inf
v∈Cs
‖DT−1v‖
‖v‖

> 1.

Assume that vectors tangent to the singularity curves in S− are bounded away from
Cs. The singularity curves and their images and preimages should not intersect at too
many points. Denote by S−n (resp. S+

n ) the set of singularity curves for T−n (resp. T n),
and let M(n) denote the maximum number of singularity curves that meet at a single
point. Assume that there is an α0 and an integer n0 > 0 such that λµα0 > 1 and
(λµα0)n0 > M(n0); this condition is satis�ed ifM(n) has polynomial growth, for example.
For each n ∈ N, let Kn be the set of connected components of X \S+

n , and let C1(K,R)

be the set of functions ϕ ∈ C1(K̊,R) with C1 extension in a neighbourhood of K. Let
(C1
S+
n

)′ := {ϕ ∈ L∞(X) : ϕ ∈ C1(K,R) ∀K ∈ Kn}. If h ∈ (C1
S+
n

)′ is an element of the

dual of C1
S+
n
, then L : (C1

S+
n

)′ → (C1
S+
n−1

)′ acts on h by

Lh(ϕ) = h(ϕ ◦ T ) ∀ϕ ∈ C1
S+
n−1
.

In order to obtain useful spectral information from L, its action is restricted to a
Banach space B, analogous to the space Bp,q = B1,1 in Section 2. We now brie�y outline
the construction of the norms on B and an associated �weak� space Bw; see [7] for details.
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The norms are de�ned using �admissible leaves� W in a set of admissible leaves Σ. These
leaves are smooth curves in approximately the stable direction, and are analogues of the
ψi ◦ (Id, χ) de�ned in Section 2. Since we are going to recall several times estimates in
[7], we intend to comply with the notation there. In particular the functions χ de�ned
on the charts will now become F and the image of the graph of F , namely the admissible
leaves, will be denoted with GF . For α, β, q < 1 such that 0 < β ≤ α ≤ 1 − q ≤ α0

let Cα(W,C) denote the set of continuous complex-valued functions on W with Hölder
exponent α and de�ne the norm

|ϕ|W,α,q := |W |α · |ϕ|Cq(W,C), (63)

where |W | denotes unnormalised induced Riemannian volume of W . For h ∈ C1(X,C)
we de�ne the weak norm of h by

|h|w = sup
W∈Σ

sup
ϕ∈C1(W,C)
|ϕ|C1(W,C)≤1

∣∣∣∣ ∫
W

hϕ dm

∣∣∣∣
and the strong norm by

‖h‖ = ‖h‖s + b‖h‖u,
where the strong stable norm is

‖h‖s = sup
W∈Σ

sup
ϕ∈C1(W,C)
|ϕ|W,α,q≤1

∣∣∣∣ ∫
W

hϕ dm

∣∣∣∣ (64)

and the strong unstable norm is

‖h‖u = sup
ε≤ε0

sup
W1,W2∈Σ

dΣ(W1,W2)≤ε

sup
|ϕi|C1(Wi,C)≤1

dq(ϕ1,ϕ2)≤ε

1

εβ

∣∣∣∣ ∫
W1

hϕ1 dm−
∫
W2

hϕ2 dm

∣∣∣∣, (65)

where dΣ and dq are de�ned precisely in �3.1 [7]. In comparison to the setting in Section
2, the norm | · |w plays the role of ‖ · ‖p−1,q+1 = ‖ · ‖0,2, and the norm ‖ · ‖ plays the role
of ‖ · ‖p,q = ‖ · ‖1,1.
Let B be the completion of C1(X,C) with respect to the norm ‖·‖. Similarly, we de�ne
Bw to the completion of C1(X,C) with respect to the norm |·|w.
We recall that the elements of B are distributions. More precisely, there exists C > 0

such that any h ∈ B induces a linear functional ϕ→ h(ϕ) with the property that

|h(ϕ)| ≤ C|h|w|ϕ|C1 , for ϕ ∈ C1(X,C), (66)

see [7, Remark 3.4] for details. In particular, for h ∈ C1(X,C) we have that (see [7,
Remark 2.5])

h(ϕ) =

∫
X

hϕ, for ϕ ∈ C1(X,C). (67)

We say that h ∈ B is nonnegative and write h ≥ 0 if h(ϕ) ≥ 0 for any ϕ ∈ C1(X,R) such
that ϕ ≥ 0. Finally, we recall (see [7, Section 2.1]) that for h ∈ L1(X,C),

Lh =

(
h

|detDT |

)
◦ T−1. (68)

Proposition 10.1. We have that

(Lh)(ϕ) = h(ϕ ◦ T ), for h ∈ B and ϕ ∈ C1(X,C).
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Proof. For h ∈ C1(X,C) the desired conclusion can be easily obtained from (67) and (68)
by using a change of variables. This immediately implies that the conclusion holds for
any h ∈ B. �

10.2. Building the cocycle. This section follows the material in Section 3, replacing
(B1,1, ‖ · ‖1,1) with (B, ‖ · ‖) and (B0,2, ‖ · ‖0,2) with (Bw, ‖ · ‖w). We have included this
material to make the relevant references to [7] transparent.
Assume from now on that (T, µ̄) is ergodic, where µ̄ is given by [7, Theorem 2.8.].

Moreover, assume that T is topologically mixing. Then, [7, Theorem 2.8] implies that the
associated transfer operator LT is quasicompact on B, 1 is a simple eigenvalue and there
are no other eigenvalues of modulus 1. This in particular implies (using the terminology
as in [6, De�nition 2.6]) that LT is exact in {h ∈ B : h(1) = 0}.
Let ΓB∗ and Xε be the sets of maps as de�ned in [7, Section 2.4]. It then follows

from [7, Lemma 3.5] and the discussion on [7, Section 2.4] that there exist ε, B > 0 and
c ∈ (0, 1) such that for any T1, . . . , Tn ∈ Xε, we have that

• the unit ball in B is relatively compact in Bw;
• |LTn ◦ . . . ◦ LT1h|w ≤ B|h|w for each n ∈ N and h ∈ B;
• ‖LTn ◦ . . . ◦ LT1h‖ ≤ Bcn‖h‖+B|h|w for each n ∈ N and h ∈ B.

For δ > 0, set

Oδ(T,B) =

{
LS : B → B : S ∈ Xε and sup

‖h‖≤1

‖LS − LT‖w ≤ δ

}
.

It follows from [6, Proposition 2.10] (applied to the case where ‖·‖ = |·|w and |·|v = ‖·‖;
see also Remark 3.1) that there exist δ0 > 0, D,λ > 0 such that for any LT1 , . . . ,LTn ∈
Oδ0(T,B), we have that

‖LTn ◦ . . . ◦ LT1h‖ ≤ De−λn‖h‖ for h ∈ B satisfying h(1) = 0. (69)

On the other hand, [7, Lemma 6.1] implies that there exist 0 < ε0 ≤ ε such that

{LS : S ∈ Xε0} ⊂ Oδ0(T,B).

We now build our cocycle by prescribing that for each ω ∈ Ω, Tω ∈ Xε0 and we consider
Lω which is the transfer operator associated to Tω. Then, it follows readily from (69)
that

‖L(n)
ω h‖ ≤ De−λn‖h‖ for any ω ∈ Ω, n ∈ N and h ∈ B, h(1) = 0. (70)

In addition, we have that

|L(n)
ω h|w ≤ B|h|w and ‖L(n)

ω h‖ ≤ Ban‖h‖+B|h|w, (71)

for every ω ∈ Ω, n ∈ N and h ∈ B. In particular, there exists K > 0 such that

‖L(n)
ω h‖ ≤ K‖h‖ for ω ∈ Ω, n ∈ N and h ∈ B. (72)

10.2.1. P-continuity of ω 7→ Lω. We assume Ω is a Borel subset of a complete separable
metric space, F is the Borel sigma-algebra and σ is a homeomorphism. Unfortunately,
in this (piecewise-hyperbolic) setting we are unable to establish strong measurability of
the map ω 7→ Lω under the assumption that ω 7→ Tω is measurable. In order to be able
to apply the weaker version of MET from [12], we ask instead that ω 7→ Tω is measurable
and that it has a countable range.
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10.2.2. Quasi-compactness of the cocycle L and existence of Oseledets splitting. By ar-
guing as in the proofs of Propositions 3.2 and 3.3, one can construct a unique family
of probability measures (h0

ω)ω∈Ω ⊂ B such that ess supω∈Ω‖h0
ω‖ and for P-a.e. ω ∈ Ω,

Lωh0
ω = h0

σω One can now repeat the arguments in the proof of Proposition 3.5 to show
that L is quasi-compact and that Λ(L) = 0. Consequently, the multiplicative ergodic
theorem (Theorem 17, [12]) yields the existence of a unique P-continuous Oseledets split-
ting

B1,1 =

(
l⊕

j=1

Yj(ω)

)
⊕ V (ω),

where each component of the splitting is equivariant under Lω. The Yj(ω) are �nite-
dimensional and have corresponding (�nite or in�nite) sequence of Lyapunov exponents
0 = λ1 > λ2 > . . .. Moreover, Y1(ω) is spanned by h0

ω as in Proposition 3.6.

10.3. The twisted cocycle. Our observable will be a map g : Ω × X → R such that
g(ω, ·) ∈ C1 for ω ∈ Ω and

M := ess supω∈Ω‖g(ω, ·)‖C1 <∞. (73)

We assume that g is ω-�brewise centred: for P-a.e. ω ∈ Ω, h0
ω(g(ω, ·)) = 0.

For g ∈ C1(X,C) and h ∈ B, we can introduce g · h ∈ B as in Section 2. Furthermore,
for ω ∈ Ω, θ ∈ C, and h ∈ B set Lθω(h) = Lω(eθg(ω,·)h). We will need the following lemma
(see [8, Lemma 6.1] or [9, Lemma 5.3]).

Lemma 10.2. For h ∈ B and g ∈ C1(X,C), we have that

‖gh‖ ≤ C|g|C1‖h‖,

for some C > 0, independent of g and h.

The following proposition is analogous to Proposition 4.3.

Proposition 10.3. There exists a continuous function K : C→ (0,∞) such that

‖Lθωh‖ ≤ K(θ)‖h‖, for h ∈ B, θ ∈ C and P-a.e. ω ∈ Ω. (74)

Proof. Note that it follows from (72) and Lemma 10.2 that

‖Lθωh‖ = ‖Lω(eθg(ω,·)h)‖ ≤ K‖eθg(ω,·)h‖ ≤ CK|eθg(ω,·)|C1‖h‖,

for h ∈ B, θ ∈ C and P-a.e. ω ∈ Ω. Furthermore, observe that (73) implies that

|eθg(ω,·)|C0 ≤ eM |θ| for P-a.e. ω ∈ Ω.

Similarly, it follows from the mean-value theorem (applied for a map z 7→ eθz) and (73)
that

sup
x 6=y

|eθg(ω,x) − eθg(ω,y)|
|x− y|

≤ |θ|e2M |θ| sup
x 6=y

|g(ω, x)− g(ω, y)|
|x− y|

≤M |θ|e2M |θ|.

The desired conclusion follows directly from the above estimates.
�

Analogously to Proposition 4.4 we have:

Proposition 10.4. For θ close to 0, the cocycle (Lθω)ω∈Ω is quasicompact.
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Proof. We follow closely [11, Lemma 3.13]. Observe (71) and choose N ∈ N such that
γ := BaN < 1. Hence,

‖Lθ,(N)
ω h‖ ≤ ‖L(N)

ω h‖+ ‖Lθ,(N)
ω − L(N)

ω ‖ · ‖h‖
≤ γ‖h‖+B|h|w + ‖Lθ,(N)

ω − L(N)
ω ‖ · ‖h‖.

On the other hand, we have that

Lθ,(N)
ω − L(N)

ω =
N−1∑
j=0

Lθ,(j)
σN−jω

(LθσN−1−jω − LσN−1−jω)L(N−1−j)
ω .

It follows from (72) and (74) that

‖L(N−1−j)
ω ‖ ≤ KN−1−j and ‖Lθ,(j)

σN−jω
‖ ≤ K(θ)j.

Furthermore, using (72) and Lemma 10.2, we have that for any h ∈ B and P-a.e. ω ∈ Ω,

‖(Lθω − Lω)(h)‖ = ‖Lω(eθg(ω,·)h− h)‖ ≤ K‖(eθg(ω,·) − 1)h‖ ≤ CK|eθg(ω,·) − 1|C1‖h‖.
On the other hand, using (73) and applying the mean value theorem for the map z 7→ eθz,
it is easy to verify that there exists C ′ > 0 such that for θ ∈ BC(0, 1),

|eθg(ω,·) − 1|C1 ≤ C ′|θ| for P-a.e. ω ∈ Ω. (75)

Hence, there exists C̃ > 0 such that

‖Lθω − Lω‖ ≤ C̃|θ|, for P-a.e. ω ∈ Ω.

We conclude that

‖Lθ,(N)
ω − L(N)

ω ‖ ≤ C̃|θ|
N−1∑
j=0

KN−1−jK(θ)j,

and therefore there exists γ̃ ∈ (0, 1) such that for any θ su�ciently close to 0 and h ∈ B,
‖Lθ,(N)

ω h‖ ≤ γ̃‖h‖+B|h|w. (76)

Similarly, one can show that there exists B̃ > 0 such that for any θ su�ciently close to 0
and h ∈ B,

|Lθωh|w ≤ B̃|h|w. (77)

The conclusion of the proposition follows from (76) and (77) by arguing as in [11, Theorem
3.12]. �

10.4. Regularity of the top Oseledets space, convexity of Λ. The regularity of
the top Oseledets space of the twisted cocycles follows identically as in Section 5, with
Lemma 10.2 used in place of Lemma 3.2 [17] in the proof of Lemma 5.1. Moreover the
family of probability measures h0

ω will allow us to de�ne the �bred measure µω as we did
in Section 6.3.

10.5. Large deviation principle and central limit theorem. The results of Sections
6 and 7 follow verbatim with the obvious modi�cations. Of course, and in order to build
the cocycle, we must restrict to the neighborhood Oδ0(T,B). We thus obtain our main
results for piecewise hyperbolic dynamics.

Theorem D (Quenched large deviations theorem). In the setting of Section 10, there ex-
ists ε0 > 0 and a non-random function c : (−ε0, ε0)→ R which is nonnegative, continuous,
strictly convex, vanishing only at 0 and such that

lim
n→∞

1

n
log µω(Sng(ω, ·) > nε) = −c(ε), for 0 < ε < ε0 and P-a.e. ω ∈ Ω.
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Theorem E (Quenched central limit theorem). In the setting of Section 10, assume that
the non-random variance Σ2, de�ned in (44) satis�es Σ2 > 0. Then, for every bounded
and continuous function φ : R→ R and P-a.e. ω ∈ Ω, we have

lim
n→∞

∫
φ

(
Sng(ω, x)√

n

)
dµω(x) =

∫
φ dN (0,Σ2).

(The discussion in �6.3 deals with the degenerate case Σ2 = 0).

10.6. Local central limit theorem.

Theorem F (Quenched Local central limit theorem). In the setting of Section 10, suppose
that condition (L) holds, where the functional norm in (L) is now B.
Then, for P-a.e. ω ∈ Ω and every bounded interval J ⊂ R, we have

lim
n→∞

sup
s∈R

∣∣∣∣Σ√nµω(s+ Sng(ω, ·) ∈ J)− 1√
2π
e−

s2

2nΣ2 |J |
∣∣∣∣ = 0.

The LCLT can also be obtained under the assumptions HK A1, A2, A3 and the hy-
pothesis of Lemma 9.1 with the obvious change of the functional space which is now
B. The Lasota�Yorke inequality for the twisted operator follows now by adapting the
analogous proof in [7] for the usual operator. Moreover, all the discussion and results in
Subsections 9.1 and 9.2 remain unchanged in this setting and consequently, we have the
analogous statement as in Corollary 9.5. We refrain from formulating it explicitly since
it is essentially the same as Corollary 9.5.
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