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Summary. — We give rigorous estimates of the dimensions, entropies,
characteristic exponents and scaling function of hyperbolic Julia sets, for any
Gibbs measure, by the direct computations of the topological pressure.

PACS 03.20 — Classical mechanics of discrete systems: general mathematical
aspects.

Introduction.

The thermodynamic formalism introduced by Ruelle et al. (*) has proved to be
an essential scheme in order to understand and compute the dynamical and
fractal properties of strange sets and in particular of the so-called mixing
repellers (%). To this class the linear Cantor sets belong, for which all the relevant
dynamical variables can be analytically computed, and the disconnected Julia

() D. RUELLE: Thermodynamic Formalism (Addison-Wesley, Reading, Mass., 1978);
R. BOWEN: Lecture Notes in Mathematics, Vol. 470 (1975).
(® D. RUELLE: Ergod. Th. Dyn. Syst., 2, 99 (1982).
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sets (®), for which an approximation scheme based on sequences of linear Cantors
was developed and rigorous convergence proofs were given (*9).

For the linear Cantor sets we first relate the generalized dimensions,
entropies and Lyapunov indices to the free energy and show that, for the Gibbs
measures, it can be expressed in terms of the pressure which is a purely
topological quantity.

These relations are extended to the nonlinear Cantor sets, like the
disconnected Julia sets, with a limit procedure that can be rigorously justified.

From a numerical point of view it is equivalent, and may be simpler, for the
Julia sets not belonging to the real line, to compute the pressure using an
expression which involves only the preimages of a given initial point. Moreover,
the same method can be applied to connected Julia sets, provided that the
hyperbolicity condition is satisfied (that is no critical point belongs to the Julia
set). Even in this case we can relate to the pressure the generalized dimensions,
entropies and Lyapunov indices for the one-parameter family of the Gibbs
measures, among which the physically most interesting ones are the balanced
measure with equal weights, the ordinary Gibbs measure and the Sinai-Bowen-
Ruelle (SBR) measure.

1. — Gibbs measures and Cantor sets.

Consider an expanding map T, let J be its invariant set and u an ergodic
invariant measure on J, such that, for any measurable subset A cJ, we have

w(T1A) =u(A).
An important subclass, to which the hyperbolic Julia sets belong, is given by the
conformal mixing repellers. These are sets J, invariant with respect to maps T,
which are uniformly expanding:

1.1) |DT™@)||>ca", ¢>0, A>1, Vxed, VneZ,

where DT(x) denotes the tangent map, which is a scalar times an isometry, and
enjoy the property

1.2) closure {T"(x)}n=0=J, xed.

() H. BROLIN: Ark. fiir Math., 6, 103 (1965).

(9 G. TURCHETTI and S. VAIENTL to appear in Phys. Lett. A (1987).

() G. TURCHETTI and S. VAIENTL Generalized dimensions of strange sets and
Cantorian approximation, to appear on Egypt. J. Phys. (1988).

(®) S. VAIENTI: to appear in J. Phys. A (1988).
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The hyperbolic Julia sets for polynomial maps are also defined as the closure of
the repulsive fixed points, or the boundary of the basin of attraction of the point
at infinity.

We introduce a one-parameter family of invariant ergodic measures ux,(z) on
J, defined as follows: the pressure for the function — olog||DT(x)| is given by

1.9 P(e)= lim sup {() — = [ log | DT(@)| du(@)}
e MATJ)

where (T, J) is the space of all the invariant measures on J and h is the
entropy. The measure for which the maximum of the functional in the r.h.s. of
(1.3) is achieved will be denoted by g (x) and will be called Gibbs measure (*):

(1.4) P(o) = k() = = [ 1og | DT(@) | du. (@) .

For the rational Julia sets the integral term in (1.4) is the Lyapunov exponent A
with respect to x, and we can also write

(1.5) P(o) = h(p,) — oA(p,).

A particular measure corresponding to ¢ = 0 is the balanced measure (we denote
it with up=p,), for which

(1.6) P(0) = h(up) = hiop,

where h,, is the topological entropy, that is the maximum of k(u) with respect to
all the measures in #Z(T, J).

For a polynomial map of degree s the balanced measure enjoys the following
property on any set A on which T is injective (with unique inverse) (>"):

1.7 up(TA) = sup(A).

When ¢ is equal to the Hausdorff dimension Dy, where the pressure vanishes,
according to the well-known Bowen-Ruelle formula (%)

(1.8) P(Dy) = M ppy) — DuA(up,) =0,

we call the corresponding measure yp, the uniform Gibbs measure, since it is
equivalent to the Dy-Hausdorff measure of J(%).

() M. Ju. LyuBicH: Ergod. Th. Dyn. Syst., 3, 351 (1983).
() K. J. FALCONER: The Geometry of Fractal Sets (Cambridge University Press,
Cambridge, 1985).
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Finally, when o = d, where d = 1, 2 is the dimension of the space where the set
J is embedded, the measure p; becomes the SBR measure(®) and one has
P(d) = — ary, the theoretical escape rate ().
For the linear Cantor sets the Gibbs measures can be explicitly computed.

Let us consider a linear Cantor C on the real line, C ¢ [0, 1], with diam C =1 and
a map L(x) which is piecewise linear on L~1([0, 1]) such that

1.9) L0, 1D =3 I, LAL=0 for k#j.
k=1

We denote with L;l(x) the inverse of L(x) on I, where it is injective. The
diameter of I;, that is its length, is equal to the slope of the linear function
L;Y(x), and is called a scale A, of the Cantor C:

1.10) diam (I;) = diam (L;¥([0, 1)) = 2.

Since i,<1, one has L0, 1) c L ™[0, 11) for m<mn, and the Cantor is
defined by

(1.11D) C =Lim L™([0, 1]).

The set L ™[0, 1]) consists of s” disjoint preimages of [0, 1] denoted with
1.12) L.k, =L} ... LgX([0, 1D).

From these intervals we immediately obtain an order » partition .£™ of C
according to

(1.13) AW = kUk Ay Ape, =L 1,nC.
It is easy to check that
(1. 14) diam (Ikl-ukn) = diam (Akl...kn) = Akl eee Akn .

We introduce a sequence of measures (%), uniform on the intervals I .,
defined by

(1.15) radr) = Pe, >o=1
k=1

(® T. BoHR and D. RaND: Physica (Utrecht) D, 25, 387 (1987).
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and
(1.16) iy Ly de) = Phey oo+ Dy »

For a detailed analysis of these measures we refer to ().
This sequence of measures ug(x) can also be represented numerically since,
for any finite n, their density gy (x) is given by

J g, el 4, -
(@L17) pnl@) = Pry--- P,

1 - erkl...k .

o n

Then we observe that, letting u(x) be an invariant measure on J, and requiring
(1.18) M(Akl...kn) = H(n)(l kl...k,,) y

the measure p will be completely defined and will be an invariant ergodic
measure of J.
If we choose
)\O‘
(1.19) D= ——
A%

k=1

then we obtain the Gibbs measures on C. The balanced measure is given for
=0, that is

(1.20) Dr=

’

o -

while the uniform Gibbs measure is given by ()

1.21) pe=aDx, S Pa=1,

k=1
The same analysis applies to any linear Cantor set in R™ and obviously to Cantor
sets in C. We consider a map L(x) defined on an open set
0>C, diam@Q = diam C, such that L) is the union of s disjoint sets I, ..., I,
and the inverse of L(x) restricted to I, is linear. Such inverses, denoted by
L;*(x), are given by

(1.22) Li'(x) = a, + LRy x,

(*) M. F. BARNSLEY and S. DENKO: Proc. B. Soc. London, Sect. A, 399, 243 (1985).



290 G. SERVIZI, G. TURCHETTI and S. VAIENTI

where R, are rotation matrices and |3,/ <1. With such a condition one has
L) c L™™Q) for m<mn and C is defined by C=lLmL™@).

Given any disconnected J and a nonlinear map 7(x), we choose a disk 22J
with the same diameter as J and such that it does not contain any critical point of
T. Then we consider s linear maps L~ which transform the disk Q into s disks Q;
which contain 77Q) and such that diamQ, = diam T;%(Q).

At order n there are s" such maps L}c’l‘?:;%, for ki, ..., k,=1,..., s, which
transform Q into s” disks containing 7% ... T Q) and having the same diameter.

As a consequence one associates to (J,T) a sequence (C,, L™) of linear
Cantors and the approximation theorems for the pressure and the relevant
dynamical variables have been proved for the balanced measures (*¢). Indeed one
can introduce on C, a Gibbs measure ™ and prove that in the limit n— o« they go
into the Gibbs measure g, on J (see sect. 3 and Appendix A); one can also prove,
using only arguments based on fractal geometry, that the Hausdorff distance of
C, from J goes to zero and that the Hausdorff dimension of C,,, D, becomes the
Hausdorff dimension Dy of J as n goes to © (see appendix B).

The geometric interpretation of this construction is simple for the 1-dimen-
sional Cantor sets: in fact, in this case, the linear maps are simply defined by

-1

(1.23) L 3,10, 1) =T 5,0, 1D.

2. — Free energy, pressure and generalized variables.

Consider an hyperbolic totally disconnected set J (Cantor set) and an open set
@ > J which does not intersect any critical point of the map T'(x) with respect to
which J is invariant. Let .£® be a partition of J:

@.1) A0=T0)nJ= Ua,, AnA;=0 if k#5.

k=1

Denoting with T the inverse of T(x) on the set By, where T71(Q) = U B, and
k
A, =B, nJ, the refinement .£® of the partition at order n is defined by

@2.2) AP =T"DnI= U A4,
kydoy=1

where

2.3) Ay i =Bu 1,0, Bis=T ... T Q)

are all disjoint sets.
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The order % partition function is defined by (**)

s (A )?
2.4 Z(B, 4 u)= {diam (4, )F
@.4) (8, & u) k1-§z=‘ {diam (4, )]

and the free energy (*) is given by the thermodynamic limit
@.5) P(B, @ ) =lim - 10g Z,(8, o5 ).
The pressure is then given by ()

2.6) PG =lim S log 3 [diam Ay, ., )
and is related to the free energy according to
@7 Pl@)=F(0, —o; ).

The generalized dimensions D, are given by (***)

7o)
(2-8) Dq(lu) = E__l’
o being the point where the partition function Z,(q, 7; ») is of order one when
n— ., Indeed, for any real = # 7,, the limit of the partition function Z,(q, 7; ») is
0 or «. It is easy to check that 7, is also the unique solution of the implicit
equation

2.9) F(g, 7 w)=0.
The generalized Renyi entropies are defined by (*)

1

@.10) T = 1=

%Qilog >[4, 1))

Fpendiy=1

(*) P. CoLLET, J. L. LEBowrTZ and A. Porz10: J. Stat. Phys., 47, 609 (1987); E. VuL, K.
KHANIN and Y. SINAL: Russ. Math. Survey, 39, 1 (1984).

(® D. BEssis, G. PALADIN, G. TURCHETTI and S. VAIENTL to appear in J. Stat. Phys.
(1988).

(®) T. C. HALSEY, M. H. JENSEN, L. P. KADANOFF, 1. PRocAcCCIA and B. J. SHRAIMAN:
Phys. Rev. A, 33, 1141 (1986); H. G. HENTSCHEL and 1. PRoCACCIA: Physica (Utrecht) D,
8, 435 (1983); P. GRASSBERGER: Phys. Leilt. A, 107, 101 (1983).

(™) J. P. ECKMANN and D. RUELLE: Rev. Mod. Phys., 57, 617 (1985); L. K. KADANOFF
and C. TANG: Proc. Nat. Acad. Sci. USA, 81, 1276 (1984).
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and consequently are related to the free energy by

@.11) h(w) = Ti—q F(g, 0; ).

Finally the generalized Lyapunov indices are given by (***)
2.12) #(w) =lim % logjf 1DT(@) | d (e

It can be proved that (a sketch of the proof for the Gibbs measures will be given
in the next section)

(2.13) Llw=FQ, q; ).

For the Gibbs measures u, defined in the previous section, it can be shown (see
next section for the proof) that

2.19) F(B, o; u,) = P(8o — a) — BP(0).

As a consequence, for these measures, the generalized dimensions, entropies
and Lyapunov indices can be expressed in terms of the pressure only, that is a
function of purely topological nature.

Indeed, from (2.8), (2.9) and (2.14), we have that the generalized dimensions
D, are given by

(2.15) P(gs — (¢ — 1) D)) — qP(e) =0.
The Renyi entropies become

2.16) hw) = —11—q [P(¢e) — ¢P()]
and the generalized Lyapunov indices

@.17) Zy(u)=Po—g)~ P(o).

For the balanced measure ug with o =0, we recover the formulae quoted in (),
namely

P(- (¢ —1)D(up) = ¢P(0),
(2 18) hq( F‘B) = P(O) = htop ’
Ly(pp)=P(— @) — P(0),

() R. BENzI, G. PALADIN, G. PARIST and A. VULPIANL: J. Phys. A, 17, 3521 (1984).
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while for the uniform Gibbs measure up, we have

Dq( ‘U~DH) = DH ’
_ P(qDw)
2.19) hy(ppy) =1-¢°
«%(MDH) =PDy~q),

where we have used (1.8) and observed that
P(gDy — (¢ — 1) D (p,)) = gP(Du) =0

which implies the first of (2.18). For the SBR measure we have only to choose
s =d, where d =1 for Julia sets on the real line and d = 2 for Julia sets extending
on the complex plane.

The first couple of relations (2.18) and (2.19) were already given in(%%),
while the third one, concerning the Lyapunov exponents, was given in(*?). The
extension to any Gibbs measure was proposed in(*").

Here a unified derivation from the free energy is presented and an explicit
and simple construction of the measures, using the linear Cantorian
approximation, is given.

We recall, finally, that we can easily evaluate the scaling function of any
measure g,, once we know the pressure. Let E(«, ,) be the subset of J given by
all the points « such that (denoting with B(x, [) the sphere of radius ! centred at x)

logu (B, D)) _ .

(2.20) hmbj,up Tog!

and E(«, ¢,) the set obtained by replacing lim sup with lim inf in (2.20). Then the
scaling function f(a; ) is the Hausdorff dimension of the sets E(x;u.), E (a, 1,)
and is related to z,(u,) in (2.8) by the equations (**)

_4d
@2.21) J R PG

1 qo (o) — flag(); 1) = 7o) -

To conclude this section we recall that, using the well-known relation

(2.22) arg = — P(d),

() M. J. FEIGENBAUM: J. Stat. Phys., 46, 919 (1987).
(") S. VAIENTIL: to appear in J. Phys. A (1988).
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one recovers, for the SBR measure, other relations already quoted in the
literature (5°).

We can also observe that, differentiating (2.15) with respect to ¢ and
evaluating the derivative at ¢ =1, one has

P()  hp.)

(2.23) Dy(u,)=a— @ )

Indeed P’'(c) is equal to the Lyapunov exponent A(g,) = — d_&,/dq (.)|,~0 as can
be seen from (2.17) and oA(,)+ P(e) =h{x,) is the Kolmogorov entropy
according to (1.5) or to (2.16) if the limit ¢— 1 is taken.

In (®) it was shown that the r.h.s. of (2.23) is exactly the Hausdorff dimension
of the measure u, defined as in(**):

(2.24) Dy(p) = lgp {Hausdorff dimension of A}.

#a(A)=1
For connected Julia sets one has Dy(u) =1 for the balanced measure, since (**)
R(uo) = A(wo). In the literature Dg(uy) is called «information dimension».
3. — The linear Cantor sets.
Let us consider a linear Cantor set C ¢ [0,1] with s scales 4, ..., 2, and let L(x)
be the piecewise linear map on L~Y([0, 1]). Letting p,, ..., p; be the weights

defining a measure g according to (1.15), (1.16) and (1.18), it is easy to compute
the free energy defined by (2.5) and the result reads

3.1) F(B, a; p) =log (kZilpiA; ) .

The pressure is given by

3.2) P(a) = log ( kz x;) .
The Renyi entropies read

3.9 () = l—ig log(;;pz).

and the Kolmogorov entropy is the limit for ¢ — 1

(3.4) P(e) = () = — kZipk log Py -

(%) A. MANNING: Ann. Math., 119, 425 (1984).
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The generalized Lyapunov exponents read

3.5) LW = log(;;pk/\;")

and consequently the ordinary Lyapunov exponent is given by

q

L) s
3.6) A(w) Elqi_)o T =— Elpkl()g)\k-

From (3.6) and (3.4) we obtain
A
" b

3.7 h() = oA(p) = ,,2 pilog

and it follows that, for

(3-8) D= s ’
> X

k=1

the r.h.s. of (3.7) becomes exactly P(s) so that (3.8) is the Gibbs measure u, for
the linear Cantor. Replacing (3.8) into (3.1) we immediately obtain that for the

measure g, the relation between the free energy and the pressure is given by
(2.14):

F(8, a; ) = P(Bo— a) — BP(o).

4, — Computation of the pressure.

Disconnected sets. The basic formula we use to compute the pressure of a
disconnected hyperbolic set of the complex plane (Julia set) is given by (2.6).

Introducing the scales A% . of the associated linear Cantors C, according to

diam (4, ;)
“4.1) M diam @ nJ) ’

the pressure can be written as (49

“2) PG =lim 1 P,(),
where
*.3) Py = log[ > (AEZI?..J]

20 - Il Nuovo Cimento B.
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can be interpreted as the pressure for the linear Cantor C, associated to the
linear maps L™(x) defined at the end of sect. 2. The thermodynamic limit (4.2) is
the central step of the linear Cantorian approximation which was developed for
the conformed disconnected repellers. In the same way we can write the free
energy for the Gibbs measures 4, as

4.4 F(B, a; u,) = hm Fn(ﬂy a; IU'(n)

where F, is the free energy of a linear Cantor set with scales Agc”:)k , given by
(4.1), and weights

LD LT
(4.5) Pryoky =0 B )= — T,
namely, according to (3.1), o
[ (n) ],@o‘-u

4.6) FulB, o p™ =log kE L ,
1"(2[Wﬂ)

It is, therefore, sufficient to use the convergence theorem on the pressure to
prove that (2.14) holds.

=P, (Bc —a) —BP(a).

Connected sets. If the Julia set is connected, we have to replace the partition
AP with any Markov partition of J (*) and the limit (4.2) is still true. However
this limit is difficult to compute numerically since the Markov partitions are hard
to construct. Nevertheless we have another useful method to compute the
pressure, whose motivation is in the Walter’s theory (**) of the Ruelle-Perron-
Frobenius operator ().

Let x be any nonexcluded point of the complex plane (for polynomial maps
there are at most two such points, one of which is the point at infinity); then

.1 1
4.7 P(a)=lim =1lo —_—.

e N gye;"(w) ‘DTn(?/)la
The existence of limit (4.2) for Markov partitions, the techniques of theorem (4.6)
in (%) and all the relations between the pressure and the dynamical variables
written in sect. 2 apply also to the connected hyperbolic Julia sets.

() P. WALTERS: Trans. Am. Math. Soc., 236, 121 (1978).
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5. — Numerical results.

We have computed the pressure for several Julia sets (connected and
disconnected) using (4.2) and (4.7), with a maximum iteration order N=14. A
good stability is observed, not only for the pressure, but also for all the computed
dynamical variables, that is the generalized dimensions, entropies and the
scaling functions.

For each case three different Gibbs measures x, were considered, namely the
balanced measure ¢=0, the uniform Gibbs measure o= Dy and the SBR
measure o= 1 for the Julia set on the real line, ¢ =2 for the Julia sets on the
plane. Comparison with rigorous bounds given in(*) were satisfactory.

The numerical values were checked with the theoretical bounds (*)

6.1 log s — alog v < Pa) <log s — alog vy,
where
(5-2) Vmin = n}pgl IDT(x)‘ I} Vmax = m%( IDT(x)l

and s is the degree of the mapping. When v, <1, we look for the smallest
iteration T™ of T such that |DT™x)|=p,,>1 for x €J and replace (5.2) with

- JAm
Vimin = Pm -

We have considered three Julia sets of the quadratic map

(5.3) TR)=22—p
with
1) p=3: the Julia set is a totally disconnected subset of the real line,
ii) p=0.15: the Julia set is homeomorphic to the unit circle,
iii) p = —2: the Julia set is totally disconnected and extends onto the
complex plane.

For the case i) the pressure was already computed, with a very good
accuracy, using (4.2) and (4.3), in(*) when the linear Cantorian approximation
was first proposed. When |p| is small as in case ii) one can compute the pressure
using a perturbation expansion proposed by Ruelle (*:

2
(5.4) P(a)=1log2 + % —alog2+ O(|p®)

and the generalized dimensions read

= _E 3
(5.5) D) =1+ 105 +0(pD),

() S. VAIENTL: Nuovo Cimento, 99, 77 (1987).
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while the Renyi entropies are

2
(5.6) hp.)=log2+ % .

For the quadratic maps the bounds (5.1) are easily computed for 0<p <3/4;

setting #=12+V1/4+p and v’ =Vu—p, for 0<a<log2/log2u one has
Vmax = 20 and vy, = 2u'.

In tables I-III we quote, for some values of «, the pressure P,(x) computed by
(4.7) compared with a linear extrapolation n— « obtained using only the last two
terms of the sequence P,, while in table IV we show the extrapolated values
obtained by the Thiele algorithm applied to the whole sequence up to n = 16.

We point out that the two methods agree very well but the first is much more
regular than the second; so we always use for P(x) the linearly extrapolated
results.

In fig. 1 we plot, for — 5 <a <5, the pressure P(x) for the Julia sets i), ii), iii)
and, for the second case, the bounds (5.1) just described are plotted as dashed
lines in fig. 3, while fig. 2 shows the difference AP(x) between the pressure and
the Ruelle approximation (5.4).

For the maps i), ii), iii), we show in fig. 4-6 the generalized dimensions D(u,)
for —5<q¢<5 and ¢=0, Dy, d; in fig. 7-9 we give the plots of the Renyi
entropies for the same maps and the same measures. Finally in fig. 10-12 we
quote the scaling functions f(a; #,) following the same scheme.

We point out that some dimensions for complex Julia sets for p = —0.32 —

TABLE 1. — We compare the pressure P{a) computed with 2" preimages (left columns) with the linear
extrapolations for n=« obtained from the (n—1)th and n-th terms (right columns), where
lsn<14. The map is 2’ =2+ 2 and the quoted values of « are —3, —1, 1 and 3.

n -3 -1 1 3
1 3.73537 1.70722 —0.32093 —2.34908
2 3.91959 4.10380 1.76863 1.83003 —0.38233 —0.44374 —2.53329 —2.71751
3 3.99980 4.16023 1.79355 1.84341 —0.40543 —0.45162 —2.59715 —2.72487
4 4.04424 4.17756 1.80662 1.84582 —0.41653 —0.44984 —2.62413 —2.70506
5 4.07171 4.18161 1.81456 1.84632 —0.42309 —0.44932 —2.63933 —2.70014
6 4.09022 4.18275 1.81987 1.84641 —0.42745 —0.44928 —2.64953 — 2.70050
7 4.10348 4.18303 1.82366 1.84643 ~0.43057 —0.44929 - 2.65687 —2.70093
8 4.11843 4.18311 1.82651 1.84644 —0.43291 —0.44929 —2.66238 —2.70100
9 4.12118 4.18312 1.82873 1.84644 —0.43473 -0.44929 —2.66667 —2.70098
10 4.12737 4.18313 1.83050 1.84644 —0.43619 —0.44929 —2.67010 —2.70097
11 4.13244 4.18313 1.83195 1.84644 —0.43738 —0.44929 —2.67291 —2.70097
12 4.13666 4.18313 1.83315 1.84644 —0.43837 —0.44929 —2.67525 —2.70097
13 4.14024 4.18313 1.83418 1.84644 —0.43921 -—0.44929 —2.67723 —2.70097
14 4.14330 4.18313 1.83505 1.84644 —0.43993 ~0.44929 —2.67892 —2.70097
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TABLE II. — The same as table 1 for the map 2z’ = 2% —0.15.
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n -3 -1 1
1 0.69315 0.69315 0.69315 0.69315
2 1.22970 1.76625 0.86061 1.02807 0.53761 0.38208 0.26071 —0.17173
3 1.60583 2.35810 0.98019 1.21936 0.42357 0.19549 —0.07066 —0.73339
4 1.85815 2.61511 1.06215 1.30801 0.34347 0.10314 —0.30835 —1.02145
5 2.03235 2.72916 1.11991 1.35096 0.28576 0.05491 —0.48213 —1.17726
6 2.15700 2.78023 1.16188 1.37173 0.24319 0.03035 —0.61148 —1.25820
7 2.24933 2.80329 1.19330 1.38183 0.21099 0.01778 —0.70996 —1.30087
8 2.31988 2.81377 1.21748 1.38675 0.18603 0.01137 —-0.78660 —1.32308
9 2.37529 2.81856 1.23656 1.38915 0.16626 0.00811 —0.84750 —1.33470
10 2.41984 2.82075 1.25193 1.39032 0.15028 0.00645 —0.89683 —1.34075
11 2.45637 2.82176 1.26457 1.39090 0.13713  0.00560 —0.93747 -1.34390
12 2.48686 2.82222 1.27512 1.39118 0.12613 0.00517 —0.97148 —1.34555
13 2.51268 2.82244 1.28406 1.39132 0.11681 0.00495 —1.00032 - 1.34640
14 2.53481 2.82253 1.29172 1.39138 0.10881 0.00484 —1.02507 —1.34685
TABLE IIL. - The same as table 1 for the map 2’ =22 —3.
" -3 -1 1
1 4.46969 1.95200 ~0.56570 —3.08340
2 4.50722 4.54474 1.91880 1.88560 —0.47694 —0.38817 —2.67998 —2.27657
3 4.53579 4.59294 1.90369 1.87349 —0.45383 —0.40761 —2.64194 —2.56586
4 4.55420 4.60943 1.89546 1.87075 —0.44210 - 0.40691 —2.60199 -—2.48212
5 4.56631 4.61476 1.89039 1.87011 —0.43504 — 0.40680 —2.58316 —2.50784
6 4.57467 4.61646 1.88698 1.86996 —0.43034 —0.40683 —2.56932 —2.50011
7 4.58072 4.61699 1.88455 1.86992 —0.42698 — 0.40682 —2.65976 — 2.50245
8 4.58527 4.61716 1.88272 1.86992 —0.42446 — 0.40682 —2.55251 -2.50174
9 4.58882 4.61722 1.88130 1.86991 —0.42250 - 0.40682 —2.54689 —2.50195
10 4.59166 4.61723 1.88016 1.86991 -0.42093 - 0.40682 —2.54239 —2.50189
11 4.59399 4.61724 1.87923 1.86991 —0.41965 —0.40682 —2.53871 -2.50191
12 4.59593 4.61724 1.87845 1.86991 —0.41858 —0.40682 —2.53565 —2.50190
13 4.59757 4.61724 1.87779 1.86991 —0.41767 —0.40682 —-2.53305 -—2.50191
14 4.59897 4.61724 1.87723 1.86991 —0.41690 - 0.40682 —2.53083 —2.50191

—0.0437 have already been computed in(*) and the scaling function was
evaluated for a Julia set close to the unit circle, namely p = +0.15, in (®).

It can be observed that, while the dimensions D, for the uniform Gibbs
measure are obviously constant, for the other two measures the variation is not
negligible and can reach 10% in the interval —5<g<5. The entropies are

() D. SAUPE: Physica (Utrecht) D, 28, 358 (1987).
(®) M. H. JENSEN, L. KADANOFF and I. PROCACCIA: Phys. Rev. A, 36, 1409 (1987).
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8

P(a)

-5 a 5

Fig. 1. — The pressure for three different maps is shown: 2z’ =2*— 3 (continuous line),
2' =22+ 2 (dashed line), 2z’ =22 —0.15 (dotted line).
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Fig. 2. — The difference AP(x) between the pressure P(x) and its linear approximation
(5.4) is shown for the map 2’ =22 - 0.15,

0.70

\\
0 « 0.85

Fig. 8. - For the map 2’ = 2% — 0.15 we compare the pressure P(x) {continuous line) with
the bounds (5.1) (dashed lines).
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0.68
=0
o, (k) g
=1
=DH
0.54

-5 5

q

Fig. 4. — We show the generalized dimensions D (u,) for @) ¢=0, b) s=d (d=1) and
¢) o =Dy for the map 2z’ =2*—3.

1.05

D)

0.95
-5 q 5

Fig. 5. — The same as fig. 4 for the map 2z’ =2%—0.15 with d=2.
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D, (1)

0.57
-5

q
Fig. 6. — The same as fig. 4 for the map 2z’ =2+ 2 with d=2.
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0.95

h, (1)

0.60 :
-5 q

Fig. 7. — We show the entropies sy, for s=0,0=d (d=1) and ¢ =Dy for the map
2’ =2-38.
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Fig. 8. — The same as fig. 7 for the map 2’ =22 —0.15 with d=2.
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hq(;zg)
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Fig. 9. — The same as fig. 7 for the map 2’ =22+ 2 with d=2.




304 G. SERVIZI, G. TURCHETTI and S. VAIENTI

0.63

Fla,p,)

0.57
0.58 a 0.68

Fig. 10. — We show the scaling function f(x,u,) for c=0 and c=d (d =1) for the map
2'=z-38.
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Fig. 11. — The same as fig. 10 for the map 2’ =22~ 0.15 with d=2.
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Fig. 12. — The same as fig. 10 for the map 2’ =2*+2 with d=2.
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constant for « = 0 and exhibit variations, for the other two measures, which can
be as high as 25%. The scaling functions f(e; ,) have all a maximum which is Dy
for all measures; the variation from one measure to another is remarkable. The
results for o =0 are in agreement with those obtained by Kadanoff and co-
workers (%).

APPENDIX A

We want to show that the Gibbs measures g, and u of an atom 4, _, of the
Markov partition .£® of a nonlinear Cantor set are boundedly equivalent for
large n, so that the two measures become the same in the limit n— o, since they
are ergodic.

By the Walter’s theory of the Ruelle-Perron-Frobenius operator (), we can
bound the x.-measure of an atom A, , ("):

(A.1) ColA,,. . [ explnl— P(o) — ]l < (A 1) < CilA,, ] exp[nf— P(e) + ]l
where C, and C, are finite constants which do not depend on » and [, ¢ is an
arbitrarily chosen positive number and o is taken positive without loss of
generality.

By the uniformity of the limit (4.2), if we choose n sufficiently large
(depending on ¢), we can replace P(c) with (1/n) P,(s) in (A.1). Putting, for the
sake of simplicity, diam (Q)=1 in (4.1) we obtain
(A.2) Cou™(A; 1) expl—nel<p (4, ) <Cip(A,, ) exp[nel.

Taking the two limits ¢— 0 and hence n—s ©, we obtain the desired result.

APPENDIX B

We prove that

lim D’ = Dy

for one-dimensional nonlinear 6% maps T defined on the unit interval. We call
I an element of T-"([0, 1]) (see sect. 1 and (1.23)). We begin observing that, for
a well-known distorsion argument, there exists a constant G =1 such that for
every pair of points x, y in the same I{” and for every n>0 we have
(B.1) G @ < T @ < GIT™Y ().

Then, adapting Theorem 8.8 in ref. (¥) to our case, if we have for each n>1

gilw — y| <|T(e) — Ty < vife — y|
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forallz, y€[0, 11and i =1, ..., s", then w=< Dy <t, where w and t are defined by

g

Ser=1=3rt.

i=1 =1

Actually
max (T ()| —y| <|T7@) — T < min [(T™)' @ e —y] .
teT70,1) 7eT; 0,11

Since every inverse branch of 7" is &2 on [0, 1], there exists a point
£ eT;"0,1], i=1,...,s" such that

i = |T7"1) = Ty™0) = [(T™' €D ™.
Using this fact and condition (B.1) we get
G il — Y| < |T7@) — T < Ghiale — 9
for all «, y €[0, 1]. Hence

EA%’VL:G_t’ t>0’

i=1
2A,=G", w>0.
i=1

We consider the first; it can be rewritten as
SRR AP = G,

=1
We replace each 2, in the second factor with the maximum Ay; since Z)\ém

is a decreasing function of ¢ € R and recalling that, by (1.21) and (1.23), }s‘, AE,{I") =1,
we have, for n sufficiently large so that Xy >G, =1

- D®Plog iy
" logG +logay
A similar argument applies to the equation in w, thus we get

D log hy <Dy< D{Plog Ay '
log 2y —logG log iy +1logG

When 7 — ®, Ay — 0 and D converges to Dy.

® %k K
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® RIASSUNTO

Tramite il calcolo diretto della pressione topologica sono fornite stime rigorose su
dimensioni generalizzate, entropie, indici di Lyapunov e funzioni di scala di Julia sets
iperbolici per una misura di Gibbs qualsiasi.

O6o6mennpie HHAMHICCKHE NepeMeHHbIe W BeXTHINHBI Aua cucreMm [IXyauna.

Pesrome (¥). — Vicmomnb3ysi HEMOCPENCTBEHHBIE BHIYUCIEHUS TONOJOTHYECKOTO TaBJICHHS,
MBI NPHBOJMM CTPOTHE OLEHKM pa3MepoB, ISHTPOIMM, XapakTEpHBIX IOKasarereid
SKCIMOHEHT ¥ hYHKIMH NONoOMs Ais runepOosmIecKux cucreM JIKyiua, 1isi NPOM3BOILHOM
Mepsl I'n66ca. 3aTeM NpeRToXeHHbIH MeTox 0606ImaeTcs Ha cny4yaid HerunepOOIMIECKUAX
cucrem JIxynna.

(*) Hepesedeno pedaxuyueii.



