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1. Introduction

After half a century, the relation between quantum mechanies and classical
mechanics is still not fully understoed. Uncertainty extends even to the
foundations of the subject: it is not known in general whether or how it
is possible to specify uniquely the quantum mechanics of a system whose
classical mechanics is given. This fundamental ‘‘problem of quantization”
will not be discussed here. Instead, I shall concentrate on rather simple
systems — noninteracting particles moving in low-dimensional spaces under
external forces — for which it is known how to specify the quantum
mechanics, in terms of Schrodinger’s equation involving well-defined
operators. For these systems, I shall study the semiclassical limit, i.e. the
behaviour of wave functions, energy levels, etc. as Planck’s constant #
tends to zero (by comparison with classical quantities having the same
dimensions). This is not the same as the classical limit, for which 4 is
precisely equal to zero because, in general, quantal functions are
nonanalytic in / as # — 0. So the semiclassical limit cannot be related to the
classical limit by perturbation theory, but has a rich and interesting struc-
ture of its own. Nevertheless there must be some kind of correspondence
principle, according to which the semiclassical limit reflects the nature of
the underlying classical motion. We shall learn that what really affects the
semi-classical mechanics is whether the classical motion is regular (predic-
table, integrable) or irregular (unpredictable, chaotic, non-integrable).
Of course these problems have a wide variety of actual and potential ap-
plications in quantum mechanics and indeed more generally throughout
physics and applied mathematics wherever short waves are involved. Ex-
amples are the vibration spectra of non-symmetrical molecules, modes of
acoustic oscillation in rooms with typical shapes, and the optics of
waveguides. [ shall not discuss any of these, but shall consider semiclassical
mechanics as worth studying for its own sake, in order to understand the
connection between two important branches of theoretical physics.
Many different sorts of scientists and mathematicians have studied
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Regular and irregular motion 175

semiclassical mechanics (or short-wave asymptotics) and the literature is
correspondingly varied and scattered. I do not intend to attempt a com-
plete survey, but shall concentrate on the qualitatively different sorts of
semiclassical wave functions and spectra corresponding to qualitatively dif-
ferent sorts of classical motion. This is an aspect of quantum mechanics
whose significance has been appreciated only recently, as advances in
classical mechanics have unravelled the intricate varieties of predictability
and chaos that orbits can display. To my knowledge this material has been
reviewed only once before by Zaslavsky [118]; although Percival [1] and
Duistermaat [2] have given reviews of aspects of it, from (respectively) physi-
cal and mathematical viewpoints., ‘‘Prehistoric’’ semiclassical mechanics
was reviewed by Berry and Mount {3]. My treatment here will be nonrigor-
ous, combining analytical and pictorial arguments, simple models and the re-
sults of computation, to bring out what I ¢consider to be the essential points.

2. Regular and irregular classical motion
2.1. Two contrasting types of orbit

Here I discuss two contrasting types of Hamiltonian motion, that is motion
governed by Newton’s equations without dissipation. This is necessary in
order to set the scene for the subsequent quantal treatment. More detailed
expositions have been given by Ford [4], Arnol’d [5], Berry [6] and
Helleman [7].

On the one hand, there is regular motion. This is exemplified by the one-
dimensional oscillator (harmonic or anharmonic) which in its physical
realization as a pendulum is the epitome of predictability (‘‘as regular as
clockwork’’). Another example is the elliptical orbits of the planets when
mutual perturbations are ignored. In systems with regular motion, trajec-
tories with neighbouring initial conditions separate linearly.

On the other hand, there is irregular motion. This is exemplified by the
(classical) motion of colliding molecules in a gas. If the molecules are con-
fined to a plane, transformed into hard discs and all held fixed except one,
then that one executes a motion with two freedoms idealising a pinball
machine. Such motion is unpredictable in the sense that neighbouring tra-
jectories separate exponentially, resulting in a sensitivity to initial condi-
tions which has surprising consequences. For example, in order to ac-
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curately predict the motion for n collisions (after which the angle of
emergence is in error by, say, 90°), it is necessary to specify the initial posi-
tion and momentum values to a number of digits D proportional to #, so
that the capacity of any feasible calculator is exhausted for rather small
numbers of collisions. (If the discs have radius r and mean separation /, a
rough estimate for I? when the variables are expressed in base-b notation is

D=nlog, i/r, 2.1)

as readers may verify. If I/r =10, therefore, even specifying initial condi-
tions with a relative error of one part in a million will ensure predictability
for only six collisions.)

The distinction between regularity and irregularity is embodied in the
geometry of typical trajectories in the system’s phase space over infinitely
long times. For N freedoms this is the 2N-dimensional space ¢, p where
g=1(4,...q,) are the coordinates and p=(p,...py) the momenta. There is
a hierarchy of types of motion, increasingly chaotic, denoted by the terms
integrable, quasi-integrable, ergodic, mixing, K-system, B-system, whose
meaning is explained by Lebowitz and Penrose {8]. 1 shall not describe this
hierarchy in detail, but give sufficient background for the later discussion
of quantum mechanics.

For illustrative purposes it is not convenient to consider only smooth
Hamiltonians, and I now introduce an important class of discontinuous
systems with N=2, namely the so-called planar billiards. These have
Hamiltonian

H(x, y;p,, p,)=(p3+p3}/2 inside a boundary B in g space
2.2)
=co outside B

Motion consists of straight segments joined by specular reflections at B. As
we shall see, the nature of the orbits is very sensitive to the form of B (for
an elementary review of billiard dynamics, see Berry [9]).

2.2. Integrable systems

The simplest situation, corresponding to the regular case, is fully integrable
motion. Here there exist N constants of motion in the form of functions
Ci(gq, p) (1 =i<N) in phase space, assumed to be “‘in involution” {i.e. all
Poisson brackets between pairs of C; vanish). One of these constants is the
Hamiltonian itself if this is time-independent. If the C; are independent of
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one another, their existence restricts motion to a surface 2 in phase space;
2 has dimensionality N{(=2N- N). Arnol’d [5] gives a clear formulation
and proof of an important theorem, implicit in older literature, stating that
if the C; are “*smooth enough’’, then

(i) 2 is an N-dimensional torus

(ify the motion can be “integrated’’, i.e. the trajectories g(#), p(f) can be
determined by elimination and integration. The proof (see also ref. [6]) in-
volves constructing N nonsingular vector fields on X (*‘if a hairy 2 can be
combed N ways without a singularity, then 2 is an N-torus’’). (If the condi-
tions of the theorem are not satisfied, and the vector fields do have
singularities, then % need not have the topology of an N-torus, as will be
shown in section 2.5 with a curious example.)

The simplest integrable systems are stationary harmonic or anharmonic
oscillators with N=1 and mass yx, whose Hamiltonian is

pz
H="— 1 V(q), (2.3)
2u

where V(g) (fig. 1a) is a potential well. The energy E = H(qg, p) is conserv-
ed, and since N=1 this one constant of motion suffices to make the system
integrable. The *“1-tori” on which motion occurs in phase space are simply
the closed contours of H (fig. 1b).

All separable systems are integrable (they decouple into N one-
dimensional systems). In particular, a particle moving in the plane (W=2)
under a central potential V(r) is integrable, the two constants of motion
being E and the angular momentum L. Each choice of E and L labels a
2-torus X in the 4-dimensional phase space (fig. 2a). The trajectory winds

a b

Viq) P

Fig. 1.
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around X in a manner soon to be explained, and typically fills 2 as ¢ — oo,
When projected ‘‘down’’ p onto the coordinate plane x, y (fig. 2b), the tra-
jectory is enveloped by a caustic in the form of two circles at the radii of
closest approach and farthest recession from the centre of force. Caustics
are the singularities of the projections of 2. In the circular billiard (fig. 3)
the outer circle corresponds to the boundary B and is not a caustic. In the
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™

Fig. 4.

rectangular billiard (fig. 4), which is separable with p2 and pf‘, conversed,
there are no caustics because the boundaries of the projection of X (a flat
car tyre with four sheets above points g) coincide with B. Another
separable billiard is the ellipse [9], whose orbits repeatedly touch an ellipse
or hyperbola confocal with B,

The existence of tori throughout the phase space of an integrable system
makes it natural to introduce an alternative set of coordinates and momen-
ta known as action-angle variables, which will play an important part in
the quantum mechanics of integrable systems. The actions I={I;...Iy}
are particular combinations of the C; which label the tori 2, defined in the
most topologically natural way as

1
L= o <§J p-dq, (2.4)
n Yi

where y; is the /th irreducible circuit of the torns., Now let I be the momen-
ta of new phase-space variables. The conjugate coordinates are called the
angles 8= 1{0,...05}. Any point g, p lies on a torus (fig. 5) labelled by

torus Ifg,p)

q.p

Fig. 5.
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Kq,p), and 8(g,p) locates the position of g, p on this torus.

The variables #, I and g, p are related by a cononical transformation
specified as follows. Let the torus X labelled by I be defined by a
multivalued function with branches p;(¢’;f) in the phase (fig. 6).
Then the generating function of the transformation is S{g,I) with branches

S"(‘“I)zr g D-dg, @.5)
qo

where ¢, is an arbitrary point *‘beneath’” Z. This gives the transformation

(g.p) < S(g.D)— (8,1

(2.6)
p=Y,5, 0=V,5.

It follows from these definitions that each angle variable &; changes by 2n
during the corresponding circuit ; of 2, thus justifying the term “‘angle’’.
The fact that § is locally single-valued implies from eq. {2.6) that tori have
the “Lagrangian’ property

Because there are only N independent constants of motion, each member
of the original set C; must be expressible in terms of the N I’s. In par-
ticular, the Hamiltonian is conserved and can be written in the new
variables as

H=H(I). (2.8)

Fig. 6.
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By one of Hamilton’s equations, this means that the angle variables change
at a constant rate, given by

0= wt + &, 2.9
where w= {w,...cwn} are the frequencies, given by
w(h=V, H(). (2.10)

The components «; give the rate at which a trajectory winds round 2 in
directions labelled by the angles &. In the general case, all w; will be
mutually incommensurable and the orbit will eventually fill X densely. But
if all w; are rationally dependent, i.e, if

=My, (2.11)

where M={M,...My} is a lattice vector (i.e. with integer components),
then each orbit on 2 will be ¢losed. In fact closure will occur after M, cir-
cuits of #,, M, circuits of 6,..., My circuits of #y. These closed orbits are
nonisolated, in the sense that each ‘‘rational’’ torus [i.e. satisfying eq.
(2.11)] will contain infinitely many of them, related by parallel translation
in # (fig. 7 shows the case where N=2, M,;=1, M,=0). In the typical
case, where @(J) varies smoothly with I, tori made of closed orbits are of
measure zero but nevertheless densely distributed. Finally, note that & pro-
vides an invariant measure on .2, in the sense that a cloud of phase-space
points with uniform density @ preserves density as the cloud moves under
time-evolution governed by H(I).

2.3. Chaotic systems

The integrable systems so far considered are rare; amongst Hamiltonian
systems, ‘‘almost all’’ are nonintegrable in the sense that there are no

Fig. 7.
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global constants of motion other than H. An important class of
nonintegrable system is those with the property of ergodiciry: almost all or-
bits eventually explore almost all points in a 2N — 1 dimensional energy sur-
face, defined by H{g,p)=constant, instead of being confined to an N-
torus as with integrable systems. The case N=1 is degenerate, because
2N—1=N and orbits are trivially ergodic as well as integrable (cf. fig. 1b)
- provided of course that it is time-independent. When N> 1, ergodicity is
usually associated with (but does not imply) motion which is chaotic or un-
predictable as briefly described in section 2.1. The precise sense in which
such motion is chaotic can be understood by dividing (‘‘coarse-graining’’)
phase space into cells (‘*Markov partitions’”) and studying the sequence
(*‘Bernonlli shift’") in which cells are explored; the sequences are often in-
distinguishable from random sequences (see for example Ornstein [105],
and the elementary discussions in refs. [4] and [6]).

Are there any ergodic systems with #=2? Yes. It was shown by Sinai [10]
that the billiard motion of a particle moving on the coordinate torus x, y
(square with opposite sides identified) containing a circular reflecting
obstacle with radius R (fig. 8) is ergodic if R> 0. In this case ergodicity is
a consequence of exponential chaos (unpredictability) which in turn results
from the defocusing of particle beams that hit the disc (fig. 9). Another ef-
fect of defocusing is that no orbits form caustics in coordinate space and
indeed there are no phase space tori whose projections would have them
as singularities. Sinai’s billiard is the simplest example of a system of two
or more hard spheres or discs moving in a compact space and colliding
elastically. For the case where the number of particles is very large, Sinai’s
proof at last established the ergodicity of the hard-sphere gas.

Another ergodic billiard is the ‘‘stadium’® of Bunimovich {11,12], con-
sisting of two semicircles with radius R jeoined by parallel straight lines with
length L (fig. 10) with L >0. The semicircles cause a convergence of beams

coordinate
forus

obstacle

Fig. &.
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L

Fig. 9. Fig. 10.

of trajectories but this is outweighed by the subsequent divergence before
the next reflection. Again no caustics form, as the orbit in fig. 11 illustrates
(cf. fig. 3).

In these ergodic billiards, a typical orbit passes through almost every
peint within B with almost every direction if followed long enough, The
energy surface thus explored is 3-dimensional (2N— 1) in contrast to the
2-tori explored when there is an additional constant of motion. But not
every orbit is typical: just as in integrable systems there is a dense-but-zero-
measure set of closed orbits (each of which explores a 1-dimensional region
in phase space). For integrable systems {(with N = 2) we have seen that these
closed orbits are not isolated (fig. 7) but fill tori in a one-parameter family.
And in some billiards (such as those of Sinai and Bunimovich) it is also
possible to have one-parameter families of nonisolated closed orbits (fig.
12), although these do not fill tori. For ergodic billiards the nonisolated or-
bits drastically slow down the exploration of the energy surface [9], and are
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probably responsible for long tails in autocorrelation functions (Berry and
Casati, unpublished). But vastly more numerous are the isolated closed or-
bits, some of which are shown in fig. 13. The distinction between isolated
and nonisolated closed orbits has an important effect on the clustering of
quantum-mechanical energy levels, to be explained in section 5.

These closed orbits, isolated and nonisolated alike, are unstable: the
slightest error in position or momentum gives an orbit separating rapidly
(exponentially, for isolated orbits) from the closed one and eventually ex-
ploring all the energy surface. By contrast, the closed orbits in an in-
tegrable system are only linearly unstable [cf. eq. (2.9)], and a perturbed
orbit, far from filling the energy surface, merely fills a nearby torus. In this
connection it is amusing to note that in the ideal roulette wheel and coin
toss - two exemplars of unpredictable systems whose randomness arises
largely from imperfect knowledge of initial conditions - the motion is in
fact integrable (rigid disc rotating in or out of its plane), so that the in-
stability is of a linear type and therefore much weaker than in, say, a pin-
ball machine.
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Another (non-billiard) ergodic system with N=2 is geodesic motion on
a compact surface of everywhere negative curvature (which cannot be
realized in Euclidean 3-space) [5]. No smooth Hamiltonian of the
canonical type H=Kkinetic + potential has been proved to be ergodic.
However, Gutzwiller [13] gives strong evidence that the ‘‘anisotropic
Kepler problem”’, with

C

_ 2 2
H=ap;+bpy— 2+ y2)

(a#b) (2.12)
is ergodic, and Percival (private communication) has reason to believe that
orbits in the potential

] 2
=px+py+ 2.2

H 5 Xy (213)

explore their (unbounded) energy surfaces chaotically.
2.4, Quasi-integrable systens

These are neither integrable nor ergodic. Excluding billiards for the mo-
ment, they have smooth Hamiltonians of the form

Hiq,p)=Hy(q,p)+eH(q,p), (2.14)

where Hy is integrable and ¢ is a small parameter that turns on a generic
perturbation H;. When £=0, all trajectories lie on tori filling phase space.
What happens to these tori when £#07 The answer is given by the
celebrated Kolmogorov [14], Arnol’d [15], Moser [16] (KAM) theorem (see
also refs. [5,6]): under perturbation, most tori survive (albeit distorted).
Therefore the motion is not ergodic. But for almost all /f,, some tori are
destroyed, so the motion is not integrable either. The destroyed tori form
a set of finite measure growing with £. They are centred on those unper-
turbed tori whose frequencies w; are incommensurable, i.e. whose orbits
are closed. The manner of their destruction is complicated but now fairly
well understood [6]: of the continuous family of linearly unstable closed
filling each rational torus, only a finite even number of closed orbits sur-
vives perturbation; half of these are unstable and half are stable. Motion
near the unstable orbits is chaotic and fills regions with dimensionality
2N—1. Near the stable closed orbits, most trajectories lie on “*higher-
order’’ tori, but these, like the original ‘‘parent’’ tori, have gaps near sites
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where ‘‘rational’’ tori would be, and the whole structure repeats in
microcosm, recursively down to infinitely fine scales.

The solar system is quasi-integrable [15]. Planets unperturbed by their
neighbours move (integrably) in Kepler ellipses. Including the perturbation
results in a Hamiltonian of type (2.14) [6]. Some of the effects described
in the last paragraph can be seen in the asteroids, which correspond, in ef-
fect, to an ensemble of zero-mass ‘‘test particles’’. Most of them move in
approximately elliptical orbits, in spite of being perturbed by Jupiter, but
there are gaps in the asteroid belt where orbital motion would be commen-
surate with (resonant with) Jupiter’s; these gaps correspond to the
destroyed tori. There are similar gaps in Saturn’s rings, which may corres-
pond to resonant perturbation of the orbits of ring particles by the satellite
Mimas.

The tori whose existence the KAM theorem guarantees can be discovered
““experimentally’’ by the caustics their orbits envelop when projected
“down’’ onto coordinate space (cf, fig. 2). An example is shown in fig. 14;
this was computed by Noid and Marcus [23] for a particle in the
(nonintegrable) field of two anharmonically coupled harmonic oscillators.
How can we deduce that the surface 2 in phase space, whose projection
displays the caustics, is a torus? By the following procedure, devised by
Ozorio de Almeida and Hannay [17] as part of a detailed study of the ways
2-tori can be embedded in 4-space and projected onto 2-space; traverse all
branches of the caustic, keeping two-sheeted regions on one’s right; one

Fig. 14. Reprinted from ref. [77] with permission.
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will rotate clockwise r times (not counting the necessary half-turns at
cusps). The genus (number of handles) of the 2 which projects to give the
caustic, is 1—r. For a torus, the genus must be unity, so r must be zero;
it is easy to confirm that the caustic of fig. 14 passes the torus test.
Generically, the forms of caustics are classified by catastrophe theory, but
because I discussed this aspect in detail in last year’s Les Houches lectures
[18] I shall not elaborate it here.

Returning now to billiards, it is necessary in quasi-integrable cases to be
very careful in specifying what class of deformation of the boundary B is
being considered. For example we have already seen that if the integrable
circle billiard is perturbed to the stadium (fig. 10), all tori are instantly
destroyed (no matter how small L/R is) because the system becomes
ergodic. However, Lazutkin [19] proved for billiards a theorem analogous
to the KAM theorem but more general (in that it is nonperturbative): if B
is convex and smooth enough, some orbits (of positive measure) will
envelop caustics - i.e. there will be some tori in phase space. The sufficient
condition for smoothness is that B’s radius of curvature as a function of
arc length must possess 553 continuous derivatives! Such a large number
is almost certainly not necessary, but to have no continuous derivative is
insufficient as the stadium example shows. Berry [9] illustrates Lazatkin’s
theorem with computations indicating quasi-integrable behaviour (i.e.
some tori, some chaos) for a family of (analytic) oval billiards, and Bennet-
tin and Strelcyn [20] study a generalization of the stadium made from four
circular arcs, which has discontinuous curvature but nevertheless displays
quasi-integrability.

2.5, Pseudo-integrable systems

Even if N constants of motion exist, independent and in involution, so that
each orbit restricted to an N-dimensional surface 2 in phase space, it is not
always the case that X is a torus. For billiards whose boundary B is a
polygon with angles which are rational multiples of 7 (apart from the rec-
tangle, equilateral triangle, 30°-60°-90° triangle and 45°-45°-90°
triangle, which are integrable), X is not a torus but a multiply-handled
sphere (i.e. genus g> 1) (for a reason to be explained, Arnol’d’s theorem
(section 2.2) does not apply). Richens and Berry [21] call these systems
“‘pseudo-integrable”’; they were previously studied by Zemlyakov and
Katok [22].
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Fig. 15.

To illustrate this unexpected behaviour, consider the *‘‘square torus
billiard”’ (fig. 15}, which resembles Sinai’s billiard except that the reflecting
disc is replaced by a square. It is clear that the squares v and v} of the
velocity components are separately conserved, and that at most four direc-
tions are available to each trajectory (Uy, Uy; — U Uity — Uy — Uy — v}
Therefore the phase-space surface X consists of four sheets, each being a
copy of the accessible xy area, connected at the central square according
to the identifications in fig. 16. To construct X, these four sheets must be
sewn together. It is simplest first to join the inner squares to get a
“skeleton’ for X (fig. 17). Then the outer tori must be sewn onto each
**square”’ (fig. 18). Finaily, the two remaining (*‘/, ¢”*) holes must be joined
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Fig. 17. Fig. 18.

{fig. 19). It is clear from this construction that far from being a torus, 2
is a five-handled sphere.

Now, the constants v2 and uﬁ are smooth, independent and in involu-
tion. What then prevents Arnol’d’s theorem (described in the first
paragraph of section 2.2} from being applied? The answer, ¢laborated by
Richens and Berry [21] is that certain vector fields on X, constructed from
v2 and vi, possess singularities at the vertices of the reflecting square. In-
deed it is possible to establish the topology of 2 from a study of these
singularities. As an example, formulae given in ref. [21] yield the following
equations for the genus g of X for billiards in a regular polygon with m
sides:

g= (m-l)z(m—Z)

_(m=2)
E="4

{(m odd)
(2.15)
(m even)

As expected, this gives g=1 for the triangle and square, which are
integrable.
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As discussed in ref. [22], rational billiards have a chaotic property
resulting from the splitting of beams of trajectories hitting polygon ver-
tices. According to Richens and Hannay (private communication) it is con-
venient to study this computationally in terms of the one-dimensional map
produced by successive intersections of an orbit with a curve cutting 2 (for
a torus this map is a simple rotation, but if g>1 it is a **shuffling
transformation®’).

For polygons with angles that are irrational multiples of =, each reflec-
tion of a typical trajectory produces a segment moving in a new direction,
so these systems are not pseudo-integrable (unless we accept surfaces with
g=). Are they ergodic? Computations by Casati and Ford [24] suggest
that the answer is yes, but that exploration of the three-dimensional energy
surface is very slow and without exponential separation of orbits; to my
knowledge nobody has proved a theorem demonstrating (or disproving)
the ergodicity for irrational polygons.

2.6. Discrete area-preserving maps of the plane

The distinction between regular and irregular motion is very clearly ex-
hibited by discrete maps M in the phase plane whose variables are a coor-
dinate g and a momenitum p. Under M (fig. 20), each point (g, , Pu+1)
is a deterministic function of its antecedent (g,, p,):

Mg, 1=8n+1(Gn Pa)
2.16)
P =pn+](qn! pn)

Area-preservation is ensured by requiring

P P
/_q;ﬂ Pra |
q q
anpn
n n+1

Fig. 20.
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aQ'n+l aqm+l
3 3 3 ,
det dn P _ (Qn+1 pn+1) =1 (2.17)
apn+1 apn+1 a(q"’ P,,)
8q,  9p,

M can be regarded simply as an abstract dynamical system whose evolution
takes place in discrete time steps according to the ‘‘Hamilton equations”
(2.16) with (2.17) replacing Liouville’s theorem on conservation of phase-
space volume, But these maps also arise from continuous time dynamical
systems, in two ways.

Firstly, one may have N=2 and a time-independent Hamiltonian. In this
case ¢ and p are coordinates on a *‘surface of section’ (see e.g. ref. [6])
through the three-dimensional energy surface. M is determined by the suc-
cession of points ¢g,, p, in which a trajectory intersects the surface of sec-
tion. For billiards, a convenient surface of section is given by successive
bounces at B, and variables for which M is area-preserving (see e.g. ref.
[9]) are g =(arc length round B) and p=(cosine of angle made by emerging
trajectory with forward tangent to B).

Secondly, one may have N=1 and a Hamiltonian periodic in time, i.e.

H(Q:p:t+T)=H(Qsps ). (218)

Then M is defined by a ‘‘stroboscopic phase portrait’, i.e. by jumps of
points g, p between snapshots of the motion at intervals 7T, i.e.

a,=q(nT), Pn=p(nT), (2.19)

and the motion between snapshots is ignored.

In terms of M, regularity or irregularity depends on the manner in which
iterates (g, p,) of some initial point (g, po) are distributed as n— oo,
There are three possibilities. Firstly, iterates may lie on a zero-dimensional
set in the plane {fig. 21}, by forming a closed orbit, i.e. a fixed point of
some finite power N of M-

FneN=ns Prin=p, (2.20)

Secondly, iterates may fill a one-dimensional set in the plane (fig. 22), a
so-called invariant curve which maps onto itself although its individual
points do not. An example is the twist map which in polar coordinates is

M:ry, =ty 8,,1=0,,+270(r,). (2.21)
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Fig. 21.

Here the invariant curves are circles, If the “‘rotation number’’ ¢ is irra-
tional, iterates eventually fill the circle, while if @=M/N (M, N mutually
prime finite integers) the iterates form a closed orbit with period N. And
thirdly, iterates may fill a two-dimensional set in the plane (fig. 23), a so-
called chaotic areq. 1 shall not discuss more exotic possibilities, such as or-
bits filling a ‘‘fractal’’ set with intermediate dimension, because there is no
firm evidence that they occur in area-preserving maps (although they do
occur - as ‘‘strange attractors™ (see ref. [23] and other papers in the same
volume) - in area-contracting maps corresponding to dissipative systems).

Integrable maps are those like fig. 22, where all points lie on invariant
curves. These curves are the analogues of tori, and in the ‘‘surface of sec-
tion”’ interpretation are precisely sections of 2-tori. Their existence
throughout the phase plane implies 2 **constant of motion’* in the form of
a function f{g, p) whose contours are the invariant curves and whose value
is unchanged under M (for a twist map, f=¢g*+p®).

Ergodic maps are those where almost every initial point explores almost
all the phase plane, so that no finite measure is covered with invariant
curves, An example is ““Arnol’d’s cat’’ [100], for which phase space is the
unit torus and M the linear map corresponding to hyperbolic shear:

a1 11 adr
M: (Pn+l>_(1 2) (pn>. (2.22)
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In the infinite plane this is trivially simple, but on the torus it winds area
elements round and round in an irrational direction so that initially simple
shapes quickly become unrecognizable (fig. 24). (Even after one hyperbolic
mapping it can be hard to recognize shapes, and this idea is the basis of
a Victorian amusement called the ‘‘anamorphic picture’ (fig. 25), which
can be comprehended only when viewed after an ‘‘inverse mapping’’ con-
sisting of reflection from the exterior of a convex cylinder). There are clos-
ed orbits in Arnol’d’s cat - they are executed by every point with rational

¥

Fig. 24. Reprinted from ref. [100] with permission.
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A French Policeman on Hs
Bicycle

Fig. 25.

g, p - but they are of measure zero and all isolated and unstable.
A quasi-integrable map, with a hierarchy of fixed points, invariant
curves (tori) and chaotic areas, is generated by

2

P Tvig) ¥ 6(t—nT), (2.23)

H(q’ b, t):_
2,“ n

corresponding to a particle with mass 4 moving freely along a line between
impulses at intervals T whose magnitude depends on the coordinate gq.
From Hamilton’s equations, M is easily found to be

1p,
M:q,,1=q,+ 5

(2.24)
av
Prni1=Pn— Ta_('?nH)
q

The choice V(g)=Ag*/4 (anharmonic potential well), followed by scal-
ing, gives
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M'-Q'n+1 =qnt+ Py

, (2.25)
Ppie1=Pp—dn41

Figure 26 shows the iterates of a number of initial points in the gp plane.

Fixed points, invariant curves, and a continuous chaotic area are all clearly

visible. Points outside the chain of eight stable ““islands’’ escape rapidly [as

exp(exp3n)] to infinity under M.

3. Wave functions and Wigner functions

3.1. Maslov’s association between phase-space surfaces and semiclassical
wave functions

Now we turn to the main work of these lectures, which is to study how the
different types of underiying classical motion manifest themselves in quan-
tum mechanics. We begin by considering the morphologies of eigenfunc-

P=
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tions w(g) of time-independent Hamiltonian operators whose analogous
classical Hamiltonians generate regular or irregular bounded motion. The
result will be strong evidence that the morphologies corresponding to the
two sorts of motion are indeed very different. The suggestion that this
might be the case goes back to Einstein [36], and was revided in a modern
form by Percival [37].

I begin by describing an important semiclassical concept developed in
full geometric detail in the 1960s by Maslov [26] but implicit in earlier work
by Van Vleck [27] and Keller [28]. Maslov’s ideas have been reviewed by
Kravtsov [29] and (briefly) by me [18] in the context of propagating waves,
by Duistermaat {2] and Guillemin and Sternberg [30] and Voros [44] from
the mathematical viewpoint, and by Percival [1} and Eckmann and Sénéor
[31] using simple examples.

The concept is an association between wave functons w(g) and N-
dimensional surfaces 2 in the 2N-dimensional phase space g, p. w need not
be an eigenstate of the Hamiltonian and 2 need not be one of the tori
discussed in section 2. To start with, the association between y and 2 is
purely geometric; dynamics is introduced later. Locally (fig. 27), £ can be
written as a function p(g), and corresponds to an N-parameter ensemble
of states (points) in classical phase space. We define a density on 2 in which
these states are distributed uniformly in some coordinate Q= {Q,...Qx}.
A convenient definition of  can be accomplished if we imagine an N-
parameter family of surfaces filling phase space near X, labelled by
P={P,...Py}, and then regard @, P as alternative phase space variables
in a canonical transformation from g, p. This is specified by a generating

p

Fig. 27.
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function S(g; P) by
(g.p) < S(g; P)—(Q,P)
p=V,85 Q=V,§

(cf. the transformation (2.6) to action-angle variables, which is a special
case). These equations imply that 2 has the “‘Lagrangian’® property (2.7),
and this will henceforth be assumed.

We want to associate with 2 a wave

w(g)=a(g)e’?. (3.2)

Because there is as yet no dynamics,  is unrestricted by any wave equa-
tion, and we are free to choose any association with Z. There is, however,
a natural choice, based on two physical principles, one for a{g) and one
for b(qg).

For the amplitude a(g) we require that the wave intensity |w{? is pro-
portional to the density of points in classical g-space. This is obtained by
projecting the density on 2 and using eq. (3.1), in terms of the Jacobian
determinant

3.1}

828
aqt-an

@

2 — K
a“(q) dq

) 3.3)

=K detl

where KX is a constant.

For the phase b(g) we use de Broglie’s rule relating the classical momen-
tumn p(q) to the wave vector k{(g) of a locally plane wave, so that, in terms
of the phase difference between two points separated by dg,

b(q+5q)—b(q)=Vb-ﬁq:k-an'%, (3.4)
thereby introducing Planck’s constant #. Thus
Vb(g)=p(g)/h (3.5)
and
ir4 S(g; P
b(g)= ﬂ plg)-dg' =45, (3.6)
o

again using eq. (3.1), where g, is a fixed position where S is defined to
vanish. This phase is uniquely defined locally, independent of the integra-
tion path between g, and g, because the Lagrangian property {2.7) makes
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S a (locally)} single-valued function of g.
In this way we construct the local plane wave

3*S(q; P) |1/2
aQiaQ'j

associated with the surface 2 labelled by P. Why should this association
be a useful one? The answer lies in regarding w as an initial quantum state
and letting it evolve according to the Schrédinger equation under dynamics
governed by a Hamiltonian H. After a time ¢, y will have evolved into a
new wave ', In addition, X will have evolved into a new surface X' by vir-
tue of the classical Hamiltonian motion of each of its points. Solving the
time-dependent Schrodinger equation asymptotically, i.e. to lowest order
in A, it can be shown (see ¢.g. ref. [27] or Dirac [32]) that the ' can be
constructed from 2 by precisely the recipe (3.7). Therefore the construc-
tion persists in time, at least at the level of semiclassical approximations,
and so represents a natural association between evolving quantal waves and
N-parameter families of classical orbits (i.e. evolving classical surfaces). As
t — o0, the association breaks down in a most interesting way, to be discuss-
ed in section 6. Now we pursue the purely geometric aspects of the
association.

w(g)=K|det

exp (;f; S(g; P)) 3.7

3.2. Globalization

The procedure based on fig. 27 and eq. (3.7) is well defined only if p(g)
is singlevalued. But what if 2 is curved (fig. 28) in such a way that a fibre
drawn ‘‘upwards’’ from g intersects it at several momenta p;(g)? It is
natural to invoke the principle of superposition and extend the association
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by writing w(g) as a sum of terms like eq. (3.7), one for each branch
2:(q). This raises the question of how these contributions are to be joined
at caustics, where the projection of X ““down’’ onto ¢ is singular (e.g. at
the points g{* and g¥ on fig. 28). There are two difficulties. Firstly, it is
not clear how to relate the phases of the different contributions. Secondly,
eq. (3.7) has the undesirable property that it becomes infinite on caustics,
because of the divergence of the ““projection’” Jacobian dQ/dg [eq. (3.3)]
determining the amplitude a(g).

Both difficulties can be overcome by Maslov’s ingenious procedure [26]
of requiring the association between waves and phase-space surfaces to
hold for momentum as well as position coordinates. Therefore the
semiclassical momentum wave function (p) will be given by a formula
like eq. (3.7) with X specified by the function g(p; P} and the generating
function S(p;P) constructed from the line integral fg-dp rather than
§ p+dg. The beauty of this method is that X is a smooth surface and so can-
not have points where the projection is singular in both ¢ and p. So when
eq. (3.7) gives problems near g-caustics its momentum analogue is well-
behaved. But (g) and #(p) are related by Fourier transformation, so that
Maslov was able to employ the momentum analogue of eq. (3.7) to obtain
representation of w(g) in terms of an oscillatory integral which is well-
behaved at caustics. I shall not discuss here the form of this wave close to
caustics (this aspect was reviewed at Les Houches in 1980 [18] and by Berry
and Upstill [33] under the heading ‘‘catastrophe optics®’) except to state
that near a typical caustic (a smooth surface with dimensionality N—1 in
g-space), eq. (3.7) is replaced by an Airy function. When ¢ is not close to
a caustic, the Fourier integral for w(g) can be evaluated by the method of
stationary phase, because when # — 0 the integrand is a rapidiy-oscillating
function of its variables p. The result is that the representation of  as a
sum of terms like eq. (3.7) is regained, but with a definite phase relation-
ship, which I now describe, between the terms corresponding to the bran-
ches that join on the caustic.

In constructing the correct superposition of terms (3.7), the phases S;
must be chosen to be the branches of a single action function S(g) on X,
so that the value of § on a caustic must be the same irrespective of the
branch on which the caustic is approached. Corresponding to fig. 28, for
example, S must be chosen as follows:

q
branch }: S= j pilgNdeg’, (3.8)

a;
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q
branch 2: S= j P2(g)dg’,
q;

branch 3: §= - rz Di{gdg’ + rz pa(gndg’. (3.8 cont’d)

q Jag!
In addition, the modulus signs must be removed from the determinantal
amplitude factor, so that during passage through a typical caustic (smooth
N -1 dimensional surface), where |dg| has a simple zero, the determinant
changes phase by n and its square root by n/2. The only problem lies in
deciding the sign of this change. The solution is that the phase change of
w is — n/2 if the caustic is transversed with the (locally) two-sheeted region
of Z on the right. This is the well-known *‘phase advance of 7/2 on cross-
ing a caustic’’ [30]. Thus in fig. 28 the phase changes by — /2 between
Py and p, and by a further + /2 (back to its original value} between p,
and p,.

The final step in generalizing the construction (3.7) is to consider the case
where X is a closed surface in the form of an N-torus. This is not the only
topology compatible with the Lagrangian conditions (2.7): for N=2,
Hayden and Zeeman [34] have constructed a Lagrangian Klein bottle, but
its quantal (or even classical) meaning is still obscure.

For an N-torus it is possible to return to any original point ¢ in N essen-
tially different ways, corresponding to the irreducible circuits p; of X.
There is no global action function S which is single valued on X, because
around p, there must be a change 4,5 given by

A,.S=<§> p-dg, (3.9)
¥

and equal to the sum of the areas of the projections of y; onto the N gp
planes. During such a circuit, the phase of the wave constructed by eq.
(3.7) will change by A,8/# plus a multiple ¢; of - /2 equal to the number
of caustics encountered during y;. But the wave function w{g) must be
single valued under continuation, implying
%(& pi~dg; — soym=2mn (1=i=N), (3.10)
¥,

i.e.

1
2_(53 p;-dg; = (m;+ )k, (3.11)
Y,

]
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where the #1; are integers. This is a set of N quantum conditions on the
geometry of 2. A typical torus will not satisfy these conditions, but recall
that % is embedded in an N-parameter family labelled by P, and if (as is
true semiclassically) # is small compared with 4,5 it will always be possi-
ble close to any given 2 to find a surface for which eq. (3.11) is satisfied
and  is a single-valued semiclassical wave function. The numbers a;,
often called the ‘*Maslov indices’’, depend on how £ is embedded in phase
space; a general topological discussion of ¢; was given by Arnol’d [35] (see
also refs, [30,1,2]). The Maslov indices embody the solution in N dimen-
sions of what in one dimension is the ‘‘connection problem”’ [3,62] for
WKB solutions of Schrédinger’s equation.

The wave  thus obtained, based on a quantized torus X, will not in
general be an eigenfunction of the Hamiltonian A, because it will change
with time as 2 deforms under A. Only when Z'is an invariant torus of mo-
tion under H as described in section 2 will the surface remain fixed as its
individual points g, p wind around it, and then y will be an energy eigen-
function, labelled by N quantum numbers 7. The energy spectrum im-
plied in this case by the conditions (3.11) will be studied in section 4.

It is obvious that this method of constructing semiclassical energy eigen-
functions can succeed only if tori exist, i.e. if the motion is regular as in
integrable systems or throughout most of the phase space in quasi-
integrable systems. For irregular and in particular ergodic motion, no tori
exist and Maslov’s method fails completely. At present there exists no
asymptotic theory for the eigenfunctions corresponding to irregular mo-
tion. It is possible, however, to make conjectures in this case, on the basis
of a general quantal phase-space formalism now to be described.

3.3. Wigner’s function and the semiclassical eigenfunction hypothesis

In 1932, Wigner [38], introduced a phase-space distribution function
Wi{q,p) corresponding to a quantum state ¥ (g). This is defined by the N-
fold integral

Wig,p)= j...jd"’x exp(—ip- X/B)w*g— X/2y(g+X/2),

(3.12)

1
Cri)™

namely the Fourier transform of the product of w and w* at positions
separated by X. W is a quantal generalization of the classical density of
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points in phase space. It is also possible to generalize other classical func-
tions to get phase-space representations of quantal operators, and to
generalize Liouville’s equation to get a phase-space representation of the
Schrodinger equation. Groenewold [39], Moyal [40], Takabayasi [41] and
Baker [42] have shown that the resulting phase-space picture gives a com-
plete representation of quantum mechanics, alternative to more familiar
approaches in terms of wave functions, Hilbert space operators, or func-
tional integrals. Wigner’s picture is peculiarly well suited to the present
problem, because it is in phase-space that the distinction between classical
regular and irregular motion manifests itself most clearly, and so one can
hope that the analogous quantal distinctions will reveal themselves with
corresponding clarity in the form of W{q,p). This idea was first expressed
by Nordholm and Rice [43] and developed by Voros [44], Berry [45] and
Berry and Balazs [46). Other semiclassical aspects of Wigner’s function
were studied by Balazs and Zipfel [47], Heller {48] and Korsch [49].

Despite appearances, W(g,p) as defined by eq. (3.12) has complete for-
mal symmetry in g and p. It contains all the information about the quan-
tum state. In particular, the coordinate probability density is obtained by
projection “*down’’ p onto ¢:

lw(@*=§...1d"p W(q.p), (3.13)

and the momentum probability density is obtained by projection ‘*across’’
g onto p:

@) =]...;d"g W(g,p). (3.14)

W can also be employed more generally, to describe statistical mixtures of
pure states w; with weights 4;, by adding terms of the pure-state form
(3.12}, one for each state y; in the mixture, with coefficients a;, to get a
phase-space representation of the quantal density matrix.

It is natural to ask what W{q,p) looks like for a semiclassical state of
the form (3.7), associated with a surface 2. To find out, simply substitute
€q. (3.7) into eq. (3.12), to get

2

K o o
L dv¥x

(erﬁ)”j j

det ( 825(g + X/Z;P)) 8%8(g— X/2;P)

‘ dq;0F; ( dq,0P; )

Wiq.p)=

1/2
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i g+X72
X exp(—“ g, P)'dq’—p-XD. (3.15)

il Jg-xn

As #— 0, the integrand oscillates rapidly and is dominated by the region
near X={0. Expanding the phase for small X gives

g+X72
j plg’, P)-dg'=~X-p(q). (3.16)
g-Xr2
On setting X'=0 in the determinants, the integral can be evaluated to give
the purely classical result
8’S(q; P
dg;9q;
In this approximation, therefore, W is nonzero only on the surface X
employed in the construction of . This satisfying result can be expressed

in a more illuminating way if we define £ as the memeber P* of the N-
parameter family of surfaces labelled by P, and use the fact that

wig,p)=K* olp—p(g,P)l. (3.17)

3’S(g:P)y| |oP
det———| = |— 3.18
* agiop, aP (3.18)
to change variables in the delta function in eq. (3.17). This gives
W(g.p)=K*31P(g,p) - P*), (3.19)

where P(g,p) is the label of the particular surface that passes through g,
p. It is clear from this representation that W is of uniform strength in the
variable Q conjugate to P.

It is possible to go much deeper into the asymptotics of B and give a full
stationary-phase evaluation of eq. (3.15). This reveals (j45,17,50,46,119])
that in the semiclassical limit the purely classical W given by eq. (3.19)
softens its delta function and develops an intricate fringe pattern (whose
details depend on the geometry of 2’} in phase space near 2. Moreover this
more refined semiclassical W projects down onto g by eq. (3.13) to give a
probability density with the correct non-diverging behaviour on caustics,
and this approach leads to an infinite hierarchy of nonlinear identities be-
tween the caustic wave functions classified by catastrophe theory (Berry
and Wright {511, summarized in ref. [18]). But for our present purposes the
crude approximation eq. (3.19) is sufficient.

We wish to apply eq. (3.19) to the energy eigenstates of a system (in-
tegrable or quasi-integrable} for which some orbits trace out phase-space
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tori. Such tori must satisfy the quantization condition (3.11) which accor-
ding to eq. (2.4) restricts the action variables to

I, =(m+a/n, (3.20)

where m={m,...my} is the set of quantum numbers and a={a,...ay}
are the Maslov indices. Then the Wigner function W, representing the
state labelled by m is given by eqg. (3.19) as the following (correctly nor-
malized) expression:

1
Q¥

where I(q,p) is the action of the torus passing through ¢, p. The N-
dimensional delta function implies that the Wigner function for an
eigenstate is concentrated on the region that an orbit explores over infinite
time - i.e. on the torus.

It is natural to extend this idea to cases where the motion is irregular
and so not confined to tori. The resulting ‘‘semiclassical eigenfunction
hypothesis™ can be expressed as follows:

W lg.p)= oli{g.p)— 1}, (3.21)

Each semiclassical eigenstate has a Wigner function concentrated on
the region explored by a typical orbit over infinite times.

The stipulation ‘‘typical’’ excludes the measure-zero closed orbits explor-
ing one-dimension regions, which (except for certain degenerate cases) are
too small to support quantum states (see also section 5.3). It was realized
by Berry [52] and Voros [33] that this plausible hypothesis has powerful
predictive force, as will now be explained.

First of all, let us apply the hypothesis to the extreme case of an ergodic
system, whose orbits fill whole energy surfaces in phase space. Each quan-
tum state corresponds to one energy surface, selected by a quantum condi-
tion. What these eigenenergies are is unknown, because nobody has so far
discovered how to associate a wave with an energy surface in such a way
that quantization follows from single-valuedness (the structure of the spec-
trum, and implicit quantum conditions for a particular ergodic system, will
be discussed in sections 4 and 5). For an ergodic system, then, the
hypothesis gives for the correctly normalized Wigner function representing
an eigenstate with energy E,

3[E— H(q,P)]
§..JdYg d"pdIE-H(q.p)1

Wig,p)~ (3.22)
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In contrast to eg. (3.21), this is a one-dimensional delta function, reflecting
the fact that W is spread over a much larger region of phase space.

The prediction of different morphologies for ¥ is supported by com-
putations of Hutchinson and Wyatt [54] for a Hamiltonian with N =2 cor-
responding to motion of a particle in a potential (of ““Hénon-Heiles’’ type)
giving predominantly regular motion at low energies and irregular motion
at high energies.

3.4. Regular and irregular quantum states

By employing the ‘‘integrable’’ or “‘ergodic’® Wigner functions (3.21) and
(3.22), together with the definition (3.12), it is possible to obtain mor-
phological information about two aspects of w(q): its local average
strength and its pattern of local oscillations,

Consider first the probability density |w(q)|7‘, obtained according to eq.
(3.13) by projecting Wig,p) ‘*“down’’ p. For a system with tori, eq. (3.21)
simply gives the particular case of eq. (3.3) appropriate for this form of X,
namely (fig. 29) the sum over branches

1

2.1
lw(q)| 20"

de
); ‘a;(q,pf(q)‘ . (3.23)

Fig. 29,
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As already discussed, there are caustics at the singularities of the projection
of the torus onto g, i.e. on local boundaries of the region explored by the
orbit in g-space. Since the torus is usually locally parabolic near a caustic,
we can extract the analytic form of the divergence of the approximate in-
tensity |w(g)|® by taking a coordinate x perpendicular to the caustic and
evaluating

lw(x)|*~ | dpdix - p?)~ %, (3.24)
X

where & denotes the unit step function. In general the caustic has cusps,
swallowtails, umbilics and other morphologies classified by catastrophe
theory as singularities of projections [18,17] and becomes very complicated
as N increases.

On the other hand, for an ergodic system (3.22) gives

wig)P=]...[d"pSIE- Hg.p)l, (3.25)

i.e. the projection of the energy surface. In ref. [52] I evaluated this for
the case of a Hamiltonian

2
H(g.p)= % V), (3.26)

with V{g) corresponding to ergodic motion (e.g. the N =2 stadium billiard
potential discussed in section 2.3), to get the result

lp()P ~ [E- Vg~ OLE- V()] (3.27

where the step function confines || to the classically allowed part of ¢-
space. In the trivial case N =1, when the ergodic system is also integrable,
this reproduces the caustic divergence (3.24) on the classical boundary. But
when N> 1 the result shows that \y/(q)}z does not diverge on the boun-
daries of the classical region: instead, it displays what [ call anticaustics.
Geometrically, this unexpected result is made plausible by a one-
dimensional analogy in which instead of projecting a closed curve as in fig.
29 we project the patch of phase space enclosed by the curve (fig. 30). In
section 6 we shall see evidence for the existence of anticaustics.

If the dynamical system consists of geodesic motion on a compact
Riemannian manifold M, and is such that the geodesics are ergodic (e.g.
if M has everywhere negative curvature}, then there are no g-space boun-
daries. The semiclassical hypothesis predicts that for the corresponding
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‘Fig. 30.

““‘quantal’’ problem, i.e. determination of eigenvalues and eigenfunctions
w;(q) of the Laplace operator, |U/j|2 should spread over the whole g space.
That this is the case has been proved by Shnirelman [55], who shows that,
for any smooth function a(g),

f;Jdqa@ly @ =]. [dga(g)/S..Jdg  asj— oo (3.28)

for almost all j, where j labels increasing eigenenergies.

At this point we should pause to ask exactly what sort of semiclassical
|wave function|? is being calculated by this procedure involving the purely
classical Wigner functions (3.21) and (3.22). After all, we know that the
exact |w|? will have oscillations and moreover will behave smoothly across
classical boundaries. The probable answer {which I cannot prove except for
simple cases but which is supported in Shnirelman’s {55] special case by the
result (3.28)] is that what is being calculated is the limit as # — 0 of a pro-
bability density |w/|2, which has been smoothed over a distance 4 in each
direction in ¢ space, where 4 vanishes as fi — 0 more slowly than #, so that
oscillatory detail an the scale of the de Broglie wavelength is smoothed
away. Mathematically, for any function f(g) this procedure can be defined
by 1 X +4/2
@ @)=z 11 j 0./, (3.29)

-4/2
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where

limd=0 but limﬁ =0. (3.30)
=0 a-0 A

The vanishing of A ensures that the smoothed functions are ‘‘semiclassical-
ly sharp’’. On this interpretation, the classical Wigner functions (3.21) and
(3.22) should be considered as the result W, of smeothing over gq.

In view of this, it might be thought that egs. (3.21) and (3.22) destroy
all information about the oscillations of w(g). But this is, surprisingly, not
the case. Such information can in fact be obtained [52,53] from the local
autocorrelation function of v, defined as

COGE) =g+ X/2) w g — X/ Dl WD), (3.31)

where the bars denote local semiclassical averaging as in (3.29). C contains
information about the oscillations on the scale X near g, with irrelevant
overall phases averaged away. For example, if (in one dimension),

w(q)=exp[i(¥+a>]cos(% +ﬁ> (3.32)
then

W (@)n=1 (3.33)
and

C(X) =exp(ip, X/h)cos(p X/ 1). (3.34)
From the definition (3.12), C is given in terms of W, by

CX;q)={...{d"p W.n(g.pYexp(ip- X/ 1)/ |w(@)lim- (3.35)

For states associated with tori, eq. (3.21) gives
ceig~ I g(q,p,-(q» ew( 5p@)-X), (3.36)

whose simple interpretation is of local de Broglie waves interfering at ¢.
Each wave [of the type (3.7)] has a wave vector p;{g)/# corresponding to
one of the branches of Z lying *‘over” g. For a torus there can be only a
finite number of branches and so w is the local superposition of finitely
many plane waves, which gives an anisotropic patiern of interference
fringes.
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Now contrast this with what happens for an ergodic system with
Hamiltonian (3.26), The Wigner function (3.25) and formula (3.35) for the
autocorrelation function give the following result, obtained in refs. [52]
and [53]:

TN (| X|{2uE— V(gN} 2/ )
(X|{2ulE - V(@} 2 mv2-t

where J denotes standard Bessel functions. Here, in contrast to eq. (3.36),
C depends only on the length |.X| of the vector X, so that the local oscilla-
tions of y are, on the average, isotropic. This is because they result from
the interference of de Broglie waves with the same wavelength but all possi-
ble directions, corresponding for the exploration by a trajectory of all
momenta with the same energy (p>/2u)(g)+ V(q), rather than the finite
set p;(g) in the case of tori.

How can a function have locally isotropic autocorrelations about every
point g? Only be being in some sense a random function of ¢. The ran-
domness of y(g) is governed by W{(q,p), which corresponds to a local spec-
tral function specifying the distribution of local wave vectors k =p/f com-
bining to interfere at g. For an ergodic Hamiltonian of type (3.26) the set
of wave vectors consists of those with all possible directions but the same
length - for =2 this would be called a “‘ring spectrum’’.

To define the statistics of a random function w, it is necessary to specify
more than the bilinear averages |w|* and C, in order to describe the fluc-
tuations about these averages. In ref, [52] I suggested that the large number
of interfering de Broglie waves would have random phases. This would
make y a complex Gaussian random function of g, with local intensity
fluctuations governed by the probability distribution

Pg, |y =w|x) ~ "exp(— | /w2, (3.38)

where |a,u|§m is the ‘‘torus-projection’ formula (3.27). A convenient
measure of the fluctuations is the set of moments [, given by

L=lylm=n!. (3.39)

CiX;q)= 3.37)

These grow with n, but not as rapidly as moments associated with waves
dominated by caustics, which (as I have shown for the optical case in a
study [56,33] of the statistics of twinkling starlight) diverge as # — 0 accor-
ding to power laws determined by catastrophe theory. Ozorio [50] has
made a preliminary study suggesting that the Gaussian random nature of



210 M. Berry

a wave function is preserved under ‘‘metaplectic transformations’’, i.e.
linear phase-space-transformations. For a detailed semiclassical study of
the moments (3.39), see ref. [120].

Evidently the simple idea underlying the semiclassical eigenfunction
hypothesis has led to dramatic predictions about the morphology of wave
functions. It implies that as # — 0 wave functions separate into two univer-
sality classes, associated with regular and irregular classical motion. In the
regular case, y is associated with tori, and has vivid anisotropic in-
terference oscillations rising to high intensities h,u]2 on caustics. In the ir-
regular case, w is associated with chaotic regions in phase space (e.g. the
whole energy surface in the case of ergodic systems), and has a random pat-
tern of oscillations (isoiropic for ergodic systems) with anticaustics at
classical boundaries. 1 emphasize that these universality classes are
emergent properties as #— 0; away from the semiclassical limit, it may
often be impossible to unambiguously categorize a state as being regular
or irregular.

For the regular states, this description merely reformulates what is
already known. For irregular states it predicts an unfamiliar structure. In
section 6 I shall display some irregular wave functions in one dimension,
generated by a time-dependent Hamiltonian. Herge I show (fig. 31) the
nodal lines of a high-lying eigenstate (the 157th) of the Laplace operator
with the condition that w vanish on the boundary of a stadium (cf. fig. 10)
and on its diameters as computed by Mc¢Donald and Kaufman [57]. Recall
from section 2.3 that the stadium is classically ergodic, so that the quantal
eigenstates should be irregular. And it is clear that the nodal lines do
wander irregularly with no systematic well-defined direction. Compare this
with fig. 32, showing nodal lines for an eigenfunction of a circle {with
radial quantum number 9 and angular quantum number 28), which form
a regular pattern as expected because the circle is an integrable billiard (cf.

D OO0
\@f\ %/\ Of\/

Fig. 31. Reprinted from ref. [57] with permission.
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section 2.2). A similar contrast between the nodal paiterns of states cor-
responding to regular and irregular classical motion was found by Stratt
et al. [58]; their computations were for a smooth potential where some or-
bits filled neither tori nor whole energy surface, and indeed they found,
roughly corresponding to these, states whose nodal pattern could not be
classified as clearly regular or clearly irregular.

3.5. Crossing of nodal lines when N=2

The most striking difference between the nodal patterns for the irregular
and regular wave function in figs. 31 and 32 is that in the irregular case
the nodal lines do not intersect (except at the stadium boundary), while in
the regular case they do. Is this a general property, which could be used
to distinguish regular from irregular states in systems with N=27 The
answer is no.

To see why, consider first the theorem published by Uhlenbeck [59] in
1976, which states that it is a generic property of eigenfunctions that their
nodal lines do not intersect. ““Generic’® means here that the property fails
to hold only for Hamiltonians forming a set of zero measure among all
Hamiltonians. The idea is very simple. Suppose two nodal lines do cross.
Near such a crossing the graph of a (real) eigenfunction w(x, y) must be
saddle-shaped, with contours in the form of hyperbolae near the nodal
lines (it is easy to prove from the Schrédinger equation - with or without
a potential but with isotropic dependence of H on the momentum compo-
nents — that the nodal lines cross at right angles). At the crossing, not only
v but its gradients d/dx and dw/dy vanish. This gives three conditions on
two-coordinates xy and so generically no point can be found at which they
are all satisfied. It could be objected that (x, ¥) is not a generic function
because it is restricted by being a solution of the wave equation; but this
relates w to its second derivatives and so does not speil any genericity argu-
ment involving the gradient.
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The form of this argument suggests {cf. ref. [57]) that node-crossing wil!
occur generically in a family of Hamiltonians depending on a single
parameter A, i.e. it is possible that for isolated values of A the nodes of
a given eigenfunction may cross. If this is correct, then nodal lines behave
differently from energy levels, whose crossing (degeneracy) requires two
parameters, as we shall see in section 5.

There is no implication that “‘generic’’ here means ‘‘being associated
with irregular classical motion’’, and indeed it cannot mean this, because
the KAM theorem (section 2.4) establishes the persistence of tort in large
classes of nonintegrable systems. Therefore even among regular states,
associated with tori, the overwhelming majority will not show nodal line
crossings.

So what is the special property allowing nodal lines to cross? It is not
the existence of some tori throughout some but not all phase space, as in
quasi-integrable systems. Nor is it the existence of tori throughout the
whole phase space, as in integrable systems. In fact (as realized by
Pechukas [60] in 1972) it is separability of the Schrodinger equation in an
orthogonal coordinate system. This is not implied by integrability: even at
the classical level the canonical transformation to action-angle variables
does not imply that separation can be effected by coordinate transforma-
tion alone - see ref. [17] for a discussion of nonseparable tori.

If the system is separable, with orthogonal coordinates {, #, then eigen-
functions can be found with the special form

wi(l,n)=F()G@) (3.40)

for which the nodal lines do cross. But, though separability allows nodal
lines to cross, even this is not sufficient to guaerantee that they do so.
Because if the spectrum has degeneracies it is possible to add solutions of
the form (3.40) to get new eigenfunctions whose nodal lines do not cross.
Courant and Hilbert [61] give a dramatic example of this using the follow-
ing eigenfunctions of a square with side =:

wi(x,¥)=sin2rxsiny; w{x, ¥) =sinxsin2ry. (3.41)
The combination

W%, ¥) =y (x, M)+ (1+e)walx, ¥) (3.42)

is also an eigenfunction. Figure 33a shows the nodal lines for r=12 and
£=0; there are 10 crossings, dividing the square into 12 regions. Figure 33b
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Fig. 33. Reprinted from ref. [61] with permission.

shows the nodal structure for a small value of ¢; all the crossings have been
destroyed, and the single nodal line divides the square into just two
regions.

It is clear that the crossing of nodal lines is a very fragile property in-
deed, and certainly not as robust as the tori on which the existence of
regular wave functions depend. Therefore although irregular wave func-
tions must surely have no node crossings (except at isolated values of
parameters in H), no implication about the nature of the associated
classical motion can be drawn from the observation that nodal lines do not
Cross.

4. Eigenvalues: specira on the finest scales
4.1. Quantum conditions

Having discussed the morphologies of semiclassical quantum states
associated with regular and irregular motion, it is now necessary to con-
sider how these classical distinctions affect quantal energy spectra. We
shall find that these connections are quite subtle and depend on the scale
on which the spectrum is studied. In my opinion the importance of
understanding the rich variety of spectra on different scales (ranging from
the locating of individual eigenvalues to the average density of states) has
not hitherto been sufficiently appreciated.

On the finest scale, the most complete description of the spectrum would
be explicit exact analytical formulaec generating the energies £ of all
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eigenstates. Obviously, this ideal cannot be achieved except in very special
cases, and so we seek semiclassical formulae, giving the energies with an
accuracy that increases as #— 0. This more limited programme has been
carried out only for quantum states associated with regular motion, i.e.
with phase-space tori. The resulting semiclassical quantum condition is
known by various names in different sects of physics or mathematics:
Bohr, Sommerfeld, Einstein [36], Brillouin, Keller [28], Maslov [26]... ]
shall refer to the procedure simply as “*torus quantization’’.

According to arguments given in sections 3.2 and 3.3, a quantal energy
state labelled by quantum numbers m= {m,...my} is associated with a
torus whose actions I, are given by eq. (3.20) [cf. also eq. (3.11)]. The
energy E, of this state can be found in terms of the Hamiltonian (2.8)
written as a function of the actions, and is simply

E,=H(,). 4.1

This explicit formulae is exact as #— 0. For fixed E this corresponds to
highly excited states, but the formula often gives results accurate to a few
per cent even for the ground state (e.g. when N=1, in which case (4.1} is
the familiar WKB level formula [3]); in a few cases (harmonic oscillator,
Coulomb potential, rectangular boxes) it gives all levels exactly. For in-
tegrable systems, the whole phase space is filled with tori and eq. (4.1) ap-
proximates all the levels (for applications to quantum billiards, see Keller
and Rubinow [113]). For nonintegrable systems which are quasi-integrable
(section 2.4), the KAM theorem guarantees the existence of tori filling
some regions of phase space, and so eq. (4.1) can be employed to find a
finite proportion of the levels, provided the actions and energies of the tori
can be determined. This is a difficult problem of classical mechanics, which
has been tackeld analytically by perturbation and iteration methods, and
numerically by studying caustics and the Poincaré surface of section. By
such techniques, Marcus and his colleagues [23,63-65], Percival and Pom-
phrey [66], Jaffé and Reinhardt [67], and Chapman, Garrett and Miller
[68}, obtained, for some chemically interesting quasi-integrable systems
with N=2 and 3, eigenvalues in very good agreement with ‘‘exact’
computations.

What determines energy levels if the classical motion is irregular? In
quasi-integrable systems with irregular regions whose phase-space volume
is not large in comparison with A" (see refs. [45,6] and section 5.1), the
levels can be found from eq. (4.1) using low-order perturbation theory to
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approximate the motion in terms of tori even though the actual motion is
not entirely confined to tori. But when large regions of phase space are fill-
ed by truly chaotic motion, torus quantization must fail. In the extreme
case of an ergodic system, there are no tori, no actions and so no quantum
numbers, and eq. (4.1) cannot give any of the levels. Nobody has yet suc-
ceeded in finding an explicit quantum condition, analogous to eq. (4.1),
giving the levels of the ““irregular spectrum’ (to use Percival’s terminology
[37]) associated with chaotic trajectories.

It is, however, always possible to write implicit quantum conditions, by
the conventional procedure of expanding the unknown eigenstate |y > of
the Hamiltonian H in terms of a complete set|g,, > of basis states labelled
by the N-fold index m. Then Schrddinger’s equation,

Hly>=Ely>, (4.2)
leads to the following secular determinant:
detyy, n{ < Ol H| @y > — ESpy,n} =0. 4.3)

Although formally exact, this procedure, involving matrix elements labell-
ed by 2N integers, is not suitable for understanding the semiclassical limit.

For general Hamiltonians I do not know how to improve on eq. (4.3),
but for billiards with N=2 it is possible to derive a determinantal eigen-
value condition [69] which is much more compact in that each element is
labelled by two integers instead of four. Moreover this new determinant is
rapidly convergent and well suited to semiclassical studies of the spectrum.
I shall illustrate the procedure by outlining its application to Sinai’s billiard
(section 2.3 and fig. 8); full details can be found in ref. [70]. The motiva-
tion for studying Sinai’s billiard is that the classical motion is ergodic so
that this is a system with no tori at all, so one knows from the outset that
torus guantization is meaningless.

Because of periodicity with respect to the coordinate torus in Sinai’s
billiard, this system can be represented in terms of wave propagation
amongst hard discs centred on the points p={g,,0,} of the unit square
lattice (fig. 34). Eigenvalues E are determined by Schrédinger’s equation,

Py Py

'(—3—}"—2+W+k2l/f=0, = “4.4)
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with boundary conditions
wir+o)=w(r) (torus periodicity),

(4.5)
w(r|=R)=0 (hard discs),

where r={x, »}.

Thus the problem is transformed into one concerning waves in a periodic
structure, and so the methods of solid-state electron band-structure theory
can be brought to bear. Of several possible techniques {developed primarily
for soft potentials and low energies) the one most suited to this problem
{which has hard potentials and high - semiclassical - energies) is that devis-
ed by Korringa, Kohn and Rostoker (KKR) [71], where Green’s identity
plus periodicity is used to rewrite the Schrédinger equation as an integral
equation round the boundary of one disc. In this equation the unknown
function (normal derivative of ) is expanded as an angular Fourier series,
i.e. in an angular momentum representation. After some (nontrivial)
manipulation [70] this leads to the following determinantal condition for
the energies E:

det; 1[6y +sinm(E)eES,_(E)]=0 (-ow</I'<+x). (4.6)

In this equation, #; is the /th scattering phase shift from a single disc,
given in terms of real Bessel functions J and Y [72] by

tan,(E) = J(kR)/ Y,(kR) 4.7)

and §;_, are the “‘structure constants’’, given in terms of Hankel func-
tions HV [72] by the lattice sum
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SHE)= —1 L 'H{D (ko)e's, 4.8)
2

where the prime denotes exclusion of ¢ =0 and where ¢, ¢, are the plane
polar coordinates of o (fig. 34).

In physical terms, eq. (4.6} is the condition that the wave scattered from
a single disc interferes constructively with the waves scattered from and
amongst all the other discs. It differs in two essential ways from the secular
determinant (4.3): E appears non-linearly (as & in the Bessel functions)
rather than linearly, and each matrix element is labelled by two integers
rather than four.

The formally exact equation (4.6} involves an infinite determinant, but
this can be truncated according to a simple semiclassical rule, as follows.
When # is small, the argument kR of the Bessel functions in the phase
shifts eq. (4.7) is large. Then as |/| increases from zero the Bessel functions
oscillate until |/| = kR. For |{|> kR, J; gets exponentially small and ¥, ex-
ponentially large, so that the phase shifts can be set equal to zero and the
determinant truncated at /= &R [the full justification [70] of this procedure
involves intricate asymptotics on S;(E}]. Semiclassically, then, the size of
the determinant is given by /.., defined as

_ perimeter of billiard boundary
de Broglie wavelength of state being studied

4.9)

My opinion is that the determinant (4.6}, truncated in this way and approx-
imated by replacing the Bessel functions by their ‘‘Debye’” asymptotic
forms [72], is the semiclassical quantum condition for Sinai’s billiard,
analogous to the torus quantization rule (4.1). Of course eq. (4.6) is an im-
plicit equation, and more complicated than eq. (4.1). Moreover the work
of finding the levels increases as # — 0 (because /., — o), but less rapidly
than in any other method I know (a further discussion of this point will
be given in section 5.4). A determinant analogous to eq. (4.6) can be writ-
ten down [69] for any billiard (integrable, quasi-integrable or pseu-
dointegrable as well as ergodic). Its size is always given by eq. (4.9).

4.2. Degeneracies

We shall learn that there is a great deal more structure in the spectrum than
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can be immediately appreciated from a listing of the energies of all the
eigenstates. This structure is embodied in correlations and clusterings of
the levels. On the finest scale, such correlations concern neighbouring
levels, and the first question to ask is: under what circumstances do these
coincide? In other words: when do degeneracies occur?

If the Hamiltonian operator A has any symmetry, this may produce
degeneracies, whose nature can be studied using group theory. It is not my
intention to consider degeneracies of this type, and so when A does have
symmetry I shall consider only states which all have the same symmetry
class. This procedure is equivalent to considering all the states in a suitably
“‘desymmetrized’’ Hamiltonian. For example, in the case of Sinai’s billiard
there will be degeneracies between states related by reflection about the
axes x =0 or y =0 (fig. 8) or the diagonal x=y. We can eliminate these by
considering, for example, only states which are odd under these reflections,
and so effectively studying the modes of vibration of a membrane whose
boundary is the billiard in fig. 35. Henceforth I shall consider all Hamilto-
nians as having been desymmetrized in this way.

For a typical (generic) such Hamiltonian it seems clear that degeneracy
is infinitely improbable. But in a one-parameter family of Hamiltonians:

H=H{§,p;A), (4.10)

it might be expected that levels E can degenerate for isolated values of the
parameter A. The reason would be that the jth level E(A4) is a curve in E,
A space, and the crossing of curves in the plane (fig, 36) is a geometric oc-
currence which is stable under perturbation. But the surprising fact is that
this picture is not correct: for typical systems with real eigenfunctions {the
only ones considered here), it is necessary to vary two parameters, not one,
in order to make two levels degenerate. This is the content of a theorem
due originally to Von Neumann and Wigner [73] and Teller [74] and later

Fig. 35.
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generalized by Arnol’d (ref. [5], appendix 10). The proof is based on a sim-
ple argument which I now give. '

Consider Hamiltonians A close to a Hamiltonian H* at which two or-
thogonal states |u#>and |v>have the same energy E*, i.e.

AYu> =E*u>, H¥v> =E*v>, <ulp> =0. 4.11)
We wish to study the eigenvalues |y >of H, with energy E. Define

H=H*+ AR, E=E*+ AE, 4.12)
and consider A4 and AE as small. Then the Schrédinger equation,

Hly>=E|y>, (4.13)

can be studied by degenerate perturbation theory. |w> can be approx-
imated as a normalized linear combination of |#> and |v>, namely

|yr> =cosylu> +sinylv>. (4.14)

When substituted into eq. (4.13) using eqgs. (4.11) and (4.12), this gives two
homogeneous linear equations for cosy and siny, whose consistency gives
a condition on the eigenvalue deviations AE, which can be solved to give

AE, = {<uldHu> + <v|dH|v>
+(<ulAHu> — <v|dB|v>P+H<uldHv>Y1"?.  (4.15)

The discriminant is a sum of squares, so that coincidence of the eigenvalues
(AE, = AE_) requires the (real) matrix elements to satisfy two conditions
and not one. Generically, this can be accomplished by varying two
parameters in H, as asserted.

Let the two parameters be 4 and B. Then eq. (4.15) implies that the con-
nection of eigenvalues surface £'=FE_ (A, B) in the space E, 4, B takes the
form of a double cone (diabolo) (fig. 37) whose sheets are joined at the
“‘diabolical point®® E*, A*, B*, where A *#, B* are the parameters for which
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the degeneracy occurs. If only one parameter 4 is varied, the diabolical
point will almost surely be missed and the curves E_(A) will avoid each
other like branches of a hyperbola obtained by slicing the cone rather than
crossing. So, instead of fig. 36 we expect curves like fig. 38, with near-
degeneracies rather than actual crossings.

In testing the resulting picture of the spectrum, it is plausible to assume
that a one-parameter family of non-symmetric classically ergodic systems
will be generic in the quantal sense, and so will produce no level crossings.
Such a family is the desymmetrized Sinai billiard (fig. 35) with the hard-
disc radius R acting as the parameter. The levels E;(R) were computed
“‘exactly”’ [70] using a simple modification of the determinant (4.6) which
selects only states with the required symmetry. Figure 39 shows the spec-
trum. There are many near-degeneracies but careful examination shows
that no two levels actually cross, so this test is successful.

The conclusion is that in a generic two-parameter family of Hamiltonian
systems (e.g. Sinai’s billiard with the discs replaced by ellipses of variable
eccentricity and radius), we expect degeneracies at diabolical points A * B*
as in fig. 37. But how can be sure in any practical case that there really is
a degeneracy at A * B*, and not merely a near-touching of blunted cones,
analogous to the near-crossing of curves in fig. 38?7 The answer lies in a
little-known theorem, derived in ref. [70] by extending the algebra leading
to eq. (4.15), concerning the two (real) eigenfunctions v (g;A4, B) whose
energies degenerate at A * B*: when taken round a circuit € in parameter
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Fig. 38.
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space, then, if (and only if) C encloses a degeneracy, w, and w_ will
change sign. The theorem is mentioned by Arnol’d {appendix 10 of ref. [5])
and its converse was proved by Longuet-Higgins [75]. It is of course weli
known that wave functions must be single-valued under continuation with
respect to their variables (e.g. ¢}, but this theorem shows, surprisingly, that
they need not be single-valued under continuation with respect to
parameters in the Hamiltonian.

For systems whose levels are given by the torus quantization formula
(4.1), degeneracies do not obey the generic (wo-parameter rule, but typical-
ly occur on varying only one parameter 4. Therefore the picture of level
crossings given by fig. 36, which we discarded in favour of fig. 38, is
reinstated for the special class of systems with torus guantization. To see
why this is so, regard the state with quantum numbers s * as arising from
the intersection of the N—1 dimensional hypersurface E=H({,A), in
the N-dimensional space of quantum numbers # (fig. 40), with the lattice
point m*. Typically (i.e. for a fixed value of A) this hypersurface will not
intersect any other lattice point, so the state m * will be non-degenerate. But
on varying A the hypersurface through m* will smoothly change its orien-
tation and there will typically be values A * where it cuts another lattice
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point, so that for such a value A * there is a pair of degenerate states.

To summarize so far, we can say that, in the space of all Hamiltonians,
those Hamiltonians with degenerate levels form a set of codimension two
(connected cones), while in the space of Hamiltonians with all or part of
the spectrum given by torus quantization, those Hamiltonians with
degenerate levels form a set of codimension one (crossing curves). For the
class of separable systems (all of which are integrable and so have torus-
filled phase spaces), it is simple to show exactly that degenerate levels form
a set of codimension one as torus quantization predicis (even through torus
quantization is usually approximate rather than exact in these cases). But
for nonseparable systems, even those which are integrable, the one-
parameter degeneracies that torus quantization predicts will probably be
split by the multi-dimensional analogue of barrier penetration, and [ expect
the exact spectra for this class of systems to have two-parameter
degeneracies. On varying only one parameter, they should exhibit avoided
crossings  with  exceedingly narrow  separations, of  order
exp( —constant/#), to be compared with the mean level separation which
will be shown in section 5.1 to be of order #". Semiclassically, if the spec-
trum is studied only to an accuracy described by power-law asymptotics in
#, such systems (i.e. all those with tori throughout regions of phase space),
will seem to posses one-parameter degeneracies, but these are fragile and
turn into two-parameter degeneracies when studied with exponential
precision,

There are some special integrable systems whose levels are all propor-
tional to integers, and these are not naturally embedded in continuous
families. Their degeneracy structure can be very strange as I now indicate
with two examples.

Consider first the equai-frequency harmonic oscillator with N =2, whose
Hamiltonian is
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2 2
pi+p
H= 12# 2 +luw (@} + gd). (4.16)

The exact levels are
Ep , m,= fieo(omy -+ my+ 1) {0=m,, my< o). 4.17)

By considering contours of constant F in the m,, m, plane (fig. 41), we see
that levels occur at energies

E=hwp (r=1,2...) (4.18)

with degeneracies p. The mean density of states (cf. section 5.1) is

a(E) = 21: J(E—ﬁwp)p-:l dp pS(E-twp)= 4.19)

o ﬁzwz ’
Therefore the mean spacing irrespective of degeneracies is of order #2/E,
and in terms of this mean spacing the levels (4.18) arrive at ever-increasing
intervals in ever-more-degenerate groups,

The second example is the 45° right triangle billiard with hypotenuse
27V2, i.e. the desymmetrized Sinai billiard (fig. 35) with R=0. This is a
separable system whose exact levels are

_2n?A? 2nh

_ 2
ny Ry iy, My u

2+ m3) (1=m;<my< o).

4.20€)

(in

Thus the Ievels & are all those integers which can be written as the sum of
two squares. For small m,, m,, this square decompaosition can be carried
out in only one way. But when £=65 (=7?+4*=8%+1%) the first
degeneracy occurs (it can be seen in fig. 39 for R=0). When &=325
(=152 +10°=18%+1°=17?+6%) the first triple degeneracy occurs. It
seems that degeneracies are rare. But as £ increases, they come to dominate

Fig. 41,
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the spectrum. This curious conclusion, obtained in ref. [70], follows from
two facts. Firstly, the average density of states (in &) can be found from
eq. (4.20} by counting lattice points, or from formulae to be derived in sec-
tion 5.1, to be

d(&)=n/8, 4.21)

so that the asymptotic mean level spacing irrespective of degeneracy is 8/x.
Secondly, it is a number-theoretic result that for large integers & the pro-
bability that & can be written as the sum of two squares decreases as
(In&)~ "2, so that the levels are separated by widening gaps of size ~
(In£)"?. These two facts are consistent only if the degeneracies increase as
{In&)"2 to keep the net level density constant. In the original energy units,
the resulting semiclassical spectrum has levels with degeneracies of
order [In(constant x E/A%)]Y? separated by gaps of order #°%[In{con-
stant X E/#%)]Y2. Pinsky [76} has found similar strange behaviour for
the levels of the equilateral triangle billiard.

it is instructive to see how pseudointegrable systems fit into this general
picture of degeneracy structure. Recall from section 2.5 that these are
delicate *‘marginal”’ systems with N=2 and two constants of motion,
whose nonintegrability consists in the fact that the two-dimensional phase-
space surfaces that their orbits fill are not tori but multiply-handled
spheres.

To study these we consider the square torus billiard of fig, 15,
parameterized by the side length L of the reflecting square. Quantum-
mechanically, this was desymmetrized so as to become effectively the
billiard shown in fig. 42. Richens and Berry [21] computed some of the
levels Ej(L) ‘“‘exactly”, with results shown in fig. 43. There are no
degeneracies except at L =0, suggesting that all the levels avoid each other
which would mean that this class of systems behave like typical Hamilto-
nian systems and require two parameters to produce degeneracy. It can be

Fig. 42,
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shown [21] that this is not quite correct: for every rational value of L there
is a subset of all the levels (which gets smaller as the order of rationality
increases) for which an exact torus-like quantization formula can be found,
and which exhibit the increasing number-degeneracies discussed in connec-
tion with the 45° right triangle. None of these degeneracies (except for
three at L =0) appears in fig. 43 because the energy range is not large
enough.

Marcus [77] suggests that the presence of many near-degeneracies
(overlapping avoided crossings), in curves of energy levels as functions of
a single parameter, is an indication that the corresponding quantum states
are irregular in the sense described in section 3.4, i.e. associated with
chaotic classical orbits filling large fractions of the 2N—1 dimensional
energy surface. Figure 43 shows this implication to be unjustified: there are
many near-degeneracies, but for the square torus billiard all orbits lie on
N—(i.e. 2—) dimensionai surfaces and explore them without exponential
chaos. Marcus’s further suggestion that the implication holds in the reverse
direction, i.e. that the energy levels of quantum states associated with
classically chaotic motion will show many avoided crossings, is almost cer-
tainly correct. I conclude by drawing attention again to the extreme fragili-
ty of one-parameter crossings; these are analogous to the nodal-line in-
tersections of wave functions (section 3.5), in that any depariure from
separability (which need not amount to classical chaos or even non-
integrability) may destroy them. For a detailed study of diabolical points
in a quantum billiard system, see ref. [69].
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4.3. Level spacings

The next step in understanding spectra is to study their finescale texture as
embodied by the distribution of spacings between neighbouring levels, that
is, to study spectra on the scale of the mean level spacing, which as we shall
see in section 5.1 is of order #". The spacings distribution P(S) is defined
by

P(85)dS = probability that the spacings of a randomly
chosen pair of neighbouring levels will
between S and S+dS, {4.22)

where S is measured as a fraction of the mean level spacing {d(E)] ~! at
the energy considered, so that the jth spacing S, is defined as

S§=d(ENE;,, - E). (4.23)

The function P({S) was devised by Wigner and Landau and Smorodinsky
(see e.g. ref. [78] in nuclear physics, where the many-body levels of nuclei
are modelled by the eigenvalues of matrices in an ensemble (e.g. all
matrices whose elements are Gaussian-distributed). How can an ensemble
be defined in the case of a single Hamiltonian, for which the levels are
deterministic rather than random? The answer is: by taking the
semiclassical limit #— 0, so that infinitely many levels lic near any given
E and eq. (4.22) is the average over their spacings. For billiards this pro-
cedure is equivalent to averaging over all levels in the spectrum with # fix-
ed, i.e.

P®=lim > Y 8(5-5). (4.24)
=J g

We shall study the behaviour of P(S) as §— 0, because this tells us about
the finest scales of level clustering. If P(S)— 0 as §— 0, neighbouring levels
can be considered to “‘repel’” each other, leading to a degree of regularity
in the arrangement of levels, which can be quantified by the manner in
which P(S) vanishes. If on the other hand P(S)—constant as §—0,
neighbouring levels cluster rather than repel.

The form of P(S) as S— 0 for a given Hamiltonian A depends on the
degeneracy structure of families of similar Hamiltonians in which X can
be embedded. In the generic case, we saw in the last section how H can be
embedded in a family with two parameters 4, B which has degeneracies at
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diabolical points in E, A, B space as in fig. 37. Let the actual Hamiltonian
under study have parameters A, By. Then the line with A=A4y, B=2B5,
(fig. 44) will thread its way among cones in E, A, B space, and the cones
will presumably be distributed thickly if % is small. In eq. (4.24) the sum
over j corresponds to an ‘‘energy average’’

P(S) =[5~ 5;(Ag, Bo)] (4.25)

over the spacings S; ““above’ Ay, By. For small S the only contributions to
the average come from spacings for which the line in fig. 44 passes near
diabolical points (labelled by %)} whose parameters A}, B} lie close to
Ag, By. The corresponding spacing 5, takes the positive-definite *‘conical®’
form [cf. eq. (4.15) with the matrix elements expanded in 4 — 4% B— B*]
as follows:

Sk(AOs BO) =
[ax (Ao — AV + 2D (Ao — AZ)Bo— BE) + cr(Bo— B, (4.26)

where a;, b, and c, describe the geometry of the kth cone.

Now, by hypothesis, there is nothing special about the system with
parameters A, By, and so the energy average in eq. (4.25) can be
augmented by an ensemble average over a region of 4, B near A,, By. Let
g(A, B, E) be the density of diabolical points, and let n(a, b, ¢) be the pro-
bability distribution of cone geometry parameters; the forms of the func-
tions g and # are unknown. Then the average (4.25) becomes, on using eq.
{4.26) because S is small,
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P(S)= 5%(%, B, E)]da]db]dc (@ b, ¢)

SdA SdB S1S—(aA?+2bAB + cBH'2). 4.27)

The integral over 4, B can be extended to infinity because the positive
definiteness of the quadratic form ensures convergence. Now change
variables to

a=A/S, f=B/S, (4.28)
and eq. (4.27) becomes

P(S)= (% jdaj dbj de n(a, b, ¢)
§dadﬁ Sfl —(aa2+2baﬁ+c}5’2)”2]) xS. (4.29)

The factor in the two-line round brackets is a purely geometric average not
involving S, so that

P(S)~S as $—0. 4.30)

This argument therefore leads us to expect level repulsion for generic
systems. The essential feature of the degeneracy structure which gives rise
to this conclusion is the fact that the total length of intersection of a
diabolo by two parallel sheets separated by S, where the diabolical point
lies between the sheets, is proportional to S as S—0.

Figure 45 shows a test of this prediction of ““linear’’ level repulsion, ob-
tained by calculating eigenvalues of the desymmetrized Sinai billiard (fig.
42) and making a histogram of all spacings (several hundred in all) with
0.20=<R=0.44. It is clear that the levels to repel, and that the linear law
gives a good fit. McDonald and Kaufman [57] and Casati, Valz-Griz and
Guarneri [79], in computations of P(S) for the desymmetrized stadium
billiard, also obtain level repulsion, but their histograms do not show suffi-
cient resolution to say whether the linear law is obeyed. Figure 46 shows
another test, this time for the more delicate case of the (pseudo-integrable)
desymmetrized square torus billiard (fig. 42). Once again the linear law of
level repulsion gives a good fit, and it appears that pseudointegrable
systems behave generically as far as P(8) is concerned. (Because fig. 46 is
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a compilation for different values of L, there might be a delta-peak in P(S)
at S=0 because of the increasing number-theoretic degeneracies for each
rational L, discussed in section 4.2, but it is probabie that this delta-peak
has zero height because of the zero measure of rationals.)

Zaslavsky [80] predicts that for classically chaotic systems P(S) will
dispiay not the limiting form (4.30) but a noniinear repulsion 5% where y
depends on the rate of exponential separation of trajectories. I have criticis-
ed Zaslavsky’s argument elsewhere [70], but point out that my own argu-
ment leading to linear repulsion is not watertight: it could fail if the cone-
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shape distribution n{a, b, ¢) becomes singular as #— 0 in such a way that
the previously mentioned two-line geometric factor in eq. (4.29) diverges.

Now let us consider P(S) for some classes of non-generic system. Sup-
pose we have a system so special that when embedded in an ensemble of
similar systems it exhibits m-parameter degeneracies, i.e. degeneracies with
codimension m, where mr differs from the generic value of two. Then an
argument precisely analogous to that based on cones when m =2, employ-
ing the fact that § as a function of parameters is given not by eq. (4.26)
but by the square root of a guadratic form in m variables, leads instead
of eq. {(4.30), to

P(S)~8™"! as S—+0, 4.31)

For systems with torus quantization we have seen in eq. {4.2) that
degeneracies are produced by varying only one parameter, 50 m =1 and eq.
(4.31) predicts that P(5)— constant as S— 0. Therefore systems with tori
should show level clustering rather than level repulsion, This is consisent
with a more elaborate argument by Berry and Tabor [81], indicating that
for integrable systems {with N> 1), P(S) generically has the universal form

P(S)=e 5, (4.32)

corresponding to levels arriving irregularly. Figure 47 shows tests of this
prediction for (a) the spectrum of a rectangle with side ratio 2, and (b} a

PiS)

15 (a)
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two-dimensional system whose potential is a square well in one direction
and a harmonic oscillator in the other. Evidently the negative exponential
is a very good fit to the computed histograms.

To summarize, we have found that for a generic system, e.g. one whose
classical motion is irregular, the quantum levels exhibit linear repulsion
and so are fairly regularly distributed, For a typical system with tori, whose
classical motion is regular, the energy levels are irregularly distributed [and
indeed from eq. {4.32) arrive at random as in a Poisson process such as
radioactive decay].

I conclude with two curiosities. Consider first a class of systems in which
degeneracies are strictly forbidden, so that even infinitely many parameters
will not produce them. Then we must take m — oo, and eq. (4.31) suggests
that P(S) will vanish faster than any power of S as §— 0. One such class
of system is the eigenstates of the one-dimensional Schrédinger equation
in a finite range with vanishing wave function at the ends. And indeed
Pokrovski [82] showed that for electron states in a disordered linear chain
of N delta-function potentials,

P(S)~exp(—C/S$¥H/5* as §—0, (4.33)

where C depends on N but not §) in conformity with this prediction.
{Recently, Molcanov [83], in a rigorous analysis, obtained the exponential
distribution (4.32) for a one-dimensional potential — in the form of a non-
differentiable (*‘fractal’’) curve derived from Brownian motion - in ap-
parent contradiction with the prediction. But an essential feature of
Molcanov’s argument is the taking of a limit in which the potential exists
over an infinite range, so that localized wave functions separated by great
distances can have essentially independent eigenvalues and the basis of the
prediction of level repulsion breaks down).

The second curiosity concerns two-dimensional harmonic oscillators
with frequencies «w; and w,. Recall fig. 41 and eqs. (4.18) and {4.19),
which show that if w, =w, degeneracies increase with energy, so that on
the scale d~! of the mean level spacing the gaps between neighbouring
levels increase. Therefore the function P(S) does not exist: the levels never
settle down to a limiting distribution. A similar result holds for all rational
values of w,;/w,. What about irrational values? These are classically in-
tegrable systems and so might be expected to cbey the negative-exponential
rule (4.32). But for irrational harmonic oscillators the basis of the rule
breaks down, because it can be shown quite easily that the levels, given by
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Ep m,=Hlw(my + 172} + @y (my + 1/2)], (4.34)

are never degenerate. A lengthy number-theoretic analysis [81] of ways
levels can come close together strongly suggests that P(S) should show level
repulsion, and indeed computation confirms this, as fig. 48 (for
w,/w,=2"?) shows. The decay as §— 0 is faster than for generic systems
(cf. figs. 45 and 46), and suggest that P(S) is more like eq. (4.33) - i.e.
vanishing faster than any power of § - than the merely linear repulsion
(4.30).

5. Eigenvalues: spectra on larger scales

3.1. Mean level density

Now we study spectra on scales large compared with the mean level spac-
ing. It will be convenient to work with two functions: the level density d(E)
and the mode number +(FE), defined in terms of the Hamiltonian operator
H or the levels E,...E;... (in increasing I with degenerate states counted

separately) by

P(s)
151

1.0F

0.51
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d(Ey= ), (E-E)=Trs(E—H) .1
i=1
and

ME)= Y, OE-E)=Tr&E-H). (5.2)
j=1
These functions have of course been chosen so that their singularities
{(spikes for d and steps for .#) give the positions of the levels. A4(F) is simp-
ly the number of states with energies below E. Obviously,

d(E)=d #(E)/dE. (5.3)

Sometimes A(F) is the more convenient function to work with, and
sometimes d(E) is more convenient.

There is a beautiful semiclassical theory for & and .#, whose principal
architects were Gutzwiller [84-88] and Balian and Bloch {89-92]. This is
based on representing d(F) in the form

d(E) = A(E) + dyo.(E)s (5.4)

where d is the mean level density and d,, is a series of oscillatory correc-
tions. There is a similar representation for #(E). The terms on the right
side of eq. (5.4) correspond to successive smoothings of the singular func-
tion d(E). On the coarsest scale, that is after smoothing over energy ranges
AE large enough to obliterate all traces of individual levels and all scales
of level clustering, only d(E) survives. As AE is made smaller, more and
more terms d,,(E) contribute, with faster oscillations, until eventually
they sum up to give a series of delta functions at the exact level positions.
In simple terms, the semiclassical representation (5.4) is a generalization of
the following expansion for a series of equally spaced unit delta functions:

Y S(E-n)=1+2Y cos2nmE. (5.5)
n=-o m=1
We begin in this section by studying the mean level density d(E) and the
mean mode number 4#(E). These are given by the simple semiclassical rule
(Landau and Lifshitz [93]) that each quantum state is associated with a
phase-space volume 4”. Therefore #(E) is #~" times the volume of phase
space for which H{g, p) is less than E, i.e.

E)~ ﬂqu dpOIE~H(g, ), 5.6)
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and

a‘(E)~%jqudp6[E—H(q,pn, 5.7)

so that the density is proportional to the size of the energy surface.

It is instructive to obtain these formulae in several different ways. The
simplest is via the Weyl association [39-42] of a phase-space function
a.{q,p) with any quantal operator & which is a function of the § and p
operators:

"

awl(@s D)= %n(&j de dffexp & [(ﬁ—p)-QHé—q)-H]D, (5.8)

and implies

. 1T
Tra=?! dg [dp a,(g, p). (3.9

It is not hard to verify that if 4 is the sum of an operator depending only
on § and an operator depending only on 4, a, (g, p) is the function obtain-
ed by replacing § g and # by p , but that in general &, (g, p does not equal
the classical function obtained in this way. But, by the correspondence
principle this classical replacement must hold ir the semiciassical limit. We
therefore choose for 4 the operator in eq. (5.1), namely

i=8(E-H), (5.10)

so that semiclassically a,, is simply obtained by replacing A by the classical
Hamiltonian function, and eq. (5.7) follows at once.

The second method, which we shall also use to study d,, in section 5.2,
is based on writing eqg. (5.1} as

1 1
dE) = — MimIm Tr{ —
(E)= - r(E+ia—H>

1
= _;Im\"qu*—(qsq’;E)q_q’; (5-11)

where G* is the outgoing energy-independent Green function, defined by

1
g, ¢ ={g'|———= 12
G*(g,9E) (qlEHe_H‘q) (5.12)
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and satisfying
[E+ie— H(g, —iAV,)1G*(q,9)=d(g—g"). (5.13)

For simplicity let us restrict ourselves to Hamiltonians of the ‘‘kinetic +
potential’® type (3.26). Then the Green function satisfies a Helmhoitz
equation

(V§+ p;(f))0+(q, g)= %Nq—q’) (5.14)
with varying local momentum

PHa)=2[E~V(g)]. (5.15)
Let

e=lg-q'|. - G18)

Then from eq. {5.11), d(E) depends on G as £ — 0. The mean density d can
be obtained by a local approximation in which eq. (5.14) is solved as
though p(g) had everywhere the value it has at ¢g. The resuiting outgoing
“free-particle Green function with momentum p(q)”’ is

—2iu ;Lq) N/2-1
(ZTI)N/2+I< e )

HY, | (%q)g) 5.17)
where HV is a Hankel function [72]. This diverges as e — 0 but its im-
aginary part remains finite. The small-argument limiting form for the
Hankel functions [72], together with eq. (5.11), now gives d as an integral
over the classically accessible space, namely

G* (g, q’;E)qszq’z

N2
aE)~ (£ ) dglE - V(@M o(g)]. 5.18
o /Z)E gIE- V@~ o)) (5.18)
This is precisely what eq. (5.7) gives for Hamiltonian of type (3.26) (after
integrating away the quadratic p-dependence).

" For billiard Hamiltonians with N=2, whose boundary encloses area .«
eqs. (5.6) and (5.7) give

AuE  ok?

AEV o™ am

(5.19)
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and

U

IEV= Jur

(5.20)

These results are known as ““Weyl formulae’” (for a review, see Baltes and
Hilf [94]).

Of course it is also possible to obtain 4(E) from the quantum conditions
discussed in section 4.1, For integrable systems, the torus quantization rule
(4.1), together with eq. (5.1), gives

d(E)= Y S[E-H({I,). (5.21)

To find d we simply replace the sum by an integral and change variables
from m to I using eq. (3.20), giving

3(E)=ﬁLN\quJ[E—H(I)]. (5.22)

Introducing the torus angles # as dummy integration variables, we obtain
an integral over phase space I, 8:

.

1 de

AE)= hN] dlj GnOlE= HA. (5.23)
After a canonical transformation from I, @ back to the original g, p
variables (a transformation whose Jacobian is unity), this gives precisely
eq. (5.7).

It is more tricky to extract d(E) from the implicit quantization condition
(4.6) for Sinai’s billiard, and I simply outline the procedure (details are
given in ref. [70]). A slight manipulation of eq. (4.6} gives
—imiE)

F(E)Edet[l I-(m

9y p+ S,,,-(E)) =0, (5.24)
where F(E) is a function which can be shown to be real for real E. At each
zero E; (energy level of Sinai’s billiard), the phase of F jumps by 7. F also
has poles £, (where the structure constants S, diverge and where sin 7,
vanishes), and at E, the phase of F also jumps by z. This leads to the
following representation for .4 (E):

A’(E)=£i£laa%Imln[F(E+i£)]+ Y O(E~E,). {5.25)
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After some algebra this gives the exact formula

ME)= T @(k2—4n2m2)+% 0
m {

LR (6, -+ singE)e MBS, (E)]. (5.26)
T

The first term is the *‘unperturbed’’ mode number corresponding to the in-
tegrable billiard with R =0, with steps at each level of the “‘empty’’ torus.
The other terms embody scattering by the discs. Only the first two terms
contribute to the mean mode number in lowest approximation, and a little
analysis [70] leads to

(1-7RH)HK?

ME) = o ,

(5.27)
which is precisely the “Weyl” result (5.20) for this case.

In order to test numerically these theories for A(E), it is necessary to
compute the levels E;, construct the exact stepped curve #{E) using eq.
(5.2) and compare its trend with eq. (5.6). Such a test has been carried out
for the desymmetrized Sinai billiard (fig. 35) and is very instructive. Figure
49 shows the comparison of A#(E) (stepped curve) with the Weyl formula
(5.27) (divided by 8 because of the reduced area after desymmetrization)
{(full curve), for values of R from zero (integrable) to R =0.4. Evidently the
agreement is poor. The reason is that eq. (5.27) is an asymptotic formula
which is here being tested on lowlying states. It is necessary to include cor-
rections to eq. (5.27). These are not contributions to .4, (which will be
discussed in the next section), but are smooth terms of lower order in £,
depending on aspects of the billiard geometry other than its area /. For
the desymmetrized Sinai billiard, general formulae {94] give

i 1 1 n 31
ME)= — (1 -nR}HK2: - — 1+2-”2—R<2-—) k+=—. (5.28
E)= 3 1~ 7RY 41:[ 4 96 O3
area perimeter curvature
-+ COrners

This corrected formula is shown in fig, 49 as dashed curves; evidently the
agreement is dramatically improved. Computations of the spectrum of the
(pseudo-integrable) desymmetrized square torus billiard [21] give essential-
ly the same result.



238 M. Berry
N NE
20F 20
| /
10 10+
R=00 R=01
0 ) T 0 ) w0t

W
N
20 L

o
e
10‘ //
pd
R=0-4

o R e

Fig. 49,



Regular and irregular motion 239

This study of the spectrum on the coarsest scales, embodied in d and .#,
has revealed that with this degree of smoothing all evidence of regularity
of the underlying classical motion is lost.

5.2. Oscillatory corrections and closed orbits

The results of the last section confirm what was asserted in section 4, that
the mean level spacing = is of order #". This might lead us to expect
that the mean level density d{E) would be obtained simply by smoothing
the exact d(E) over an energy range of order #". But such an expectation
is mistaken, because as we shall see the corrections d, oscillate with
energy “‘wavelength’ of order #, which when N> 1 (i.e. in nontrivial cases)
is infinitely larger than the mean spacing as # — 0. In this important respect
the spectrum in the general case contrasts with those special cases (which
actually correspond to N=1 as analyzed for example in ref. [3])
represented by eq. (5.5), in which the slowest-oscillating corrections have
energy wavelength equal to the mean spacing.

The clearest route to understanding the nature of the contributions to
d . is the Green function method based on egs. (5.12)-(5.15). Because full
details can be found in the original papers by Gutzwiller [8§4-88] and Balian
and Bloch [89-92], which have been partially reviewed before [3]. I confine
myself here to using the very simplest arguments leading to the essential
results,

As defined by eq. (5.12) the Green function G*{(g,q";E) gives the
amplitude at g of waves continuously emitted from ¢’ with energy E. The
corresponding classical paths form an N-parameter family (V components
of momentum p’ of the emitted particles, minus 1 because p’ must lie on
the energy surface H{g', p’y = E with g’ and E fixed, plus 1 because particles
are emitted at all times). Therefore the method described in section 3.1 can
be employed to construct the semiclassical Green function as a series of
contributions from all classical paths leading from q’ to g with energy E.

For the jth such path, let the momentum at ¢ be p;(g:¢’, £). Then the
phase of this path’s contribution to G* is Si{(g,q’;E)/h, where

q
Si(g, q’;E)=§ pilg, g3 E)-dg’. (5.29)
g
Derived from §; is an amplitude factor a;(¢,¢';E) whose form will not be
specified here (see ref. {84]), and this contributes to G* after multiplica-
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tion by #~W*12 (a5 can be seen for example from the “‘free-particle”
formula (5.17) on replacing the Hankel function by its asymptotic approx-
imation). Therefore

1 ’ i '
G* (4.9 E)=—wis L 4,9 EYexp( -5,49.4"E) ). (5.30)
A2 S A

To find d(E) it is necessary to let ¢’ — ¢ and take the trace (5.11) by in-
tegrating over ¢. When g’ — ¢, eq. (5.32) includes all classical paths beginn-
ing and ending at g. These are of two kinds: the ““paths of zero length®’
- i.e. the limit as ¢ — 0 of the direct path from ¢ to g + &—and the paths
looping back to g after a finite excursion. The paths of zero length were dis-
cussed in the last section, and shown to give rise to the smooth term d [¢f.
egs. (5.17) and (5.18)]. The looping paths contribute to d,. as I now show.

A looping path need not be a closed orbit, because it may (and usually
does) return to g with a momentum p different from its initial momentum
p’. But in the integration (5.11) over g such non-closed looping paths give
negligible contributions. The reason is that Sj(q,q;E) must be stationary
under local variations of g if the contributions from nearby positions are
not to cancel by destructive interference, and this implies

VeS(q,q;E)=lim[V,5(q.q"E)+V ;. 5(q,4"E)]
= lim [p(g)—p'(g")] =0, (5.31)

so that the initial and final momenta must in fact be equal.

We have now reached the following central conclusion: only closed or-
bits with energy E contribute to d,,. (E); these include repetitions of
primitive orbits, i.e. closed orbits traversed once. To study the form of
these contributions, let j now label the primitive closed paths, and let the
action round the jth path be

Si(E)=4¢p;{¢;E)-dg. (5.32)

Then it is clear that the phase of the contribution to d,, from the jth
primitive closed orbit, when traversed p times, is pS;(E)/A.

The amplitude is found by performing the integral over ¢ in eq. (5.11),
and the manner of doing this depends on two aspects of the primitive clos-
ed orbits: whether they are isolated or nonisolated, and whether they are
stable or unstable.
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Let the jth primitive closed orbit be embedded in an /-parameter family
of closed orbits. /; can vary from zero (for an isolated orbit) to N-1 (for
the torus-filling orbits of an integrable system - section 2.2 - taking ac-
count of the fact that each closed orbit occupies one dimension). Then in
eq. (5.11) 5;+1 dimensions of g integration (one along the orbit and /;
““across’” the family) can be performed easily because the phase S;/7 is
constant, and gives a factor corresponding to the measure of the family.
The remaining N-/;,— | dimensions, over the looped non-closed paths in
the neighbourhood of the family, must be performed by stationary phase;
each dimension gives a factor #'2. Using eq. (5.30) and eq. (5.11), the
resulting formula for the oscillatory level density corrections is

E S{E
dowe(E) = L )_: ﬁ’;‘iﬂ,ﬁ (p f,: ) +pa,-). (5.33)

This is a sum over all primitive orbits j and repetitions p. The phases a;
are analogous to the Maslov indices discussed in section 3.2, and depend
on the focusing of trajectories close to the closed orbit. The behaviour of
the amplitudes 4; , as function of repetition number p depends on the
stability of the primitive orbit j. For isolated orbits, 4; , oscillates with p
if the orbit is stable, and decays exponentially if the orbit is unstable - types
of behaviour to be expected in view of the repeated focusing or continued
defocusing of beams of trajectories. For integrable systems, where all or-
bits are embedded in N —1 parameter families, Berry and Tabor [95,96]
showed that 4; , decreases as p~® 9”2 The Green function theory leading
to eq. (5.33) is reviewed in detail by Rajaraman [97] and de-Wiit-Morette
et al. [98].

Just as for d(E) it is instructive to see how the general formula (5.33)
for d.(E) is implicit in the quantization conditions obtained in section
4.1.

Consider first the integrable case, where torus quantization gave eq.
(5.21) for d(E). This is an N-dimensional sum over quantum numbers 1,
which can be transformed exactly into a sum of integrals in action space
I by using the Poisson summation formula and the relation (3.20) between
I'and m. Recall first that the Poisson formula transforms sums over a unit
lattice m into sums over another unit lattice M: for any function f(m)
defined on the lattice,

Yim=1Y Sdmexp(Znim-M)f(m), (5.34)

M
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where the integrals involve any interpolation of f for continuous m. Ap-
plied to eq. (5.21) this procedure gives

1 7 r 27
d(E)=— ¥ exp(—i—a-M) dIJ[E—H(I)]exp(——M-I). (5.3%
A 2 ] h
The term M =0 corresponds to replacing the original zz-sum by an integral,
which as we saw in eq. 5.1 gives the mean level density d. The terms M#0
give the oscillatory corrections we want to study now.

Action space I, that is the space whose points are tori, is stratified by
the surfaces of constant E, which have N— | dimensions. The delta func-
tion in eq. (5.35) restricts integration to the surface with energy E. In-
troduce coordinates &= {&,...Ex_;} on this surface {fig. 50). Then for
small % eq. (5.35) involves an integration with respect to & over a rapidly-
oscillating exponential whose phase is 2aM -+ K&)/h. The principal con-
tributions will come from those values &Y for which this phase is sta-
tionary, i.e. for which

M-%=O when E=&M  (i=1,2..N-1). (5.36)
!

Because dI/9¢&; are tangent vectors in the energy surface, this condition
for £ has the geometric meaning that the tori 7™ contributing to d are
those lying on the energy surface at places where it is perpendicular to M.
But the frequency vector w(eq. {(2.10)] is also perpendicular to the energy
surface, so that w and M are parallel in action space. Now, the components
M; are integers, so that the w; are mutually commensurate. Therefore the
tori I™ are just those on which orbits are closed [cf. the discussion follow-

L
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ing eq. (2.11)]. Moreover the lattice vector M specifies the topology of the
orbit in terms of its winding numbers round the cycles of the torus.
Therefore we have shown that the terms Af =0 in eq. (5.35) correspond to
all the topologically distinct closed orbits with energy E. The phase of each
contribution is 2aM-IM/#, which according to the definition (2.4) is
precisely the action S round the orbit. This argument shows that for in-
tegrable systems torus quantization gives terms for d,, precisely in accord
with the general formula (5.33). For further details see refs. [95,96].

It is at first surprising to find that d,,. depends on the closed orbits in
this way, because the representation (5.23) from which we started involved
the actions I,, corresponding to the quantized tori, and not the actions I
of the ““rational’’ tori supporting closed orbits. These actions are different,
and in particular the actions I, corresponding to individual guantum
states will not generally have commensurable frequencies and so will not
support closed orbits. I shall discuss this point further in the next section,
but remark that the apparently paradoxical result that all details of d(E),
including positions of individual levels, can be obtained by summing closed
orbits is in fact analogous to, and no more surprising than, representing
an irrational number as a sum over infinitely many rationals.

In the case of Sinai’s billiard, extraction of the oscillatory contributions
from the implicit quantization condition (4.6) is a much more difficult
business and I only indicate the results (a full derivation is given in ref.
[70]). The oscillatory contributions come from the first and third terms in
the exact representation (5.26). The first term (which corresponds to the
spectrum of the integrable ‘“‘empty torus” or “‘empty lattice’’) can be
transformed by the Poisson formula as in the general integrable case just
discussed. This gives terms .4, corresponding to each closed orbit
belonging to the nonisolated set, which do not strike a disc (c¢f. fig. 12).
Two examples are shown in fig. 51. But also included in this set of con-
tributions are terms corresponding to nonisolated orbits that would pass
through ““ghost”’ discs, such as those in fig. 52, These are obviously un-
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Fig. 52.

physical and in fact cancel as will soon be explained.
The contributions .4, from the third term in eq. (5.26) are extracted as
follows. First the Tr /n is expanded using the formula
@ —_ 1 1
Trln(éy; + M”')= E ( n )

n=1

(rx e EM{IIZMfztz"'Mlnfl)' (5.37)
1 "n
Next, the phase shift factors are written as
) 1 .
singe" = E(ez'” -1) (5.38)

and the *‘ — 1"’ neglected for the moment. Then the sums over angular
momenta / are replaced by integrals. Next, all Bessel functions are replaced
by their asymptotic approximations. Finally the multiple /-integrals are
evaluated by the method of stationary phase. The result of this lengthy pro-
cedure is that the ath term in eq. {5.37} gives contributions to .4, from
isolated closed orbits with n bounces from discs (cf. fig. 13). Two examples
with n =4 are shown in fig. 53. But also included in this set of contributions
are oscillatory terms corresponding to closed orbits that would pass
through “‘ghost’ discs, as shown in fig, 54, Just like their nonisolated
counterparts, these are obviously unphysical.

Both sorts of impossible path are cancelled by contributions from the
*“—1” terms in eq. (5.38). This occurs through a subtle diagrammatic iden-
tity [70] whose action can be glimpsed from the equation represented sym-

Q

Fig, 53.
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O z ‘ OO0
OEr=20 0D
Fig. 54.

bolically in fig. 55, which refers to the impossible leg of the first diagram
in fig. 54.

After all this, the final result is that d, .. contains contributions from all
topologically distinct physically possible closed orbits. These are of two
sorts. Firstly, terms from nonisolated orbits, which give contributions of
order #%? in precise accord with eq. (5.33) for this case where the orbits
form one-parameter families. Secondly, terms from isolated orbits, which
give contributions of order #~!, again in accord with eq. (5.33). The
isolated orbits are all unstable and their contributions decay with increas-
ing repetition as 4; 7, where 4; (whose value exceeds unity) is a ““determi-
nant of bounces®’ corresponding to the jth primitive closed orbit; the order
of A; is the number n; of bounces in the primitive orbit.

5.3. Comments on the closed-orbit sum
The most important feature of eq. (5.33) is its implication that each closed

orbit (labelled by j and p) contributes an oscillation to the level density
d(E). The oscillation has energy ‘““wavelength’® AE given by

pds;

——2AE=2s. ;

P T (5.39)
Now from eq. (5.34),

ds;  dp; . dp; dp;

— = g = . = H. =T 4

T ‘?dE dg Sdrq iE jdz‘lﬂJ iE T(E), (5.40)
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where T;(E) is the period of the jth closed orbit with energy E, so that
AE=h/pT{E}, (5.41)

so that the closed orbit describes level clustering on scales of order #. Now
recall from eq. (5.7) that the mean level spacing of order #". Therefore if
N>1 the closed orbits do indeed describe level clustering on scales much
larger than the mean level spacing, as asserted at the beginning of section
5.2,

For billiards,

S; p;-dg
o mE Y
5 é) n kL, (5.42)

where L; is the spatial length of the jth orbit, implying that the correspon-
ding k-wavelength Ak of the oscillations is

Ak=2n/L,;. (5.43)

Now I want to dispose of a fallacy based on a misinterpretation of eq.
(5.33). Consider the terms with given /, i.e. those corresponding to all
repetitions of a single primitive closed orbit. The terms will interfere con-
structively if

Si(Ep) = Q2nm—ay)h, (5.44)

defining a series of energies E,, corresponding to integers m. At these
energies, the sum of the contributions to d,,. depends on the amplitude
factors A, ,(E): for stable isolated orbits, the sum gives delta-functions at
E,, [87], for unstable isolated orbits, the sum gives Lorentzian peaks at E,,
[87]1, while for nonisolated orbiis the sum gives other singularities at E,,
[91,95], e.g. of logarithmic or inverse square root type. The fallacy is to
suppose that E,, are eigenvalues of the Hamiltonian, i.e. that eq. (5.44) is
a quantization condition associating individual quantum states with repeti-
tions of individual closed orbits.

Why is this a fallacy? For a start, eq. (5.44) gives energies scparated by
distance of order #, whereas the energy levels have separation #". But
why not superpose the level sequences obtained from eq. (5.44) with all
topologically diffeent orbits f? Because this would give too many levels!
An instructive demonstration of this is provided by free motion of a parti-
cle with mass ¢ on a coordinate 2-torus, represented by a rectangle with
sides @, b and periodic boundary conditions. This is an integrable system,
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whose exact levels E,, are labelled by m =(m,, m,)) and given by
g, (m—;z‘ + m—f’) (5.45)
H a »?
Compare this with what eq. (5.44) would give: there are closed orbits

labelled by M =(M,, M,), corresponding to lattice translations (M,a, M,b)
{windings round the torus}, with length

Ly=(Mia*+ M2p*)V2, (5.46)

Then eq. (5.44) would give, on using eq. (5.42),

A Qrym® _ 2'Wm?

mMTou Ly uMiaP+MEBY)

(5.47)

This is clearly nonsense: it describes ““levels’ labelled by three quantum
numbers rather than two, with an “‘infrared catastrophe’ of levels with ar-
bitrary small E corresponding to slowly-traversed closed orbits which are
nevertheless long enough for their action to exceed A.

Nevertheless, there are two circumstances where eq. (5.44) does give
semiclassical quantal levels correctly. The first (and trivial) case is potential
wells with N=1, when there is only one topology of closed orbit and the
levels do have separation # (see for example ref. [3] and references therein).
The second case occurs when the closed orbits are isolated and stable. Then
Miller [99] showed that by considering lowest-order fluctuations about the
closed orbit it was possible to generalize eq. (5.44) intc a condition with
a full set of N quantum numbers. But Voros [44] pointed out that isolated
stable orbits are always surrounded by tori, and explained how this quan-
tum condition is really an approximate version of torus quantization, ap-
propriate for the thin tori surrounding isolated stable orbits (when applied
to a circularly symmetric potential with N=2, for example, the approxima-
tion is accurate for levels near the bottoms of the wells in the effective
potentials for each angular momentum).

In general, though, a single closed orbit gives not individual levels but
a collective property of the spectrum, namely an oscillatory clustering with
scale AE given by eq. (5.41). Conversely the determination of individual
levels from of eq. (5.33) involves the closed orbits collectively, and would
require the summation over sufficiently many closed orbits for individual
delta functions to emerge as a result of constructive interference at certain
energies and destructive interference at all other energies. Is this a feasible
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procedure for calculating the individual levels? I shall now argue that it is
not.

To begin to see delta functions emerging from the path sum (5.33), it is
necessary to include at least all orbits giving oscillations whose energy
wavelength AE, given by eq. (5.41), exceeds the mean spacing dE=4d"!
between neighbouring levels. Since the lower orbits give faster oscillations,
it is necessary to sum over all closed orbits whose periods pT;(E) are less
than T, given by

dqfdpdIE- H(g,
Tm=5 qidp ;N—l @.p) (5.98)

For billiards with N=2, it is necessary to sum over all closed orbits with
length less than £, , where [using eq. (5.19}]

Lo =k, (5.49)

where  is the area of the billiard.

Semiclassically, i.e. as Ai»0or k= o, T, and L, increase, and it is
necessary to include ever more closed orbits in the sum. How many? This
depends on the behavipour as 7 — o of the function

v{T)=number of closed orbits with periods less than 7, (5.30)

or its billiard analogue v(L). For integrable systems, closed orbits are
classified by the N-dimensional winding number M, eq. (2.11), and T is
proportional to the components of M, so

W ~TV  asT—-o (5.51)

{this is just the number of unit lattice points within an N-dimensional
sphere whose radius is proportional to 7). Therefore the number v, of
steps required to determine the levels of an integrable system by direct sum-
mation over closed orbits is

Vo~ W(Tpay) ~ 2~ NN, (5.52)

Of course this would be a foolish way to calculate the levels of an in-
tegrable system, because the torus quantization formula (4.1) gives the
levels explicitly. Nevertheless it is instructive to see the delta functions
emerging as more topologies of closed orbit are included, and 1 now il-
lustrate this with a two-dimensional centralforce Hamiltonian (cf. fig. 2).
Orbits classified by (M, M;) close after M librations and M, rotations;
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(1.1

(31) (1.2} {3.2)

(2,3}
Fig. 56.

fig. 56 shows some of the simplest topologies. The Hamiltonian is a parti-
cle moving in a Morse potential, namely

2 2
H= Dyt Dy

+ V(e 200~ . 2g = 9r—rohy " (5.53)
{#=1 proton mass, V;=0.2 eV, ry=0.25 nm, §=10 nm~!) which has a
total of 166 bound levels. Figure 57 shows the effect of including increasing
numbers of topologies M. In the last frame, which includes several hun-
dred closed orbits, the delta functions are beginning to emerge very clearly
(arrows mark exact levels, and d is given by the chain curves). For more
details, see ref, [95].

What about ergodic systems? These will be discussed with reference to
Sinai’s billiard. Simple arguments [70] indicate that there is only a finite
number of nonisolated closed orbits, but that the isolated orbits proliferate
exponentially, i.e.

‘v(L) ~ exp(constant x L) as L = o, (5.54)

so that the isolated orbits dominate the sum (5.31) in spite of their in-
dividually weaker contributions. As mentioned at the end of section 5.2,
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the contribution of each such orbit involves the n; x n; determinant of
bounces. The computation of such a determinant (by Gaussian elimina-
tion) takes a number of steps of order n}. As L increases, the majority of
new orbits are traversed only once, and so the bounce number n; is pro-
portional to L. Therefore the number v, of steps required to evaluate the
path sum for this ergodic system is

—t

Fig. 57.

Vo~ V(Lmax) X L2 ~ (k#)? exp(constat x ko),
~#~3exp(constant/ #) (5.55)

and greatly exceeds the corresponding number (5.51) for an integrable
system.

However, there is in this case no torus quantization procedure to give the
levels, and the closed orbit sum must compete instead with the determinant
(4.6), whose zeros give the levels. How many steps v are required to
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evaluate this? The answer lies in eq. (4.9), which gives the effective size of
the determinant and leads [70] to

ve~h73, (5.56)

It is obvious, therefore, that in the semiclassical limit the ‘‘compact’
representation in the form of a determinant is vastly (i.e. exponentially)
more efficient than the **expanded” representation as a closed path sum,
as a means for calculating individual levels.

In a tour de force, Gutzwiller [101] has recently evaluated the path sum
for an ergodic system, namely the anisotropic Kepler problem with
Hamiltonian {2.12). The exponentially large number of closed orbits below
any given length are classified in terms of binary sequences, which enables
the path sum (3.33) to be interpreted as the partition function for a system
of interacting spins, and this can be approximated by a determinant in
terms of whose eigenvalues the energy levels can be determined. In this way
the first 18 levels are computed with an accuracy of a few per cent. But a
50 % 50 determinant must be diagonalized in order to achieve this, so that
[as expected on the basis of eq. (5.55)] the closed path sum is hardly a prac-
tical method for calculating the levels.

The enormous labour involved in the evaluation of closed orbit sums for
nonintegrable systems does not mean that they are useless in understanding
the spectrum. Suppose for example that what is required is not a complete
knowledge of all the levels, but the level density smoothed over energy
ranges AE>SE. Then the path sum need only be taken up to paths with
period pT; given by eq. (5.41), which will involve only a small number of
paths if AE is large. In this way Richens and Berry [21] obtained with 225
closed orbits a good fit to the smoothed d(E) in the case of the (pseu-
dointegrable) square torus billiard. A physical problem for which the clos-
ed path sum is a promising approach is the acoustics of auditoriums, where
absorption at the walls causes individual eigenfrequencies to be broadened
into resonances much wider than their separation, thus effecting a natural
smoothing.

Finally, although I have presented these closed orbit expansions as
semiclassical approximations, and this is how they arise in the general
theories of Gutzwiller [84-88] and Balian and Bloch [89-91], it is encourag-
ing that there are two exact connections known between the spectrum and
the closed orbits for nonintegrable systems. Firstly, for the wave equation
on a smooth closed Riemannian manifold (which need not have constant



252 M. Berry

curvature), if the eigenwavenumbers are &; {=(2y£}-)”2/h], then the
function

o) = i gtk (5.57)
i=1

was proved by Chazarain [102] to have singularities for each A equal to the
length of a closed geodesic [Q{A) is the Fourier transform of the & density
of states]. Balian and Bloch [92] obtain a similar exact result for the
Schridinger equation: the transform with respect to #~" is singular at the
action values of classical closed orbits. And secondly. the *‘Selberg trace
formula”’ (reviewed by McKean [103] and Hejhal [104]) shows that for the
ergodic system consisting of geodesic motion on a compact surface of cons-
tant negative curvature a sum over eigenvaliues of the Laplacian is exactly
given by a sum over (isolated, unstable) closed orbits. Unfortunately,
neither side in the (exact or asymptotic) equality

Y (eigenvalues)= Y (closed orbits} {5.58)

is exactly known for any nonintegrable system.

6. Quantum maps
6.1. Evolving states

Recall the association described in sections 3.1 and 3.2, between quantal
wave functions y{g) and N-dimensional surfaces X in phase space. The
association, embodied in eq. (3.7), was natural because under semiclassical
conditions it persists as the state y and surface 2 evolve, one classically and
the other quantally, under the action of the Hamiltonian A. Now [ want
to consider the largely unsolved problem of what happens to this associa-
tion over long times ¢. The following argument indicates why we can expect
this problem to be difficult. In almost all cases (i.e. when X' is not an in-
variant surface and H is not linear or quadratic) 2 develops, as will be ex-
plained, an infinitely complicated morphology as ¢ — o, with foldings and
convolutions down to arbitrarily fine scales. But it is hard to see how
phase-space fine structure in volumes smaller than A" can have quantal
significance. This suggests that the asymptotic association between y and
2 holds only up to a time ¢, (#) (which increases with #), after which
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and X evolve differently. Alternatively stated, we expect that the limits
#—0 and 7 — 0 cannot be interchanged.

A wide-ranging and perceptive discussion of the problem is given by
Chirikov et al. [106], especially in the context of classically chaotic systems
(although even the semiclassical approximation as ¢ — oo of nonstationary
states in classically integrable systems presents difficulties). Possible mean-
ings that can be assigned to the term ‘‘quantum stochasticity’’ for evolving
states have given rise to an extensive chemical literature which I shall not
attempt to summarize; it is well discussed by Hutchinson and Wyatt [107].

A direct anaiytical attack on the problem appears to be extremely dif-
ficult, and so it is natural to seek simple models where it is possible to com-
pute the evolution of both w and X and see if and when the association be-
tween them breaks down. This is where area-preserving maps M of the
phase plane g, p (discussed in section 2.6) become useful (and indeed
almost indispensible, given the limitations of present computers). There are
four main reasons for using such maps as models. Firstly, they can easily
be quantized as I show in a moment. Secondly they show all varieties of
regular and chaotic behaviour. Thirdly, phase space is a plane, so that
“*surfaces’’ X are curves whose evolution is easy to depict. And fourthly
the coordinate space g is one-dimensional, so that probability densities
{w(g)|* can be depicted as graphs. The study of such ‘“‘quantum maps’’
was pioneered by Casati et al. [108] in a particular case. Here I present
some theory for a rather more general class of maps, as independently
developed later by Berry et al. [109]. I shall emphasize, however, that the
most interesting questions are still open.

The map to be quantized is eq. (2.24), derived from the 7-periodic
Hamiltonian (2.23), and some results will be presented for the special case,
eq. (2.25). For quantization, we seek the unitary evolution operators U cor-
responding to the action of H over time 7. This operator transforms states
|w,> into states |y, ;> according to the quantum map

lwas1>=0ly,>. (6.1)

To find U explicitly, we notice that in the time 0<¢< T, H can be written
as the limit 7— 0 of

H@G.pO=p*/2u 0st<T-1
_Tv@)
M

(6.2)
T-1t=t<T
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In the first time interval, 0=<¢< T— 7, states evolve under

- —i
U,=exp{ —pUT-1) ], 6.3
: p(zﬂ LPT-) 6.3)
and in the second interval, T—t=<¢< T, the evolution operator is
- —i
U,=exp (? TV(@)) . (6.4)
The full evolution operator U is therefore given by
" on —i —i
U=0,0,= —TV(§ —p*T], 6.5
.0, exp( - (q))exp(zﬁ#p ) 6.5

after letting v — 0.

In the position representation, this operator inserted into eq. (6.1) gives
the following discrete-time Schrddinger equation giving the quantum map
transforming wave functions y, (g} into wave functions w, , (g):

_ U 172 E TV(q)
Wn+I(Q)_(27{hT> exp[4 + fl )]

X i dg’ exp(%(a—a’)z)wn(q’). (6.6)

This innocent-looking equation can, as we shall see, generate a wealth of
interesting structure.

To explain how this was calculated, first note that in the limit 7— 0 the
Hamiltonian (2.23) can be replaced by its time-average, which is the (in-
tegrable) stationary Hamiltonian A given by

_ p*
H(g,p)="—-+V{q), 6.7)
2u

corresponding to an oscillator. Therefore T is a parameter which turns on
nonintegrability, For power-law anharmonic oscillators T can be scaled
away as in the quartic case (2.25), and this simply means that a point in
the original g, 7 plane [mapping under eq. (2.24)] is associated with a point
in the scaled g, p plane which is closer to the origin the smaller 7 is,
For the initial curve 2 we [109] chose a (closed) contour of the average
Hamiltonian (6.7). Of course X is not an invariant curve of M when 7> 0.
Nearby points on X will map apart under repeated application of M and
so X will become infinitely long as # — . On the other hand, because of
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eq. (2.17) the area inside 2 must remain the same. Therefore X will develop
infinite complexity. This complexity is due to the development of two prin-
cipal morphologies in X, which are called “whorls’’ and ‘‘tendrils”’
[109,46] and which are associated with phase plane regions where motion
is, respectively, regular and irregular. As can be seen from fig. 26, both
sorts of motion are generated by M given by eq. (2.25).

Whorls are associated with invariant curves surrounding a stable fixed
point of M. They can arise, for example in the twist map (2.21) (see fig,
22), provided the rotation number ¢ is not independent of radius. What
happens is that points at different radii rotate around the central fixed
point at different rates. Therefore radii map to spirials, and parts of X
passing close to stable fixed points will wrap around them as indicated in
fig. 58. For the particular M being studied now, we expect from fig. 26 that
whorls will occur whenever 2 passes through the central area of the gp
plane (covered with invariant curves) or through the surrounding island

chain.
o - @

Fig. 58.

Tendrils are associated with the chaotic areas surrounding unstable fixed
points. Iterates of curves 2 passing through such areas flail wildly back and
forth as the individual points of = map exponentially apart, as indicated
in fig. 59. From fig. 26 we expect tendrils whenever X passes through
chaotic outer areas of the gp plane.

Fig. 59.

Figure 60a and 61 show how these morphologies develop for two initial
curves X (contours of A). The first curve (7 =0 on fig. 60a) lies mainly in
the central area, and so begins to wrap into a whorl around the origin. By
n=20 the *‘spiral galaxy” structure is clearly visible and two subwhorls
have started to appear, associated with other islands. The second curve
(n=0 on fig. 61) lies largely in the outer, escaping region of the plane and
rapidly shoots tendrils out towards infinity.
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The development of a whorl can be seen very clearly in computations by
Lewis (reported by Berry [110] of the evolution of a curve under the
“‘nonlinear Harmonic oscillator’” Hamiltonian

H=f(g*+p%, (6.8)

whose points map continuocusly in circles with angular velocity depending
on radius. Beautiful tendrils have been calculated by Shepelyansky [111] in
the evolution of the curve p =0 under the map (2.24) with a sinusoidal
potential (the ‘‘kicked quantum pendulum’).

To study the corresponding quantum map (i.e. eq. {6.6) with a quartic
potential V(g), we must choose as initial state w,{g) a wave associated
with Z. Because X' is an invariant curve of &, w, must be an eigenstate of
H. For the curve mapped on fig. 60a, w, was chosen to be the sixth
eigenstate of A. This state, and its iterates under eq. (6.6), are shown in
fig. 60b. The graph of |w|* for n =0 clearly shows the association with the
initial curve X, with maxima at the caustics of projection of Z, and, be-
tween these, quasisinusosidal oscillations caused by the interference of two
waves associated with the intersections p;(g) with the fibre ¢ =constant.
The value of A corresponding to i, is the area of the square drawn in-
side 2.

By the 20th iteration the classical curve has developed complexity (arms
of the whorl) on scales smaller than #, and so we expect w, not to be
associated with every detail. Instead, it is reasonable according to the
*‘semiclassical hypothesis’® stated in section 3.3 (in the context of eigen-
functions) and developed in section 3.4, to associate y with the area filled
by the whorl, and on the basis of fig. 30 we expect the projection |y (g)}?
to display anticaustics. Moreover, associated with the quasicontinuum of
p-values intersected by fibres g=constant (cach giving a wave with
wavelength #/p contributing to the interference pattern making up the
total y} is an obvious loss of spectral purity of . Therefore the predictions
of section 3 are confirmed in this case.

For the initial curve of fig. 61, y, was chosen as the eighteenth
eigenstate of H. The graph of |y,|?, and its iterates, is shown in fig. 62a.
The waves wy and y, are spectrally pure (2-wave interference), because
for n=1 the classical curve (fig. 61) has not vet ‘‘curled over” to give
multiple intersections. But it does curl over when n =2, with immediate and
dramatic effect on |w,{(q)*.

For a more careful classical-quantum comparison, the classical curves of
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fig. 61 are projected onto g, and the resulting “‘classical {y|*** graphs are
shown in fig. 62¢. The most striking features are the caustic spikes, which
proliferate as r increases and the classical curve throws off tendrils. The
caustics are evidently related to features of the wave functions (fig. 62a)
until #=2 but thereafter there is no obvious association. This corresponds
precisely with the throwing-off for » —3 of a fine tendril, smaller than 4.
Related to this is the fact that for large n the neighbouring caustics in fig.
62c are closer than the de Broglie wavelength and so cannot be directly
associated with features of . This suggests, in the spirit of the smoothing
procedure described in section 3.4 and embodied in eq. (3.29}, that a better
comparison between classical and quantal calculations will be obtained if
we smooth both the graphs of |w|? (fig. 62a) and the curve projections
(fig. 62c), on the scale of the average de Broglie wavelength. The smoothed
curves are shown in fig. 62b (quantal) and fig. 62d (classical). Clearly the
agreement is much better, suggesting a continuing association between
and 2 in some average sense if not in detail.

The breakdown of the detailed association between classical and quan-
tum mechanics for this map can be followed very nicely in terms of the
Wigner function defined by eq. (3.12). By employing this definition in con-
junction with the guantum map equation (6.6), it is not hard [109] to ob-
tain the following quantum map transforming Wigner functions W, (g, p)
into their iterates W, (g, p):

<o

W,,+1(q,p)=j dq’x dp’'K(g, p;q’,.p)W,(q, p), (6.9

-2

where for the potential V¥'=Ag*/4 the Wigner propagator K is

26(@’'—q+p'T/y) ( ~ 2sign(q)p’ —p — TAq"‘))
ﬁ2/3(6AT;q|)[/3 ﬁ2/3(6A T|q|1/3 3

K(g.p:g,p)=
(6.10)

Al being the Airy function [72]. As # —0, the Airy function turns into a
delta function, and eq. (6.10) becomes the Liouville propagator transform-
ing classical densities pointwise in accordance with the classical map M
(2.25).

For the initial Wigner function, Korsch and Berry [112] chose a Gaussian
centred on g=p=0, with contours in the form of concentric circles. The
half-width of the Gaussian corresponds to a substantial fraction of Wlying
in the chaotic escaping region of fig. 26. Contours of the first three iterates
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Fig. 62a,b.

M. Berry
5: n=0 §1 n=0
|
|
L1 &
il — -
| JL__JL
.25 Tt o \\.4 Te £8 T o 14 78
g n=! ﬁ n=l
Y g
it e
2B =¥ i 10 X i 25 1a B T4 78
%:‘ n=2 ﬁ n=2
MW :
A A
-2B -1.4 o 14 28 -i8 -4 A tAa 28
§' n3 ﬁl n=3
i
& g
II\MM“. M 'f“\/w“wv\_ .
-2R 14 o 14 2B -28 -4 o) 4 28
%' n-4 g n=4
u‘x‘i . ™
i °l
; oA
) H‘F}f’u .‘LNUWNML v AV AV
-2B 14 o 4 28 -2B g o 4 28
8.' n:% E] n=3
‘— y
Wi X
Lo A .
o F\MW&”W‘J LU\ L / \_‘/\
-28 -1.4 5] 14 28 -2B L4 0 1.4 28
{a) (b}



Regular and irregular motion

Q Q.
L 00 o n=0
2 2
-28 -4 13 28 -2B .4 7] 14 Z8
Q o
[ n=1 ol n=1
b=} 2
2R 14 3 Z8- -28 13 5] T4 Z8
=3 [+
n= o n=2
Q
-28 -4 [ 28 -Z8 -14 [s] La 2:3
3 g n=3
9
-2B BT a3 78 -28 = -4 ] 13 z8
[=]
n4 o n=d
=4
2B 0 78 28 -4 o 7 28
=]
n=5 o n=5
Q
. e J\\}JM
-2B 4 ZB 2B -4 o 4 zo
(d}

Fig. 62c,d.

261



262 M. Berry

Wy, W, and W; are shown in fig. 63 for values of # shown as the areas
of squares on the right. The classical Wigner maps (% =0) are shown in fig.
63e. As # increases (figs. 63d,¢,b,a), more and more of the classical com-
plexity is smoothed away, and the extreme guantal functions (fig. 63a)
show little resemblance to their classical counterparts (fig. 63e).

These classical curve maps and Wigner contour maps show strong
resemblances to the morphologies developed when cream spreads in coffee,
and indeed both have a common origin in generic measure-preserving
maps. In quantum mechanics the development of complexity on infinitely
fine scales is inhibited by the finite value of #; in fluid mechanics the fine
scale of turbulent mixing is determined by viscosity (see for example the
vorticity contour maps computed by Zabusky [114]).

It is worth pointing out that these computations of the evolution of
states under quantum maps show Planck’s constant playing an unfamiliar
role. Instead of adding quantum detail to a smooth underlying classical
structure {e.g. the initial curve X), # acts in the opposite way when ¢ — oo,
to impose a quantum smoothing onto classical structures with infinitely
fine detail (e.g. fully-developed whorls and tendrils).

To my knowledge there are no analytical results giving information
about w(g) for small % as ¢ — o, i.e. in the regime where the X — y associa-
tion (3.7) no longer holds (although it is plausible that w will resemble the
irregular wave functions discussed in section 3.4). But by estimating the
corrections to eq. (3.7) in the case of a classically chaotic sysiem,
Shepelyansky [111] (see also ref. [106]) concludes that the new regime
begins at a transition time 7,,,, of order 2 !; for r<1,,,, therefore, y
should be associated with 2, even though this curve can be very com-
plicated and give rise to many momenta p;(g) giving contributions to .
Associated with these many contributions are many caustics (cf. fig. 62d
for n =35}, near which eq. (3.7) fails and must be modified as explained in
section 3,2 and references therein. Shepelyansky [111] also estimates that
for chaotic systems these caustics, although numerous, are greatly out-
numbered by non-degenerate contributions P; for which eq. (3.7) is valid,
so that caustics give an insignificant net contribution to w.

6.2. Stationary states

So far we have used quantum maps to study evolving states. Can they be
used to study stationary states? Unitary operators have eigenvalues on the
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unit circle, and so the eigenstates |¢ > must iterate to themselves under eq.
(6.1), apart from a phase factor. Thus

Ulp> =€'%p>. (6.11)
For maps of the type (6.5), the ““eigenangle’” « may be written as
a=ET/n, (6.12)

where E is a ““quasi-energy’’ eigenvalue (as described by Zeldovich [115]).
The problem with using such maps to study the asymptotics of eigenstates
is that little seems to be known about the spectra generated by integral
equations of the type (6.6). Are they continuous or discrete? Does the
nodal structure of the eigenfunctions (or their real and imaginary parts if
they should be essentially complex) bear any relation to the spectrum? For
what sort of potential F{(g) does eq. (6.6) exhibit bound states? We do not
know the answers to these questions.

But there is another sort of quantum map whose spectra can be studied
analytically, namely those obtained by quantizing maps M of the ““Arnol’d
cat” type [eq. (2.22) and fig. 24]. These are linear maps on a phase space
consisting of the unit torus; their general form is

Gn+1 Ty le) (qn)
M: = . 6.13
(Pn+1) (TZI Ty Pn/mod. 1 ( )

For M to be continuous, the elements 7;; must be integers; for M to be
area-preserving, |det 7| must equal unity; and if |7}, + 7o|>2 the
transformation of area elements is hyperbolic and M is ergodic on the
torus. This is a rather artificial class of system (although an optical
analogue is in principle realizable) whose interest in the present context lies
in the fact that it is the only ergodic system for which the exact quantum
mechanics is at all well-understood. The following treatment is a summary
of the paper by Hannay and Berry [116], but I also draw attention to a
study by Izraelev and Shepelyansky [117] of a guantum map on the torus
arising not from a linear transformation but from the kicked pendulum.

Quantization has two aspects. The first is purely kinematic. Because
phase space is the unit torus, coordinate wave functions y{g) must have
unit period in g, implying that momentum wave functions (p) must con-
sist of a series of delta functions at p=n#t, where » is an integer. But @(p)
must also have unit period in p, so that w(g) must consist of delta functions
at ¢ =mh, where m is an integer. These conditions are mutually consistent
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only if the torus area is an integer multiple of Planck’s constant, which in
this case (unit torus) gives the strange condition

h=1/N, (6.14)

where N is an integer. Measurements of ¢ and p can yield only values in
the “‘quantum lattice’’

qg=0Q/N,p=P/N (I1=0Q,P=N)}, (6.15)

with Q and P integers. The semiclassical limit is NV — oo; as it is reached,
h vanishes by discontinuous steps and g and p become continuous
variables. For a technical reason [116], N will henceforth be restricted to
be odd.

The second aspect of quantization is the introduction of dynamics, in the
form of a unitary operator U corresponding to M. In the discrete represen-
tation (6.15), U propagates states w(Q) according to the analogue of eq.
(6.6), namely

N
We41(Q)= Q}ZleQQ'wn(Q’). (6.16)

U is constructed by “periodizing’’ the (simple) unitary operator correspon-
ding to M acting as a map in the original ‘‘untorized” infinite g, p plane.
It turns out that U preserves periodicity in both w(Q) and #(P) only if the
elements 7j; in eq. (6.13) have the form

{even odd odd even
M: (odd even) o (even odd ) : ©.17)

This excludes the familiar cat map (2.22) but includes for example, the sim-
ple ergodic map with matrix

21
M.(3 2), (6.18)

The explicit construction of U for an arbitrary matrix in the “‘permitted”’
class (6.17) is an intricate process [116] involving the Gauss sums of
number theory, but for the particular case (6.18) the evolution operator
takes the simple form

Cin o
Ugg = 'A-[llﬁeXD [% + % (Q2+ Q’Z—QQ’)] . (6.19)



266 M. Berry

According to eq. (6.11), eigenstates of U map into themselves under eq.
{6.16) apart from phase factors exp(ie), given by

detog(Ugg — e“dgg) =0. (6.20)

Because Ugp- is an NX N matrix, there are N eigenvalues g;(1 =j<N),
and it is interesting to ask how they are distributed round the unit circle,
especially in the semiclassical limit N— oo,

To answer this question, consider the effect of the classical map M on
points in the gquantum lattice (6.15). Being rational, these points map
around closed orbits (‘‘cycles’) in contrast to generic points on the torus,
which have irrational coordinates and so never return to their starting
points. For cach N, there will be a number n(NV) of iterations after which
every rational point with denominator N will have completed at least one
cycle. n{N) is the period of the map, defined as the smallest number
satisfying

(Tu T12>”(N) _ (1 0) 6.21)
;) Ty 01 mod, N’

and given by the lowest common multiple of the lengths of cycles of points
in the quantum lattice.

Now, for these linear maps the corresponding Hamiltonians are
guadratic. For example, eq. (6.18) corresponds to

arsinh 32/ p?
H= : (W *q2-31’2), (6.22)

acting for unit time. It follows from this that certain quantum-mechanical
quantities (¢.g. Wigner’s function) evolve classically. Therefore after n{N)
iterations of the quantum map, wave functions will have returned to their
original values, apart from a possible phase factor, i.e.

U™ =1 explic(N)], (6.23)

where o is in general unknown, Thus the eigenvalues @ must be multiples
of 2n/n(N), apart from a shift, i.e.
2am;  o(N) (I <j<N )
aj = —+ .
n(N) n(N) l=m;=n(N)

The spectrum of U therefore consists of N eigenangles distributed among
n(N) possible eigenlevels. #(N)} is an extremely erratic function, defined

(6.24)
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number-theoretically by e¢q. (6.21). Sometimes n< N, in which case some
levels must be multiply occupied, and sometimes #> N, in which case some
levels must be empty. In the map (6.18), for instance,

n(l)=1, n(3)=6, n(5)=3, n(N}=8, n(N=18, n(11)=10. (6.25)

Number-theoretic arguments, together with numerical experiments, sug-
gest that in a suitably-defined asymptotic sense

n(Ny~CN  as N— co. (6.26)

where Cis constant, but the limit is approached very slowly and erratically.
Whatever the value of n(N), the angles seem to be fairly uniformly
distributed over their possible sites, behavicur reminiscent of the level
repulsion discussed in section 4.3 for generic systems of more conventional
type. Computations also show that the Wigner functions for individual
eigenstates spread all over the quantum lattice in accordance with the
semiclassical eigenfunction hypothesis (section 3) applied to these ergodic
systems, and do not concentrate about individual cycles (closed orbits).

The erratic behaviour of n(/N) as N— oo shows that the semiclassical
mechanics of this chaotic system is very different from that of an integrable
system whose eigenvalues are given by torus quantization (4.1) as smooth
functions of #. In fact decreasing #, and hence increasing N, causes the
spectrum to depend on the iteration of points in an ever-finer quantum lat-
tice, i.e. on an increasingly intricate cycle structure. Here we again see #
playing the same role as in the evolution of nonstationary states over long
times, namely obscuring an underlying classical structure which has infinite
complexity,
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