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Abstract

We develop a general framework that allows to prove that the limit-
ing distribution of return times are Poisson distributed. The approach
uses a result that connects the convergence of factorial moments to the
mixing properties of transformations which often times are expressed
through the decay of correlations. We demonstrate our technique in
several settings and obtain more general results than previously has
been proven. We also obtain error estimates. For ¢-mixing maps we
obtain a close to exhausting description of return times. For (¢, f)-
mixing maps it is shown how the separation function affects error es-
timates for the limiting distribution. As examples of (¢, f)-mixing we
prove that for piecewise invertible maps and for rational maps return
times are in the limit Poisson distributed.

1 Introduction

We study the distribution of return times for expanding transformations to
small set. Let T" be an expansive transformation on the space €2 and let u
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be a probability measure on 2. Denote by x4 the characteristic function of
a (measurable) set A and define the ‘random variable’

[t/1(xa)l

Ea= Y, xaoT’
j=1

The value of {4 measures the number of times a given point returns to A
within the normalised time ¢ (the normalisation is with respect to the pu-
measure of the set ‘return-set’ A). If p is the measure of maximal entropy
for the shift transformation on a subshift of finite type, then it was shown
by Pitskel [20] that the return times are in the limit Poisson distributed
for cylinder sets and p-almost every z. For equilibrium states of Holder
continuous functions, Hirata ([12], [13]) has similar results for the zeroth
return time r = 0 using the transfer operator restricted to the complement
of e-balls in the shiftspace (the argument for the higher order return times
r > 1 seems to be incomplete).

For cylinder sets, Galves and Schmitt [9] have obtained rates of conver-
gence for the zeroth order return times (r = 0). Hirata, Saussol and Vai-
enti have developed a general scheme to prove that return times are in the
limit Poisson distributed and applied it to a family of interval maps with a
parabolic point at the origin (where the map is like '™ for some a € (0, 1)).

Here we develop a mechanism which allows to prove the Poisson distri-
bution of return times and to obtain error estimates as the set A shrinks to
a single point. The ingredience is the following theorem which quantifies a
previous result of Sevast’yanov [21]. In the following ¢y, ¢s, ... are constants
that are locally used while C, (s, ... indicate constants that whose values
apply throughout the text.

2 Factorial moments and mixing

In the following G, is a subset of Z". If in property (5) below we had that the
left hand side were equal to zero for all ¥ then the statement of the theorem
would be trivially satisfied (since then u(N) = trf—,ft for all 7). However since
in property (5) the error only has to go to zero for ‘most’ of the multi-indices
v we have to impose smallness conditions on the remaining indices for which
(5) does not apply. In our setting the rare set will typically consist of return
time patterns ¥ which contain a return which is ‘too short’. The conditions
(3) and (4) look rather complicated but are exactly what can be shown for
(some) mixing dynamical systems and still be made to work in the theorem
below.

Theorem 1 Let {n} : v=1,...,N(n)} forn > 1 be an array of random
0, 1-valued variables and p a probability measure. Put ¢, = >N 0", and for



TeG ={1€eZ :1<v <vg<---<v, <N(n)} let b = u(nk), where
g = Iley my, (in particular by = p(ny) ).

Assume that there is a (monotonically to zero decreasing) sequence €, so
that the following five assumptions are satisfied:

max b)) < e, (1)
1<v<N

N
S b - t' <ép (2)
v=1

Moreover assume that there exist rare sets R, C G, (depending onn) (r > 1)
and constants « > 0 so that (the numbers r',r" are so that |r' —r|,|r" — r|
are bounded)

S <Y ( 7; )ez’—s e’ (3)
s=0

FER, s!

n n ” " r'—s (at)s
val.ubvrggnZ( < >€n o (4)
TER, s=0 .

b
% - 1| < a'ey, (5)

for allv € G, \ R,.
Then there exists a constant Cy so that for all t > 0, n and r for which
r?e,/t is small (say less than 0.1) if r > 1 and e,t is small if r = 0:

tret

rl

r!

Ciele,(t+1)  if =0

|uw:;> -

< { 4 (Ht)Qent“let if r>1

For all values of n,r and t one has the (weaker) bound

tre~t

S 018n€2tt.
rl

where NT ={y : ¢,(y) = r} is the r-levelset of (,.

Proof. Throughout the proof we shall assume that ' =" =r. If ¥ ' #£1r
but their differences are (uniformly) bounded by some contant ¢ then there
are obvious modifications below that let us arrive at the same conclusion
(except the constant C; will have to be replaced by Cy(co + 1)?).

If we put U, = r! Y scq. bF then we have by assumption (3)

I=\U.—7rl > b}

Ry

=7l > by < r!enzr: ( Z )5;—5 (at)s.
5=0

|
UER, s




Moreover, by assumption (4)

I =1V,

I,

UER, 1

< T'€nz ( ) (at)s,

s!

where we put V. = 7! Y5, [1; by, and by assumption (2)

N T
k=0
Factoring out yields

(So) =0 S Tu+Y S 1

veEG, 1 k=1veHF

1] = <ren(t+e,)

where H* consists of all those unordered multi-indices ¥ = (vy, ...,

vr), 0 <
v; < N, which have exactly r—F distinct entries. We wish now to estimate the

sum over each set H* by the sum over the set G,_j of ordered (r — k)-tuples.
To generate all of the possible unordered r-tuples ¥ in HY, let @ € G,_;

There are (r — k)! possible arrangements of the entries of w. There are
(T_rik'),k, possibilities to fit any of these arrangements into the r slots of a

vector ¥ and there are (7 — k)* many ways to fill the remaining k& empty slots

with any of the r — k distinct entries of @. Hence, by assumption (1)

veHk i GeGr_y i
rl

k_k
m(?" — k/’) EnV,‘_k-.

With the estimate:

V’“:(kzi)bZ) DN (Zb"> (t+en)’,

k=1gcHF
we obtain
N r r—1 rl -
IV = (;;)bk) —-V.| < ;7(r—k)!k!(r_k> eV,
= rl(r — k)k k_k k
t n)
2 (r—k)!k'r er(t+eyn)

Since by assumption (5)

= |r! ZHbZ—T! Zbg

¢Ry i TR,

S IIv < w:al!ﬂ)!m(r—k)k(mfxxb?)k(r—k)! S T

IN



IN

rla’e, > T]b0

eR, i
a’e, V.,

end (t+e,)"

.
rle, Z(aan)’"’s
s=0

IAINA

(at)®

s!

IN

Y

we can now estimate as follows
U, —t"| < I+1I+I1I1+1IV+V

: £ Rl —k)k
< 37!5712 ( Z >5;—s (CV ) r (7” ) Ek(t—l-fn)r_k —l—?“é“n(t—{-é“n)r_l.
s=0

T
The last term can be absorbed by either of the first two sums.

|
S! =1

Let us now form the generating function for the random variable (,:
k=0

and note that f*)(0) = k!u(NF¥). In particular we get for the rth derivative
that

SO0 = SOk(k— 1) (k — v+ 1)25 (A,
k=0

which evaluated at z = 1 yields
FO) =3 k(k—=1) - (k =+ DuWN;) = u(d),
k=0

where (") = (,(¢, — 1) -+ (¢, — 7 + 1) is the rth factorial moment of ¢,. If
we develop f,(z) at z = 1 into a powerseries we get

oo £(r) O (y 1)
=S Wy o G )

! |
—0 r —0 r!

For x € N*, k > r, one has that ((V(z) = k(k—1)---(k—r+1). For v € G,
let us put Cy = {x : n = 1} and let us observe that for any given r we have:
(i) if z € NF for some k < r then z ¢ Cy, for all ¥ € G,,

(i) if z € N¥ for k > r then there are ( l; ) distinct v € G, so that z € Cj.

Since Cy = U2, C3 N NF (disjoint union) we get

oGy = YD u(Csn AN
7eG, k=r veqG,
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k=r
> 1
_ L (r)
-3 /Nﬁcn r
1
)

and therefore

U, = u(¢) = (D).
The (error) function ¢, (2) = f,(z) — e!*=1) splits into the sum ¢ = @ + P.
The first part is (here we used that o > 1)

pual < 3B ane (1) tomy 50
r=0 :

= e F(|z — 1at, |z — 1|ae,)

where we used the identity

zz( ) T

r=0 s=0

In particular we see that ¢ is for every value of ¢ analytic for |z — 1| < a/e,,.
The second part of the error function is (where we put £ = r — k):

- < |z — 173 7! .
A0 Z ! ,;(r—k)!k!(“k)kfm“") '

oooogk

< SNl A )

(=1 k=1

¢!

(ee|z’1‘5"|z—1\(t+£n) . €|z—1|(t+an)) )

¢ Sl a) (e,
(=1

It that ¢, ¢ and $ are for every value of ¢ analytic for |z — 1| < a/e,. For
alz — 1|e, small enough we get

|(2)] < Coene® I ten),

for o/ > a and for |z — 1]ae,, |z — 1%, (t +&,) small enough we estimate the
second term as follows

IN

én(z)‘ olz=1l(t+en) (e(e\ﬂlsn—1)\2—1|(t+an) _ 1)

IN

e|z71|(t+5n) <€|271‘28n(t+8n)3/2 . 1)

IN

2€|zfl\(t+5n)|z _ 1|2€n(t + ).
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A Cauchy estimate now yields (R > 0):
k! ,
PO < g (2eaene™ (IR 4 9o DR (R 1)1 + )

provided, of course, that (R + 1)e, and (R + 1)%,(t + &,,) are small enough.
Hence, since

(k) k (k)
kN fn (0) _t —t n (0)
HND) =TT S e T
we get
th ") (0 R+1)%
”“‘(N:)_k!e <" k'( ) 503(}%)6 IDle,(t+1). (6)

One can now obtain different estimates by choosing different values for R
(subject to the constraint mentioned above). If R = 1 then we simply obtain
tk

‘“Wff ) = e | S case® (4 1)

k!

for some constant cs. A better choice of R can be done if & > 1 is not too
large, which is whenever k%c,/t is small then we can use the optimal value
for R, namely R = k/t and obtain (c5 > 0)

ko,

‘u(/\/ff) e

(k ;‘;)2 ehtte b1,

<5

Using Stirling’s formular one obtains the estimate given in the statement of
the theorem. If £ = 0 then in equation (6) we let R — 0 and obtain

VD) = e < (0) < exelen(t + 1).
O

Remark. The error estimate for k < ¢14/t/e, (for some small ¢;, e.g. equal
to 0.1) becomes meaningless for ¢ larger than of the order |log k?c, | because
the principal term becomes smaller than the error term.

Also note that the error term ¢, is allowed to depend on t which is a
parameter in the theorem.

Corollary 2 Let {n, : v = 1,...,N} be an array of random 0,1-valued
variables and p a probability measure. Put ¢ = SN n,, and let by = p(ny)
for v € G, (where ng =TIey M, ). Assume that there is an € > 0 so that

max b, < e,
1<v<N

N
> b, —t‘ < ¢,
v=1




and suppose there is R, C G, (r > 1) so that:

Z(bg—l—bvl---bw) < g,

VER,

"'r_l\ <  VEeG\R.
Then there exists a constant Cy so that for allt > 0 and r for which r*c/t
is small (say less than 0.1) if r > 1 and et is small if r = 0:

tret

rl

7l

Cieel(t+1)  if r=0

‘u(/\/’") -

- { Cheet UH24r=1 ¢ p > 1

For all values of r and t one has the (weaker) bound

t" et

rl

‘,u(/\fr) — < Chee®t.

where N™ ={y : {(y) = r} is the r-levelset of (.

3 Properties of (¢, f)-mixing measures

Let T be a map on a space ) and p a probability measure on 2. Moreover
let A be a measurable partition of 2 and denote by A™ = \/}1;01 T Aits n-th
join which also is a measurable partition of {2 for every n > 1. The atoms
of A" are called n-cylinders. Let us put A* = U,, A" for the collection of
all cylinders in Q and put |A| for the length of an n-cylinder A € A*, i.e.
Al =nif Ae A™.

We shall assume that A is generating, i.e. that the atoms of A are single
points in €.

Definition 3 Assume
(i) f: A" — Ng so that f(A) > f(B) if |A| > |B|, A,B € A*. IfC isa
union of n-cylinders C; (some n) then f(C) = max; f(C;).
(ii) ¢ : Ng — R" is non-increasing.
We say that the dynamical system (T, ) is (¢, f)-mixing if

(U AT V) = p(U)p(V)| < $(m)pu(U) (V')

for all m > f(U), measurable V and U which are unions cylinders of the
same length.

Oftentimes the function f depends only on the length of the cylinders, that
is f(A) = f(|A]). The function ¢ determines the rate at which the mixing
occurs and the separation function f specifies a lower bound for the size of
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the gap m that is necessary to get a good mixing property. In the special
case when f is constant 0 (or some other constant) then (7', ) is traditionally
called ¢-mixing. There is a tradeoff between the decay function ¢ and the
separation function f. Typically one can achieve to have ¢ decay faster at
the expense of f which as a consequence will be increasing faster.

3.1 General properties

For r > 1 and (large) N denote by G,(N) the r-vectors v = (vq,...,v,) for
which 1 < v < vy < -+ < v, < N. (The set G,.(N) is the intersection of
a cone in Z" with a ball of radius N.) Let ¢t be a positive parameter, put
N = [t/u(W)] (the normalised time) and W C €. Then the entries v; of the
vector 7 € G.(IN) are the iterates at which all the points in Cy = (;_, T~ W,
hit the set W during the time interval [1, N].

Lemma 4 Let (T, ) be (¢, f)-mizing, let > 1 be an integer and let W; C
2, be unions of n;-cylinders, j =1,...,r.
Then for all ‘hitting vectors’ v € G,(N) with return times vji; — v; >
JW;)+n; (j=1,...,r—1) one has
(T,

H§:1 (W)

— 1) < (14 ¢(d(@,7)))" - 1,

and d(v, 1) = ming (vgr1 — v — Ng).

Proof. Put for k=1,2,...,r:

In particular we have (;_, T7%W; = T~ Dy and of course y ( i1 T’”J'I/Vj) =
wu(Dy). Also note that

D, =W, N T—(vk+1—vk)Dk+1
and D, = W,.. Hence by assumption we obtain

[1(Dk) = p(Wi) t(Die1)| < @01 — v — 1) e Dy 1) (W)

Repeated application of the triangle inequality yields

H (ﬁl T_Ujo> - f[llu(Wj) < ;Z |(Dy) — (W) (Diyr)| I—IIM(VVJ)
= i G(vesr — vk — ) p(Dir) TT 1(W5)
k=1 i
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T r—1

[1 n(Wye(d(@, 7)) 3 (1 + ¢(d(7, 7)))*

j=1 k=0

= (1 +o(d(v —1Hu

IN

where we used the identity z 3,_t(1 +2)* = (1 +2)" — 1 and the estimates

w(Dy) < p(Wi)p (Dk+1) (1 + d(vpr1 — vp — ni))

< H1+¢wﬂ 0y — m)u(W;)
< (14 (d(@, )" H (W,
since by assumption that vy — vp — ng > f(Wy). a

The following exponential estimate has previously been shown for ¢-mixing
measures in [9] and for a-mixing measures in [1].

Lemma 5 There exists a 0 < < 1 so that for all A € A*:
p(A) <A

Proof. If A € A* and n = |A|, then A = ()Z) T/ A; for some A; € A,
j=0,...,n—1. Let m > 1+ maxpe f(B) (large enough) be such that

%0 = (1+é(m — 1)) maxu(B) < 1.

If we put 7 = [*], then we obtain by Lemma 4:

r—1 r—1
) < (V770 ) < 1+ 00m = 0) TL (A <95
i=0 i=0
which proves the lemma with e.g. v = 73/ . O

The remaining lemmas in this section will be used to estimate the size of
the rare set. For that purpose we shall from now on restrict to the situation
where all the sets IW; are identical and equal to some W (the return set). For
a ‘hitting vector’ v € G,(N) (N a large integer) we put Cz = (;_, T-%W.
Let 6 > f(W) and define the rare set

R.(N)={v € G,(N) : min(vj4; —v;) < d}.
For some 1 < ¢’ < 0 we have the principal part of the rare set given by
KT(N) = {U € RT(N) : 5/ < min('ujH — ’Uj)}

10



The set K,.(N) will be estimated in rather general terms below, but the
remaining portion

I.(N)=R,(N)\ K,(N) ={v € R.(N) : min(vj41 —v;) < '}

typically has to be disposed of by employing some ad hoc argument exploiting
particularities of the map 7.

For the return times statistics we shall use a slightly different rare set, namely
R.(N) = {7 € Gry1(N) : mjin(vjﬂ —vj) <6 and vy = 0}.
Correspondingly the principal part is
R(N) = {7 € Ry(N) £ 8 < min(uy1 — vy)}.

Lemma 6 Assume (T, u) is (¢, f)-mizing. Then for every union W of n-
cylinders one has (for some Cy > 0)
(i) (Entry time version)

3 w(Cy) < (ng(vﬁj < re2 ) (i ?S(ﬂwv))’“‘i

'l_JEKr s=0

(ii) (Return time version)

S u(Cy) < CQM(W)Ti ( rtd ) (fo)s(zﬁéu(v))“s,

~ S
veK, s=0

where > 1+ ¢(ming(viy1 — vk) — 0”) and the set V' is a union of atoms in
A such that W C V and 6" is so that f(V) <& —§".

Proof. Asin the hypothesis let W be a union of n-cylinders so that f(W) <
0.

(i) Let us first prove the first statement of the lemma. Put K7 for those
v € K, where v;41 — v; > 0 for exactly s indices i, is,...,7s (obviously one
always has s <r —2and iy <r —1).
I. Let us now assume that s > 1 and let i, 4o, ..., 7 be the indices for which
V41—, > 0 for k=1,...,s. All the other differences are > ¢’ and smaller
than §. Let §” be so that V' is a union of ¢”-cylinders and f(V) < ¢ — ¢§”.
Put W;, =W, =---=W,;,, =W, =W and W; = V for all indices j not
equal to any of the i or r.

By our choice of §” we have achieved that v;, 41 — v, > 0 > f(W) and
vj1 —v; > f(V) for j #ix, k=1,...,s. This allows us to apply Lemma 4

11



as follows:

) < (i

i=1 =1

< (14 ¢(d Hu
S 67'71 ( )7‘ 5— 1:“/(W)s+17

B =1+ ¢(d(v,1)), where the components of 77 = (ny,...,n,) are given by
n, =nfork=1,...,sandn; =06"for j#i, k=1,...,s

To estimate the cardinality of K let us note that the number of possibili-
ties of v;, < 1)12 - < v;, < v;,4+1 (entrance times for long returns) is bounded
above by s+1 (t/u( ))*** (this is the upper bound for the number of pos-

k

sibilities to obtaln s — 1 intervals contained in the interval [1,¢/u(W)]), and
each of the remaining r — s — 1 (short) return times assume no more than

0 different values. Since the indices i1, ...,75 can be picked in ( Z > many

. r gr—s—1 ¢ s+l
|5l < ( s ) G+ 1) (u(W)> '

The above estimates combined yield

> e < () (v

veKS

ways, we obtain:

I1. If s = O then all returns are short, i.e. v,y —v; < ¢ for all j. This implies
|K?| < 6" 't/u(W) and (using Lemma 4 with W, =Wy = =W, ; =V
and W, = W)

r+1

(o) < oy on,

i=1
ve K.
III. Summing over s yields

S ouCy) = Z_: > u(Cs

SR ()
< anwx (72 ) W oy

12



with some Cy and a slightly larger 3 to absorb a factor r(r — 1), which comes
from the inequality

()= ()=o)

for s < r — 2. This concludes the proof of the first statement.

(ii) The second inequality is proven is the same way with the obvious
modifications due to the first component of the hitting vector 7. We split K,
into a disjoint union of sets f(;?, s =10,...,7— 1, each of which has exactly
s ‘long’ intervales (i.e. > ¢) and r — s short intervals. For s =0,...,7 — 1:

= r+1 o Ly
IKTIS< s ><s+1)! (/L(W))’

w(Cs) < B (V) (W),
for 7 € K?. As in part (i) this then yields

5w < wng (] ) Cmy

and

vEK, s=0 (s +1)!
r—2
r—1 6t B r—s
< cum (701) B @
s=0 :
for a larger C} if necessary. a

Denote by
I.(N)={v € R.(N) : min(v;41 — vj) < d'}
(6’ > 0) the portion of very short returns within the rare set.

Lemma 7 Let W be a measurable set in ). Then
Bl (W) } o g
| Byl p(W)" ] = (r —2)!
for every r:
Proof. For every vector ¢in R, note that the shortest return time min(v;,; —

v;) is at most ¢, the position of the ‘shortest’ return time has r—1 possibilities

and the remaining r — 1 hitting times have at most ﬁ (t/p(W)) ™" many

arrangements. This leaves us with the upper bound

) : r—1
|R.| <6(r— 1)(r 1)l <u(W>> '

The bound on the cardinality of R, is proven in the same way. O

Remark. Let us note that the term du(W)t"!/(r — 2)! is bounded by the
highest order term (s = r — 1) in the expression du(W) >l_q ou(W) =5t /s!
which occurs in formula (4) of Theorem 1.
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3.2 Entry and return times for (¢, f)-mixing maps

Let W C Q and define the return time function
mw(r) = min{k > 1: T"z € W}.

Tw measures the first entry time for points outside W and (for the first
return time for points in W. This function is finite almost everywhere with
respect to ergodic measures and satisfies by a theorem of Kac the identity
Jw mw(x)du(x) = 1 for any ergodic probability measure p and measurable
W. Let us define Hirata-Vaienti return time function

T(A) = E:Ileif‘l Ta()

which measures the shortest return time within the set A (see [13, 14]). By
definition ANT %A =0 for k=1,2,...,7(4) — 1.

In the following ¢ will always be a positive parameter and we shall denote
by xu the characteristic function of a set U. Let A, be an n-cylinder and
define the 0, 1-valued random variable 1) = x4, o 7" for v = 0,1,..., N,
where N = [t/u(A,,)] (unless we say otherwise). In the context of studying
the distribution of entry times we shall use the values b} = p(n)) in the
following Proposition 10. For ¢ € G,.(N) (¥ = (v1,va,...,v,)) we put

M5 = My Ty =+ . = (XA, © T )(Xa, ©T7) -+ (xa, 0 T"")
for the characteristic function of Cy = (V;_; "% A,, and define the values
by = u(Cy).

For a given non-decreasing sequences of integers 6, < d,,n = 1,2,..., we
define the rare set R,(NN) as the disjoint union of K,.(N) and I,(N) where

K.(N) = {UE G,(N) : 0, <min(vj41 —v;) < 5n}
j
I,(N) = {176 G,(N) :min(vj4 —v;) < 6;}
j

Notice that in the following Proposition 10 and 9 in the third inequality the
sum is taken only over K, the principal part of the rare set. In Proposition
11 however we consider the full rare set. Later on we shall use Corollary 15
(which uses Proposition 11) to get bounds on the set of very short returns

I..

Proposition 8 Let pu be a (¢, f)-mizing probability measure.

14



Then there exists a constant Cy so that for every cylinder A, € A" for
which f(A,) <, —n and t > 0 one has

max by < u(An)

N
S0 —t’ < (A
v=1

r _.(3t)°
S < Cadup(Vi) S (36,1(Vy))" <S,)
TEK, s=0 .
iR T (r—2)!

% — 1’ S 03T¢(5n),

where V,, a union of §"-cylinders such that A, C V, and f(V,) <d, —9".
Proof. (i), (ii) By invariance of the measure p we have

by = p(ny) = uw(T™"An) = u(Ay)

for all v and therefore

N
> —t
v=1

< INu(A,) —t| < u(A,).

This proves the first two statements of the proposition.

(iii) We can assume that v;4; —v; > m for all j (because otherwise the set
Cy is empty) and apply Lemma 6 (i) to the case when ¢’ = 0/, § = 6,,. We
obtain the following estimate

Z u(Cyz) < 35"“(‘/”)i(35nu(Vn))T*S<3t)s

vEK, s=0

sl

where V}, is as in the hypothesis (2) and where the value of (§ is bounded by
(iv) The fourth inequality is easily verified using Lemma 7:

(At

b - b < | Ry p(An)" < 6, .
S b < IR < 0.5

UE Ry

(v) To verify the last inequality we use Lemma 4 to obtain

|1(Cy) — p(An)"| < (14 ¢(6n — n>>r — 1) u(Ay)"
< Carop(6n)pu(An)",
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for some constant C3 (C3 > 3), and therefore (for large n)

bz
v

b -0

S O3r¢(5n) .

O

Proposition 10 has the following companion which will be used to get results
on the distribution of return times and their error terms.

As before let p be a T-invariant probability measure on 2. For an n-
cylinder A,, we then define the restricted probability measure u, on A, by
tn(B) = p(BN A,/ u(A,) for measurable B.

With ¢ a positive parameter and N = [t/u(A,)] we define (for every n)
the 0, 1-valued random variable 7)) = x4, o T" and consider now the values

by = pn(m),

by = pn(05),
where U € G,.(N) and, as above, nZ is the characteristic function of Cy =

;:1 T-%A,. For a given non-decreasing sequences of integers ¢/, < 4,, we
define the set K, of short (but not too short) returns by

K.(N)= {UE Gr41(N) : 4, < min (min(vj+1 — vj),m) < 5n} .
J

Proposition 9 Let pu be a (¢, f)-mizing probability measure where ¢(v) is
summable.

Then there exists a constant Cy so that for every cylinder A, € A" for
which f(A,) <6, —n and t > 0 one has:

max b < Cyu(Vy)

51 <v<N Y

N
S —t

—A/
v=0/,

< Cu(f(An) + n)u(Va)

20 < CW(AH)TX_: < rl ) (30, (Vi) —* (3t)°

FeR, 5=0 5 s!
r—1 tk
Z bZ1 T bZT < Cybppi(Vi) Z(anCAxU(Vn))r_l_kg
ek, k=0 '
b b L

where V,, a union of §"-cylinders such that A, C V,, and f(V,) <, —9".

16



Proof. (i) To estimate

A, NTA,)
#(An) ’
we consider two cases: (a) v > f(A,) +n and (b) 8, <v < f(A,) +n. In

the first case, v > f(A,)+ n, we use the (¢, f)-mixing property according to
which

by = pn(T"Ap) = ,U(

(A, NT™"Ay) — M(An>2| < é(v— n)N(An)2
and consequently
) — p(An)] < o(v —n)u(Ay). (7)
Hence (c¢; > 0):
by = pn(T7°An) < p(An)(1 + ¢(v —n)) < cr1p(Ay).

In the second case, 8/, < v < f(A,) + n, we use the set V,, chosen according
to the hypothesis (A, C V;,) and conclude in a similar way that

!bﬁ - N(Vn)‘ < ¢<U - 5//),“(‘/71)-

and therefore b < ¢y (V).
(ii) Summability of the function ¢ gives us the second inequality:

Zaj by —t| < (f(A) +n)(crp(Va) + p(An) + u(An) Y oo —n)
v=>4!, v=Ff(An)+n

< (U4 e)(F(AD + (Vi) + p(A) i o(v)
< a(f(An) +n)u(Va).

(iii) To obtain the third inequality we apply Lemma 6 (ii) with the parameters
0 =90,0=0, W=A,, V=V,and K, as defined above:

S ooscatan S (7)) sy B

for all large enough n so that 8 = 1 + ¢(6, —n) < 3/2, where V, is as in
hypothesis.
(iv) If v; > 6, then

by, < (14 ¢(v; = n))u(An) < (1+ @01 — n))u(An) < cap(An),

and otherwise (0, v; < 0,) we use the estimate by, < c1p(V,) from part (i). If
the first s of the entries of ¥ are less that f(A,) + n then we obtain similarly

17



to Lemma 7:

S Wb < Seu(V) u(A) G

176[?}; V1 e,V <Op

< (57101#(‘/71))8

Summing over s = 1,...,7 yields (where k = r — s)
(3 7 7 & S tr_s
_‘Z bvlbw T bvr S ;(57101[1’(‘/”)) (7“ _ 8)'
ek, =
r—1 ) ktk
S 6ncllu(vn) Z(énclﬂ(vn))T_ B E
k=0 :

(v) To verify the last of the inequalities we restrict to ' ¢ R,, that is Vi1 —
v; > 0, > f(A,) +n for all j and vy > §,. Thus

1(A, N Cy)
by = pn(Cy) = ——————,
5 = tn(C) (A

and by Lemma 4 we get

1(An N C5) — p(An)™ ] < (L + (00 —n))" — 1) p(An)™
< read(0n — n)p(An)

(for some ¢4 > 0) and
|05 = 1(An)"| < 7cad(dn — n)pu(An)"

In order to compare by to the product by -- -0} let us note that by equation
(8) one has for j =1,2,...,7:

10, = 1(An)| < 6(v; = n)pu(An) < d(vr —n)p(An),
and in particular b, < c3u(Ay,). Thus

r—1

|05, -+ Oy, — p(An)"|

b - M(An)D (max (B2, b, p(A,) )

ré(vr —n)ey p(Ay)"
rcsp(dn — n)pu(An)",

r (max
J

IN AN A

for all large enough n. By the triangle inequality

b — by by | < r(ea+ ), — n)u(A),

18



and therefore, with a slightly larger value for cs,

biy .
T 1| < c5p(dy).

Let us note that since we only consider large enough n, the number c3 > 1

can be chosen arbitrarily close to 1. In particular we can assume that c3 < 2.
The proof is finished if we put Cy = max(1, ¢y, ¢2, 3, Co). a
(, /)-MIXING MAPS

3.3 Restricted entry and return times for (¢, f)-mixing
maps

The following results will provide us with the asymptotics of long returns
to the neighbourhoods of periodic orbits and in particular also with the
asymptotics of the first return time for all points. We will set up the functions
7y to only counts returns when the return interval is at least of length n and
to ignore all shorter ones. Let A, € A" be an arbitrary cylinder of length n,
define

n—1
U, = (T7"A)\ |J T~ A4,
j=1

and put N = [t/u(U,)] (this is a ‘non-standard’ rescaling). In this way we
achieve that 7(U,,) > n. We next define the functions 7 by

v
i = oo T I[-xa, o T)  w=12. 01

zh
Lol

o= o T) [[A=xa, 0T)  w=nn+1,... N

<.
Il
—

Note that 7] = xpy, o T " for n < v < N.

In the following proposition, which is the analog of Proposition 9 for the
restricted returns on an adjusted time-interval, we use the values I;Z} = 1 (N1)
and b = i, (7)), where fig = Ay, -+ Ay, for 7 € G,(N). The rare st is as
above with the obvious modification of replacing N by N.

Proposition 10 Let p be a (¢, f)-mizing probability measure.
Then there exists a constant Cs so that for every cylinder A, € A" for
which f(A,) <, —n and t > 0 one has

max b < p(A,)

1<’U<N

y — L




r <3t)s

by < Csupn(Va) 3o (30pu(Va)) "=
FER, s=0 >
. . A r—1
Sbr b < %%W
VER, (r B 2)
oL pn
‘Uli)nvr —1] < Csro(dy),

where V,, a union of 0”-cylinders such that A, C V, and f(V,)) <n—9".

Proof. (i) We have to consider two cases: (a) 1 <v <n and (b) n <w. In
the first case, 1 < v < n, we get

~

by = nliy) < w(An),
since n'(z) = 0 if = € A,. In the second case, v > n, we get by invariance of
H .
by = u(i)) = p(T~"0,) = p(U,) < p(Ay).
(ii) With the estimates of b from part (i):

N

~

dobr—t

v=1

np(An) + (N = n)p(Uy) — t

IA

< n(pu(An) + 1(Un)) + w(Uy)
< enp(Ay).

(iii) We can assume that v;1; —v; > n for all j (because otherwise the set
Cy is empty) and apply Lemma 6 (i) to the case when ¢’ = 4/, § = 6,,. We
obtain the following estimate

2, 1(Cy) < CStM(VMTi(T;Z ) " gu(v)y—

|
veK, s=0 s

where V,, is as in the hypothesis and where the value of 3 is bounded by
1+ ¢(ming (v — v5)) < 2. )

(iv) If v; < 6, we use the estimate from part (i) bj, < p(4,) and otherwise if
v; > n then l;ﬁ] = 1(Uy,). If the first entry of ' is less that n then we obtain
similarly to Lemma 7:

Sombn b < np(A)u(Un) G|

v1 Yvg [S—
VERy; v1<n

IN
S
=
S
s
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If none of the entries of ¥ is less than n then we get similarly to Lemma 7

R R . t?”—l
S b b < A ) < 8, MO
TER, (r—2)!

(v) To verify the last inequality we use Lemma 4 to obtain (here v;4; —v; >
dn > f(An) +2n as U € R,)

1(Cy) = w(Un)"] < (14 (00 —n))" = 1) u(Un)"
< Csro(0n)u(Un)",

for some constant Cs > 3, and therefore (for large n)

O

Proposition 10 has the following companion which will be used to get results
on the distribution of return times and their error terms.

As before let p be a T-invariant probability measure on ). For an n-
cylinder A, we then define the restricted probability measure pu, on A, by
tn(B) = (BN A,/ u(A,) for measurable B.

With t a positive parameter and N = [t/u(A,)] we define (for every n)
the 0, 1-valued random variable 7, = x4, o T" and consider now the values

by = pn(ny),
by = n(ny),

where ¢ € G,.(N) and, as above, nZ is the characteristic function of Cy =
i TV A Ifor a given non-decreasing sequences of integers 9/, < 4, we
define the set K, of short (but not too short) returns by

K,(N) = {UE Gr41(N) : 8, < min (min(ij — vj),v1> < (5n} )
j

Proposition 11 Let o be a (¢, f)-mizing probability measure where ¢(v) is
summable.

Then there exists a constant Cg so that for every A, € A™ for which
f(A,) <6, —2n and t > 0:

max b < Ceu(V,,)

1<v<N B

N ~
> obr—t
v=1

< CG(f(An) + n),u(Vn)
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R r+1 <3t)s
by < Codup(An) D (30np(An)) >~

VER, s=0 s!

R R r—1 tk

Dby by < Cedup(Vy) Z(fanGM(Vn))r*l*kE

TER, k=0 :
‘vlbnv —1 < 27¢(6,),

where V,, a union of §"-cylinders such that A, C V, and f(V,)) <n—4¢".

Proof. Let us first note that U, is a union of 2n-cylinders and similarly
that for 0 < v < n the functions 7 are characteristic functions on sets U, (v)
which are unions of (n + v)-cylinders.

(i) We have to consider three cases, namely (a) 1 < v < n, (b)n < v <
f(A) 4 2n and (c) f(A,) +2n < v < N. In the first case 1 < v < n and by
definition 7y 4, = 0. Thus " = 0. In the second case, v = n, ..., f(A,) +
2n — 1, the fact that U, C T7"A, yields

WA = pxa,) = wl(An NT~™U,) < (Ve VT Ay).
The ¢-mixing property compares the last term to p(V,,)u(A,):
(Vo NT7Ay) — (Vi) i(An)| < ¢(v = 0") (Vi) p(Ay)

and therefore " < u(V,)(1 + ¢(v — 6")). In the third case, v > f(A,) + 2n,
one has
|1Ocany) = (An) p(Un) | < (0 = 2n)p(An) (Un)

and (note that 1, (7)) = p(xa. )/ 1(An))

B — (U] = ’m — u(U)] < (o — 20)a(T).

Hence for f(A,) +2n<v < N

by = :un(T_(U_n)Un) < p(Un)1 4 (v = 2n)u(Uy) < c1pu(Un). (8)

(ii) Summability of the function ¢ gives the second inequality:

Z BZ —t| < (f(An) +2n)(u(An) + ap(Va)) + 1(Un) Z ¢(v —n)
v=1 v=f(An)+2n

IN

(L4 en)(F(A) + m)u(Vi) + p(Ay) f; o(v)
< C2(f(An) + n)lu(vn)-
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(iii) The fact that U, C T~ ™A, and U,(v) C T YA, implies that 02, v €
GT(N ), is the characteristic function of a set which is contained in (V;_, T7"7 A,,.
Since U, N T7U, = 0 and U, (v) N T~ U, = 0 for j <nandv<nwecan
employ Lemma 6 (ii) with & = n, § = 4,, 8" =n, V = A, and K, = R,
yields

“n r+1 r+l—s (3t)5
3702 < Tou(A) D (30,1(A)) o
TER, =0 ‘

for all large enough n so that 5 =1+ ¢(d, — n) < 3/2.
(iv) If v; > 6, then by part (i) of the proof

sz S 03,UJ(UTL)7

and otherwise (v; < d,,) we use the estimate 6’7}] < ¢y max(p(Vy,), €) from part
(). If the first s of the entries of ¥ are less that f(A,) + 2n < §,, then we
obtain similarly to Lemma 7 for s > 1:

Z b b, b < Ozt (Va ) u(Un) % |Grsl

v1 Vg Uy
VERy; V1 ,.-,05<0n

< (67161“(‘/“))8 (7‘ . S)'

If s =0 (no entry of ¥/ is less than f(A,) + 2n) then

R R Un trfl
S b i < R (U < 5,0

FER 01 >0n (r—2)t

Summing over s = 0,...,r yields (where k = r — s)
n n - s e
Z bvl U bvr < Z((SHC;),ILL(VH)) (7, _ S)'
TeR, s=1 '
= r—1-k tk
k=0 :

The fourth inequality now follows since the binomial coefficient is > 1.
(v) To verify the last of the inequalities we restrict to ¥ € R,, that is v, —
vj > 6, > f(A,) +n for all j and v; > §,. Since

2 A p(An N éﬁ)
bg‘ = Mn\Ly) = )
1 (C) (A

where é{; = ;7:1 T7%U,, by Lemma 4

~

[1(An N Cy) — p(An)p(Un)"] < (L4 00 —n))" — 1) pu(An) pu(Up)"
< read(0n — n)p(An)p(Un)",
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and therefore X
|bg - M(Un)r| < TC4¢(57L - n)M(Un)T~

In order to compare I;U’l to the product ?)ﬁl e lA)ﬁT let us note that by equation
(8) for j=1,2,...,7:

b — (U] < d(v; = n)u(Uy) < pvr — n)u(Us),

and in particular Egj < c,u(Uy). Hence

b — (U,

i, = w0 ) (ma (5 )

ré(vr —n)ei " p(Uy)"
Tcgﬁﬁ(én - n)N(Un)T7

for all large enough n. By the triangle inequality

r <max
J

IAIAIA

b5 =B, - by | < r(ea+ )g(0n — n)p(Un)',

and therefore, with a slightly larger value for ¢y,

b
v g

An e An
by - b

< c1o(0n).

Let us note that since we only consider large enough n, the number ¢; > 1
can be chosen arbitrarily close to 1. In particular we can assume that ¢; < 2.
An appropriate choice for (s finishes the proof. O

Remark 1. In Proposition 11 the ¢-mixing requirement can be weakened.
It is sufficient that p is ¢-mixing on A, and V,;:

(U NT"Q) — w(U) Q)] < (m)u(U)u(Q)

for all measurable  and m > f(U), where U = A,,, V.

Remark 2. In the special case when f =0 then V,, = A,,.

4 Statistics of ¢-mixing maps

In this section we discuss classical ¢-mixing maps. An invariant probability
measure p for the map 7' is called ¢-mixing if it is (¢, f)-mixing for a (given)
partition .4 where f is the constant 0. In various settings [9, 19] it has been
shown that the measure of n-cylinders fall off geometrically, i.e. there is a
constant ¢; > 0 so that pu(A) < e ™ for all n and A € A". Since the
rate of convergence of the entry and return times to the Poisson distribution
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depends on the decay rate of ¢ we whall prove in the first section some more
general statement.

In the following A, denotes an n-cylinder set and x4, its characteristic
function. Let p be an invariant probability measure. For a given positive
parameter value ¢t we then define the counting function

N
gn:ZXAnoTk

k=1

whose value is the number of times a point hits the set A,, on the time interval
[1, N], where N = [t/u(A,)]. If we denote by

N ={zeQ:&(x)=r}

the levelset of the counting function &,, then u(N) is the probability that
a randomly chosen point hits A, exactly r times on the time interval [1, N].

Of particular interest is when r = 0, in this case NV = {x € Q : 74, (z) >
t/1(An)}-

We will examine two types of ¢-mixing systems, namely those in which ¢

decays polynomially and equilibrium states on Axiom A systems for Holder
continuous functions which are ¢ mixing where ¢ decays exponentially fast.
We say the measure p is polynomially ¢-mixing with power p > 0 if lim sup,_, ., vP¢(v) <
00.

Strongly hyperbolic maps that satisfy the Axiom A properties and have
very regular behaviour as the shadowing property and finite Markov parti-
tions of arbitrarily small diameter. Such systems are usually studied using
a symbolic description by a subshift of finite type. A good reference is the
classical book by Bowen [4]. We shall study the entry and return time dis-
tribution for equilibrium states for Holder continuous potentials.

4.1 Polynomially ¢-mixing maps

We shall prove limiting results for the entry time and return times to cylinder
set. If p is a T-invariant probability on 2, then its restriction to an n-cylinder
A, is given by u,(B) = u(BN A,)/u(A,) (for all measurable B).

Theorem 12 Let p be a ¢p-mizing probability measure for the transformation
T :Q — Q so that limsup,_, . ¢(v)v? < oo for some positive p.

Then there exists a constant C; so that for all A, € A" and all t,r for
which ?,u(An)ﬁ is small (and tu(An)ﬁ is small if r = 0) one has:
(i) (Distribution of entry times)

p(Ny) — =e'| < Cru(Ap) ™ < 7!

t p [ CER et p >
r! et(t+1) if T=0"
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(i1) (Distribution of return times) if 3., ¢(v) < co then

tr p [ CHEgrter p g >
Z(NT) — —e 7t < nCru(A,,)™r 7! =
o) = e S nClAnl ™ iy i e =0

where m = min(n, 7(A,)) and A, C A,, € A™.

Proof. We want to verify the conditions of Theorem 1 using Proposition 10.
Notice that A, NT77A,, =0 for j = 1,...,m — 1, and if we put &, = m
then the set V,, as defined in the hypothesis of Proposition 10 is equal to A,,
as [ =0.

Assume that ¢ decays polynomially with power p, i.e. ¢p(v) < c;v™P for
some ¢, and put 9, = /L(Am)_ﬁ. Then

Ontt(Am) < p(Ap) T

and .
1 P
P(0n) < 5P < c1pu(Ap) T
(i) With &, = neap(A,) ™% (2 = max(7,¢1)) and a = 3, Proposition 10
ensures that the conditions (1)—(5) of Theorem 1 are satisfied.
(ii) If we put ¢, = nCQM(Am)ﬁ and o = 3 then Proposition 9 ensures
that the conditions (1)—(5) of Theorem 1 are satisfied.
Put C7 = max(3Ccy, Ciea). O

Remark. Theorem 16 covers the special case when ¢ is summable (see in
particular [9]), i.e. >, #(v) < oo, which implies that ¢(v) < ¢; /v (for v > 0).
Lemma 16 thus can be applied to the case when p =1 (p* = 1/2) and gives
us the following error terms:

tr P =1t §f p > 1
ny = Pt < copanye {5 =1
ILL( n) r!€ ~ 71“( ) et<t+1> lf T:O

4.2 Mappings that are Axiom A

In the following we are looking at strongly hyperbolic maps that satisfy
the Axiom A properties and conseqently have very regular behaviour as the
shadowing property and finite Markov partitions of arbitrarily small diam-
eter. Such systems are usually studied using a symbolic description by a
subshift of finite type. A good reference is the classical book by Bowen [4].

Theorem 13 Let T : Q — Q be a topological mizing Aziom A map on the
basic set Q and p the (invariant) equilibrium state for a Hélder continuous

potential f (u(2) =1).
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Then there exists a constant Cy so that for all A, € A" and all t,r for
which éu(Am) is small (tp(Ay,) mall if r = 0) one has (for large enough
m):

(i) (Distribution of entry times)

o (r+t)2trflet if r>1
NI — =€ < Csnu(An, r! -
‘ILL( n) 7"!6 ~ 8”1“’( ) 6t(t—|—1) Zf 7,:0

(i) (Distribution of return times)

tr U yr—tet if r>1
" Nr 7 t‘ < C 2 Am ] el ’
H ( n) T!Q =~ Ggn M( ) et(t+ 1) ’Lf r=0

where m = min(7(A4,),n) and A, C A,, € A™.

Proof. We shall use that Axiom A maps are ¢-mixing where ¢(k) = ;9%
for some positive ¥ < 1 and a constant ¢;. By the Gibbs property [4] of u
there exists a number c; > 0 so that u(A4,,) > e ™2 > e "2 for all large
enough m and n. Put d,, = gn, where ¢ = 1+ ¢y /|logd|. Then (as V,, = A,,)

Ontt(Am) < qniu(Ar)

and
¢(dp —n) < Pl < emam < 1(Am)

for all large enough n.
(1) If we choose €,, = 3qnu(A,,) and a = 3 the conditions of Theorem 1 are
satisfied by Proposition 10. This proves the first statement of the theorem.
(ii) With the choice &, = 3gn?u(A,,) and @ = 3 the conditions of Theorem
1 are satisfied by Proposition 9. a

The same asymptotics and similar error terms are valid for any ¢-mixing
measure for which ¢ is exponentially fast decreasing. In the case of an Axiom
A system, the Gibbs property was used to get an exponential lower for the
measure of cylinder. Systems that are not markov will in general not have
this property.

4.3 The distribution of restricted entry and return times

The first result we prove is on the distribution and error terms for the re-
stricted return times.

For an n-cylinder A, let the counting functions 7], v = 0,1,...,N
be defined as in Proposition 11, where N = [t/u(U,)], U, = (T "Ay) \
U;‘;ll T~ A, and t is a positive parameter. Since f = 0 we have in the
setting of Proposition 11 that V,, = A,. Consider the restricted counting
function &, = >N, 77 and its r-levelsets N7 = {2z € Q: &, () = r}.
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Theorem 14 Let o be a probability measure on €2 which is ¢-mizing and
invariant with respect to a map T and a partition A. Assume that ¢ is
summable.

Then there exists a constant Cy so that for all A, € A™ and all t,r for
which %u(An)p* is small (tu(A,)P" small if r = 0) one has:

oyt : f R pretet p >
) = et < conr ua L 21
2 ( n) T!e > G IU’( ) et(t + 1) Zf r=20

where
(i) (¢*,p*) = (0, ]ﬁ) if ¢ decays polynomially with power p,
(i) (¢*,p*) = (1,1) for an Axiom A system and a Hélder potential.

Proof. Let us first note that V,, = A, since f =0 and 7(U,,) > n.

(i) If ¢ decays polynomially with power p we put ¢, = p(An)fﬁ and
therefore obtain 0, u(A,) < 1(A,) T and o(d,) < clu(An)l%P for some ¢;.
With e, = neop(An)P (¢ +1 =1, ¢ = max(7,¢;)) and a = 3, Proposition
11 implies that the conditions (1)—(5) of Theorem 1 are met.

(ii) If p is an equilibrium state on an Axiom A system for a Holder
continuous potential, then ¢(k) = c309% (0 < ¥ < 1) and by the Gibbs
property [4] u(A,) > e (¢q > 0) for all large enough n. With §,, = ¢n,
where ¢ = 1 + ¢4/|log¥| we obtain (as V,, = A,,) that §,u(A,) < gnu(4,)
and ¢(d,, —n) < u(A,) for all large enough n. With &, = 3qgn*u(A,),a =3
the conditions of Theorem 1 are satisfied by Proposition 11. O

Let us now look at the distribution of the first return time 74, which is the
case r = (0. We obtain the following result in which the numbers ¢* and p*
are as in Theorem 14.

Corollary 15 Let p be a probability measure on 2 which is ¢-mizing and
invariant with respect to a map T and a partition A. Assume that ¢ is
summable.

Then there exists a constant Cyg so that for all A, € A" and t > nu(U,)
for which tu(A,)P" is small:

*

N(’fU)}) - ’ < Caglt + ent™H (A, )7

L, <{a: €A, 74, (x)>

Remark. In the case (¢*,p*) = (1,1) the same asymptotics and similar error
terms are valid for any ¢-mixing measure for which ¢ is exponentially fast
decreasing and where the measure satisfies a Gibbs property (which applies
to Axiom A systems). Systems that are not markov will in general not have
this property as for instance the piecewise expanding maps we consider in
section 5.
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4.4 Convergence in measure for entry and return times
for ¢-mixing maps

For z € Q let us denote by A, (z) the (not necessarily unique) n-cylinder
that contains the point z. For a given point x denote by pu,, the conditional
measure on the set A,(z). By [7]

lim inf Z
n—00 n
p-almost everywhere for every ergodic T-invariant probability measure p. In
other words, let € > 0 then for almost every point z € ) there exists finite
number N (z) so that 7(A4,(z)) > (1 —e)n V n > N.(z). Therefore, if we
put
Tne={x€Q:7(A,(x)) > (1 —e)n},

then p(Jy.) — 0asn — oo for every positive . Let us recall (Lemma 5) that
for ¢-mixing maps (be they Axiom A or be it that ¢ decays polynomially)
the measure of cylinders decays exponentially. We thus immediately obtain
the following result.

Corollary 16 Let pu be a ¢p-mizing probability measure.
Then there exists C11, 0 < 1 and a sequence of sets J, C ) for which
limy, oo (Jn) — 1 so that for all x € J,, and suitable t,r
T ¢ -t
lu* (Nn) - €

rl

=it if r>1
et(t+1) if r=0"

< Cpo” {

where [, is either u or the measure p,, resticted to A,(x).

5 Maps that are (¢, f)-mixing but not ¢-mixing

In this section we discuss some systems that exhibit mixing behaviour similar
to that of the previous section but without the uniformity present there. Now,
f is not necessarily equal to 0 (or a constant).

5.1 Piecewise continuous maps

In this section we use results on some systems that have been studied by
various people and in particular by Paccaut [19] in his PhD thesis. Let M be
a compact manifold, T : M — M a piecewise invertible transformation which
one-to-one on the atoms of a partition A. We assume that the partition is
sufficiently regular, i.e. that it satisfies

(i) A is generating,

(ii) every atom in A* has only finitely many components,
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(iii) For every open U C M there is a k so that M = T*(U\ d.A).
Moreover let g : M — R™ be a positive potential function which satisfies the
following bounded distortion property

1
0 < limsup — log max sup
g(x)

<1,
n—oo M AGAnxgeA

and for which P(g,T|s4) < P(g,T) (P is the pressure function). Then it
has been proven by Paccaut ([?] Theorem 2) that there exists a unique (7-
invariant) equilibrium state g and 0 < p < 1 so that

1W(G(H o T") = w(G)u(H)| < crp®(|Gllol| Hl| 1, (9)

(c1 is some constant) for all L!'-functions H and G in the function space Vj
which consists of all functions y whose 1J-variation

o
vary = Z 9F Z sup g osca f
k=1 AcAr A

are bounded (¢ > 1).

Let £ be the transfer operator with the weight function g. Then £ has
a unique positive eigenfunction h and a unique eigenfunctional v which, if
properly normalised, give the equilibrium state yu = hv.

Now let A,, be an n-cylinder and let us estimate the J-variation of its
characteristic function y 4. One has oscyy x4, < 1 for every cylinder U € AF,
kE=1,...,n—1and oscy xa, = 0 for every k-cylinder when k£ > n. Hence

n—1 n—1

vary xa, < Zﬁk sup g < Z1§"“|g|0o < K"
k=1 Ak k=1

for some constant x > 1, where the k-cylinders A are so that A, C A. If
A, has positive measure then we define

log(u(An)ﬁ”)] '

Fda) = [2 log p

One sees that for A C B, |A| > |B|, A, B € A* then f(A) > f(B). Hence f

defines a separation function on .4* and we have by equation (9)
(A N TV = (A (V)] < erp P (A p(V),

for all measurable V' C M and k& > f(A,). In other words, p is (¢, f)-
mixing with f and ¢(k) = p*/2. Clearly ¢ is summable. If ;1 satisfies a Gibbs
inequality then f(A) < ¢3|A| for some ¢y and all A € A*.
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Theorem 17 Let T be a piecewise invertible maps as above and j an equi-
librium state.

There exists a constant Co so that for all A, € A":
(i) (Distribution of entry times)

o, () yr—1t if r>1
N et < Oe(An) ] 21

(i1) (Distribution of return times)

A Ot gr—tet yf P> 1
n " - < C Am T! . - bl
(N T!e < nChae( ){ et +1) if =0

for all t,r for which ée(Am) is small (te(A,,) small if r = 0) where
(1) m = min(7(A,),n) and A, € A™ is such that A, C A,,,

(2) Vi, a union of §"-cylinders such that A,, C V, and f(V,,) <m — ",
(3) €(An) = max((n + f(An)u(Vn), prH/A072),

Proof. Let V,, be as in the hypothesis and put

g ))

0,, = max (n—i— f(Ay), 210g p

Then ¢(6,) = pén/2 < (V)

(i) If we choose €, = €(A4,) and o = 3 the conditions of Theorem 1 are
satisfied by Proposition 10.

(ii) With the choice ¢, = ne(A,) and a = 3 the conditions of Theorem 1
are satisfied by Proposition 9. a

Let h = limsup,,_, %n“m denote the topological entropy of T'. Let 0 < o’ <
e and put J¢ = Usean y(ay<om A. Then

1(J5) < oA < e

for all large enough n. For x € 7, one has u(A,(x)) > ¢ which allows us

to estimate the separation function: f(A,) < 2n11§ 2% (one can now read off
gp

the value of ¢y above).

Let us now examine the distribution of first return times. In order to
apply Proposition 11 we put ¢’ = {nlong%HQ}. Thus 9, = n% and
consequently we can use Theorem 1 with the error term

e(Ap(x)) <n

log po'?K?
log p

where p > logo/logo’. Let /\A/Z be the level sets of the function fn which
counts the restricted returns to the set A,(x) up to time ¢/u(U,(x)), where
U, = (T7"A,)\ U?;ll Ti="A,. To emphasise the dependency on z let us
denote the conditional measure on A,(x) by pia, ). We thus obtain:

p(Agr () < p(An ()P,
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Theorem 18 For some Ci3, allx € J,,, n large enough and allt,r for which
%,u(An(x))p is small (tp(A,(x))P small if r =0) one has:

AT T2 pr—tet Gf p>1
N —=ef| <C Ap(z))P s =
Hania W) = €| < Camp(Aa@Y gy 4 20

The distribution of the first return time is given by the case r = 0.

Corollary 19 For z € J,, u(J,) > 1 — e, and all n large enough and
t > nu(Uy(x)) for which tu(An(x))P is small:

A, () ({y € An(Z) : Tau ) (y) = M(Uz(ﬂﬁ))}> -

5.2 Rational Maps

Let T be a rational map of degree at least 2 and J its Julia set. Assume
that we executed appropriate branch cuts on the Riemann sphere so that
we can define univalent inverse branches S,, of 7™ on J for all n > 1. Put
A" ={p(J) : ¢ € S, } (n-cylinders).

Let f be a Holder continuous function on J so that P(f) > sup f (P(f)
is the pressure of f), let u be its unique equilibrium state on J and ¢, =
Z;‘Vzl X4, © T77 the ‘counting function” which measures the number of times
a given point returns to the n-cylinder A, within the normalised time N =
[t/1(Ay)]. In [11] we showed that for almost every x

< Ca(t+1)e' u(An ()P,

as n — oo, where N7 = {y € Q : &,(y) = r} are the r-levelsets of &,.
We are now able to considerably sharpen the result on the convergence and
give explicit error bounds as well as provide the limiting distribution for the
return times.

Theorem 20 Let T be a rational map of degree > 2 and p be an equilibrium
state for Holder continuous f (with P(f) > sup f).

Then there exists a p € (0,1) and Cy4 so that on a set of measure larger
than 1 — p™ one has:
(i) (Entry times)

T

(r+6)? =1t
) = G| < cur { L 2

!
7! et+1)  if r=0"

(i1) (Return times)

pin(Nyy) — r,@_t‘ < Cunp” 7l

r T =1t yf P> 1
el(t+1) if r=0"

for all vt for which r?p"™/t respectively tp" is small.
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The univalent inverse branches S,, of 7™ (with appropriate branch cuts) split
into two categories, namely the uniformly exponentially contracting inverse
branches S), and the remaining S/ = S, \ S; for which do not contract
uniformly. In [11] we showed the following result:

Lemma 21 There exists a Ci5, 0 < 1 and k > 1 so that
W ATV = p(W)p(V)] < Crso®s"u(V)u(W),
where W = ; Ay, for finitely many @; € S, k,n >0 and Q measurable.

If in the last lemma we would not have to restrict to the cylinder sets of
contracting branches in S/, then (7', u) would be (¢, f)-mixing, with decay
function ¢(k) = o*/? and separation function f(A) = ¢|A|, A € A*, where
q is an integer so that 0%« < 1. However the contributions from the non-
contracting branches can still be well controlled and allows us to proceed in
a way that nearly identical to the (¢, f)-mixing case with f(A) = g|A|. The
following lemma is the equivalent of Lemma 4.

Lemma 22 [10] Let n € (0,1), » > 1 an integer. Then there exists a con-
stant Cig and a ¢ > 0 so that for all U = (vy,ve,...,v,) € G, satisfying
min;(vj41 —vj) > (1 +g)n:
( §=1 T_UWVJ')
§:1 M(Wj)

for all sets Wh, ..., W, each of which is a union of atoms in A" and for all
n>1.

—1 S 01677”7

Let us define the rare set and its components I, and K,. For p > 0 let us
put [,(N) = {¥ € G.(N) : min;(v;4+1 — v;) < pn}, where the value of p
will be determined in the next paragraph. The set K,(N) is then given by
all 7 € G,(N) for which pn < min;(v;4+1 —v;) < (1 + ¢)n, where ¢ is as in
Lemma 22. In the terminology of the previous section we use v; = [pn| + 1
and vy = (14 q)n.

Let 0 < p < 1 be so that d’\/p < 1 where p = eSwf=P) - In the
next lemma we show that those cylinders A € A™ that return ‘too soon’ to
themselves constitute a small set. Define

[pr]
Ji= U UANT ™A,
AeA™ m=1

and then put 7, for its complement.

Lemma 23
u(Tg) < np?
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Proof. Let and 7, denote the first return time to the set A,, ¢ € S, and
define

Upn={y € J:7,(y) =m}
and obtain .
UnNA, CA,NT ™A, C |J U A,
k=0

With V = T™U,, N A, we have V. = A, NT™A,. Let us write ¢ = ¢!,
where ! € S, and ¢! = T™¢p € S,_,, (with suitable branch cuts). We
proceed inductively and obtain

o =ryYrt gk

where n =mk+ /0,0 <0 < m, @b‘ES and ¥ = T™*p € Sy. Let us note
that 7™V = A, N A+ for j = ,k, where ¢f = T p = oI+ ... qhlpF,
Since pu(Ayk..pipr) < p"T™ we can now estimate

Z M(Um N A(p) < Z M(A¢k...wl¢k)

SOGS’VI 1/)17"'7¢k€5m
< |Sm|pn+m>
where there are at most |S,,| choices for 1! and then for every j = 1,...,k—1

the ¢ € S, must satisfy 77"V C Ay N Ay, For every ¢/ we get a
unique 17! since the sets ¥(J Nint(£2,,)),? € S, are disjoint. Hence the
last inequality, where we also used the fact that p(Az) < |[Ple < p"™ for

@ € Spgm-
Since by assumption d?\/p < 1 we get

Z M(UmﬂA<p) < dmpn—i-m < (dpp1/2)npn/2’0m < pn/2,
PpESH

and therefore
[pn]

ZZ“U NA,) <np

m=0 peS),
which goes to zero as n goes to infinity. a
For 7 € G.(N) let us put C5 =, T A,, ¢ € A", N =t/u(A,). Let us

put b2 = p(Cy). If we put I, = {¢ € G, : min;(v;+1 — v;) < pn}, then the
last lemma showed us that for all z € 7, one has

> b =0.

vely

Proof of Theorem 20. We are going to check on the conditions of Theorem
1. First for the entry times. We assume that x € 7, which impliesthat
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R, =
(1), (i) By invariance of the measure b)) = u(A,) for all v.
(iii) The assumption of Lemma 6 (i) is satisfied if we choose ' = pn and
d = (1 + ¢)n. According to Lemma 22 our separation function f is given
by f(k) = (14 ¢)k = §. Hence 6" = [pn/(1 + q)]. With this choice, V is a
§"-cylinder whose measure is (V) < pP*/(1+9) This yields
r - <2t)8
S0 < 21+ Cus)(1+ e 0D 3 (2(1 + q)np/ (HHyr=s 12

[
FEK, s=0 s

~n - ~n(r—s (Zt)s
< apy o2
s=0

for some p € (p?/(1+9 1) and some ¢; > 1.
(iv) By Lemma 7 one has for every r:

n n /’L<A<P>tr_1
RN A G N < A—
Z v1 Upr — (,r, _ 2)'

veK,

(v) This is shown in Lemma 22.

Naturally p(A,) < p". Hence, if we put ¢, = ¢1p" and a = 2 then
we obtain the result follows from Theorem 1. The proof of the result for
the return times proceeds in a similar way with the obvious modifications
(mainly in (v)). O
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