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"Cada ciencia ha mester Los vocables pen Los
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fagam aquest LLibre als himens Lecs per agd breu-
ment e ab plans vocables parlarem d'esta cilneia”.
Ramon LLull (Libre de Gentit, 1273 ?)

I - INTRODUCTION

In the early usage, the word chaos referred to the darkness, the vacuum. John

Milton, paraphrasing the Old Testament Genesis, wrote in the Paradise Lost
In the beginning how the heavens and eanth

Rose out of Chaos
Since Milton, the word chaos has altered this meaning, to indicate confusion, mixing,

complexity, disorder. One usually opposes chaos to order, or complexity to simplicity
and one can imagine different sorts of evolutions or transitions [DH-80] : order to order,
chaos to chaos, order to chaos and chaos to order. The first two are not unexpected and
easy to illustrate. The third fits with everyday experience and looks consistent with
the Second Principle of Thermodynamics. But the last one is surprising and intriguing.
Most of the questions we will address ourselves in these lectures are of the type "How
is the order diluted when going from order to chaos" and "What is the underlying order
behind chaos". And the appropriate language, in most cases, will of course be the one of
probability theory. In particular, it will emerge that probabilistic and deterministic points
of view are not as irreconciliable as they may appear at first sight. Indeed, we will
go through systems governed by causal equationsof motions although their future motion

does not depend on their past, i.e. we will discuss memory-loosing or unpredictable systems.

*Laboratoire associé au C.N.R.S.



The kind of systems we shall deal with are of several types :

i)- Points distributed on the real axis : Xa, X2, Xz, oo e The axis may be the energy,
the points corresponding to the discrete energy levels of a quantum system (an
atomic nucleus, an atom or a molecule) ; or the frequency axis, the points corres-
ponding, for instance, to the normal frequencies of a vibrating membrane ; or the
time axis, the points corresponding to successive epochs of occurrence of a given

event (times of arrivals on a telephone line in queuing problems, for instance).

- Points distributed on a segment or on the circle (for instance, eigenvalues of unitary

matrices).

- For illustrative purposes, we shall also briefly describe some number-theoretic func-

tions f(n) defined on the positive integers 1,2,3,...

ii)- Sequences of points X, y X2y =) Xhky - on an N-dimensional space defined,
i haand
for instance, through some transformation X,,,H = TXn . For instance, snaps-

hots of the classical trajectory of a point particle of certain dynamical systems, or

sequences of values of some variables obtained through a sequential algorithm.

For the first kind of systems (discussed in this Section and in Section II), before
a study of the fluctuations -one of our main goals- can be attempted, one must make a
clean separation between the smooth (or average) behaviour and a fluctuating (or oscillating)
part. In some cases this step will be obvious. For the second kinds of systems (treated
in Section III), the attention will be focused on the structure of phase space, how it
is filled by trajectories and special emphasis will be given to the question of stability

of orbits.

In order to get some flavour about general ideas and concepts, let us now give

a few examples coming from very different fields.

Prime Numbers (Number Theory)

The theory of numbers is at the same time one of the most elementary branches
of mathematics, because it deals with the arithmetic properties of integers 1,2,3,..
and one of the most difficult branches insofar as it leads to new difficult problems
and techniques. Which sort of techniques ? Some titles of monographs or specialized
articles reveal it : "Statistical independence in probability, analysis and number theory"
[Ka-59], "On the density of certain sequences of integers", etc.. The list could be made

very long. Notice the presence of words like probability, density.

Let us now consider the sequence of prime numbers 2,3,5,7,.. We want to emphasize
two facts [Za-77] : "The f{first is that, despite their simple definition and role as the

building blocks of the natural numbers, the prime numbers belong to the most arbitrary



and ornery objects studied by mathematicians... The second fact is even more astonishing,
for it states just the opposite : that the prime numbers exhibit stunning regularity,
that there are laws governing their behaviour, and that they obey these laws with almost

military precision".

The first aspect is illustrated on Table I-1. In the interval [1-100] there are

25 primes, the largest gap between two successive primes being 97-89=8. In the interval

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,6 1,67,
71,73,79,83,89,97

[1,100]

[107-100,10"1 | 9999901, 07,29,31,37,43,71,73,91

7

[107,10 +100] 10 000 019, 079

Table I-1 : List of primes in three different intervals of length 100

[107—100,1007] there are 9 primes, the largest gap being 28. In the interval [107,1O7+100]
there are only two primes, which differ by 60. Despite this in appearance completely
erratic behaviour, are there systematic patterns ? The first important feature, already
known by Euclid (ca. 300 b.C)) is that the sequence of primes is infinite. But, -obviously,
there are much less primes than integers. For instance, the harmonic series Z(l/n)

summed over integers n is known to diverge. More precisely

Lim < Z A - 2'\.)():7‘ =0877... (Euler constant) (I-1)
x-»00 ngxT

What about summing over primes p only, i.e. Z (I/P ) ? If one performs the "experi-

ment", for instance by summing for P < 109 one finds 3.3, whereas summing up to

£ lOlgone would find 2 4. In fact, the exact asymptotic result is
P

?z:zx% =bnlnx +C + O(X) ) (1-2)

where C ¥ 0.261497 and Q(X) —» 0 when X=» @0 ; thus, the series diverges. This example
clearly shows that in some cases, the empirical (numerical) observation is unable, not
only to produce, but even to guess, the exact result. But it is not always like that.
For instance, let us consider the number 7T (x) of primes which are less than or equal

to X . The function T((X) is an infinite staircase, which increases by one each time



one "crosses" a prime. The first 25 steps of this irregular staircase are shown on Fig.l.I.
Has this staircase function an average behaviour ? Gauss observed as early as 1792

that the density of prime numbers dT((X)/dx appears on the average to be 4/6\;(

xix)

Fig..1 - Plot of the function T0¢) for 1 {x £ 100
B

He was thus led, from "empirical observation" of primes, to approximate R(x) by the

integral logarithm Li(x )

MR > LibG) = um [ y 2
1+€ Xn

€0 °

X X
= Li(2) ¢ f %t(; = 4.044f %tt_ . (I-3)
2 2

Li(X) admits the following expansion

L) =y 4 obnx g 3 ) (14

3! n.n!



The quality of the approximation T((x)l_:Li( X ) is, for many purposes, very good. For
instance, for x¢ 107, the relative error | TUX) - Li(%) I/m {x) is smaller than 5 x 10_5.
On Fig.L.2 is plotted, for X ¢ 107, the difference Ii (¢) —TU(X) . It can be seen that
although this difference is small, it is not featureless : for instance, for X & 107, it

steadily increases.

x in milkns

- -100

Fig.l.2 - Difference between Gauss (Riemann) approximation Li (X) (R¢x) ) to TC( x )
and T(X) for X< 107 (taken from Ref.[Za-77])

What about rigorous, "non-empirical", results ? One of the main questions, in

the middle of the l9th century, was to prove the prime number theorem (PNT) namely

TU(x) ~ x_ . (1-5)
x>0  InX

Notice that Gauss approximation is consistent with the PNT. The first major result

in the direction of the PNT was obtained by Chebyshev in 1850, who proved that

0.39 X _ L TU(x) <A1 X_ (1-6)
£n X ¥ 794
for sufficiently large X . Although the PNT is true, the approximation
o) >~ X (-7)
£n X

is much poorer than the approximation introduced by Gauss (see Fig.l.3).

Riemann, in his famous memoir "Uber die Anzahl der Primzahlen unter einer
gegebenen Grosse" introduced, based on empirical evidence and intuition, a better approxi-

mation R(x\ to TC(X\

TL(Y) flag R(X') = Z. .}:._(2 La (X%) ) (1-8)
M=t M



where Iu(m) is the Mé&bius function defined as follows :

0 if n is divisible by a prime square

p@) =1

’A (M*'l) = 1 if n is a product of an even number of distinct primes (1-9)

- 1 if nis a product of an odd number of distinct primes

For instance, A (2) = LB =ppa B =0 D =-1; €)= R (3 = 1; k& = u@d) =0
PO -0 O - po - p pO - p

R(X ) is an entire function of dnX with the following expansion

R(X) =1+ Z 4 (@"z)ﬂ

ny1 nZ(nt4) m!

(1-10)

where g is the Riemann zeta function of § = C+4 L , which is defined by

Z(S)z Z 2 :ﬂ (A—P
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Fig.l.3 - Plot of 7{ (X )and X/fax for x< 5 x 10*
(taken from Ref.[Za-77])

~y) (1-11)

for @1 and by analytic continua-
tion for g€ 1, s+ l. Notice
the connection between $(S)
and the prime numbers p. For
x = 10% one has s (106)=
78498 and the first two terms of
(1-8) give Li(10%) - 3 Li10%) -
78628 - 5 x 178 = 78539
On Fig.L.2 is shown the difference
R(x) —TC(x) . As can be
seen, no structure is anymore
present. It seems now that one
can consider R(X\ to be the
smooth behaviour of T[(x) H

after subtracting R to TC only fluctuations are left out. In fact, Riemann, although

unable to prove. the PNT(*), did something even more astonishing. He derived an exact

relation for 7[()‘) :

(*)

i) = R&x) _ PZ— R (xFf) ) (1-12)

The PNT was proved simultaneously and independently by Hadamard and de la Vallée-

Poussin in 1896. Hadamard was born in 1865 and de la Vallée-Poussin in 1866 and they died

in 1963 and 1962 respectively !



where the sum runs over the "non trivial" (# -2,-4,-6,...) roots P of _{(s) . The first
term in (I-12) gives the approximation discussed above. Putting P = 12 +4 (one assumes
the Riemann Hypothesis (RH) to be true ; see below), performing the summation over o&¢
in order of size, pairing terms of the sum corresponding to P and P* (if P is a root of
S(s) , SO is P*), one can write

N
R(x) = RO 4 2 T, (¥ (-13)
k=t

where
%
T, ()= - L-R(XP‘) + ’R(XP*) ] Rz1,2)-.. .y

The terms Ty (x) are oscillating ones. The first few are shown on Fig.L.4 and on Fig.L.5
is reproduced the result obtained by adding 10 and 29 oscillating terms to R (x) [Za-77,
Si-79]. As can be seen, by the time when A, 30 terms are added, one is obtaining an
almost exact representation of Tt(X) in the range 1< x £ 100 (compare to Fig.l.1).

Some remarks are in order. We have mentioned that Li( X )—TU (X })> 0 for

X < 107 (see Fig.l.2). How incredibly weak may the position of the physicist be when
looking for asymptotic results is illustrated by the following fact : it has been shown
(Littlewood) that there exist numbers for which Li( X )=TU( X ) is negative and Skewes

proved that there is one smaller than

101034
10 ,
a number of which Hardy said that it was surely the biggest that had ever served any
definite purpose in mathematics. So, although one knows no number for which Li(x)~
T (x) is negative, one knows that this difference cannot increase steadily, as suggested
by the enormous available "empirical data" coming from all the presently known primes.
On the opposite, we have also seen (at least in the hands of Gauss and Riemann !) how
extremely powerful and far-reaching approximations can be derived from empirical obser-

vation.

In the same vein, let us illustrate how empirism and heuristic arguments are
used and differently appreciated by pure mathematicians. We have already mentioned
the Riemann Hypothesis (RH), which is by universal agreement the out-standing unsolved
problem in mathematics. It states that all the zeros P =T+4+4E of the Riemann zeta
function lie on the critical line @ = 1/2, except for the "trivial zeros" lying on the
real axis at the values @ = -2,-4,-6,... It has been proved that there are an infinite
number of zeros on the critical line (Hardy) but not that all of them are on it. It has

also been proved that the RH is equivalent to
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Fig. L4 - Plot of the first five oscillating terms

of Eq.I-14 (taken from Ref.[Za-77])

for all € YO (1-15)

(I-16)

the summation is over integers and
/A (n) is the M&bius function defi-

ned above (I-9). People have
tried, using heuristic arguments
having a probabilistic basis, to

reinforce the belief that the RH
is in fact true. We reproduce one
of them for its simplicity [DH-80,
GC-68]. If we make a plot of the
Mébius function g (m) it looks
random, in the sense that it shows
no discernible regularity, except for
the fact that g4 is just as likely
to be equal 1 or -1. Now, what
is the chance for M (M) £ 07?
This

multiple of 4 or a multiple of 9,

will happen if n is nota
or a multiple of 25 or of any other
square of a prime. The probability
that a number chosen at random
is not a multiple of 4 is 3/4, that
it is not a multiple of 9 is 8/9,
that it is not a multiple of p?
is (p*D/p

being all independent we obtain,

p)t o

. These conditions

for the probability that

(=

—

2 PP

1-17)

Therefore, the probability that :
opm)=1Llis 3/p?,il) m(W=
-1is 3/M 2, iii) um) =0 is

1 - 6/ f{ % Let us now examine M(X)
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Fig.L5 - Value of TU{X) including 10 and 29 oscillating terms in Eq.I-13 (taken from Ref.
[za-77])

and assume that each term in the summation in (I-16) can be considered as an independent
random variable with the probabilities just derived. Hausdorff's inequality says then

X (1/2)+€

that, with probability 1, M( X ) grows no faster than a constant times ,
exactly what is needed to proof RH ! However, we have made an unacceptable trick.
Instead of adding the values of JA for the N values in the range I to N = Int( X ), we
have taken N integers at random. We have done this because we feel that the table
of values of J& is "random" or "unpredictable" although we know that the M&bius function
is completely deterministic. The author of the authoritative work on the zeta function,
H.M. Edwards [Ed-74], calls this type of heuristic reasoning "quite absurd" and Littlewood
wrote : "I should also record my feeling that there is no imaginable reason why the
RH should be true". Nevertheless, if one persists with the "absurd" reasoning, one predicts
that the number of zeros of ,u(:n\ between 1 and 33 x 106 is [GC-68] 33 x 106 x (1-6/1C ?)=

12 938405.6 whereas the actual number is 12 938407, an & place accuracy result !
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Zeros of the Riemann Zeta Function

Let N(T) be the number of zeros P = 1/244Y of ;(s) with 0 < Y £T
Then [Mo-76]

NE)=T T _T +s(-r‘)+ +O( ) -

AN an  aw (1-18)

The maximum order of S{T) remains unknown. Probably

S(M)= 0(‘, lt‘eTT ) (1-19)

One knows the first 7 x lO zeros of S(S} and stretches of 105 successive zeros
have been computed around the 109 -th zero and around the 1011~th zero [0d-82].

There is a conjecture that the distribution of zeros of Z(S) resembles that
of the eigenvalues of a random complex hermitian or unitary matrix [Mo-73a,74] (see
Section II). There are very strong numerical indications supporting this conjecture [Od-82].

Vibrations of a membrane (the drum)

A membrane is a perfectly flexible and infinitely thin lamina of solid matter, of
uniform material and thickness which is stretched in all directions by a tension so great
as to remain unaltered during its vibrations. The principal subject in this field is the
investigation of the transverse vibrations of membranes of different shapes, whose
boundaries are fixed. One considers then (Fig.[.6) a membrane streched over the area L)

included within a fixed, closed plane boundary " . Taking
the plane of the membrane as that of Xx-Yy , let IE denote
the small displacement perpendicular to its original plane.
It has been known for all over a century that ’\[ obeys the

wave function

(1-20)

2
2
Y | c2viy
. Dtl
Fig.l.6
where ¢ is a constant with dimensions of a velocity, depending

!

on the physical properties of the membrane as well as on the tension under which the
membrane is held. Of special interest, both to mathematicians and to musicians, are

solutions of the form

‘wt
A (qGy 5 E) = ¢ 04y) e (1-21)



"

for, being harmonic in time with frequency ), they represent the pure tones the membrane
is capable of producing. These special solutions are known as normal modes. To find
the normal modes, one substitutes (I-21) in (I-20) and one finds that k/; must satisfy

the eigenvalue equation

2 2 2 (1-22)
Vig = _ D ¢y =R y=-E¢
c?
with the condition that \.P vanishes on the boundary M. m (I-22) w is a frequency,

R a wave number and E an energy. Equation (I-22) possesses an infinite number of
eigenvalues E;, which are real and non-negative and have no accumulation point. One has

therefore

OLE £E £E5L e ) lim E =00 . (1-23)
"

We are now interested in properties of the sequence of eigenvalues. For instance, on what

characteristics of the boundary depends the number of modes per unit energy (or unit

frequency), i.e. what is the density of eigenmodes. In these lectures the emphasis
will be put on the 2-dimensional case, but the problem can also be considered in 3

dimensions, or more generally in N dimensions. In three dimensions, it corresponds
to the study of the vibrations of an acoustical resonator or the vibrations of an elastic
body or the free electromagnetic oscillations in the interior of a cavity, with adequate
changes of the boundary conditions. In one dimension, the problem corresponds to the
vibrations of a string, but in this case there is no room for the influence and regularity
of the shape. In quantum physics, Eq.{(I-22) represents the time-independent Schrédinger
equation for a free particle of mass m moving in the interior of a box with infinite
walls, with & h = ﬁr_n_]-i, where E is the kinetic energy.

The asymptotic number of modes per unit frequency was first established for
the case of the rectangular parallepiped by Rayleigh (1905). Sommerfeld and H.A. Lorentz
had drawn attention to the effect of the domain, or, following Kac to put it in a pictures-
que way, one may ask "Can one hear the shape of a drum ?" [Ka-66]. Johanna Reudler,
a student of Lorentz, in a Leiden dissertation, verified that the asymptotic number
of modes depends only on the volume for the special cases parallepiped, sphere and
cylinder. The history of how the first important result in this field was obtained is
worth to be briefly remembered [Ka-66]. Lorentz was invited to Gottingen in 1910
to deliver the Wolfskehl lectures (Wolfskehl awarded a prize for proving or disproving

*
Fermat's last theorem( ) and in case the prize would not be awarded, stipulated that the

n .
(*)In 1637 Fermat stated that the diophantine equation X“+ y" = 8  with integral

n % 2 has no solutions in positive integers X, 4, 2 . Fermat asserted to have a
"truly marvelous proof" of his statement, but today it is generally believed that his
argument, which was apparently never revealed, must have been incomplete.
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proceeds from the principal should be used to invite eminent scientists to lecture in
Gottingen). Lorentz gave some lectures under thegeneral title "Alte und neue Fragen
der Physik". At the end of one of them he asked "™In an enclosure with a perfectly
reflecting surface there can form standing electromagnetic waves... The mathematical
problem is to prove that the number of sufficiently high overtones which lie between

VY and P+ odv s independent of the shape of the enclosure and is simply propor-
tional to its volume ". If one believes an apocryphal report Hilbert predicted that the
theorem would not be proved during his life. Less than two years later Hermann Weyl,
who was present at the Lorentz's lecture, using the theory of integral equations which
his teacher Hilbert developed only a few years before, proved the theorem, long before
his death.

Let us now go back to the initial two-dimensional problem. Progress has been
made since the pioneering work by Weyl. We are interested in extracting a smoothed
eigenvalue distributionNﬂ(E),i.e. the smoothed function giving the number of eigenvalues
less than or equal to E in order to study the fluctuations or oscillations of the exact
eigenvalue distribution around the averaged value N“(’E). In the context of the previous
example on prime numbers, we are searching the function NaSE)which has a similar
relationship to N(E)as R(x ) to Tl(x) . Reference [BH-76] gives a complete account
of the results obtained so far in this field. The function %E) can be written

=N/a
No(E)= T & X E +xk+0 (8" efE), 0
4T 4
where 0 < n \< 1. In (I-24) O is* the surface of the area L& (Weyl's term) and '8
is the perimeter of the boundary [.K is a constant term containing complex information
on the geometrical and topological properties of the domain. The geometrical features

contributing to the constant term are : i) Curvature contribution

(142.) ‘(PK () aL | (1-25)

where Ka) denotes the local curvature ; for instance, the curvature contribution
for the circle is 1/6. ii) Corners contribution ; for a square (or a rectangle), it is

4 x (1/48). The topological features concern the connectivity of the surface ; for a
multiply connected drum containing r holes, the contribution to the constant term is

(1-r) x (1/6).

On Fig.l.7 are compared the exact function N(E) and the smoothed function
I\L(‘l'i) given by Eq.(I-24) for two different shapes, namely a quarter of a circle
and a stadium (see Section III). It can be seen that l\‘l‘(‘}E) indeed reproduces perfectly
the average behaviour of N(E), not only asymptotically but starting from the bottom

of the spectrum.

(*) If one uses Neumann instead of Dirichlet boundary conditions, (I-24) is still valid except
for the sign of the perimeter term
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[ (a) - (b)
or N(E) “r NE)
10 \ 101 N (E)
TNE) -
00 200 300 200 E 0= 20 3 40 30 & l_:710"

Fig.l.7 - Cumulative density of eigenvalues N(E) of Eq.(I-22) and its average Ngy (EQ
given by Eq.(I-24) for two different shapes of the boundary : (a) a quarter of a circl
of radius unity ; (b) a stadium with straight line and radius of curvature equal to one
(See Section 1V )(taken from [Sc-84,BGS-84b]).

How to characterize fluctuations

The examples treated so far should have convinced the reader that it is possible
in many cases, for a sequence of discrete points on the real line, to separate the

staircase function N(% ) in a smooth part Ny ( g) and a fluctuating part N.fl (S)

N(S) = Ny (§) + Np (5) - (1-26)

Before studying fluctuations one wants to get rid of Nav(g ) in order to compare
the fluctuation patterns of different systems whose corresponding average behaviours

Nav( § ) are not the same. For that purpose, one "unfolds" the original spectrum
E‘. through the following mapping E — X

X& = NAV (g..') 1..:4,2,---- . (1-27)
Consider now the sequence { X{} and i;c\s corresponding smooth behaviour
A
Nav (X) . The effect of (1-27) is that Nay (X ) =X , i.e., the sequence-{Xq’}

has on the average a constant mean spacing (or a constant density) equal to unity,

as can be seen from

13 X A
Nav (§> -'-'-J P‘V (S’)d(':f d)(,= X = Na\l (K)) (I-R)
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where Pav (§ )} is the average density of -{S,' } . For instance, consider the
(fluctuation-free) sequence gk= R* (R - 1,2,...) ; then Na.,[g)z \/S
and Xp= kR , & sequence of equally spaced points or picket fence. In summary,

after unfolding, we shall study quantities related to

A A A «~ (1-29)
N(X): Nav (X) + N{l (X) =X+N.fl ()‘) .

When considering fluctuation properties of sequences .(X.{} we shall come
across different situations : i) cases in which the system is known to be, from a statis-
tical point of view, translational invariant or stationary, i.e., the fluctuation properties
are the same irespective of which region of the spectrum (of the sequence) one is
considering ; ii) casesin which the system is not stationary but one is interested in

asymptotic properties of the spectrum.

The question now is to discover the stochastic laws governing sequences having
very different origins, as illustrated on Fig.l.8, which is inspired from a similar figure
of Ref.[BFF-81]. There are displayed six spectra, each containing 50 levels(.*)Column

(a) corresponds to a Poisson systern : Take a random variable s whose probability density

(x) is e %, Construct a sequence 4 X4
P

X4 =0 , Xig = Xa +Sq i=1,23. (1-30)

where S, are outcomes of independent trials of the variable s. The resulting spectrum
is what is called a Poisson spectrum, which is obviously stationary. For instance, if
one studies the counting rate of a decaying source, the successive times of decay

X+ will form a Poisson spectrum, the time being measured in units of the mean
life of the source. Column (b) shows an example of a segment of prime numbers in
the interval [7791097-7791877] Ref.[Si-79] ; column (c) the resonance energies NS V2

166Er (see Section II) ; column

of the compound nucleus observed in the reaction n +
(d) the eigenvalues (associated to eigenfunctions with a given symmetry) corresponding
to the transverse vibrations of a membrane whose boundary is the Sinai's billiard (see
Section IV) ; column (e) the positive imaginary part of the 1551-th to the 1600-th
zero of the Riemann zeta function [HM-63] ; column (f) an equally spaced sequence
of levels (picket fence). Columns (a) and (f) represent two limiting cases, maximum

randomness and no randomness at all respectively,

Can one deduce some features just by inspecting Fig.l.8 ? Arrows indicate
spacings Sy = Xgq— Xq°  Which are smaller than 1/4. The Poisson spectrum shows 12
arrows out of 49 spacings, the prime number "spectrum" shows 9 arrows, the Er spectrum
only 2 arrows, the frequencies of the membrane 3 arrows, the zeros of ;(S) no

arrow and, of course, the picket fence no arrow. One therefore sees a statistical

(*) The spectra have been rescaled to the same spectrum span [0,49], thereby introducing
an artificial rigidity (see below).
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similarity  between (a) and
(b) : large probability of small
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small probability of small and
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in the literature as the pheno-

menon of level repulsion. The
spectrum (c), {d) and (e} deviate
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(f) is a spectrum that we may
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Poisson ntEr  Sinal Zeras Js) qualify as absolutely rigid,

in the sense that there is

no departure at all from

Fig.l.8 - Segments of "spectra", each containing 50
levels. The "arrowheads" mark the occurrence of pairs
of levels with spacings smaller than 1/4. See text for one level Xy is known, the

further explanation. position o any other level is de-

uniformity. Once the position of

termined, no matter how far it is from Xy . For this system the correlations between

spacings are maximum and it shows perfect short and long range order. At the opposite

extreme, the Poisson spectrum contains no correlations between spacings : the knowledge
of a stretch of the spectrum puts no restriction on the behaviour of the spectrum
beyond the interval considered (this is of course true irrespective of the form of the
function 'P(x) chosen in Eq.(I-30)). In intermediate situations between Poisson and

the picket fence the degree of the spectral rigidity will depend on the nature and

strength of the correlations between spacings.

Although this topic will be treated in greatef detail in the next Section, let
us already give some examples of characterization of fluctuation properties. We have
mentioned before the spacing distribution F(X) between adjacent levels. Let us

reproduce a simple heuristic argument due to Wigner [Wi-56] that illustrates the

presence or absence of level repulsion. Consider the probability p(x)dx that, given
a level at X the next level is in the small interval dI = [Xp+ X , X+ X 4+ dXx 1 (see Fig.

1.9). It can be represented as the product of two factors

p(x)dx = Pr (one level in dIf no level in I )%Pr (no level in 1) , (I-31)
where Pr means probability and Pr(a/b) is the conditional probability of having a if b
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1=l

e i
"  edx is true. One has o0
Pr (no level in 1) = f P (x') dx’ (1-32)
Fig.L.9 x

and Pr (one level in di/no level in I) = P(x)d)( . Therefore

POV = p) f PO dx’, 0-33)
which can be solved to give X x
_f /4(x')dx'
p(¥) = C pl) e : (1-34)

Now, for a Poisson sequence ’A(x) is independent of ¥ and one obtains (fPCX)dX:
Sx:p(x)dx =1)

-X
?(x) = e x>0 . (1-35)

A linear level repulsion can be introduced by assuming M () =P X and one obtains

_Ix?
PO)=TFxe 4 (1-36)
w 2 x50 .

The result (I-36) for the spacing distribution is known in the literature o. random

(*)

matrices' ’ as the Wigner surmise and it shows explicitly the level repulsion or tendency
to avoid clustering of levels. Indeed, p(x:o) =0 in constrast to the Poisson case,

for which the corresponding spacing distribution (I-35) is maximum at the origin.

The spacing distribution p(X ) contains no information about spacing correlations.
A simple measure of spacing correlations is the correlation coefficient C between, for
instance, two adjacent spacings. Let {X."i be the sequence of levels and &, the
spacings S4= X = Xa ; C is given by

a1

C = 2_ (Ss-1)(Sig~1) /Z (si-1)? ) (1-37)

(*)(1—36) is a standard distribution in statistics, called a "Rayleigh distribution" : Consider

on the plane a point of cartesian coordinates {X,Y) and take X and Y as independent

random variables normally distributed with zero mean and with the same variance
a2 = .2/r - The probability density of the radius vector r= VX’-J-yz is (I-36).
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where we assume the mean spacing equal to unity. For a Poisson spectrum, C = 0.

A convenient variable which is often used is A 3(L) [DM-63]. It measures,
iven an interval [X , & +L] of length L, the least square deviation of the staircase

N(X) from the best straight line fitting it (see Fig.I.10) :

oL
. A 2 I-38)
As(o(;l.)g(’yl-) Min f [N(X)QAX_B] ax . (
AR K A
Notice that we are dealing with spectra for which the average part Ng, (X)
of ’l\} (X) is a straight line Y= X . However, when considering a given interval

[ X, X+ L ], the best straight line fitting R (x)  will not just be Y= X but
another (presumably close lying) straight line A X +B  which is determined by (I- 38)
The value of AB(L) for L 22,1 for a picket fence spectrum is 1/12 whereas the average
<A 3(L)) of A 3( & ;L) (take many non overlapping adjacent segments of length L
of the spectrum, compute the value of 4 3 for each segment and perform the average(*))
for a Poisson spectrum is L/15. The departure of the average value ofA3(L) from
the linear increase with L characteristic of the Poisson spectrum will give, in intermedia-
te situations between Poisson and picket fence, information on the correla-
tions between spacings and on the spectral rigidity or spectral stiffness.
In Ref[BG-75] a convenient way to compute

f'\\l(x) , A_; (L) has been given, once the ordered seque-

,’/.’ ce of points X,‘,Xz) ey Xn in the interval
\ , [e, & +L] is known. Take as origin the center of

T

™

[ ; . . n [

- 7 the interval, i.e., take Xy = Xg = (ot + & ) A(l-)

‘ a /)

% \AX+B can then be obtained from 3
-~ (4§

L ’ 2. 2

AylL)= A0 A5 %]
i X 3 16 M ] " 2
o . ~2

LI 1 ] Spectrum S5 rr] -3 % ]

(6 a+L 2La =i ‘—4 ast

M
“ ~24 g
Fig.L.10- The A3-statistic of Dyson- + E_[."Z-“-.T (n-24 “‘1))(1 ] .
Mehta 1-39)

*)‘

Another useful variable to be discussed is the "number statistic n(L)"(*
given an interval [ of , & +L] of length L, it counts the number of levels contained
in the interval. It is a discrete variable which can take the values 0 (no level in the
interval), 1 (one level in the interval), 2,3,... The average value of n(L) is L, if the
mean spacing is unity. We will consider higher moments or cumulants of n(L) (variance

¥ *(L), skewness ¥ (L), excess Y (L)). Qualitatively we expect that if the

(¥) when the spectrum is stationary, the average (A 3(L)> does not depend on &X .
(*¥*) For the sake of simplicity and when no confusion is possible, we shall omit in the nota-
tion the X -dependence
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spectrun is stiff, the variance of n(L) will be small (in most cases the actual number
of levels found in an interval of length L will differ only slightly from L) whereas
for a non-rigid or compressible spectrum like Poisson the variance of n{L) will be
comparatively large. For a Poisson spectrum one has 3 2(L) = L which tells nothing
but the familiar result that if one takes an interval of length L one expects to find
L+ Jf levels in the interval. At the opposite extreme, for the picket fence, one will

have L # 0. Again we will be interested in what happens in intermediate situations.
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II - RANDOM MATRIX THEORIES

The random matrix theories we shall describe have their origin in the following
physical problem. In the low energy region of the excitation spectrum of a nucleus,
the level density P (E) is small and one expects to describe most of the states in a
detailed way using nuclear models. However, due to the rapid increase of the level

density with the excitation energy E

pE) > —C-s—/—- 2xp (@ JE-A 3 (1-1)
(E-AY7*

where c, A and a are for a given nucleus constants, by the time one reaches the region,

for instance, of the neutron threshold (E A2 6 MeV), the number of levels is so high that

one must give wp a description of microscopic detail, a description of the individual levels.

The aim of nuclear models at this and higher excitation energies is rather to describe

special states, like giant resonances, analogue states, etc.., which have a peculiar

structure. But the detailed description of the sea of background states around the
the coliective ones must and should be abandoned. Twenty years ago, Dyson made an elo-

quent resume of the situation [Dy-62a] :

"Recent theoretical analyses have had impressive success in interpreting
the detailed structure of the low-lying excited states of complex nuclei. Still, there
must be a point beyond which such analyses of individual levels cannot usefully go.

For example, observations of levels of heavy nuclei in the neutron-capture region

give precise information concerning a stretch of levels from number N to number

(N+n), where N is an integer of the order of 106. It is improbable that level assign-

ments based on shell structure and collective or individual-particle quantum numbers
can ever be pushed as far as the millionth level. It is therefore reasonable to inquire
whether the highly excited states may be understood from the diametrically opposite
point of view, assuming as working hypothesis that all shell structure is washed out
and that no quantum numbers other than spin and parity remain good. The results

of such an inquiry will be a statistical theory of energy levels. The statistical theory

will not predict the detailed sequence of levels in any one nucleus, but it will describe

the general appearance and the degree of irregularity of the level structure that is

expected to occur in any nucleus which is too complicated to be understood in detail.

"In ordinary statistical mechanics a comparable renunciation of exact knowledge’
is made. By assuming all states of a very large ensemble to be equally probable, one
obtains useful information about the over-all behaviour of a complex system when

the observation of the states in all its detail is impossible. This type of statistical
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mechanics is clearly inadequate for the discussion of nuclear energy levels. We wish
to make statements about the fine detail of the level structure, and such statements
cannot be made in terms of an ensemble of states. What is required is a new kind

of statistical mechanics, in which we renounce exact knowledge not of the state of

a system but of the nature of the system itself. We picture a complex nucleus as

a "black box" in which a large number of particles are interacting according to unknown

laws. The problem js then to define in a mathematically precise way an ensemble

(%)

of systems in which all possible laws of interaction are equally probable".

At the end of these lectures the reader will judge whether this programme,
initiated by Wigner, has been successfully accomplished. And it will appear that partial

justification of the theory may be found in concepts elaborated only recently.

The appropriate language to define an ensemble of systems is provided by
random matrix theory. One considers the Hamiltonian matrix H as an NX N stochastic
matrix (its matrix elements are random variables) and the question is to specify the
probability density ®(H)dH. In order to proceed one must answer the following-questions
[Wi-67a,Dy-72]: i) what are the admissible Hamiltonians and what is the proper measure
in the ensemble of these Hamiltonians ; ii) given the ensemble of Hamiltonians, are
the properties in which we are interested common to the vast majority of them. Question
i) is answered on the basis of general symmetry principles as well as of physical plausibi-
lity. Question ii) should be answered by the affirmative and one can then perform
ensemble averages which are equivalent to averages over a generic matrix of the
ensemble (ergodic property). A proper ensemble of random matrices should also fulfil
the requirement that the mathematical problems involved should be tractable, in order
to avoid situations in which one must exclusively rely on results obtained numerically
(Monte Carlo). Of course, the final goal of the theory will be to successfully predict

the empirical observations.
The systems we shall deal with are characterized by their Hamiltonians which

can be represented by Hermitian matrices. When

there are some exact quantum numbers corresponding

to exact integrals of motion, like angular momentum

o p and parity (Jn ), and if the basis states are labelled
by these exact quantum numbers, the Hamiltonian

) J'n' o matrix will split into blocks (Fig.Il.1), and the matrix
pom elements connecting different blocks will vanish.

o o | We shall assume that such a basis has already been
4 chosen and restrict our attention to one of the diagonal

i blocks, an N x N Hermitian matrix in which N is
Fig.L.1 a large integer, for the systems we want to describe

contain many levels. The theoretical results are

(*)The underlining is ours.
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in most cases derived in the limit of large N. If this asymptotic limit is reached very
fast (N &¥ 100, for instance), the dimensionality will introduce no uncertainty when

comparing to data.

II.1 GAUSSIAN ENSEMBLES [Po-65a,Me-67,Dy-62a,b]

The underlying space-time symmetries obeyed by the system put important
restrictions on the admissible matrix ensembles. If the Hamiltonian is time-reversal
invariant and invariant under rotations, the Hamiltonian matrices can be chosen real
symmetric. If the Hamiltonian is not time-reversal invariant then, irrespective of
its behaviour under rotations, the Hamiltonian matrices are complex Hermitian. Finally,
if the system is time-reversal invariant but not invariant under rotations, and if it
the matrices are

has half-odd-integer total angular momentum, "quaternion real".

In this last case all energy levels are doubly degenerate (Kramer's degeneracy).

Time Reversal Angular Rotation| Hamiltonian Canonical Number of
Invariance Momentum Invariance Matrix Group Independent
Real param.
| Integer B Real Symmetric | Orthogonal LZN(N+1)
2 Odd-Integer Yes
Yes
%—Odd—[nteger No Quaternion Real| Symplectic N(2N-1)
No - - Complex Unitary N2
He rmitian
Table II.1

Due to its importance in physical applications, we shall mainly concentrate

in the case {L: 1 (see Table IL.1). Notice that the real symmetry property is preserved
under orthogonal transformations, but not under a larger subgroup of the unitary transfor-
mations. The case fL = 4 is included in Table II.1 for completeness, but no further

mention will be made to it.

In order to introduce a proper measure dH in the space of matrices one can
proceed as follows. A metric is defined in the matrix space to which H belongs by

expressing

ds? - Tr §HSH? (I1-2)

in terms of the independent variables X,L of H, as
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M
dSz frmed ,‘Z’v.-—-' %FV 5X’L 5Xv ] (H_B)

where M is the number of independent variables (matrix elements). The basic measure

dH is then the measure induced by this metric, namely

A M
dH = (det g,,) 210 dxp . (11-4)
'A=|

If one considers (P = 1) real symmetric matrices H(:H*:HT) there are (1/2)N(N+1)
independent variables and one has

dst= 5 (e 42 X (3Hg)?

(11-5)

14 ¢N 1L LN
so that
N(N-1)/4
dH = 2 TT dHu TT  odHe (11-6)
1ETEN 1¢i <y N

For the case ( f} =2) of Hermitian matrices H(=H') one has N? independent variables.
Writing H = H' + iH" where H' = H” - H'T, H = HY = - H"T, one has

ast X @t 42X [R5 6HY]  a

1£ 44N 151'(3'$N
so that
N(N-Y/2 __ ! "
dH = 2 IT dta TT  dHay dtly . (11-8)
1€7€N 17 ¢ <N

Any automorphism of the studied matrix space which leaves the metric (I[I-2) invariant
will leave the associate measure dH invariant. For instance, in the case of real symmetric
matrices, the invariance of (1I-2) (iI-5) under a real orthogonal transformation implies

the invariance of (II-6).

Let us now define the Gaussian Orthogonal Ensemble (GOE) in the space

of real symmetric matrices by demanding two requirements :
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1. The ensemble is invariant under every orthogonal transformation

Hi=wWTHwW | (11-9)

where W is any real orthogonal matrix, i.e,, the probability G’ (H)dH that a matrix
H will be in the volume element dH (Eq.(II-6)) is invariant under orthogonal transfor-

mations(*)

PH)AH' = P (R dH (11-10)
2. The various elements Hij(i‘( j) are independent random variables

We make the first requirement because we don't want that any given state plays a
particular role : all basis states, and therefore all states, should behave in the same
way. The second requirement has no special physical origin. It is put for the sake

of simplicity with the hope of leading to a mathematically soluble problem.

Similarly, the Gaussian Unitary Ensemble (GUE) in the space of Hermitian

matrices is defined by the properties

1'. The ensemble is invariant under every unitary transformation

/
H'=U*HU @-11)
where’U is any unitary matrix, i.e., the probabilityg)(H)dH that a matrix H will be

in the volume element dH (Eq.(II-8)) is invariant under unitary transformations

F(H)dH' = F(H) dH (11-12)

2'. The various elements Hi'j i £ i) Hlnj(i < j) are independent random variables,

i.e., 9> (H) is a product of N2 functions.

These two requirements (1. and 2. or 1'. and 2') determine uniquely the ensembles.
The function 9> (H), which will also be invariant under the corresponding automorphism,

can be written

q,"’P (H) = Kup 2xp {—Tr(Hz)/4¢z} ’ (11-13)

()
Notice that from (II-10) and from the invariance of the measure dH, one has that
g’(H) must also be invariant under orthogenal transformations.
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where KN is a normalization constant (N refers to the dimensionality of the matrix
and b= 1,2,4 labels the different cases, see Table IL.1). In (II-13)

TeH = 2 Hit 422 Hy? g p=1 (W-14)
1£i¢N 451‘(3'SN
and

2 Hit+2 ) (H:‘ja4 Hf-;) forops2 . @19

41817¢EN 18145 EN

Tr?

For the GOE one therefore has that each matrix element Hij is distributed normally

(or Gaussian distributed, from where the name Gaussian ensembles) with zero mean

Hi =0 i&y (11-15)
and variance
H = (148;)02 ¢ . (11-15")

We use the notation : for any quantityw,w is its ensemble average. For GUE one
also has normal distribution of the different variables with

- " 2 2 L

Hix =Hi=0 , HiFf =20 1= (11-16)
and - —_— —

-7 . " 2 na 2 .

Haj = Ha‘j =0, Hyj =H, =0 a<) (11-16')

We have thus defined two ensembles -GOE and GUE- depending on two parameters :
a trivial scale factor ¢? and the dimensionality N. Equation (II-13) clearly exhibits the

statistical independence of the matrix elements.

Balian [Ba-68] has used a different and more general approach to derive
(among others), the Gaussian Ensembles. He uses concepts borrowed from information

theory, in particular the amount of information J associated to the probability g’(H)

J-= fg’(a) en F(H) A H (11-17)

One looks for the function g’(H) that minimizes J , which is equivalent to assuming
the least possible knowledge about ?(H). Before minimizing one has to face the follo-
wing problem : in the cases we are studying, the range of variation of the matrix
elements Hij (or (Hi'j,H'i'j)) is infinite. In order to confine the eigenvalues of H to a

finite range, one has to impose a condition on its norm (Tr H’)l/z. That is, one asks
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that @(H) should minimize J subject to the constraints

J?CH) dHd =Cq (normalization) (11-18)

J@(H) Te(H)dH =C, . (11-18")

This leads to the result (II-13). When following this derivation of Gaussian Ensembles,
the only input one needs is the invariant measure dH (plus the constraints) and the

statistical independence of the matrix elements follows as a result.

Making use of the invariance properties, the joint probability density of

the eigenvalues Ei can be extracted from (II-13) and one obtains :

- 2
7,’.,,,, (g, Ez,-..,t~)= CNP”P{‘f;; 2E; } A IE,,-_EO']'A) (11-19)
where CNF’ is a normalization constant determined by
jJ?NP (EyEs, B0 ) AE AEy - dEy = 1 . (1-19"

PNP(E|'___7E~) dE,----dEN gives the probability, regardless of labelling
PNp is a symmetric function under the interchange £, «—» Ej ), of having
one eigenvalue at E1 , another at £3 ..., another at £, within each of the

intervals [ EJ EJ‘ + dEJ' 1. Equation (II-19) contains all the information concerning

)
the eigenvalue distribution and the correlations among eigenvalues. By performing
suitable integrations, one can in principle derive all the quantities related to eigenva-
lues which are of interest. Notice the last factor on the r.h.s. of (II-19) : when Ey = E‘j ’
PN (E‘)"'/ E‘l';"')tj) ,,.’EN‘) becomes zero (there is level repulsion !). By integra-
ting (1I-19) over all the variables but one, one finds, in the limit of large N for the three

cases (3 = 1,2,4, the ensemble averaged eigenvalue density F (E)

pE) = f’"JP”P (€,€a,- En)AE, - dEy

a4 (4NTg?)% for lE1<2UNG?

an Ng2 (11-20)

o for 11 2VND2

which, from (II-19"), is normalized to unity. If one takes 2(NG2 )l/2 = 2(1':'(1-12)/N)1/2 as

energy unit, (X /2) F is a semi-circle and (II-20) is the so called Wigner semi-circle law
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for the level density of a random matrix. Although it has been derived for large N,
it is followed rather closely even for low values of N (N 2 20). One should point out
that it can be obtained under more general conditions than the ones fulfilled by the
Gaussian Ensembleg:) Let us finally remark that (II-20) does not reproduce the experimen-
tal level density (II-1). Whether this is a serious weakness of the theory or not will

be discussed later in this Section.

1.2 FLUCTUATION PROPERTIES

Once the global behaviour of the eigenvalues has been established (the ensem-
F¥*
ble averaged eigenvalue density F(E)( we turn now our attention to the level fluc-

tuations or departures of the spectrum from its average behaviour. For that purpose

one introduces the k-level correlation functions 'ﬁ EE, ....E defined as follows
RS Eey -y =p

R (Eyy-rry Eh) —— ffP €, EnE,, - dE,, ,(1-21)
(1¢REN)

where P is given by (II-19). It follows that R (ED = NF (E..\ , where F(E,)
is given by (11-20) and Ry = N 1Py with Py given by (I1-19). Rk{E| )1 Ek)x
dE E, - dEg is the probability of finding one level, regardless of labelling, within
each of the intervals [ EJ‘) Eii + dEj 1. Like in the previous Section, to get rid of

F (E\ , one introduces a new set of k-level correlation functions Rk 6(1,.,,) Xh) and
one considers the case of interest N>> k >/ 1

Re(E,,. .., £
Ri (¢4y-ery Xn) = Lima b By EB) (11-22)

Nasw R, (E).-- R, (Ex)

where X is obtained from the mapping E +—»x defined by (see (I-28))

£
E +—> x=f R,CE’)AE’ ) (11-22")

-2

The fluctuation properties of the levels are completely characterized by the set of
functions Ry, ()q) —eee) Xk) . From the definition (lI-22), one has R, (3, ) = 1.

This expresses the fact that the level density (or the average spacing) in the variable X

(*) For real symmetric matrices, for instance, one only needs the statistical independence of
the matrix elements plus (1I-15,15') for almost all the matrix elements.

*¥%
)y

-(EX plays in the context of matrix ensembles the role of =N (
(see (1-26,28) in the previous Section). P‘v (f) N g)

dg ay
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is unity everywhere,

It is convenient to introduce the k-level cluster functions )’k which are

obtained from Rk by subtracting out the lower-order correlation terms

R-m m
X(x.,m;X:z):Z.G) (m-.)f I 'R& (xe, with t4n &j) o (W-23)
61" j=1 J
Here G stands for any division of the indices [1,2,...,k] into subgroups [ (S-‘) G'z) - G I
For instance
— k:" m=1 E(‘)] dnA
(11-24)

X()q) = Rq(Xq) =1

— k=2 m=1 [ (1,2))
m=2 LOM(RDY] amd
Vo Oeay %) = = Ra b, ;) + Ry(x0) R, (x2) (11-24)
_ k=3 me 4 [¢4,2,9]
m=2 [, [ (49(@)], (1,5 3)]
m=3 [Y((R)] and
Y, (xyXe %) = Ry (e, X, X3)
~[R 0GR (%2, %) +R, ()R, (%, X5 )+ R ()R, (¢, %) ]

+ 2 ?4 (Y‘l) Ri(xl) R‘\(xg) * (11—24")
The inverse of (II-23) is
R-m m
Ri (%) -, Xie) = GZ(—) 1.l’l' );j (x¢ , with tn 6—,’) ) (11-25)

Thus each set of functions Rp and Yg is easily determined in terms of the other.
The advantage of the cluster functions is that they have the property of vanishing
when any one (or several) of the separations [X4 -X4 ! becomes large. The function Yp
describes the correlation properties of a single cluster of kB levels, isolated from

more trivial effects of lower-order correlations.

It has been shown by Pandey [Pa-79] that the Gaussian Ensembles are statio-
nary and ergodic in the limit of large N (this is obvious by construction for a Poisson

ensemble). For instance, for one-point measures, the ensemble density F(E) is
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equal to the spectral averaged density <P(E)>S . The mapping E +» X (Eq.

(11-22")) (unfolding) is such that the ensemble-averaged local spacing I/F(x) is
stationary (independent of X ) and equal to unity. And the k-level cluster functions
Yr » functions of the variables Xo' , are also stationary (they only depend on the
relative coordinates Xq‘j = Xi-X4 ). This means that the fluctuation properties
of several segments of a spectrum located at different positions will be the same:
from the point of view of fluctuations, the spectrum is translationally invariant.

Furthermore, after unfolding, a spectral average is equal to an ensemble average.

An alternative way to characterize fluctuations consists to deal with spacing
distributions(*) and related quantities. In (II-21), instead of integrating from - oo
to +o0 without any restriction, one integrates some of the variables outside the interval
[, o¢ + L] whereas the others are integrated inside it. Assume that the unfolding

(mapping E ~>»X ) has been performed. One defines (N>R > 0)

E(kyL)= lin _"L ...fdx,...dxky... fd"hd"d’%a("v"‘)x") . (11-26)
Nosso (N-RY! i -~

If the system is stationary, E( R ;L) will be independent of o¢ . E(R ;L) is the probabi-
lity that in a sequence ‘{x;s of levels with mean spacing unity an interval of
length L taken at random contains exactly R levels. One useful aspect of the functions
E (R;L) is that they are very directly connected to the spacing distributions
[MdC-72]

p(&;L) = (d’-/dL’)_Zk (k-4+)E({;L) . (11-27)
j=0
In particular, for the nearest-neighbour spacing distribution P(x)
p)= ployx) = (d2/dx?) € (0x) . (11-27")
The probability F( R ;L) that in a sequence {’G; of levels with mean spacing unity,

an interval [ X ; X + L] of length L which starts at a level X contains exactly

R levels is also given in terms of the functions E(R ;L) :

(*)The distribution of nearest-neighbour spacings has been denoted, and will continue
to be when no confusion is possible, by P(x)= P(o,'x) ) 'P(k)'x) denotes the dis-
tribution of spacings S = ¥isket = Xa between two levels Xy and Xqska g
having R levels in-between (R = 0,1,2,...).
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k
F(&yL) = — (d/AL) 2. € (§5L) (11-28)
g=o

and, in particular
'F(O L) = - (d/dl—) (0 L) (11-28")

From their meaning it is clear that
Z ElkyL) = Z F(k;L)=1 (11-29)
R=o R=o

and if there are no degeneracies
E(kyo)= F(&y0) =g, . (11-30)

When comparing a theoretical model with experiment, due to the limited
number of high quality data available, it is impossible to make a complete comparison
between the set of k-level cluster functions Yg (II-23) and the corresponding quantities

extracted from experiment. It is convenient to work with integrated quantities like

L rL
‘Jh_(L)_’fo...J Y% Ocas-y Xa) dxq--dx k. (11-31)
[

Consider, for instance, the random variable n(L) "number of levels contained in an
interval of length L" or, in short, the number statistic (see end of previous Section).

Its first two moments and shape parameters(*) are given by [Pa-78]

(*)Let ¥ be a random variable whose probability density is f( X ). Ifs expectation
value m, and central moments Ma (k3 2) are defined by m, = ff&)dx and
Ma £6)(¢~maY" dx . The characteristic function ¢ (t) is the expectation va-
lue of the random variables exp(lt g ): L{(t)— f(a.) e oo . Consider the

function Llr(é) én ((((—,) called the cumulant generatmg funcnon, because its

Mac Laurin expansion is given by Y (¢) = Z (Kk /b ') G l:) , where
Kk are the cumulants. They are related 1n a simple way to the centered moments
Mg of F : Ky=m,, Ka= Mg (variance), K3= M3, Kg= My —3"‘3,

The shape parameters ’ % (k% 1)aredefinedby ¥ = Kiea/ (Ka““”/‘)
Y. is called the excess and Y2 the asymmetry of f(®). For a Gaussian distribu-

tion f(x ) = (1/ JZn MZ) exp ,( - ( x -m, )’/ZM2 } one has Kq=my ,Ka=M,
and Ky=0  for v33 yie, Yp=0.
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[
mq(") =nlL)= Z kE(k,L) =Y, (LY=L (11-32)

k--o

Zz(l—) =My (L) = (n(L)-L)z = kz(h-l.)lEChl L) ;3' (L) -Y, (L) (11-32")
=0

nd) = g ki( R-LY E( k; L)}/ M:/(z:.) =(4,()-3y, () +Y, (LD/M:_A(L) (11-32")

=0

% (L) ={ go(*-‘-345 (&;0)-343 (1) }/ M (L) (11-32")
=(ga(L) ~Fy, (L) 46y (L) =Y (L)) /M7 (L) |

Thus, 22 » ¥a and 3’2 are given in terms of the functions E(k;L) and all values
of R appear. However, they are in fact (2)-, (2+3)- and (2+3+4)- point measures
respectively, as can be seen from the last equalities in (II-32). When dealing with
the 2-level cluster function Yz(h,xa) one uses the notation Y, (x) (*). Yz is related

to the spacing distributions by

0
1-%0) = 2 plk;x) (11-33)
R=o
and (=Y (x) ) dx gives the probability of observing a level in an infinitesimal
interval dx at a distance X  from a given level. An alternative form of (II-32')
is
2 L
SR =L-[ (L% (dr (13
°

Finally, consider the least-square statistic =~ A,(L) introduced in the previous Section
q 3 p

(I-38). It can be shown that its ensemble average =~ Ay (L) can be obtained as follows
[Pa-79]

- L
Ay (LY=(2/19) fo (L3-22car3) 33 (A Ar (II-35)

Therefore, like ZZ(L), it is also a 2-point measure (some particular integral of Yz) .

(*)Take as coordinates the center of the interval X'= (x1+ xz)/z and the relative
coordinate X= X4-Xz . Then % (x4,X2) — Ya(X;x) butasY, does not
depend on x¢ , one simply writes Ya (x)
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Its variance

Var A (L) = (430 -A5(0))* (11-36)

is a (2+3+4)- point measure.

Let us now briefly describe the results obtained from different theoretical
models. We shall mainly consider the GOE and also, for the sake of comparison and
because it constitutes the limiting case of maximum randomness, the Poisson ensemble

(an ensemble of sequences of points, not of eigenvalues of matrices).

Poisson Spectrum
- Correlation coefficient between adjacent spacings (I-37)
C=o0
- Functions E,F and spacing distributions (11-26,27,28)
E(k;L)=F(k; L) =p(kyL) = (L"/Iz')e'L
yL)= TR L)=pIRE) = : (11-37)
- k-level correlation functions (II-22)
Rk(x1)'—)xb)=1 h>/4
- k-level cluster functions (II-23)
Yq(x).‘-‘ 4) Yk ()(4,--7)(&):0 R>»2
and their integrals (II-31)

31(!—):1— ) 5k(L)=O k)/z

- Cumulants K, (L)

Ky (L) =L
In particular (II-34)

Zz (L) = L
- Shape parameters (II-32)

—k/2

Yo (L)= L Ry 1 )

which means that for large L JYp— 0, i.e, n(L) tends to be normally distributed.

- Average value of AS(L) (11-35) [DM-63]

53 (W)= L/as (11-38)
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and its variance (1I-36) [BHP-83]

Var Ay (L) = ( 1+ M L>24 (11-39)
o

Gaussian Orthogonal Ensemble

The derivation of the different quantities of interest, mainly due to Mehta,
Gaudin and Dyson, needs beautiful classical mathematical techniques. The principal
initial difficulty was encountered when trying to perform integrals of the type (I-21), difficulty
that was solved by the method of integration over alternate variables invented by
Mehta [Me-60]. One knows now, in closed analytical form, the different cluster functions.
The functions related to the spacing distributions are only known (except for their
behaviour for small and large values of the arguments) in numerical form and are
connected to the spheroidal functions. For their relationship to the k-level correlation

and cluster functions, see Ref./MP-83].

Let us now give a brief account of
4 r T the main results. On Fig.ll.2 is reproduced

the nearest-neighbour spacing distribution

- ) P(x\ (large N limit) and compared to
GOE fapmptokic)— the Wigner surmise Pyy(x?) (I-36) derived
w""""" in the previous Section. They are extreme-

ly close to each other. It is worth men-
tioning that P (¢) is the result corres-

e ponding to a GOE of N x N matrices of
dimension N=2. The slope at the origin
of p(x) is 712/6 to be compared
to Tt /2 for Py (x) - The two values
differ by a factor of W /3, which is

Fig.ll.2 - The nearest neighbour-spacing
distribution (taken from [Ga-61]).

close to 1.

On Fig.ll.3 are reproduced the functions E(0;L) and F(0;L) (II-26,28'). Notice
that F(O;L)-E(0;L) 3 0 for all L 0.
This means that the probability that in an

interval of length L which starts at a

Foo--f 0y
level there is no level is larger than

the probability that in an interval of the
same length taken at random there

is no level. This is actually what level

repulsion means. This less conventional

Fig.IL3 - The functions E(0;L) and F(0;L) definition of level repulsion is sensible
for GOE
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not only for small values of L, but for any value of L. For a Poisson spectrum one has

F(0;L)=E(0;L) : it is irrelevant whether the interval L starts or not at a level.

On Fig.ll.4 are reproduced the functions E(R ;L) in the interval 0 £ L <
They can be used, for instance, to compute via (II-32) the values of ), (L) and ¥z (L)
to be discussed later (this is a more practical method than to use the general expres-
sions of k-level cluster functions). For adjacent spacings, the correlation coefficient
(I-37) is C = -0.271, to be compared

to 0 for a Poisson spectrum.

A closed expression has been given
for the k-level cluster functions Yp
[{Me-71,Dy-70]

Y!&):"

YOy Xp) = %FPZB’("“)V(’@"""("M}]
Ry 2
(11-40)
where Z denotes a sum over the (R-1)!

distinct ?cyclic permutations of the indices

(1,2,..., R ), where X.;J' =X¢-Xj , and where

O~ is a 2-dimensional matrix given by

ks0f\ 4+ A 2\ 3\ a s Dsix)
Picket G(X) =
Fence JS(X) S(x) (11-41)
In (I-41)  $(x) ,Ds(x) and

Js(x)  are given by

$(6) = SinX/rox (11-42)

Fig.IL4 - The functions E(R ;L) (1I-26)
of a Poisson spectrum, a GOE and a '.DSCX)=(d/’lx)SG<) (11-42')
picket fence (taken from [MdC-72])

X'
TIs(x) = j‘ SG¢! )dx !

IsB) = IS(X)-G(X),"‘M“ % x>0 (11-42")
e(x) = ° xX=o0

-1 x <o



As a particular case one has

Y (r) = (s — Ds(r) Is (r) (11-43)
with = Xa-X2z . For small and large values of ¥ one has
Y% () —> - (V)T?r +(Veo)m*ri+... (11-44)
r=0
%) — ez~ (reoinr) /iy - (11-45)
-3

The behaviour of Y, (r)  for small values of ¥ (Ya (0)=1) is responsible for the level
repulsion, whereas the large-r behaviour (Y, (r) tends to zero as 1/n2r2 ) determi-
nes the presence of long range order. On Fig.lL.5 is displayed the function 1-Y, {r) in
therange 0 £ r{ 2.

The value of ¥ *(L) can be obtained by
performing the integral in (II-34) with Y,

1-Y,fr] . : ,
10 / ------------- given by (II-#3). One obtains [DM-63,BFF-81]
Poisson
ot L I o=@ eeu)yag [sia]?
- T SiluL)-costamt) - Cilant)
4] 015 1,ID 1‘5 r

+12L [1-(a/n) Si (L) ] } (11-46)

Fig.ll.5 - Two-level cluster function for

GOE l%—: (.2/n*)§ CaCanL)AY+1- nz/x}

= 7% LalL 4+ 044 (11-46")
In (1I-46) Y is the Euler constant and S4 and C4 are the sine and cosine integrals.
Note the effect of the spectral rigidity : the value of 3 %L) is only of the order
of unity for L=100 and even for L ~ 106 the fluctuation is not more than a couple

of levels. This should be compared to J *(L) = L for the Poisson case.

The ensemble average ZB (L) of  Ay(L) can be obtained by integrating
numerically (II-35) [HPB-82]. For L 2, 15 one may use the asymptotic (large L) result
{DM-63]

by 2
57 - - -
A3(L)~#[&(ML)+)’—%——?] = 2, &nl -0.007 (11-47)

with very good accuracy. Again, in comparison with the Poisson value L/15, the GOE

spectrum is seen to exhibit long range order.

The variance of AJ (L) has been obtained by Monte Carlo calculations

[HPB-82]. For large L, it approaches the asymptotic (large L) value [DM-63]
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Var As(L)N;:—q_ [%—Sﬁ-{- l—}z] = 0.612, (I1-48)

a small constant ! By comparing to the Poisson result (II-39),once again it is seen

that the fluctuations are small for GOE.

Although in what follows we shall be interested in the GOE, let us briefly
mention ‘that the fluctuation properties of the eigenvalues of Hermitian matrices

of the Gaussian Unitary Ensemble (GUE, [5 = 2) are also known(*)

. The level repulsion

is stronger for GUE than for GOE : in both cases the spacing distribution P(x)
vanishes at the origin, but near the origin .P(x) ~N (th/g)x for GOE whereas for GUE
it is P(X) ~n (rr‘/s)x" . The expression of the k-level cluster functions reads
as in (II-40) except that the factor (1/2)Tr should be dropped and @ (x) is given
by 8(x) (1I-42). The resulting two-level cluster function Yz(r) contains only
the first term of the r.h.s. of (II-43). The variance Z‘z (L) of n(L) is, for L 22 1,
half the variance corresponding to the GOE plus 1/8, i.e., a GUE spectrum is more

rigid than a GOE spectrum.

We have mentioned in the previous Section the conjecture that the fluctua-
tions of the imaginary part of the zeros of the Riemann Zeta function are asymptotically
(large imaginary part) identical to the fluctuations of a GUE spectrum. Indeed, one
can see that the spectrum displayed in column {e) of Fig.1.8 shows a stronger
level repulsion than the spectra of columns (c) and {(d) which, as will be explained

in the rest of this Section and in Section IV, are well described by the GOE.

1.3 COMPARISON OF GOE PREDICTIONS WITH EXPERIMENT

We shall concentrate on fluctuation properties of spectra and shall leave
completely untouched the important subject of statistical properties of eigenvectors
and its consequences (strength and width fluctuations) [BFF-81, MW-79,We-84]. In
what follows we summarize thé most significant comparisons performed so far between

GOE predictions and nuclear, atomic and molecular spectra.

A large experimental effort has been and is still currently devoted to the
measurements of positions and widths of resonances of the compound nucleus, effort
motivated to a large extent by technological reasons. However, only a very limited
part of the existing data, on neutron cross sections for instance, can be used for

our purpose. What we want here is not a set of resonance energies but rather a

*

()And also of the eigenvalues of matrices belonging to the Symplectic Ensemble
(see Table IL1, @ = #4). The statistical properties of these eigenvalues are identical
to those of an alternate series from the GOE.
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complete and pure sequence of resonance energies corresponding to states having

the same quantum numbers JK (see Fig.lL.1), in a given energy range. The very characte-

ristic features of GOE fluctuations are rapidly lost if the sequence of levels is incom-
plete (missing levels) and/or polluted by spurious levels due to erroneous spin-parity
assignments. Obviously, in order to test long rangeorder effects, the pure series should

contain many levels.

In the atomic and molecular cases nothing comparable to the nuclear case

has been achieved, although recent and promising progress is to be noticed.

Nuclei

The main source of experimental data is provided by neutron resonance
spectroscopy [Ly-68). When transmission measurements are performed by sending

neutrons on a nuclear target A, the study of the cross section @ .. as a function of

the neutron energy En reveals the presence of sharp resonances, al-lr over the periodic
table, resonances that correspond to quasi-bound states of the compound nucleus
(A+1) (see Fig.l.6 for an example). The mean spacings D and average widths 7 of the

resonances near neutron threshold (excitation

energy of the compound nucleusa 6-7 MeV) vary

widely over the full range of nuclei. Very
roughly D ~ 100 keV and I' A~ 10 keV for light
nuclei, D &~/ 1 keV and "~ 100 eV for medium

nuclei and D & 10 eV and M 1 eV for heavy

nuclei. Most of the resonances observed in low-

N % 0 % s 0 % % a o

&)
energy neutron cross sections are excited by

s-waves, because for all but s-wave neutrons

Fig.lI.6 - Resonances for the reaction the penetration factor, which depends on the cen-
n+ 232Th (taken from the compilation

Neutron cross sections (1964)) trifugal barrier to be overcome by the entering

_ neutron, is very small at low energies. Thus,
if the target has 3" - 0" and En is very low, one populates only (1/2)* states of
the compound nucleus, i.e., one produces pure sequences. The energy range that can
be explored is severely limited for two reasons : i) by increasing En, the p-wave contri-
bution increases and (1/2)” and (3/2)" states are also populated, the series becoming
then polluted, ii) the experimental resolution being proportional to E?_l/z, it rapidly
becomes coarser than the resonance spacing. In practice this method has been extensively
used, mainly by the group of Columbia University, to produce presumably pure series

for a large variety of nuclei, each series containing typically of the order of 50-100

levels [HWR-78].

High resolution proton scattering experiments on medium nuclei (A§ 65) performed

in Duke University provide additional information. In this case one uses the analogue
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state as an amplifying device : the fine structure states can be seen through the
Coulomb force mixing of the analogue with the background sea of Ty  states. The
experiments are performed with proton energies of the order of a few MeV and the

energy resolution attained is of the order of 10™* [BLM-761.

We shall not give a complete account of comparisons between GOE predictions
and nuclear data (see [BFF-81,HPB-82,BHP-83,BHP-84]) but rather present a few typical
examples. The combined set of nuclear resonance-energy data of different nuclei-

in short, the nuclear data ensemble (NDE)- is treated as a sampling of eigenvalues
of GOE matrices. The data analyzed consist of 1762 resonance energies corresponding
to 36 sequences of 32 different nuclei. In Fig.ll.7 are shown the spacing distribution

‘P(X) and the average value of As as a function of L in the range L £25. In Fig.l.8
are shown the variance Z’, asymmetry rl and excess b’z of the distribution

0 '
h " " (a) ,',\Poisson
i Poisson NOE /
1726 spacings & GOE 1
)y « NDE (experiment)
05} - 4 0 1 2 3 4 L
] L
] I'l Poisson
2,0-\‘ /
1 z 3 b ‘\\ oNDE (experiment) J
1.0f \\\ E
GOE | TTTTTeme-d
— R S— S——
20 | :
X;(L) 3 \\/Poisscn
10p \\\ « NDE (experiment) 1
| ——
] WGOE
10
Fig.ll.7 (a) Nearest-neighbour spacing histo- FigL8 - (a) 32, (b) ¥, »
gram for NDE (experiment) ; (b) A, as a (c) Xz as functions of L (taken
function of L ; dashed lines for GOE, to take from “[BHP-84))

into account finite sample size effects,
correspond to one standard deviation from
the average (taken from [HPB-82,BHP-83])

of the number statistic n(L) in the range L { 5. The procedure for calculations is

to evaluate for each of the 36 sequences the spectral-averaged measure, say (AB(L)>S

—

for AB(L)’ and then take their average, weighted according to the size of each sequence.
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Remember that J ? and 33 are derived from the 2-level cluster function (see (11-34,35)),
whereas b'l(bfz) derives from (2+3)-((2+3+4)-) level cluster functions respectively (see(II-32',32").
However, the restrictions imposed by y’_(L) on higher-order functions yk (L) are not
well understood and therefore it is not easy to know how much information not contained

already in 32 is contained in Yl and YZ'

Inspection of Figs.ll7 and II.8 illustrates the fact that all the fluctuation-
measures considered so far, which include a thorough study of 2-point measures and
to some extent more than 2-point measures as well, are fully consistent with the
GOE predictions.

Atoms and Molecules

There exists a pioneering work by Rosenzweig and Porter [RP-60] in which
atomic spectra were studied. They demonstrated that levels having the same quantum
numbers do show level repulsion and that the spacing distribution 'P(x) follows
closely Wigner's prediction. It is only recently that Camarda and Georgopulos [CG-83]
have tested more systematically energy-level-fluctuation predictions of GOE with
atomic spectra. These authors have analyzed energy levels of neutral and ionized
atoms in the rare-earth region. In contrast with the nuclear levels studied so far,
which correspond to unbound or quasi-bound states lying above particle threshold,
the atomic states are bound and can decay only by photon emission. Eight different
stretches of spectra containing altogether 269 atomic energy levels have been studied.

The results are reproduced in Table II.2 and Fig.ll.9. One can see that the agreement

+ + + + +

Nd Nd Nd Nd Nd Sm Sm Tb

J" 4 6 7/27 13/27  15/27 3127 9/27  9/7”
L 35 38 34 28 32 26 31 45
exp. 0.39 045 0.30 0.37 039 037 040 0.31

0.35 0.3¢6 0.35 0.33 034 032 0.3% 0.38
GOE

£0.11 £0.11 £0.11 0.1l #+0.11 =£0.11 =0.11 =*0.11

Table II.2 - Values of A3 for atomic_energy levels. Each series is identified by
the angular momentum and parity (3" ). For GOE the value of A; is followed
by the square root of Var Ay (II-48) (taken from [CG-83]).

between GOE predictions and experiment is good.

Finally let us mention very recent studies on molecular spectra. Haller

et al. [HKC-83] have studied the statistical behaviour of molecular vibronic energy



Fig.IL.9- Histogram of nearest-
neighbour spacing distribution
P(x) of eight sets of atomic
energy levels containing 261 spa-
cings (taken from [CG-83].

49 NOI_ (QXP)
Wijne.r
20-
3 3

Fig.l1.10 - Nearest-neighbour spacing
histogram for energy levels of NO2
(taken from [HKC-83])
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tevels. They have analyzed the interval 14900-
19500 cm-1 above the ground state of the spectrum
of the small polyatomic molecule NOZ' On Fig.II.10
is reproduced the spacing distribution :P(x)
corresponding to the 140 measured levels in this
energy range. It is qualitatively in agreement
with ' the Wigner prediction. However, whereas
140 levels are found, calculations predict 201
levels of a given vibronic symmetry. In ref.
[HKC-83] it is suggested that there are defi-
ciencies in the data and that the sub-interval
16600-17300 cm_l, which contains 46 levels,
is most reliable. For this interval the value of
A.! computed from the measured spectrum
is 0.38 to be compared with the GOE predic-
tion (1I-47,48) 0.38 * 0.11 and the value
of the correlation coefficient (I-37) Clexp) is
-0.32 to be compared to the GOE prediction
-0.27 + 0.15.

We mention also the work of Mukamel
et al. [MSP-84] who have studied level fluctua-
tions from recent experimental data on highly
vibrationally excited acetylene. The number
of lines in the experiment is 65. However,
due to insufficient spectral resolution, among
other effects, one cannot attempt a sharp
comparison between GOE fluctuations and
data. The theory can, with the present quality
of the data, be used to estimate the fraction

of missing levels in the experiment. But one can expect that this type of analysis

will become more useful when the spectral resolution will improve.

1.4 DISCUSSION

The conclusion that can be drawn from the previous subsection is that, when

systematic and accurate data are available allowing a stringent comparison with

the theory, the GOE describes level fluctuations remarkably well (nuclei). For atoms

the agreement is significant and for molecules the comparison is still at a primitive

stage. On the other hand, we know

that GOE gives for the level density a semi-circle
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(II-20) in contrast with the observed increase of the level density with excitation
energy (II-1). In other words, local predictions (fluctuations) are in agreement with
observation whereas global ones (average or smooth behaviour, see eq.(I-26)) are not.
Is this a serious drawback of the theory ? The following statement provides a guideline :
"In general, events distinguished by a great disparity in size have little influence
on one another, they do not communicate and so phenomena associated with each
scale can be treated independently" [Wi-79]. In our context, we have a density/fluctua-
tion separation (I—26)( §[BFF—81,FK—82,Dy—72]) and GOE should be considered as a
*

model for fluctuations' '. Remember that all quantities (Egs.(1I-22,26)) used to describe

fluctuations have been rescaled through the mapping E =X  (Eq.(II-22"), that we
have been considering the behaviour of R points in the case N3 R ; 1 , and that
GOE-fluctuations have been proved to be stationary (translational invariant). We
should also mention that methods have been proposed to construct ensembles of matrices
with a prescribed eigenvalue density ":o_ (E) and the expectation is that local properties
are independent of F) (E) [Ba-68,Dy-72].

The question now is : are GOE-fluctuations specific of GOE or, on the contrary,
are they really shared by other random matrix ensembles ? To answer this question,
let us briefly describe other ensembles of random matrices and first the Circular
Ensembles introduced by Dyson [Dy-62al. Dyson wanted to avoid the following unsatis-
factory feature of the Gaussian Ensembles (see (II-13)) : a uniform probability distribu-
tion on an infinite range being impossible to define, some arbitrary restriction of
the magnitudes of the matrix elements is inevitable (II-18'). But then all interactions
in GOE are not equally probable. By a small formal change, he introduced the following
idea. Instead of thinking in terms of the eigenvalues E.; of the Hamiltonian matrix H,
think in terms of eigenvalues e‘e" (0 £ B; £ 2n ) of a unitary matrix § con-

nected to H, say, by

S=oxp(icH) | (11-49)

The interest of this approach is that it leads to ensembles of unitary matrices §
for which the probability is uniform. For instance, using Balian's information theory
approach, one proceeds as follows : Minimize (II-17) in the space of symmetric unitary
matrices with the constraint (1I-18). One then obtains that 9(s) is a constant.
And instead of (II-19) one has(**) .
Pup (Bry-- 8,) = CapTT Piaills
Np LBy Bn P, i (11-50)

The ensemble averaged density of points §; on the unit circle resulting from (11-50) is
constant.

-
( )In a different context, is Eq.(I-13) not contradicting the density/fluctuation separation ?
In fact one needs of the order of X terms in (I-13) to "see" primes which are of
the order of X .

*¥
( )For f; = 2, the ensemble is defined in the space of unitary matrices ; for /5 =4,
in the space of selfdual unitary quaternion matrices.
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The fluctuation properties of the Circular Ensembles are stationary by construction
and it has been shown that, as expected, in the limit of large N they give the same
fluctuation properties as the corresponding Gaussian Ensembles (orthogonal, unitary

and symplectic) [Dy-70,Me-711.

In the preceding, Eq.(II-49) was suggested as one possible device to define

a relation between § and H. In fact the precise connection between § and H needs
not be specified. Assume only that S is a function of H so that the angles 67' are
functions of EJ' . Over a small range of angles, the relation between 63 and
E ., will be approximately linear and the basic statistical hypothesis is that the
fluctuation properties of R consecutive levels of H will be the same as the ones

of R consecutive angles on the unit circle.

There are other matrix ensembles having GOE-fluctuations. For instance

the "random-sign ensemble", which is an ensemble of real symmetric matrices with

matrix elements generated by coin tossing (H_,-"' = * 1), whose eigenvalue distribution
is the semi-circle level density. Or Dyson's ensembles 1 [Dy-7L, BFF-81]
M T
H =1_Z A A (11-51)
.l

where the Aq- are independent real asymmetric random matrices whose matrix elements
are normally and independently distributed with zero mean and the same variance.

A particular case of H is an ensemble proposed by Wigner [Wi-72]

H = Re M*M , (11-52)

where M is an asymmetric complex matrix, the real and imaginary parts of the
matrix elements being sampled normally and independently with zero mean and the

same variance.

Shell-model nuclear spectra, calculated by diagonalizing a realistic (non-
random) Hamiltonian in some finite subspace generated by putting M. nucleons in
L) single-particle orbits, do also show GOE fluctuations [BFF-81]. In this case the
average eigenvalue density is not a semi-circle but a Gaussian distribution. After
adequately unfolding the spectrum, one can study the fluctuations and two examples
of spacing distributions are given on Fig.ll.1l. In one case (Fig.ll.1la) only levels
having the same angular momentum and parity have been included and P(x) is
in agreement with the GOE-spacing law. When all levels (having different angular momen-
ta) are included (Fig.IL.11lb), the spacing correlations are destroyed and the spacing

distribution follows a Poisson law as expected(*)). Does this mean that the GOE correctly

(¥)Consider the following example : on the interval [0,1] take m points x4 (1= 1., ~m)
at random uniformely distributed and construct an infinite spectrum by attaching to each
point X« a picket fence of unit spacing. The resulting spectrum, in the limit of large m. ,

is a Foisson spectrum. So, by superposing most ordered spectra, one ends up with a Poisson
spectrum.
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models a shell model matrix ? This is certainly not true for in GOE, except for the
symmetric nature of the matrices, all the matrix elements are independent random
variables, whereas in the shell model, the Hamiltonian being a 2-body operator, the
matrix elements of H between
M1 -particle-states ( My 2)
are linear combinations of

2-body matrix elements.

To follow closely the shell

model, the microscopic model

"par excellence" in nuclear phy-

sics, and to render matrix ensem-

Fig.ll.11 - Spacing histogram from two shell model
sgectra calculated with realistic interactions for
24pMg [5Z-72] and ©3Cu [Wo-70] : (a) all states in-  a statistical extension of the
cluded have the same quantum numbers J® = 2%,
(b) all states from a given spectrum span have

bles physically more plausible,

shell model has been proposed :

been included ; it contains states with J7* = 1/27, the "Two-Body Random Ensemble"

3/27,...,19/2", (Taken from ref.BFF-81]). (TBRE) introduced in refs.

[FW-70,BF-71] and generalized by French and collaborators ("Embedded Gaussian
Orthogonal Ensemble" (EGOE) [MF-75,BFF-81]). Consider a ¥V -body Hamiltonian acting
in an . -particle space { M3V ), the m identical fermions being distributed over
Ly distinct single-particle states ( S23 M ). The ensemble of ¥ -body Hamiltonians
is defined by

+
H=2 W, AL AL, (11-53)
“gp
where A: (v) is the operator creating ¥V particles in single-particle states labelled

by o(.,o(;'...)o(v

AL =clet--- C:’,y , (11-54)

and AP (v) is the Hermitian conjugate of A;,(v) . The ¥ -body matrix elements
W"b are taken as statistically independent random variables normally distributed

with zero mean and variances

——

W2 (140 ) T2 (11-55)
. o £
When ;=Y (I-53) reduces to GOE with a matrix dimension N = ( v . For
mS Yy  the dimensionality of the M -particle space is (,{:) and the matrix elements

< nAl H ] 1\_)\’> are linear combinations of the V -body matrix elements M'/b
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dmAlHImX > =2 C—i)‘ Wep (11-56)
ug/b F’
where
vy ,
C:P = (‘If\)\, A: (V)Ap (Y) [M) > (11-57)

and >\, >\/ label the different M -particle states. The '"realistic" case corresponds
to >Mm ¥ ¥ = 2 . It has been shown, using techniques which do not require the
derivation of the joint probability density of eigenvalues P(E,”--- » En)y which is not
known for EGOE, that, in the limit of a "dilute system" MR nSH> V¥ > 1 , the ei-
genvalue density F(EB is Gaussian [MF-75,Ge-72]. For m > ¥=1 the fluctuations
are of Poisson-type but for ¥ 2 the methods used to derive F(E) fail in deriving
fluctuation properties. However, there is strong numerical evidence coming from
Monte-Carlo calculations that the fluctuation properties for V » 2 are identical
to GOE—ﬂuctuations(*). Very recently Verbaarschot and Zirnbauer, using the method
of replicated variables combined with field-theoretic tools, have obtained the first

analytical evidence that EGOE spectra show long-range order [VZ-84].

One can get some insight on the generality of GOE-fluctuations by the
following argument. Consider a (non-random) Hamiltonian matrix Ho corresponding,
for instance, to a realistic nuclear Hamiltonian containing all sorts of non-statistical
features (large pairing and quadrupole components, etc.) and perturb it with GOE
matrices

H= Ho +2 Vgor (11-58)

It has been shown [Pa-8la}that there is a rapid transition from Ho—ﬂuctuations to
GOE-fluctuations when A increases. Intermediate fluctuation patterns are to be
expected only when the random-matrix elements are of the order of the local average
spacing of the given (non-random) matrix H (see also [ZVW-83]).

In summary, we have seen on the one hand that the spectra of very different
systems (nuclei-light or heavy-, some atoms, maybe some molecules), when properly
scaled, show identical fluctuation patterns. The scale (average spacing) covers five
or six orders of magnitude, when going from a medium nucleus to a complex atom
or molecule. Notice that one is considering extremely different systems, some of
them governed by strong short range interactions and others by the Coulomb long

range force. On the other hand, these characteristic fluctuation patterns, although

(*)If one deals with bosons instead of with fermions, there is numerical evidence
that one also has GOE-fluctuations [Ma-83]



not specific of, are well reproduced-by GOE. Presumably they are shared by broad
classes of models. Thus, a simple picture emerges : there exists a universality of

level fluctuation laws, as well from the experimental than from the theoretical point

of view. Notice also that GOE is in some respects a disappointing model : although
it predicts beautifully the observed level fluctuations, it does not provide a hint
on the origin of its success. It rather looks like a mathematical device that mimics
perfectly the observed level fluctuations. Wigner says : "The assumption is that the
Hamiltonian which governs the behaviour of a complicated system is a random symmetric
matrix, with no particular properties except for its symmetric nature" [Wi-67b]. But
what is, then, a complicated system ? And are the laws that we have been discussing
of purely quantal nature or do they have a classical counterpart ? With the hope
of finding some clues on the origin of the success of the theory as well as on its
domain of validity, let us do in the next section a long excursion in the realm of
classical Hamiltonian systems, the emphasis being put on the concepts of simple

and complicated, or of regular and irregular systems.

BIBLIOGRAPHY

- A good general review can be found in [Wi-67a]

- In [Po-65] are reprinted all the important papers on random matrix theory published
before 1965. The volume is preceded by a good and rather detailed introduction
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- [Me-67] is the classical text on the subject. The emphasis is on mathematical techni-
ques and derivation of exact results

- [BFF-81] is a recent and complete review article, containing mainly developments
since [Po-65] and [Me-67], with emphasis on both theory and applications

- A review article (Bohigas, Haq and Pandey) on the comparison with experiment

of random matrix predictions for level fluctuations is in prepatation.
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Il - AN INTRODUCTION TO CLASSICAL CHAOTIC MOTION

The aim of this section is to introduce the concept of chaos in classical mecha-
nics of conservative systems.

Giving a rigorous presentation of the material would require a highly technical
language, and elaborate mathematical tools. Our purpose is rather to present an elemen-
tary intuitive approach to the subject, in order to get a physical insight into the main
ideas. The material of this section is far from being exhaustive, and many fundamental
questions have been omitted (such as perturbation theory, bifurcating orbits, mechanism

of destruction of tori, dissipative systems, etc.).

In what follows, we limit ourselves to the study of classical Hamiltonian systems

which are conservative and time-reversal invariant ; moreover, we consider only initial
conditions for which the motion can take place only in a bounded region of the phase

space.

IlI.I FROM REGULAR TO CHAOTIC MOTION

All conservative Hamiltonian systems with N degrees of freedom have in common
three essential properties :

i) for a given set of initial conditions, the dimensionality of the accessible surface
in phase space is less or equal to (2N-1) ; since the system is conservative, the energy
is constant along this "energy surface".

i} From Liouville's theorem, we know that the volume element in phase space is
conserved. In other words, the Hamiltonian flow, which preserves the measure in phase
space, is incompressible.

iii) Trajectories in phase space cannot cross.

Apart from these features which are shared by all systems, the motion in phase
space can exhibit a great variety of behaviours. For instance, one may ask how does
a given volume element evolve with time : does it tend to cover the whole energy
surfaceSE as time goes to infinity or does it remain in a restricted part of SE ? Does it
conserve approximately its initial shape, or does it display more or less dramatic deforma-
tions with time ? According to the answers to such questions, one can define a hierarchy
of regularity for dynamical systems. As we shall see now, the most regular systems,

lying at the bottom of this classification, can be used as clocks, whereas, at the opposite
*
side, the most chaotic systems' ’ can be used as random number generators.

(dwe speak here of dynamical systems in the enlarged sense of area-preserving mappings
(see Sect.lL.2).
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Regular systems

Roughly speaking, a regular dynamical system is such that it can be integrated
by quadratures. Let us be more precise, and define what are the conditions and the
consequences of "extreme regularity". For a more rigorous account of the subject,
see Refs. [Ar-76, AA-67].

We consider a time-independent Hamiltonian system with N degrees of freedom :

H =H(f|)E) ) 9 =‘{4n ----)%5
P =4Py---Pu] -

The equations of motion, written in Hamiltonian form, are :

H(q,2)
H(q,p)

1]
e

rUe LS-

Definition

A time-independent Hamiltonian system with N degrees of freedom is said to be
"integrable" if there exist N constants of motion En(7’r) (one of them being H itself)
which are analytic functions of__q and E , single—valﬁed, functionally independent, and

in involution ffor the Poisson bracket) : 'Fn)f:m} =0 bV nm=1,--, N .

Theorem (Liouville-Arnold)

If a system is integrable, then

i) there exist a canonical transformation to action-angle variables :

(qH """ SN .)'P'l)'"')'PN) > (6468 3 Ty In)

such that the Hamiltonian, expressed in the new variables, depends only on the actions :

H(%,--»,QN‘,P,,,-‘-., Py) —> A (14)“")I~) = ;T(I) .

The action variables are constants of motion :

e

=0



47

and the evolution of the angle variables is given by :

é:?_E = w(I
¢ =2 = w®,

0@ = W (Dt 4+ .

(1i-1)

ii) For each set of initial conditions, the accessible surface in phase space is a compact
manifold (we consider only bounded trajectorieg having the topology of an N-dimensional

N (

*
torus T ). These tori are called "invariant tori", because a trajectory starting on one

of them remains on it for ever.

According to this theorem, the motion of an integrable system is restricted
to an N-dimensional surface, instead of a (2N-1)-dimensional energy surface for a generic
system having no other constant of motion than the energy. Let us notice that all
conservative systems with one degree of freedom are integrable (provided they satisfy
the smoothness conditions on H) : the accessible phase space is of dimension one (tori
are reduced to circles). For integrable systems with two degrees of freedom, the existence
of a second integral of motion reduces the dimension of accessible phase space from

three to two.

Each value of I defines the torus TN, whereas the vector Q(t) gives the position
of the trajectory on the torus at each time t. If the frequencies ), are mutually commen-

surable i.e. if there exist (N-1) independent relations

@w.m=0, (111-2)

where the vector M has integer (po-
sitive or negative) components and
ﬁ*O , then the trajectory is closed
on the torus ; in this case, the motion

in phase space takes place on a one-

dimensional region, and the motion

is periodic. Systems having this pro-
Fig.lll.1 - An invariant torus of an integrable perty exhibit therefore the strongest
system with two degrees of freedom ; the ac- degree of regularity, as an 'ideal
tions I, and Ia are the radii of the two cir-
cles defining the torus T?, and the angles &,
and ez define a point on T2,

clock" would do.

(*) An N-dimensional torus ™ is a direct product of n circles. A point on N can be
defined by N angular coordinates (84,..., Op) [see Fig.lll.1). The torus is often represen-
ted as an N-dimensional hypercube defined by.{( 04,...,9") : 0£6¢ £ .211'} .
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At the opposite, if no relation of the type (III-2) holds, the orbit never closes, but densely
covers the torus after infinite time : such a spiralling orbit is "ergodic" on the torus
(see footnoteﬁp67) -called "irrational", or "non-resonant” torus-, and exhibits a strong regu-
larity. Intermediate cases where p independent relations {( O p{N—l) like (11I-2) hold can

also occur ; orbits then lie on (N-p)-dimensional manifolds of ™,

It should be noticed that in the generic integrable case (see below the harmonic
oscillator and the Kepler motion as exceptions), the frequencies depend on the actions
(which define the invariant tori), i.e. on the set of initial conditions fixing the values of
the N first integrals of the motion. Consequently for a generic integrable system, there
exist simultaneously -corresponding to different sets of initial conditions- non-resonant
tori, covered by ergodic trajectories and resonant tori ; measure theoretic arguments
show that for such systems, the irrational tori form a set which is almost everywhere
dense [Ar-76]. In other words, almost all the tori of a generic integrable system are irra-

tional,in the same way as almost all real numbers are irrational.

Examples of regular systems

i) for N=1, we already saw that all conservative systems are regular (therefore periodic)

ii) for N=3, all systems submitted to a central field force V(r) are regular :-12 and
LZ (orbital moment) are conserved, together with H.

Two particular systems of thE kind are of special interest :
- for the Kepler motion (V(r) iy ): 2

H=P P P _&

T am amr? 2melsilo Y

The Hamiltonian is well known to write, in terms of the action variablesl;. =§ P. dQ—.'

(each integral is over the period corresponding to the gy ) as :
~ 2
Y mR
= <
(Ir + IQ + .L?)

)

2.2
- for the isotropic harmonic oscillator (V(r) =Q3 L ), the Hamiltonian takes the form
2

~ — -~ —
H = w (.1.,4..1.24.]_3) .

In both cases, for all values of the actions, i.e. for all initial conditions, the three frequen-

cies coincide; the orbits are closed, with period Z:‘2—TL . This means that for
these two particular systems, all tori are rational (no orbit covering densely a torus).

To understand why such a situation is an exception, one has to remember Bertrand's

theorem [Be-1873] : Consider the motion of a point-mass under the action of a spherically
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symmetric potential V(r), supposed td be a C* function of ¥* . Then a necessary and suffi-
cient condition for all the bounded trajectories to be closed is that V(r) behaves like
2

r

harmonic oscillator and Kepler motion is the existence of a further {first integral ("dynami-

or (— -:_— ). As is well known, the origin of this particular behaviour of spherical

cal invariance"), due to the particular shape of the potential, whereas the other three
independent first integrals are merely consequences of rotational invariance. For this
reason, these systems are called "overintegrable" systems. For Kepler motion, the extra
integral is the Runge-Lenz vector, which is carried by the focal axis. Another peculia-
rity of Kepler motion and harmonic oscillator lies in the fact that they are "separable"
in orthogonal coordinate systems. Most of the integrable systems we are used to consider
possess this property ; however, separability is a very special case of integrability.

In fact, no general method is available to know whether a system is integrable or not.
Moreover, even if one system is known to be integrable, finding action-angle variable is

not guaranted !

- The system of a particle in a parallelepipedic box of sides a,b,c is also a regular
system ; the energy writes

= (LB L)

— —

2m a? b* c?

iii) The N-dimensional {anisotropic or isotropic) oscillator of frequencies Gy (4~=',----,N)
is also a separable regular system :

H= w.I
iv) There are some other systems which are known to be regular (see below regular
billiards) : these are all the systems which are solved by quadratures in textbooks or

articles... but they are not so numerous !

Regular systems had, up to one or two years ago, a so strong monopole in textbooks,
that one might believe their properties as being generic of any classical systems [Fo -83].
The fact is that regular systems are an exception among dynamical systems, and that,

for other kinds of systems, many difficult questions remain open.

Ergodic systems

The most popular definition of ergodicity is the equality of time averages and
phase space averages. In more abstract language, one often defines an ergodic system
as a dynamical system whose phase space is metrically indecomposable under the Hamiltonian

flow. Let us get in some more detail into these two equivalent definitions of ergodicity,
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and quote some important consequences.

Let us consider a conservative dynamical system, of phase space X . Let X(f) =

[q.,(é) y ey QN(E) ,-P,,(l:) yooe s FN/{;)] be any point ofx . The evolution of & with

time can be described by an operator T

x X5 x

The transformations Ty  have trivially the property of forming a continuous group T
depending on one parameter & . This group is often called the "dynamical group" or

the "Hamiltonian flow".

The Liouville measure of a subset V of X (which is the volume of V) :

p = [ dg....dq, dp,.--dp,

is, according to Liouville's theorem, invariant under the Hamiltonian flow :
Mm(TV) = (V) . (1-3)

For a conservative system, one can define a surface element of the energy surface
SE as

—>
av=dp llgrmdH 0,

N
where ”%,'—V‘d an = Z [ gg)z + 2_1—”:)2 ]

and get from (IlI-3) the invariance of the induced measure ¥ under the group T. In the
following, the measure O will be normalized to one (i.e. O“(SE) = 1)

The system is said to be ergodic, or metrically transitive (or indecomposable)

if it is indecomposable into non trivial subsets which are invariant under T, i.e, :

ﬂ/ ACsg (O'(A).-{-_O) @(A)_.‘ 4) such that TeA =A . -y

The fact that the only subset of SE of non-zero measure which is invariant under T
is the whole energy surface SE (or any subset of SE having the same area as SE itself)

intuitively suggests that a typical trajectory cannot be confined in a restricted region of
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phase space, but, on the contrary, explores the whole energy surface (except for a
set of zero measure)(*). In fact, an even stronger property holds for ergodic systems :
one can show that almost every orbit explores almost every point of the energy surface
SE (densely covers SE), spending in any part A a time proportional to the area of A.
Indeed, let ¢ SE and £(a,A,& ) be the time that & spends in AL SE between
instants 0 and & . According to the ergodic theorem (Birkhoff-von Neumann), the

limit

Cim t(z,A,2)
C>oo Z

does exist for almost all &'s, and is equal to the area of A :

Lim E(x,A)0) _ T(A)
Z-» z

if the system is ergodic.

The equality of phase averages and time averages constitutes an alternative defi-
nition of ergodicity (i.e. is equivalent to metrical transitivity) ; it can be formulated as
follows : a system is ergodic iff, for any integrable function f(2 ) (xeX ,fl.f(z)ld(T(b))

t
Lm 4 f dt {(T‘.’L} :J -f(x) f- dva (111-5)
° Ay

t—?,o t
E

for almost all X €& SE. Eq.(IlI-5) is often referred to as a version of the law of large num-
bers, the left hand side representing the infinitely many trials approaching the probabi-

lity in the right hand side.

Equilibrium Statistical ‘Mechanics is built.on the ergodic hypothesis. But ergodicity
is not sufficient for a system to reach an equilibrium state : one additional property

~called mixing- is needed, which concerns the way any volume element evolves with time.

(*) It is clear that no trajectory can explore the whole energy surface (i.e. ergodicity in the
sense of Boltzmann can never hold). Indeed, a trajectory which would pass through any point
of SE should intersect with itself, which is impossible. What we call ergodicity here is often

referred to as the quasi-ergodic hypothesis in Statistical Mechanics.
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Mixing systems

The concept of mixing was first introduced by Gibbs. Qualitatively, the underlying
idea of mixing is the property, for any part A of the energy surface ( (A ) £0O),
of getting spread uniformly over the energy surface as £ s 2o . To get an "experimental
feeling" of this feature, let us imagine a shaker in which one puts 80 % of orange
juice, and 20 % of vodka ; then, one continuously stirs the shaker. If the system is mixing,
one will find, as time tends to infinity, 20 % of vodka in any volume of the liquid,
i.e. the vodka will be uniformly mixed with the orange juice in any part of the cocktail.
Of course, such a property implies for the initial volume of vodka (or of any part
of the energy surface) being strongly deformed as time runs, i.e. transforming with
time in a thinner and thinner filament which ultimately will be present in any volume of

the liquid {or will densely cover the energy surface).

This intuitive description of mixing makes now the mathematical definition

very easy to understand :

e 3

o

Bd B"’ B"b

AN
o | [ [ B

T A

e

Fig.lll.2 - Schematic representation of the mixing property : B is any fixed area of
the surface energy, and A is a surface element considered at initial time t, , whose
evolution is drawn for successive times £ ,{ty < t3 . As time is running, the
Hamiltonian flow T, tends to dilute the initial surface A uniformly in the whole energy
surface. As time tends toinfinity, the fraction of the test area B occupied by Te A is
equal to the fraction of the energy surface SE initially occupied by A .

A system is said to be mixing if

¥A,BCSe , tim  T(BNTA) o

(111-6)
(cAysoso(s)) = T(E)

Let us look at the right hand side of Eq.(IlI-6). One can write it as :

U'(A\ = M
0-(Se)

since (T, A ) =0 (A) from Liouville's theorem, and O'(SE) = 1. So the r.h.s. of Eq.(IlI-6)
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represents the fraction of the energy surface occupied by T¢e A , while the Lh.s. repre-
sents the fraction of B occupied by TeA . According to the uniform spreading of
A over SE, these two terms should be equal.

Some important consequences of mixing should be noticed. First, one can show
that mixing implies ergodicity. Indeed, suppose that the mixing property holds ; take
for A an invariant set of Sg» and choose B=zA . Then B N Te A )issimply A ,
and Eq.(IlI-6) implies that @ (A ) is zero or one, i.e. there does not exist any non-trivial
subset A of SE which is invariant by T¢ . This is exactly the indecomposability property

characterizing ergodic systems (see (III-4).

Notice that the converse is not true, i.e. ergodicity does not imply mixing ;
indeed, one can imagine systems for which any surface elements explores the whole

energy surface without being deformed with time {(see Fig.lll.3 and example IlI-3-b-1) ;

By

! ) bﬂi .
A

o~
~

Fig.lll.3 - Schematic representation of an ergodic system which does not have the mixing
property. The surface element A tends to explore the whole energy surface as time is
running, spending equal times in equal areas (ergodic property), but its shape remains
unchanged, so that Eq.(Ill-5) (mixing property) cannot hold.

in such systems, the distance between two points of S_ remains of the same order

of magnitude as time is running. On the contrary, in aEmixing system, the spreading
property allows two points which are initially close to each other to get as far from
each other, in the limit £-» 90, as is permitted by the constrain of staying on the energy
surface. Thus, mixing implies instability with respect to initial conditions, or, in other

words, loss of information with time, since a small error in measurement of X ( t-o0)

can propagate with time and eventually induce so large errors on % ( £ ) that long time

predictions for the system are prohibited.

Finally, let us mention an important characteristic (i.e. which could be used
as a definition) property of mixing, which is the decay of correlations between two
functions : in mixing systems, any two square integrable function (for the measure 0~ )

asymptotically become statistically independent, i.e.

X £, € Lo (Se), ﬁm g(Tez)aurt—-,» [ ffcade][ fgrao].
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As a particular case, let us take for g a non-equilibrium normalized distribution P (%) :

jf(x)p(ﬂx)dv{:—» [0 ar,

which means that, in average, the distribution (& ) tends to a uniform equilibrium
8 q

probability density.

We shall not discuss the subtle relations of mixing with irreversibility. Let us
only emphasize in this respect that the equations of motion allow to recover any point
x (¢ = 0 ) knowing 2 ( £ 0) ; however, all memory of the initial state is lost as time
tends to infinity, and it is only in this limit that one can speak of irreversibility.

K -systems

Without no further assumption than mixing, one cannot give any quantitative

information about the separation of orbits with time.

The so-called K-systems are mixing systems which possess so strong instability
that most orbits starting from close points separate, in the average, exponentially with
time. For such systems, the knowledge of 2 ( € ) for all discrete times {t," } =

-00).-e.) to.l) to does no provide any useful information on the behaviour of
the system for times ~£ L‘. . Such a strange feature means that, though the sys-
tem is completely deterministic -i.e. is governed by causal equations of motion-, the
evolution of a generic point in phase space is very irregular, and exhibits some kind of
random behaviour ; this is why one associates with K -systems, for which the motion

does not depend on their distant past history, the idea of unpredictability.

The mathematical definition of a K -system would go beyond the scope of our
"qualitative" introduction to chaotic phenomena (see for instance Refs.[AA-67,5h-73,0r-74]
for a rigorous approach). Let us only give the main ideas of characterization of K-
systems, and try to understand roughly in which sense one can say that the past does not
determine the future. All the concepts used are borrowed from information theory
[Sw-49,Bi-78,ME-81]. First, one introduces any finite ordered partition P of the
energy surface SE into cells (atoms), in order to define a measurement : the result
of the measurement of the system associated with P at time t° is the n® of the cell
of P which is crossed by the orbit at time t ; then, an experiment associated with
P is a sequence of measurements for equally spaced times going from t. to G0 .
Now, one can define the entropy A (T,P) of the hamiltonian flow T relative to the parti-

tion P, which represents the mean rate (averaged over the whole sequence of measurements
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(*)

of the experiment) of information * generated by the time running for the experiment
associated with P. Consider, for instance, a very regular system, whose motion is periodic
in phase space : for such a system, the knowledge of a finite set of sequential measure-
ments is sufficient to determine the outcomes of all further measurements, i.e. the
information produced by all but a finite set of measurements is zero, and therefore
the average of information generated for a given experiment is zero. For strongly
irregular systems, even the knowledge of an infinite set of sequential measurements
is not sufficient to know, with probability one, the outcomes of later measurements,

which means that the average of information -or entropy- is positive.

K -systems are now defined as systems for which the entropy relative to any

finite partition P is positive :

These are therefore systems whose motion looks irregular and unpredictable whatever

may be the experiments one can imagine. A quantity of interest to measure the degree

of irregularity is the so-called metric entropy, or Kolmogorov-Sinai (K-S) entropy :

it is defined as the maximum value of h (T,P) , taken over all the possible finite parti-

tions P
Reg (T) = ng k(T,a') (111-7)
%

It is clear from their definition that K-systems have positive K-S entropy. Let us
emphasize that this entropy does not depend on any dynamical state under consideration,
contrarily to the entropy commonly used in Statistical Mechanics, but is an intrinsic
quantity associated to the dynamical system considered as a whole at a given energy E.
This K-S entropy provides a measure of the strength of mixing of the system, and is

related to the mean rate of exponential separation of trajectories.

Bernouilli systems

These are, among the K -systems, the most unpredictable ones. Indeed, they
have the property that there exist a partition P, such that the sequence of measurements

of the associated experiment are completely uncorrelated, as would be the outcomes

of games with a roulette wheel ! This partition P, must also satisfy another condition

(*) Notice that the amount of information gained by making a measurement is equal
to the lack of information (i.e. to the uncertainty) before making the measurement,
which is also called the entropy associated with the experiment.
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(whose statement would require entering in abstract mathematical considerations :

see for instance [Sh-73] or [Pa-81]) in order for the system to be Bernouilli.

For a Bernouilli system, the K-S entropy is simply equal to the entropy of the

particular partition F, , i.e.

heg (M) = = ; M b pg (111-8)

where }q is the measure of the ith atom of P:, (i.e. the area of the ith cell of BC SE),

and the sum runs over all the atoms of P,

The different types of systems we have just introduced illustrate the transition
from regularity to chaos, i.e. randomness produced by causal equation of motion. Several

remarks should be made at this stage :

i) Part of the vocabulary introduced above ("ergodicity", "mixing") sounds familiar,
and might evoque Statistical Mechanics. We emphasize, however, that all the considera-
tions made in the preceding are not restricted to systems with a great number of degrees
of freedom, but really can apply to very simple systems, eventually having only two
degrees of freedom (see example in the following).

if) For physical systems which are suspected to belong to a given member of the
hierarchy just presented (except for certain integrable systems), it is in general extremely
difficult to prove that indeed they are ergodic, or mixing, etc.. The main rigorous
results available so far concern billiards, and we shall devote a particular attention
to this kind of systems. Also are known interesting results for "abstract" dynamical
systems, many of them being very "educative". Several examples will be presented in
Sect.lll.3, as illustrations of the rather abstract ideas introduced up to now.

iii} One question of interest is the following : can "most" of the dynamical systems
be classified according to the preceding scheme, i.e. are physical systems, in their majori-
ty, either integrable, or ergodic ? There is at least a very peculiar(*) kind of systems
for which the answer to this question is trivially "no" : these are conservative systems
having a number M of independent first integrals, with m} 1, but M{N 3 for such
systems, the motion in phase space is restricted to a (2N —# )-dimensional surface.
Thus they are non-integrable systems which are not ergodic on the whole energy surface SE.
We can therefore reformulate the question as : "are conservative systems having no
other constant of motion than the energy E ergodic ? Much attention has been paid to
this problem during the first half of the century, and we recall in a few words the

rewlution produced in the 1960's by the so-called Kolmogorov-Arnold-Moser theorem.

(¥) Here, the word peculiar refers to the rarity of such systems among the family of all
dynamical systems ; however, these are generic systems for the physicist ! (isolated phy-
sical system possess other constants of motion than the energy).
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Quasi-integrable systems

Conservative quasi-integrable systems are,roughly speaking, obtained by inducing
a slight perturbation preserving the energy conservation on an integrable system. In
1892, Poincaré showed that, for such systems, apart from exceptional kinds of perturba-
tions, all the constants of motions other than the energy are destroyed. It was probably
this theorem which encouraged people to try to demonstrate -or at least to convince
themselves- that most of the integrable systems can be made ergodic by small perturba-
tions. (For instance Fermi [1923] and Birkhoff [1927] attempted to develop arguments
in favour of this assumption : see Ref[Mo- 73H). In view of this, the result of Kolmogorov,
Arnold, and Moser, now known as the KAM theorem, was a major turning point in the
history of dynamical systems. Indeed, the main information of this theorem is that,
under rather general conditions, "most" of the irrational tori persist (though slightly
deformed) under a small perturbation.

From this fundamental result, one can easily imagine that, for a "generic" dynamical
system, the structure of phase space is very complicated, showing both regular and
chaotic regimes (there is an enormous gap between integrability and ergodicity !).
In this respect, the above classification, according to increasing degree of chaos, is
irrelevant for most systems, and may appear somewhat "academic". However, to study
open problems such as the characterization of quantum chaos, it seems natural to begin
with systems whose classical analogues are reasonably well understood -for instance
K -systems-, even though they are known to be rare among the whole family of chaotic

dynamical systems.

1.2 - MEASURE-PRESERVING MAPPINGS

111.2.a) Surfaces of section

For the sake of simplicity, let us restrict for a moment to physical conservative
systems with two degrees of freedom. As already mentioned, it is far from being easy,
even for these "simplest" systems, to study analytically their degree of irregularity.
However, one can get for them quite useful informations from very simple numerical

experiments, as we shall see now.

For the systems considered here, the accessible portion of phase space at a
given energy E -the surface energy SE- is a three-dimensional bounded surface. The
method of Poincaré surfaces of section consists in choosing an "appropriate" two-dimensi-
onal surface Z in the phase space, and look at the figure generated by successive
crossings of one given orbit with Z ; by "appropriate", we mean that

i) the trajectory should cross the surface J_ an infinite number of times, as time
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goes from zero to infinity

ii) the area bounded by any closed curve on Z should be conserved with time (see Eq.
(111-9)).
Let us illustrate the interest of the method by considering a particular surface Zy ,
defined in the following way. Let us suppose that the surface '{‘)L: O}intersects with
the energy surface H(J‘,y,ﬂ,?,) = E ; we call this intersection Z , which is a
two-dimensional surface. A point on Zy can be defined by the coordinates (y,. %).
The integral of motion H = E defines P;‘ as a function of (Py)gg H ) ; therefore, one
can attach to a point onf a set of coordinates (1(:0) Y, elP,,_()Py), with the sign &=
of Py depending on the sense with which a given trajectory crosses . To get
this sign unambiguous, we choose a given side of Zﬂ , and look at the successive

intersections Q,, of a given trajectory with Z

Y

which, for instance, go out of the

chosen side of Zy:

/
/' Qn+1

Qa1

(a) (b)

Fig.lll.4 - (a) A trajectory crossing the surface of section Z ; (b) Points of the
Poincaré map on Z_’ Y

Now, the knowledge of the coordinates of Q, on y completely specifies the whole
set of coordinates of Q“ in phase space, i.e. the knowledge of one pair of conjugate
variables on Z, completely determines the dynamical state. What has been lost by
reducing the initial three-dimensional problern to a two-dimensional one is the "story"
of the orbit between two successive crossings with Zﬂ , but this is not essential for our

purpose.

The repeated crossings with Z define a mapping M :
™M

Given an initial condition _go =(%,=0, Yo, Pa, ) on ) for a point on Z ,
the study of the dynamical system is now reduced to the study of the set of points



The property i) stated
above means that the mapping
M is area (or measure)-pre-

serving, i.e. that, given any

closed curve Y on Zf, ,
the area bounded by the image
curve M ( Y) of Y by the

Fig.IIL5 - Illustration of the property (III-9) : Zy is mapping M should be equal to
a surface of section , ¥ a closed curve on 2

and M ( y ) the image of ¥ on z, under the
Hamiltonian flow. The areas bounded’by ¥ and M (Y) Y

are equal.
dy = du . (111-9)
§b’ Py 4y §H o) Py dy

This can be easily shown from the Hamiltonian character of the motion (see e.g. Ref.[AA-67,
Appendix 31]).

the area bounded by the curve

. ~N
Now, let us look at the pattem generated on Z’ by the points M ig )
(n = 0, i 2,_.,.99 ), and see which kind of information we can learn from it. First,
let us consider a system which has, besides the energy, another constant of motion

F in involution with H (i.e. an integrable system)
F(2,4,Pe,Py)=C , HO,Y,P,Py)=E. w0

From (IlI-10) one can eliminate two of the canonical variables, say X and Px , which

yields

Py - Py (1) y) . (IE-11)

Since %= 0 on Z , Eq.(lI-11), "projected" on to Zy is the equation of a curve l" s
which is invariant under the mapping M , and which is simply the intersection of the
2-dimensional invariant torus T? with Z . Therefore, the successive crossings of
the orbit with Zj all lie on a unique smooth curve ( H(r') r ), for any set of ini-

tial conditions, which is a signature of integrability. Two possibilities can occur in such

a case :

i) the invariant torus T? is resomant f{or rational ). Then, the motion is periodic
on the torus, i.e. the orbit is closed, and has only a finite number k of crossings with Z s
which are all fixed points for M, since N §°_ j ( see Fig.IllLé).
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i) if, on the contrary, the invariant torus T? is irrational, the orbit densely covers
the torus (is ergodic on the torus), and the points generated by successive iterations of

the mapping will ultimately densely cover the invariant curve r' (see Fig.III.7).

By P,}
i T
T 0

Fig.lll.6 - Typical pattem of a Poincaré Fig.lll.7 - Same as Fig.IIl.6, but for an
map of two-dimensional integrable sys- irrational invariant torus

tem for initial conditions defining a ra-

tional torus

Let us next consider a dynamical system
which is ergodic (on the energy surface).
Then, almost all trajectories densely cover
a three-dimensional region of phase space,
and their intersections with 3 fill densely
some area (see Fig.IIL.8).

We should notice that they may exist "non-

typical" trajectories for ergodic systems such
as, for instance, periodic trajectories (see
Fig.IIL8 - Idealized pattern of a examples for chaotic billiards in Sect.lll.4);
Poincare map of an ergodic system but these form a set of zero measure.
Between integrable and ergodic systems, there is a great variety of systems

for which chaotic and regular regions coexist in phase space ; for such systems, the
pattern of the Poincaré map shows both invariant curves and sparse points, as can
be seen on the example of Fig.ll.12. (It is usual to represent on the same Poincaré

map impacts of several trajectories corresponding to different initial conditions).

Comments

i) The method of surfaces of section is highly efficient, and provides valuable infor-

mations on the structure of phase space. (The example of the Toda lattice presented below
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nicely illustrates the success of the method. Many other examples can be found in
Ref.[He-83]). However, it should, in any case, remain no more than a guide for further
theoretical studies, and can never be used as a proof, neither of integrability, nor
of ergodicity.

it) Of course, the pattern gets more and more informative as the number of iterations
increases. But the number of iterations necessary to get a reasonable image of the structu-
re of phase space highly depends of the nature of the system, and of the choice of
initial conditions. This is particularly true for strongly chaotic systems, for which a
trajectory may happen to be trapped in a given region of phase space, and to escape
only after a long time ; therefore, the true pattern appears only after a great number
of iterations. In this respect, an "abusive" use of Poincaré maps for such systems might
suggest that the system is not ergodic, since a typical trajectory for an ergodic system
must have spent equal times in equal areas after an infinite time ; however, if a trajec-
tory happens to be confined for a long time in a rectricted region of the energy surface
SE’ it will visit again this region much less frequently than other regions of SE, in
order to preserve the ergodic property in the limit f—» oe.

iii) Among the limitations of the method, one should quote its inefficiency to detect
any kind of instability of the system ; for instance, the method is completely inadequate
to distinguish simple ergodicity from mixing or K-property. These properties are indeed
very delicate to study, even by numerical means.

iv) More "exotic" possibilities than those presented before for the pattem of Poincaré
maps are open for dissipative systems and will not be discussed here. For instance,
the points may be restricted to lie on "fractal" sets of the surface of section (as can
happen in strange attractors).

v) We presented the method only for systems with N = 2. degrees of freedom. It
can, in fact, be generalized to any number N of degrees of freedom ; in this case,

the surface of section is (2N-2)-dimensional, which makes the study more difficult.

I1.2.b) Abstract dynamical systems

An abstract dynamical system ( X) |3 T ) is usually defined given a space X ,
a measure /.4 , and a mapping T, in the following way. X is a measurable space with
respect to the measure }A ; Moreover, }.L is a probability measure, i.e. #(X) = 1.

T is a mapping )(I, X » which is surjective, and  which preserves the measure/‘-, i.e.
Pp(TA) = p(A) YACX : u(AY4o0.

Moreover, the mapping T is often supposed to define a one parameter group of transfor-

mations 'l} (the parameter may take continuous or discrete valued. In this case,
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T is one-to-one, and the measure-preserving property can also be expressed as

p(TA) = p (A .

The most natural abstract dynamical system associated with a physical Hamiltonian
system is such that X refers to the energy shell SE’ }l. to the measure induced on
SE by the Liouville measure, and T is what we called the dynamical group, or Hamiltonian
flow (see Sect.lll.1) ; the property that ’L is an invariant measure for T is simply the
Liouville's conservation of surface on SE. In this case the group T depends on a continuous
parameter £ , and the transformation Ty is a diffeomorphism on X (i.e. is a c®
automorphism on X ). Another way of defining an abstract dynamical system given
a physical Hamiltonian system is to take for X a surface of section 2. , for ILL the
normalized measure on it, and for T the mapping generating the successive crossings
of an orbit with Z . This time, the mapping is discrete, and its measure-preserving

property is associated with the conservation of the area f qu
reg

The discrete mapping associated with a Poincaré surface of section is in fact
induced by the continuous dynamical flow, i.e. can be obtained by solving the differential
equations of motion. But really abstract discrete mappings are defined by a "discrete
time" transformation, which is simply a deterministic algorithm ; among them, the
discrete area-preserving mappings of the plane are often considered. These are defined
as follows : consider a compact surface X in the plane ( 2, 'j ) with the measure
a4 pe Adn d“j , and an application T :

x 15 x

(l., Yn) —> T(% ,Yp) = (Xpy) Yne ) -

The mapping T is area-preserving if

b 1)\-“ 'b ln-"

ot | 2" 2Ya =4 (1-12)
® Ynsy OYnu
?2 Xn ? yn

Examples of such mappings will be presented in the next section.

These notions of dynamical measurable space and measure-preserving transformation
have been used as key points in Sect.lll.l to introduce the hierarchy of irregularity for
physical Hamiltonian systems. [t should be clear now that the definitionsgiven above of
ergodicity, mixing, K-property and B-property (Bernouilli) trivially extend to abstract

dynamical systems.



III.3 EXAMPLES

Let us now illustrate the concepts just introduced by concrete examples.

M11.3.a) Physical Hamiltonian systems

There are now numerous Poincaré maps of physical systems available. Among
them, the Toda lattice and the Hénon-Heiles systems are probably the most striking

illustrations of the interest of surfaces of section.

The Toda lattice [To-67,To-70] is the system of three particles moving on a ring

with exponential repulsive forces between them :

(B-tby) (6B ~(s-&,)
FI:%(P4’+P12+P;)+€ Yie +e -3

This system possesses, besides the energy, another

constant of motion :

P= py4patpy=ct

associated with the invariance of H under a rigid rotation.
Fig.llL.9 - The three-particle Its true number of d(?grees of freedom is thus reduced
Toda lattice from three to two  '. After some manipulation, it
is possible to eliminate one irrelevant dynamical variable,

and express the Hamiltonian in terms of two coordinates and their canonical momenta :

- 2|1+2\’3 X 2y 237 -43
l
H=%(B¢*P;)+2i4-[e +e + € } ';T' (1-13)

Now, the accessible phase space at a given energy -l-{ = E is located on the energy

shell SE’ which is three-dimensional. To investigate the structure of the motion on

(*) In the given example, the existence of the extra-constant P reduces the dimension of
the accessible phase space from five to three (i.e. the Toda lattice is truly a  conser-
vative system with two degrees of freedom). This is because the total momentum P can
be considered -by means of an appropriate canonical transformation- as the conjugate
momentum of an ignorable (or cyclic, or kinosthenic) variable, i.e. a coordinate which
does not appear in the Hamiltonian function (see for instance Refs[La-70,Go-51] for
the general procedure of elimination of cyclic variables, and Ref.[LL-83] for the reduction
of numbers of degrees of freedom of the Toda lattice).
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SE, Ford et al. [FST-73] studied the pattern of the motion on the Poincaré surface

of section ZH;'(ﬂ/'PH) :

E-=1 E = 256

FigI.10 - Poincaré maps of the Toda lattice, at energiesE = 1 and
E = 256 (taken from Ref.[FST-73])

At any energy they studied, they got points of the Poincaré map lying on smooth curves,
as if the system had, besides the energy, a further first integral. And indeed, another

constant of motion was discovered by Hénon (He-74) and independently by Makanov

[Ma-74], whose explicit form is :

2y-2V3 -4
F = 8p, (PE-3P3) + (Pt lBPy)E T - —2pge

‘\
AR

+(P-USpy) e

Thus the Toda lattice is an integrable system for any set of initial conditions.
One can notice that in the limit (%, Y) (0, 0) » the Hamiltonian (Ill-13) reduces to a

two-dimensional isotropic harmonic oscillator Hamiltonian :

n 2 2 2, .2
H, -_—.:_"2. (Px*Pj +x7 4y ))

(11I-14)
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and the second integral of motion becomes simply proportional to the orbital momentum :

F —— 12 (ype-xpy) -
(®,9)-> (0,0)
(Fg, P;,)—! (0’ 0)

Now, let us look at the Hénon-Heiles Hamiltonian [HH-64], which can be viewed

as deduced from (IlI-13) by truncation after third order terms :

2 3
H=4 (p+ Py + X +Yy2) + 2%y _ 4" . (1m1-15)
3

This system is often considered as a model in several physical problems : vibrating
three-atomic molecule, effective mean field (produced by other stars) description of the
motion of a star in the galaxy. Contrarily to the Toda lattice, the Hénon-Heiles system
has not a bounded energy surface SE for all values of the energy E, but only for E(%
. o : 1
Fig.(lll.1) shows the Poincaré map for the surface of section Zs_—_ (g) Py)at E = IV

(several trajectories are reproduced on the same map).

For each trajectory, the emerging

. pattern seems to be an invariant
7 curve, and one may be tempted to
conclude that the system is inte-
grable. Therefore, Fig.(1l1.12)
B [obtained at E = —;—] is a surprise :

7] By

I 04

N IS TS U U N S |

l [ . T
-04 -03-02-01 0 01 02 03 04 05 06 03 N ‘ T
o1
Fig.lll.11 - Poincaré map of the Hénon-Heiles o I
system at energy E = 15 (taken from Ref.[HH-64]) -0 SN

For some initial conditions, the successive

1 1 S | i
~04-03-02-01 0 01 02 03 04 05 06 ']

points again lie on a smooth curve ; but

there are also points distributed errati-
. Fig.Jll.12 - Same as Fig.lll. 11, for

cally (which all correspond to the same E -l (taken from Ref.[HH-64))

set of initial conditions). Thus, a chaotic g

region of the energy surface has appeared

by increasing the energy from %—2— to 18 : the truncation of the Toda lattice Hamiltonian
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has destroyed integrability ! Looking next at E = é (Fig.llL.13), one sees that the chaotic

region occupies now most of the area of the energy surface, and invariant curves are

reduced to small islands.

5"_ ::" ..-"‘O‘

SA kg 'w.,_.,,

1 Y
~05-04-03-02-01 0 01 02 03 04 05 06 07 08 09

Fig.III.13 - Same as Fig.Ill.11, for E = — (taken
from Ref.[HH-64])

The Hénon-Heiles system is a very

simple example showing nicely the
complicated structure of the
phase space, and the sudden changes
of this structure by increasing
the energy (More comments can be
found in RefJ[He-83]). Many other
examples have been considered, in
particular those illustrating the me-
chanism of destruction of the
invariant tori of a perturbed integra-
ble system ; but these notions
require more technical background
than proposed here. We would

just like to make the following com-

ment about Fig.(Ill.12). One may interpret the invariant curves as traces of distorted

invariant tori which remain present after perturbing the integrable limit (II.14) of

(IIl.15) ; however, the persistance of such tori cannot be predicted by KAM theorem,

which requires (only as a sufficient condition) the

frequency ratio of the unperturbed

oscillator to be "sufficiently irrational”, which of course is not true for the Hénon-Heiles

system ( &, = Wwy=1 ).

111.3.b) Number-theoretic abstract dynamical systems

1) Rotations of the Circle

Consider a unit circle C (circumference length = 1), take some point on C as

origin O, and choose a sense to define the arc joining any point Aof C with O (i.e.

to measure the abscissa of A). Define now the mapping of C on itself by the rotation

_
{

cC — C

xX€C +—> Tx = 7c+co)

where 7 is the abscissa of any given point of C, and where ) is any real number.
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This transformation can also be viewed as the mapping
x\uw

\ x=f0,lf ":'r'_"> Eo)1E

X420
2EX  — s Frac(x+w), 19

X430
where "Frac" denotes the fractional part of a number. The
transformation T clearly preserves the Lebesgue measure
dp. = dx on X, Without loss of generality, one can

Fig.llI.14 - Rotations of
the circle assume that 0 L@ L1

Suppose first that (o is a rational number, which can be written as the irreducible
fraction ().).’Z.E_(p and q are prime to each other). One can easily see that the mapping
generates exacﬂy q different points -which therefore are fixed points- T'x, T21[, ---.
...)qu =2 , i.e. the initial point X is recovered for the first time at the q  iteration :
every orbit is periodic, and the system is not ergodic.

Take next () irrational ; now, TM'x (w = 1,2,...) takes infinitely many different
values, It can be shown that, this time, the mapping is ergodic for the Lebesgue measure
(see for instance [AA-67]). It is clear, however, that T is not mixing, since two points
initially close to each other remain so for ever : the shape of any volume in X-or
length in this case- remains strictly unchanged by the successive iterations. This mapping
is therefore an example of a dynamical system which is ergodic, but not chaotic in
the sense that it is perfectly stable with respect to initial conditions (it is intuitively
evident that the entropy of this system is zero).

The preceding considerations can be extended without difficulty to the translations(*)
of the N-dimensional torus TN. The problem is reformulated by replacing 2 and W)
N is now the N-direct product [0,i[ x [0,1[ % ... x[0,1[,
and the measure is the Lebesgue measure d.‘x,‘-.. --dApy on XN’ One gets readily the

by vectors % and W, the space X

generalization of the preceding result : if the torus T is irrational (see Sect.IlLl),
the mapping is ergodic on TN. Notice that this mapping can be viewed as the discrete
time evolution of a integrable Hamiltonian system on an irrational torus according to
Eq.(llI-1). Indeed, T“Z =MW+ X (m = 1,2,...}, which is exactly equivalent to Eq.(llI-1)

taken at € = 1,2,.... In some sense, the system is an "ergodic clock" (

* . . . . N
( )It seems that the term "translations" is preferred in the literature for the torus T ',
whereas "rotations" is more frequently used for the circle, i.e. for the torus T

(**)As already emphasized, the concept of ergodicity is relative to a given space X.
Here, we mention the ergodicity of a class of integrable physical systems on its N-
dimensional invariant torus. But it is clear that the physical system itself is not ergodic
on the energy shell, except for N = 1.
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Let us finally mention a nice application of the preceding results, proposed
in [AA-67). Consider the numbers X, = ZM (m = 1,2,...) and ask what is the probability
distribution Pg  of k( R - 1,2,..9) for the first decimal of &, ; the answer
is ‘Ph': eo?'él + é). What is remarkable in this example is that the result can be derived
in a very simple way, using only the ergodicity of (IlI-16) (see the proof in [AA-67)).

2) Continued fraction expansion

Let us define the one-dimensional automorphism T :

x= [o,1[  [0,1[

Frac(" a4 %
neX —> T -_-% /") ‘f *0
(] otherwise
This transformation is related to the continued fraction expansion of the starting point
x = 4 5
Q&) +
a, €' + .-

( ag (1) (4= 1,2,...) are positive integers) by :

an(“‘-) = .J-Vd’( 4 >

T

where "Int" denotes the integer part of a number.

The mapping T does not preserve the Lebesgue measure, but preserves the Gauss

measure d’.& = 2"—2 d"‘;" . The dynamical system ( X , M ,T) is a K-system,
ML A+ .
and even a Bernouilli system, whose Kolmogorov-Sinai entropy has been calculated

by Rohlin [Ro-61] :

Various measure-theoretic results are known for continued fraction expansions. Most

of them are due to Khinchin (see [Kh-64] for a very clear account), and also to Lévy [Le-54],
who were very successful in proving highly non-trivial results, using old-fashioned methods.
Many of their results can now be obtained as straightforward consequences of ergodicity.
For instance, let us quote the following properties, whose simple derivation can be
found in Ref.[Bi-78].
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® The asymptotic relative frequency Py of k among the partial quotients Q4 (z) ,

az(‘)ﬂ yeers Qg (X)) 5eey is known to be
Pp= 2 A (R (I11-17)
b2 R(R+1)
for almost all X
fnh/
" o enz
¢ e‘."' ‘/54(")"'-'an(7t) = TT (44- A > a.e.
n->% k= k%2R

("a.e." stands for "almost everywhere")

Ao M G () 6ln2 )
where -;%%)‘) is the nth—order convergent of A f(or rational approximation to
X )
N (7() — 1
60) Ay (x) + 4
L g () 4 - - -
4+ A
Qn (‘)(.)
(Pn () and q, (‘l) are prime to each other)
o Lim L dn qnln) = nZ Qa. €.
o N 12 n2

Notice that all the properties derived from ergodicity hold on X = [0,1[, except

for a set of numbers of zero measure. In particular, rational numbers are trivially

excluded from X for the applicability of these results, since they have only a finite
number of non-zero partial quotients @p . Also excluded are quadratic irrational
numbers (i.e. irrational roots of a quadratic equation with integer coefficients), whose
sequence of partial quotients ’{ak (ot)} becomes periodic for sufficiently large
values of I{ : for any quadratic irrational, there exist two integers ko and P such
that, for every h>/ ko , ak: a’k-&? . (Evidently, Eq.(IlI-17) cannot hold for such

numbers).
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3) Pseudo-random number generator

The following mapping is often quoted as a one of the nicest examples of complete

randomness generated by a deterministic algorithm. Define T as

X=1[0,17] T Co, 1L

x €X ——> T2 = Frac (ra) ) (H-18)

where ¥ is any positive integer.

One should first note that this application is not one-to-one. Indeed, if we choose
Y = 2, we see that the inverse image of a point Xmy| is not uniquely defined, since
'xm - Znt) and ’)(',,‘-_-, 33:1_‘_"_1 are both possible solutions of TZ y= Apy4¢ .

Anyway, this "time reversal invariance breaking" is not essential.

The transformation T -called the r-adic transformation- is known to leave the

*
Lebesgue measure invariant( ). Let us first give a very simple interpretation of T ;

for illustration, let us fix * = 10. We write 9¢ as:

=0 A% e, Qg (111-19)

whereJ,Q{/ﬂ; = 0,1,2,...,9 ]’ is the sequence of digits of the representation of « in deci-
mal basis. Clearly, the effect of T on & is simply to shift the decimals one position
to the left :

~
Tx=0anap, --— . (111-20)

The same result (III-20) holds in the general case where Eq.(IlI-19) represents the number

A« , written lcn_ base-r (now, a4 = 0,l,...,r-1), as can be seen from the general expres-
W o3 A
mzp

Now, let us ask for the degree of irregularity of this dynamical system ; simple

intuition suggests that it should be strongly chaotic. Indeed, let us consider two initial

points 2 and 'x_’ which are close to each other in the sense that their first k digits

. ”
are the same, and look at the distance between A, = T 2 and xf“ =T’
as 4 increases from one to infinity. For M less than R , the first (h—m) digits

(*)To "visualize" this property, take for instance A = [O,-é- 1.

Then, for F=2, T7A = L—D,%] U [i")%] ) So }"(A)=/A(7.'A):‘-2—
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of M, and ‘x'M remain the same, i.e. the distance d(o(.\, o(,:“) does not increase
in an "uncontrolable"” way. But as soon as Mm% R , the two points X s and X, have
completely forgotten their original relationship, so that the distance & (s ) al ) may
now evolve in a completely erratic manner as a4 increases (The knowledge of the
first p digits of a number A tells nothing about the following digits of ® ). Therefore,
this dynamical system seems to exhibit the strongest possible sensitivity to a perturbation

of initial conditions.

This intuition is indeed corroborated by the mathematical property of the dynamical
system to be a Bernouilli flow, i.e. to be at the top of the irregularity scale defined
inIll.1. Moreover, one can show in this case that the successive numbers of the sequence

of r-based digits{a%aq, - -7d.\, .5 for a typical initial condition ¢ {(by "typical"

we mean for almost all & of the interval X) are completely uncorrelated ; this can
be explained in the following way. As mentioned in Sect.III.‘l, a necessary condition
for a system to be Bernouilli is that there exist a partition of the dynamical space
having the property that the outcomes of successive measurements of the system are
completely uncorrelated. In this case, this means that one can find a partition E of
the interval [0,1] in such a way that the successive numbers 1«=T."K fall into the dif-
ferent atoms of the partition F, com{)l;tely ?t random ; and this partition P, happens to
r-

PR ,1], so that the property of the successive

measurements to be uncorrelated simply, means that the sequence {a.,q,,,-.,a,v -3 is

be precisely the set of r segments [0,

completely random, i.e. the successive applications of the mapping T can be viewed as

a sequence of games with a roulette wheel having r equiprobable outcomes.

Applying the formula (IlI-8), we get for the Kolmogorov-Sinai entropy of T(*):

v

hu—s (T)= - 2 -"r-ln.:__ = Lar . (111-21)

=/

Notice that this value of h K-S is exactly the classical result in information theory for
the entropy of a system of Bernouilli trials with r equiprobable possibilities. This entropy,
or a priori lack of information on the system, is clearly an increasing function of
r, since the degree of uncertainty increases with the number of possibilities (a player
who would have the choice of r>1 for a given fixed, r-independent gain, would evidently

choose r = 2, the coin toss! ) . This property is reflected in (III-21).

Let us now investigate how the mapping T can be used as a pseudo-random number

(%%

generator ) and, for this purpose, first look at the consequences of ergodicity. Consider

* P .
( )Here, we admit that the partition B, satisfies another necessary condition (that we did not
mention) for the system to be Bernouilli.

(**) The process T, applied to a given X having an infinite number of digits, is a trul.y.ran-
dom number generator. The term "pseudo" refers to the finitness of the number of digits
with which the computer works in practice.
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the characteristic property of ergodicity (III-5), translated for our discrete time process as :

bm 4 Z— %) = f"—f(‘u)dl a.c. (1-22)
nan M pmo > /
where (1) is integrable on [0,1] for the Lebesgue measure d& . Choose now f to be
the indicator I.Q_ (or characteristic function) of any subset L) of [0,1] (of non-zero
measure) :
M-

Lim 4 2 T, (Ttlc)zf{(w)dt =L(R) ace., a2
Q.

na o ”‘ P=6

where L(&)ls the length (the Lebesgue measure) on. This equation simply tells us that
the proportion of numbers generated by successive applications of T which belong to any
interval & € [0,1[ asymptotically tends to the length L (_Q) of £L . Notice that this
property is shared by all dynamical systems which are ergodic on [0,1] for the Lebesgue
measure, and in particular holds for the example 1) (rotations of the circle) : all these
systems are such that the numbers generated by,{ ™ M= 1,2,... }asymptotically
have a uniform distribution on [0,1]. However, all these systems cannot be used as
random number generators. Consider for example the rotations of the circle, which,
as we have seen, produce points in an inexorable regular pattern : clearly, in this
case, the successive points obtained by the mechanism T have the strongest correlations
that can be imagined . On the contrary, the algorithm (IlI-18) produces completely
uncorrelated points, or, in other words, the successive trials associated with successive

applications of T are, in this case, completely independent.
Several consequences of the property just discussed are worth to be mentioned.

i) consider the case where the subset £ is any of the segments ﬂ‘ = [ k k+1 ]
(R = 0,1,2,...,r-1). Then, Iq (TP')(, ) is equal to one if the P dlglt of ’J( is h”, and
zero otherwise. Thus, the repeated experiments TPq(_ (7( = 0l,..n-1) in or out of

~Qk can be viewed as independent trials for a random variable which takes the value

R ( £ =0,...,r-1) with probability —11; One can therefore interpret Eq.(IlI-23) as follows.
The Lh.s. represents the relative frequency of the value R , and the r.h.s. the probabi-
lity % for getting R . According to Eq.(I11-23), the probability that the Lh.s. is equal
to the r.h.s. is one, i.e. the relative frequency is almost surely equal to the probability,
which is the strong law of large numbers (i.e. except for a set of starting points

of zero measure).

ii) Another illustration of the strong law of large numbers is due to Borel, and can
be recovered very nicely directly from the ergodic theorem. A number % € [0,1[ is
said to be normal to base r if each digit of its expansion in this basis has the relative

1 . . e e .
frequency e A number is said to be normal if it is normal to every basis r. As a consequence
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of ergodicity of T, one can show that almost all numbers are normal. To prove this

statement, it is sufficient to show that almost all numbers are normal to base r, for
each fixed r. Indeed, this ensures that all the numbers are normal to base r, except
for a set Ar of zero measure ; therefore, the union of all numbers being normal to
any base remains of measure one (the measure of {J Ar is zero). Let us illustrate this

r
property for r=2. We define

0 for x < 2

:F(X)z | 42
for

[o] ﬁ?_i

Then, the ergodic property (111-22) for%(x) gives

Liv A 2 —F(T?a) =4 a.e. (1m1-24)
rea M p=0 2

To interpret the l.h.s. of Eq.(IlI-24), let us write the explicit expression of % in binary

basis :
2
w=02 2= (an=0,1)
n=6 ntt
then
P pe
=6 2™
We see that 4'{' TP'Z. < -3—. tUan Apep = 0 , whereas
P P
43]:1’132- +hem “’h+r=4
Thereifore,
o] 4-4 a.“,r =0

,F (TF'K) =

'r; C(p\-{-r - 4 )

and the Lh.s. of Eq.(IlI-24) is simply the relative frequency of the digit one in the

binary expansion of A , which does converge, for almost all 2% , to its probability %
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I11.3.c) Two-dimensional abstract dynamical systems

1) Translations on the torus T?

This mapping has been studied in Ill.3.c). We noticed that it is ergodic, but

not_mixing, if the two parameters of the translation are rationally independent.

2) Arnold's cat

The Arnold’'s cat mapping T is the linear automorphism of the two-dimensional
2 ., H
torus T .{( x,s g) mod 1} for the measure Mﬂy‘defmed as

T(x,y) = (x+y, xt2y) (med 1) . (111-25)

One can also consider T as a mapping of the unit square or to itself :

X= [o,i[ x[o4] L [o,4T x o[ .
To construct a geometrical realization of this automorphism, one first maps the unit
square X into the rhombus HX , where M = (: 2‘_) , and then brings back any
pointE lying outside the square into the square by subtracting unity as many time as ne-

cessary (one or two times) to each coordinate of &

Y
3
2
Hr Y
4 4
° 41 x O 1 2 X
w7 T &

Fig.Ill.15 - The Arnold's cat mapping : ¢ is the starting figure, T represents the first
iteration (taken from Ref]AA-67))
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The automorphism T is known to be a K-system ([AA-67]), and the example

is nice because this property can nearly be seen (if one does not care about mathematics)
y "with the eyes". Fig.(lll.16) represents the second iteration

# of T. The cat is already completely unrecognizable,
which confirms the first impression of Fig.(Ill.15) that
T undergoes drastic deformations of shapes. It is easy
to imagine that the cat will asymptotically be "diluted"

into the whole square, which is the mixing property. Now,

x consider the eigenvalues ?\1 andA2 :

>\='>\4=i4_ (3+E) > 1> )\z=)\:‘>o .

T <

Fig.lll-16 - The Arnold's cat
mapping : second iteration
One sees that the direction D defined by the eigenvector

associated with >\1 is expanding under the action of T, whereas the direction D2 associa-
ted to the other eigenvector is contracting : at each step of the process, a rectangle '

whose sides are parallel to D1 and D, is stretched along D1 by a factor A , and .compres—

2
sed along D2 by the same factor >\ . This mechanism is responsible for exponential
separation of trajectories, indicating the K-property. After P  steps, the expanding
factor is simply )\P: exp (Flﬂa\ , which suggests that the K-S-entropy of the system

is simply (this result can be derived rigorously)

hK—S (T) = &a )

Finally, let us notice that the origin O is an invariant point of T, and that the
/
orbits of all points (')() lj) :(_?_ ) il are periodic ; one can also show the exis-

tence of two invariant curves which are both dense in the square (see again [AA-67]).

3) Baker's transformation

Consider again the unit square, and define the transformation T as

X= Lol x [0 5 X
(-21(, %)4‘-} OS‘)L(%
(1,3)6X —> T('l,y) =
(lx-,, Y1) 44 <24
2

The name of the transformation is illustrated in Fig.(lll.17), in which the unit square

transformed under T looks like a piece of dough worked by a baker.
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y 4 y
4 1
oS (Y3
[} 1 Ax ° 4 2 Ax ) 4 x
(& T

Fig.lll.17 - The Baker's transformation : {J is the starting figure, and T'J repre-
sents the first iteration (taken from Ref.[AA-67]).

The area-preservation of T can be seen on the figure. Also is clear the fact that each
iteration of T doubles the number of horizontal "slices" in which the cat is more and
more "compressed" and this property suggests the mapping to be mixing. In fact, the
dynamical system is much more chaotic than simple mixing, since it is a Bernouilli
system. We can easily imagine this strong irregularity by noting that the image of

the abscissa X4 of any point of X is, in any case

Zpy = Frac (2xa),

which is the dyadic transformation of Eq.(IlI-18). The results obtained for the one-
dimensional mapping Eq.(II[-18) ensure that if we consider the partition B of the square
into the two atoms ogx <4 and 2 g% < 1, then the sequence of measure-
ments of S T‘i st = O,l,... 2|w1’ch respect to the partition B, will be completely

random, i.e. completely equivalent to a sequence of coin tosses.

Up to now, we have seen some examples of Bernouilli flows, all being abstract
dynamical system. Another famous example of Bernouilli mapping is generated by geodesics
on surfaces of negative curvature. We shall now investigate a class of physical systems,

some of them having also the Bernouilli property
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.4 EXAMPLES AGAIN : BILLIARDS

A billiard is a dynamical system produced by the free motion of a point particle
in a domain D of the plane R’- bounded by a closed curve r -or, more generally, by
a set of closed curves F!, -, with elastic reflections at the boundary [* of D (i.e. the
tangential component of any trajectory remains constant at [' , whereas its normal
component changes sign)(*). The boundary " may contain singular points (vertices) where
the tangent is not defined ; we disregard all trajectories coming at some time to a
vertex of [Y , which form a set of zero measure. A billiard is therefore a two degrees
of freedom system, with at least one constant of motion, the energy E = —;—MV2 .
Notice that the behaviour of any orbit in phase space depends neither on the mass m
of the point particle nor on its velocity V  (this peculiar feature of billiards is due
to the fact the motion is simply governed by the laws of geometrical optics ) ; therefore
the properties of this kind of dynamical systems do not depend on the energy E, all

the energy surfaces having exactly the same structure.

An orbit in configuration space is an infinite sequence of segments, each one
corresponding to a constant velocity vector \—I-.' . Therefore, it is natural to search for a
Poincaré surface of section J. such that the successive crossings with Z correspond
to the successive bounces on the "wall” [ . To do this, let us take as coordinates of any
bounce Qn its curvilinear abscissa Sp along ™ (once an origin O and a sense have
been defined on M ), and ’P,‘=$in (- , where Xn is the angle of the trajectory
leaving Qn with the normal to ' at
Qn’ pointing towards the interior
of D. It is easy to show that the mapping

M defined by

Sn41 - M Sn )
Prm Pn

is area-preserving, i.e. that (see Ref.

[Be-81 al for more details)

OSp4 DSn4
28 ?
det " P =1.
dPat: 2P
Fig.lll.18 - Surface of section coordinates for ?25n OPn

a billiard

*) The domain D may also be a non-compact part of [ 2 : see below the example
of the Sinai's billiard.
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The study of billiards is of interest in many respects :

i) they are, among the physical Hamiltonian systems, the most studied from a mathema-
tical point of view, and some important analytical properties are known

ii) billiards are very rich in their behaviours : there exist systems lying at the top,
as well as at the bottom of the hierarchy of regularity described in Sect.lll.l, and also
systems which cannot be classified according to this hierarchy, i.e. for which the phase
space contains both regular and chaotic regions

iii) the energy surface of billiards is of dimension two, which is the smallest one needed
to observe chaotic motion

iv) for our purpose -trying to find signatures of chaos in quantum systems whose classical
analogues are chaotic by statistical studies of the spectrum-, drums (quantum billiards)
are the most convenient systems : they have an infinite discrete spectrum, and efficient

numerical methods are available to compute long series of adjacent levels.

Regular billiards

The rectangle, the circle, and the ellipse are regular billiards, i.e. dynamical

systems whose energy surface is a torus. The two independent constants of motion are

1) for the rectangle : the two projections ‘VXI and [vgl of the moduli of the
velocity on two axes parallel to the sides of the rectangle

ii) for the circle : the energy, and the angular momentum L, = | Tj | with respect
to the center of the billiard

iii) for the ellipse : the energy, and the product LILZ of the angular momenta with

respect to the two foci

Fig.lll.19 - Trajectories in regular billiards. Caustics can be seen for the circular billiard
(the caustics are circles of same center as the billiard) and for the elliptic billiard (the
caustics are ellipses and hyperbolae confocal with the ellipse defining the boundary of
the billiard)

For the circle and the ellipse, the integrability manifests itself by the existence of
families of caustics, which reveal the existence of tori (see again Ref.[Be-81 al, and
also Ref.[Be-83)).
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Chaotic billiards

As a first example, let us consider the Sinai's billiard : the point mass moves in

the plane ﬂZ" and bounces on reflecting disks, all of the same radius, forming a periodic
lattice as shown in Fig.ll.20. By

trivial symmetry arguments, one

can reduce the study of this sys-

tem to the study of the motion of

a particle in a square, with

a circular obstacle around the

center. Simple intuition suggests

that the dynamical system associa-
ted with the Sinai's billiard is
strongly chaotic. Indeed, as

illustrated in Fig.ll.20, a bundle

of nearby trajectories reflecting
on convex obstacles is drastically
defocused, and spreads in a

large part of the configuration

space after a small number
of bounces. The effect of this insta-
bility with respect to initial
Fig.ll1.20- The Sinai's billiard conditions can be estimated :
suppose, for instance, that one wants to calculate on a computer an orbit for R = 0.1 ;
then, one can show that at each bounce, about one decimal digit is lost for the angle
determining the direction of the orbit. This means that, typically, one cannot compute
the trajectories in Sinai's billiard for a number of bounces greater than 10-20, which
illustrates the dramatic instability of the system ! (see Ref.[Be-78] for more details,
and also for other illustrations of the degree of instability, in terms of external perturba-

tions of the physical system).

In fact, it has been proved by Sinai [Si-70] that this billiard is a K-system ; it
has even been shown more recently to be a B-system. The proof by Sinai -which is very long
and very elaborate- has initiated further works on other billiards, conjectured to be
also chaotic, and the K-property (and also the B-property) is now known to hold for
several billiards, such as, for example the stadium (two half-circles of radius R, joined
by two segments parallel to the line passing through their centers), and also the diamond
(see Fig.ll.21). For the diamond, the chaotic behaviour has the same origin as for the
Sinai's billiard, which is the negative curvature of the obstacles. The origin of the instabili-
ty of the stadium is somewhat less intuitive. A small bundle of trajectories contracts

after reflecting on a circular -focusing- part of the boundary, but subsequently expands
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«—2a —>

in such a way that the synchronization of successive
contractions is made impossible : expansions prevail over
contractions, producing the stochastic properties of
the billiard.

Notice that in the limits R = 0 (Sinai's billiard :
see Fig.lll.20) or a = 0 (Stadium : see Fig.lll.21-a), the
Sinai's billiard and the stadium become integrable systems
(a square and a circle respectively). However, it should be
emphasized that the K-property (and the B-property)
holds for any value of R > 0 (Sinai's billiard) or of

a > 0 (stadium). This means that a regular billiard may

(b) be transformed into”a strongly chaotic billiard by an

infinitely slight perturbation of its boundary ; evidently,

Fig.lll.21- (a) the stadium the KAM theorem -which would predict the persistance
(b) the diamond of tori under a small perturbation of the integrable

system- does not apply here. This is because the smoothness conditions required for
the KAM theorem to be applicable are not satisfied by billiards. So far there exists
no equivalent to KAM theorem for billiards. Some results in this direction are known
but their field of applicability is still very peculiar ; for instance, Lazutkin [La-73]
proved the existence of tori for convex billiards having a very smooth boul :dary ("very
smooth" means that the radius of curvature as a function of the arc length is at least a

C553 function... which is only a sufficient condition for the tori to exist !).

Finally, let us recall that the ergodicity of these chaotic systems does not exclude
the existence of periodic trajectories (these form a set of zero measure of trajectories
which do not visit the neighbourhood of all the points of the energy surface). For instance,
the trajectory in the stadium passing through the two centers of the circle is periodic;
also are periodic the trajectories hitting the horizontal segments of the stadium at
right angle, etc... These periodic orbits can form a family or be isolated. We shall not
discuss the questions related to the periodic orbits, though they play a crucial role in

the quantization of the classical systems (see [Be-81 b] and [Be-83]).

Pseudo-integrable billiards - Polygons

The chaotic billiards presented above have in common the property that at
least one part of the boundary is not a straight line ; this is, in fact, an essential condition
to produce the K-property. Indeed, it has be shown that the K-S entropy of billiards in
polygons is zero, i.e. trajectories in polygons never show exponential instability ; but

can one say more about polygons ?
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As a particular kind of polygon, we have already mentioned the rectangle, which
is integrable. Also integrable are three kinds of triangles : the equilateral one, and the
two right triangles (90°,45°,45°) and (90°,30°,60°). Putting apart the integrable systems,

polygons can be divided into two families :

i) irrational polygons (i.e. polygons whose angles are irrational multiples of JU ). These

billiards are conjectured to be ergodic, and perhaps mixing systems (see Ref.Ho-75]).

ii) rational polygons (all angles are rational multiples of /U ). For such systems, it
is clear that the angles of the segments defining any trajectory with a fixed direction
can take only a finite number of different values. Consequently, these systems are certainly
not ergodic. In fact, one can show the existence of another first integral F which is
independent of H and in involution with H only almost everywhere, i.e. except for a
discrete set of singular points (see e.g. Ref.fZK-75] ; such systems are called pseudo-
integrable. Due to the existence of F, the allowed region in phase space is of dimension
two, like for an integrable billiard, but the singular points just mentioned prohibit the
invariant surfaces from being tori ; these surfaces can be viewed as tori with more

than one hole, i.e. two-dimensional manifolds of genus 9 > 1.

Integrable, chaotic and pseudo-integrable billiards will be discussed in Section IV

from a quantal point of view.

Babar't Gonsfermati o
Sinai’s billiard, stadium

AMneld's cat

some prly pows ?

rotations of Hu
cacl

Fig.llL.22 - Ergodic theory : the hierarchy of chaos
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IV - QUANTUM CHAOS

As shown in the preceding section, classical chaotic motion is now reasonably
understood, at least for the "pure" systems which enter in the classification of the
ergodic theory as summarized in Fig.lll.22. It is then natural to ask whether there

are gquantum-mechanical manifestations of classical chaotic motion. We shall use the

term "quantum chaotic system" in the precise, and restricted, sense of "quantum system
whose classical analogue is chaotic". General discussions on quantum chaotic systems
can be found in ref.[Ca-84] ; it appears that there is a large variety, and even disparity,

of opinions.

It should be clear from the beginning that the notions which are of most
relevance in the classical case may be obvious and useless in the quantum case. Consider
for instance the quantum analogue of a classical chaotic billiard, namely a free particle
in a box. Remember that its spectrum, determined by the eigenvalue equation (I-22),
contains an infinite number of discrete eigenvalues En' The time evolution of a quantum

state 1i' (£, t)is given by

g lc,t)= nzan Y (f)sz(-%_E,t> . (v-1)

which is quasi-periodic. Therefore there will never be exponential separation of the
difference of wave-functions of two close initial states, in contrast to the classical
orbits which do show the exponential divergence characteristic of classical chaotic
motion (K-systems). We thus expect that the "dictionary" translating classical chaos<—»

quantum chaos will not be simple.

In what follows we shall restrict ourselves, in the search for manifestations
of chaos, to properties of the spectrum and nothing will be said on properties related
to wave functions, like structure of nodal lines, properties of the Wigner function,
etc.. The tools to characterize fluctuation properties of spectra, described in Section II

in connection with random matrix theories, will be thoroughly used.

The first property which has been considered as a possible tool to discri-
minate between integrable and chaotic systems is the behaviour of the nearest-neighbour
spacing distribution for small spacings, i.e., P(X3 as X—> 0. Berry and Tabor [BT-77],
using torus quantization, predict level clustering for integrable systems POG¢) So e

*
in the asymptotic high energy regime( ). This feature can be understood by examining

(*)This prediction excludes harmonic oscillators, for which the arguments of the proof are
not applicable. It can be shown, in fact, that the distribution ?(X) does not follow
the Poisson law for the two-dimensional harmonic oscillator [BGP-84].
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the occurrence of degeneracies in a,parameter space (see [Be-84]). It can also be viewed
as the result of mixing independent spectra’~ . Let us give a heuristic argument illustra-
ting this idea. Consider the circular membrane, which is classically integrable (circular

billiard), or better, to avoid degeneracies, the semi-circular drum. The eigenfrequencies of

(A+R¥) ¢ = (AxE) ¢ =0 (1v-2)

with Dirichlet boundary conditions on the semi-circle are given by the zeros of the
Bessel functions Jy () ( ¥ = 1,2,3,...). Let 9‘,,5 (s = 1,2,3,..) denote the s-th

zero of J,, (x) . The jvs 's ( §=1,2,...) extent from & V to infinity with a
{
density
2

LI for RYV (Iv-3)

n k2
and are practically fluctuation-free. Consider now an interval at high energy containing
N levels Rn. (n = 1,2,..,N) ordered with increasing value of R,‘ . The successive
values of ﬁn , which are the zeros dv,.s , correspond to of the order of N different

(and unordered) values of v . The point now is that zeros of Jy and J,', with V not
too close to v', are likely to be uncorrelated. Consider, for instance, a stretch of ten
eigenfrequencies near the 1400th eigenfrequency. The labelling ( v, § ) of successive
eigenfrequencies is as follows : (82,4), (70,7), (37,18), (45,15), (5,32), (32,20), (3,33),
(1,34), (18,26),(60,10). We are therefore in a similar situation as when randomly super-
posing picket fences, which leads to a Poisson spectrum(**
It has been predicted that a drastic change in the spacing distribution ‘P(x)
takes place when going from an integrable case (Poisson) to a non-integrable case.
Berry [Be-83,Be-84] predicts P(X)x,\—i:)( , like in GOE, whereas Zaslavsky [Za-81]
predicts P(x)xgoxv where Q- is related to the Kolmogorov entropy '&lgs of the
corresponding classical system. On the other hand, Richens and Berry [RB-81] predict
that level repulsion will also be present for systems which classically are pseudo-inte-

grable. In what follows we shall discuss some recent results concerning fluctuation-

(*)In section Il we saw that the result of superposing randomly highly correlated spectra
-the argument works even for picket fences- is to produce a Poisson spectrum. We also
saw that the effect of superposing shell model spectra corresponding to different values
of J , each one having level repulsion, is to destroy all kinds of correlations, and
in particular level repulsion (see Fig.lIl.11).

(%) . . . . . .

The keypoint of this heuristic argument is the independence of the positions of
successive levels in a given interval for large R {or E). Of course, this does not hold
for the spectrum m +on ( myn = 12,3,...; & irrational) of the two-dimensional
harmonic oscillator, which leads to strongly correlated levels in any interval of the
spectrum.
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properties of spectra of systems whose classical analogues are either integrable or chaotic.

We shall not confine the discussion to the presence or absence of level repulsion but,

for reasons that should be clear to the reader from the discussion of Section II, take

as reference patterns the entire Poisson- and GOE- fluctuations.

IV.l VIBRATIONS OF THE MEMBRANE (QUANTUM BILLIARDS)

Towards the end of Section III, reasons were given for putting special

emphasis in the study of billiards. And examples were shown of integrable, chaotic

and pseudo-integrable billiards. Let us now study some of their properties in the quantum

case, specifically their spectral properties. The cases to be discussed are shown on

@ (b (c)

O

O -;\Q*}+ =

Aodd-even
R
1

__even—odd

O

Fig.IV.! - Column (a) : shapes of diffe-
rent membranes, whose spectral fluc-
tuations are discussed. Column (b) :
examples of the symmetry character
of the eigenfunctions considered. For
the circle the symmetry is given by
Eq.IV-4 and the eigenvalues coincide
with those of the quarter of a circle.
For Sinai's billiard shape, the symme-
try is given by Eq.IV-5 and the eigen-
values are those of the desymmetrized
Sinai'billiard, as shown on column (c).
For the stadium, the four possible sym-
metry classes are indicated (see Egs.
IV-6). For the odd-odd symmetry, the
eigenvalues are those of the quarter of
stadium, as indicated on column (c).

Fig.IV.1 circle (integrable), Sinai's billiard
and stadium (both strongly chaotic, in
fact Bernouilli systems). Mention should be

made of the pioneering work in the direction
we follow : Refs.[MK-79,CVG-80] for the sta-
dium and ref.[Be-81b] for Sinai's billiard. To
determine the eigenvalues of Eq.IV-2 with
Dirichlet boundary conditions, an efficient
method has been proposed by Berry [Be-81b].
It is inspired on the work in solid state physics,
by Korringa, Kohn and Rostcker, to determine
the high-energy bands at the centre of
the Briliouin zone. Once a sequence of eigen-
values is obtained, there is no ambiguity in
separating the average part and the fluctuating
part of the spectrum. Indeed, we know that for
the systems we are considering the smooth
part is given by Eq.(I-24) (see Fig.l.7). The
procedure is therefore to first compute a
sequence of eigenvalues { Ei]] and then to

unfold the spectrum via Eq.(I-27), where Nav
is given by Eq.(I-24). One finally has a sequence

of points {Xd’.s with mean spacing equal to

unity, all over the spectrum.

Let us now present some results.
To illustrate how the analysis is performed,
we consider first a "trivial" case, the case
To avoid two-

of the circular membrane.

fold degeneracies, we take a semi-circle or a
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quarter of a circle. Equivalently, the quarter of a circular membrane corresponds

to eigenvalues of the full circle whose associated eigenfunctions have the symmetry

property illustrated on column (b) of Fig.IV.l, namely

$ooY)=-Pl-%y)= - (%-Y) .

The eigenvalues are given by the squares of the roots ﬂ.V,S

(Iv-4)

of the Bessel functions

Iy (x) , with ¥ = 2,4,6,... and § = 1,2,3,... On Fig.l.7a is shown the cumulative density

N(E) for the first eigenvalues. On Fig.IV.2 are shown the results for the spacing distribu-

tion P(XX
T T T T T
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PRI (@ GOE
N
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/ T of circle
Poisson 2
4, 1 i 1 1 s
0 1 2 X
— T T T ] /|/
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Fig.IV.2 - Results of level fluctuations
for the first 675 eigenvalues of a cir-
cular membrane corresponding to eigen-
functions with the symmetry indicated

on column (b) of Fig.IV.l : (a) Nearest-
neighbour spacing histogram. (b) Ay as

a function of L ; dashed lines for

Poisson and small bars for GOE indicate
the effect of the finiteness of the sample
as predicted by the theory (one standard
deviation). Curves corresponding to the
Poisson case (stretch of uncorrelated
levels) and to the random matrix theory
predictions (GOE) are drawn for comparison.

J59)=-F(-xY) = -¢ (%-9) = - §(9,x)

and for the average value of AB as a function of the length L. On

Table IV.l1 is given the value of
the correlation coefficient C between
adjacent spacings. As can be seen,
the computed values are far from GOE-
values and rather close to, although
not consistent with, the Poisson-values
(except for C, which is consistent
with the Poisson-value C=0). We interpret
these results as follows. The spectra
under study are not translational invariant

or stationary. We expect that the charac-

teristic fluctuation patterns (GOE or
Poisson) are valid in the asymptotic
regime (high energy). The departures

of the results presented for the circular
membrane from Poisson indicate that
the asymptotic regime has not yet
been reached. Work is in progress to
determine the rate of

to the

convergence

asymptotic regime (Poisson

in the present case).

Let us now consider chaotic
systems. We treat the desymmetrized

billiard as shown on column
Fig.Iv.1, or,

the Schrddinger

Sinai's
(c) of

solutions of

equivalently, the
equation
IV-2 with Sinai's billiard as the boundary

and with the symmetry

(Iv-5)
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1/4 Circle Sinai Stadium Stadium GOE Poisson
(one symme- (mixed sym-
try) metries)
Number
of levels 675 740 810 3200
C -0.04 £0.04 10.30% 0.04 | -0.3120.04 -0.18+0.02 -0.27 0

Table IV.1

Values of the correlation factor C between adjacent spacings (Eq.I-37) for different
systems investigated. GOE- and Poisson-values are given for comparison.

To improve the statistical significance of the results, we consider four different cases

by changing the value of the parameter R and perform a joint analysis of the results as

PIF RSARRRRRAR
ospy, (@) Singi‘s billiard ; I
o8k N\ : 2
07t LA [
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o < GOE LT
0‘5_ \\\\ et g
04} B
03 Poqson/ jN
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L i i .
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i
i
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o2 | i
!
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!
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014 4 Sinai‘s billiard
| | L

Fig.IvV.3 - Results of energy level fluctua-
tions for desymmetrized Sinai's billiards
as specified on the upper right corner of
the figure. 740 levels have been included
in the analysis, corresponding to the 51-th
to 268-th level for R=0.1, 21-th to 241-th
level for R=0.2, 16-th to 194-th level for
R=0.3, 11-th to 132-th level for R=0.4.
See caption of Fig.IV.2 for further expla-
nation (taken from [BGS-83,BGS-84al).

explained in [BGS-83,BGS-84a]. The results
are Fig.IV.3 and Table
IV.l. In contrast to the case of the circular
the results are

presented on

membrane, for which
close to the Poisson spectrum, we see now

that the fully consistent

with GOE-predictions for ‘P(X) (not
only for small values of X ), for A3 and

for C.

results are

Let us investigate another system

whose classical analogue is chaotic,
namely one particle in a two-dimensional
box whose boundary is the stadium.
The solutions of eq.(IV-2) can be classified
according to four different symmetry
classes :
even- even
T o9) = GlxP=F 06,-Y)  av-e)
odd - even

F 9= (- 9= -F&-y) (V-6
odld - Ad
(F Gog=- 36532 Go-y) (-6

evtu-odd
F (% Y)=-FlxY)= $lo-y) av-6")



and the spectrum, despite the symmetry of the problem, contains no degeneracies.

Take now the eigenvalues corresponding to a definite symmetry-class, for instance

PEIE (a) Stadium
\ (one symmetry)]

osk I/ 4
S GOE

o Stadium
{one symmetry)

1 1 1 1

Il 1
0 S 1 15 20 25 L30

Fig.IV.4 - Results of level fluctuations
for the first 810 eigenvalues of a mem-
brane whose boundary is a stadium.
They correspond to eigenfunctions with
odd-odd symmetry (see Fig.IV.1). The
ratio 2a/R of the straight line segment
to the radius is 1 (see Fig.lll.21a). See
caption of Fig.IV.2 for further expla-
nations (taken from [Sc-84,BGS-84b]).
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Fig.IV.5 - Same as in Fig.IV.4 but with
the four different symmetry classes,
as specified in Fig.IV.l. The spectrum
analyzed contains the first 3200 eigen-
values, See caption of Fig.IV.2 for
further explanations (taken from [Sc-84,
BGS-84b] ).

the odd-odd case. Results are presented on Fig.IV.4 and Table IV.l. Again we have

a remarkable agreement with GOE-predictions. A similar agreement is obtained when

analyzing the eigenvalues belonging to the other three symmetry classes. Consider

finally the spectrum which contains all levels corresponding to the four symmetries

of the stadium (1V-6,6',6",6""). The results change drastically. They are shown on Figs.l.7b,

IV.5 and Table IV.l. The spectrum fluctuations are intermediate between GOE and

Poisson. The results would be closer to Poisson-fluctuations if more than four different

families characterized by different quantum numbers would be present. This is in exact

analogy with what happens when superposing several different GOE spectra. Or with

compound nucleus resonances, when no attention is payed to quantum numbers and

the spectrum results from mixing several pure series.
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Iv.2 OTHER EXAMPLES

The systems treated in the preceding subsection were classically either
integrable or strongly chaotic (highly-unstable ergodic systems) and correspondingly
we saw that the spectra show Poisson- or GOE- fluctuation patterns. What happens
then for systems displaying a more complicated structure in phase-space ? We have
seen in Section III that there exist systems whose Poincaré sections look as belonging
to an integrable system at some particular energies but that, by changing the energy,
islands of chaoticity appear and increase until they cover the full Poincaré sections,
showing that in fact the system is non-integrable and chaotic. Does this behaviour have
some manifestation in the corresponding quantum systems ? And is there a transition
parameter characterizing the relative importance of chaotic/non-chaotic regions which
manifests in the spectral fluctuations ? The problem is very interesting but difficult
and, although several efforts in this direction are worth mentioning -the study of a
two-dimensional harmonic oscillator plus quartic terms in refJHYK-84], of a system
of kinetically coupled Morse oscillators in ref.[MT-84], of the Hénon-Heiles Hamiltonian
(Eq.II-15) in ref.[PS-83}- it is still premature to draw general conclusions from them.
Mention should also be made of the study of a one-parameter family of billiards which
classically goes continuously from the integrable to the chaotic regime ; in the quantum
case the spacing distribution P(X) seems to continuously go from a Poisson to a

Wigner distribution [Ro-84].

In this direction, a very recent work by Seligman, Verbaarschot and Zirnbauer
deserves special mention [SVZ-84]. These authors consider a two-dimensional system
consisting of two interacting particles moving in one-dimensional potential wells. The

Hamiltonian is

H-_-_% (P24 P2) + Y, (t) + L (%) + Vg (¥4-;) , (1v-7)
where V, , V, and V.t have the same functional form
Vj(x) = >\J‘ (x%4+ K x*+ \j-x‘ ) J=1,2,4ut Iv-8)

In Eq.IV-8 >\1 , f(J and V] are parameters. With an adequate choice of the numeri-
cal values of ,u,) , Y% , A, and ?\,_ , the properties of the system are studied
as a function of a single parameter ?\,,-mc. . For Agut= 0 the system is separable
and therefore integrable. The study of classical trajectories and Poincaré sections
indicate that the system is probably, for large values of }\4‘-\2" , classically chaotic.
By varying the strength of the interaction Aq‘yd- , the fractionf of phase space
filled by chaotic trajectories, in the energy region occupied by the first 400 levels
of each parity, can be varied from 0 to - 1. Some results for level fluctuations are

reproduced on Fig.IV.6. Figs.IV.6(a) to (e) correspond to the fraction of phase space



90

taking the estimated values ~ 1.0, 0.7, 0.4, 0.1, and 0.0, respectively. (a) corresponds
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Fig.IV.6 - Results of level fluctuations

( Ay (L) and P(X) ) for the
Hamiltonian IV.7. Dots and histograms
represent the results obtained from

the 40-th to the 400-th level of each
parity. The continuous lines corres-
pond : in (a) and (e) to GOE and Poisson
respectively ; in (b), (c) and (d) to a
continuous interpolation between GOE
and Poisson derived from a one-parame-
ter random matrix model (taken from
[Svz-841).

Iv.3 DISCUSSION

to the chaotic regime and (e) to the
integrable case. As can be seen, (a)
agrees beautifully with GOE and (e)
with Poisson. In situations characterized
by 1 7 £ > 0, the fluctuation patterns
GOE and

Poisson. For the integrable or quasi-

are intermediate between

integrable case ((¢) and (d)), there is
A; @) for L > 9

which is not fully understood.

a flattening of

We close this Section with some remarks and a short discussion. A more

general one is postponed until the next Section.

Two main conclusions can be drawn from the results discussed : Integrable

systems show Poisson fluctuation patterns whereas strongly chaotic systems show GOE

fluctuations. An example has been given of a strongly chaotic system whose states

belong to four different symmetry classes and the fluctuations are, separately, of

GOE type, in perfect analogy with what happens, for instance, in real physical systems

like nuclei, with pure sequences. We have also seen a nice example of a continuous
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transition from integrable to chaotic regime with a corresponding transition in the
spectral fluctuations from Poisson to GOE. However, many questions remain open.
We have already mentioned that the spectral fluctuations of the systems discussed
are not translational invariant and that the characteristic fluctuation patterns are
expected to be asymptotic. It is important to determine the rate of convergence to
the asymptotic regime and, at a given energy E, the range on which Poisson or GOE
fluctuations are expected to be valid. Clearly, the range does not extend from zero
to E and in this connection an important role is played by the different sorts of classical
closed orbits (see [Be-81b ,84]). Another question of current interest is to determine
the parameter that governs the spectral fluctuations when the regime is not fully chaotic.
The authors of ref.SVZ-84] tentatively propose an average of the fraction of phase
space filled by chaotic trajectories in the energy range considered. This seems very

plausible but more experience is needed before a final conclusion can be drawn.

Let us also mention some problems created when heavily relying on numerical
results (see the introductory Section for extremistic views and warnings). Obviously,
the longer the spectrum span studied, the more difficult and time consuming is the work
to be furnished. But in order to have a chance to guess asymptotic properties, it is
of crucial importance to test the approximate translational invariance of the results
and one thus needs many levels. It may therefore be misleading to rely exclusively
on results obtained from the first few dozens of lowest eigenvalues as is often done.
Furthermore, it is also clear that if one is comparing,for instance, two billiards differing
only by small irregularities, in order to see differences one needs small wavelengths,
i.e., high energies.Also worth mentioning are some other types of numerical difficulties.
At the end of Section IV some properties of rational and irrational polygon billiards
were mentioned. It is our understanding that, without a solid theoretical tool, it is
hardly possible to investigate on a computer questions where the rationality or irrationality
plays an essential role. (In this respect, the study of the harmonic two-dimensional

oscillator is illuminating [BGP-84]).

We have, for instance, studied a billiard in a rational polygon (i.e. a pseudo-
integrable system) discussed in ref/RB-81]. Richens and Berry predict level repulsion.
We have computed several spectra containing each of the order of 300 levels but no
sign of attaining an asymptotic regime has been found, for instance for the average

value of A5 .. Presently we cannot draw conclusions from these numerical experiments.

BIBLIOGRAPHY

- Ref.[Be-83], entitied "Semiclassical Mechanics of Regular and Irregular Motion", is an

excellent review of the subject.

- In ref.[Ca-84] the point has been made on the present state of the art ; it includes

the more recent developments.
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V- SUMMARY, REMARKS, CONCLUSIONS

Our main concern in theses lectures has been the study of fluctuation proper-
ties of spectra. We have seen that as a prerequisite, one needs a clean identification
of the smooth behaviour of the spectrum. What is left out from the average behaviour
are precisely the level fluctuations. Ensembles of random matrices have been introduced
to describe the Hamiltonian and special emphasis has been put in the description of
the Gaussian Orthogonal Ensemble (GOE), the prototype model valid for time-reversal
and rotational invariant systems. The derivation of the GOE using information theory
is most enlightening; it appears as the model obtained when the only ingredient of
the theory is the real symmetric nature of the Hamiltonian. It is important to remember
that GOE is a parameter-free theory. Reasons have been given to consider the failure
of GOE in describing global properties (experimental level densities) as unimportant.
Indeed, one expects that global and local properties are disconnected. On the other
hand, it has been shown that GOE-fluctuations are not specific of GOE. They are shared
presumably by a large class of ensembles of random matrices. We have examined some

of them.

We have discussed how to characterize level fluctuations. In full generality,
one needs the set of k-level cluster functions Y. Some of the most relevant qualitative
features of GOE fluctuations have been emphasized : level repulsion (small probability
of occurrence of small spacings) and spectral rigidity (for instance, logarithmic increase
with L of the variance of the number of levels to be found in an interval of length
L). This is in contrast with what happens for a spectrum obtained by adding spacings
coming from random independent trials distributed like e_x, viz.a Poisson spectrum.
In this case there is by construction no level repulsion but level clustering (the variance
of the number of levels increases linearly with L). The effect of level repulsion is
that levels appear rather evenly distributed, and when spectral rigidity is present
the spectrum looks incompressible. It is important to notice that the spacing distribution
p(x) contains no information about spacing correlations, one of the main characteristics
of GOE-fluctuation patterns. The role of exact symmetries is prominent and GOE-predic-

tions apply to levels having the same set of exact quantum number (Jx ).

The comparison between GOE-fluctuation predictions and experimental
data has been reviewed. Due mainly to a thorough effort in high resolution measurements
of compound nucleus resonances, a very stringent comparison between theory and nuclear
data can be performed. GOE-predictions are fully consistent with experiment, not
only for 2-point measures, where the comparison may become significant at as low

as a few percent level, but even for measures containing up to 4-point cluster functions.
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The present quality of atomic data allow a comparison which, although quite significant,
is yet far from what can be achieved for the nuclear case. There are a few very recent
and promising attempts to compare GOE-fluctuations with molecular spectra. An exten-
sive experimental effort in the atomic and molecular case is called for. It is worth
mentioning that the close agreement between GOE-predictions and data in the nuclear
case can be used to impose restrictions on mechanisms that would change the fluctuations.
In particular if time reversal invariance is not an exact symmetry, the appropriate
model would be the Gaussian Unitary Ensemble (GUE, see Fig.ll.7b). But even a small
perturbation of a GOE-matrix by a GUE-matrix induces major changes in the fluctuation
properties. This notion is being pursued to derive an upper bound on the time-reversal
symmetry breaking part of the nuclear Hamiltonian [FK-82]. It is not yet clear whether
with the amount of presently available nuclear data such an upper bound may be competi-
tive with the ones derived by other means (sensitivities down to 107%). In passing, we
mention a conjecture supported by extensive numerical data [Od-82] : the fluctuation
properties of the imaginary part of the zeros of the Riemann zeta function are those
of the eigenvalues of GUE matrices (or of unitary matrices belonging to the equivalent

circular unitary ensemble).

In summary, we are facing a remarkable generality of fluctuations which
is two-fold, experimental (nuclei, atoms, probably molecules, covering five or six orders
of magnitude in scale, which is fixed by the average level spacing) and theoretical
(it is shared by a large variety of matrix ensembles). It applies to very different systems,
governed as well by strong short range interactions than by electromagnetic long range
interactions. What is then the origin of this universality of level fluctuation laws ?
They apply to complex systems, but complex in which sense ? What is the origin of
the randomness ? To get insight in these questions we turn our attention to classical
conservative Hamiltonian systems, were the notions of simple and complicated have
been thoroughly investigated. In the classical case, we follow the path that leads from
extreme regularity (integrable systems) to strongly chaotic motion. The most important
tools are shortly reviewed -structure of phase space, Poincaré sections, how the phase
space is filled when the system evolves, stability of orbits, etc.- and the hierarchy
of irregular systems is defined : ergodic, mixing, K- and Bernouilli systems. It is discussed
in which sense a system governed by causal equations of motion may be unpredictable.
Examples of very different nature are given, illustrating the different categories. In
particular, the properties of several two- dimensional systems are described using the
tools introduced. It is seen that in general the structure of the Poincaré sections depends
on the energy and that for some systems, by varying the energy, one undergoes a transi-
tion from almost regular motion to chaotic motion. Special emphasis is put on billiards,
which have the simplifying feature that all their energy surfaces have the same structure.
It appears that there is no need of many degrees of freedom (in fact, two are sufficient)

in order to attain strongly chaotic motion and several two-dimensional strongly defocusing



billiards are discussed (Bernouilli systems).

We then proceed to search for quantum-mechanical manifestations of classical
chaotic motion and restrict ourselves to spectral properties. To simplify the discussion
and with the aim of finding clean signatures of chaoticity, we treat as pure as possible
limiting systems, namely the Schrddinger equation for one particle moving in a box
in two dimensions (equivalently the transverse vibrations of a membrane) corresponding
to integrable and to strongly chaotic billiards (Bernouilli systems). It appears that
the spectrum-fluctuations are of the Poisson type for the integrable case and of GOE-
type for the chaotic billiards. We are thus led to make the following Conjecture 1 :
The spectrum of the Laplacian with Dirichlet (or Neumann) boundary conditions on
an irregular boundary has asymptotically (high energy) GOE—fluctuations(*). By irregular
we mean such that the corresponding classical billiard is a Bernouilli system (possibly
that ergodic is sufficient). These results, of course, apply also to transverse' vibrations
of a membrane or, in three dimensions, to the electromagnetic oscillations of a cavity.
Porter has foreseen this possibility very clearly. He wrote : "That matrix ensembles
will most likely be relevant to the fields of acoustics and elasticity is rather evident"
[Po-65al. But experiments should be performed, for instance by observing the resonances
of a microwave cavity of irregular shape [Dy-83]. Therefore, the following picture
emerges : At a "macroscopic scale", we have universality properties for these systems.
The number of eigenvalues up to a given energy depends only on macroscopic features
of the boundary, such as surface, perimeter. At the other extreme, at a "microscopic
scale", fluctuations also show universality patterns : Poisson-pattern for integrable

systems, GOE-pattern for strongly chaotic systems.

It is unfortunate that in the literature one usesthe terms "regular" and
"irregular" spectra to indicate spectra originating from a regular and irregular system
respectively. With this denomination, a spectrum like the one shown in Fig.l.8a would
be 'regular" whereas the ones shown in Fig..8c,d would be "irregular". But, as we
have seen, levels from an "irregular" spectrum are much more regularly distributed
than from a "regular" spectrum. The interpiay between the symmetry or regularity
of the shape of a box or a potential and the regularity of the associated eigenfrequencies
or eigenvalues is an important and familiar topic in acoustics and nuclear physics.
In acoustics, for instance, one major practical problem consists in designing auditoriums
such that the response is as uniform as possible and it is well known from acousticians
that for that purpose irregular walls are desirable, whereas when the room is more

symmetrical the response of the room is more irregular [Mo-81]. In nuclear physics

(*)One can imagine variations to this Conjecture l. To attack the problem mathematically,
it may be convenient, instead of putting the complication in the shape of the boundary,
to put it in the metric of the space and consider free motion without walls. We remind,
for instance, that the geodesic flow on a surface of negative curvature is a Bernouilli
system [Or-74].
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it is known that there are many facts well explained by the properties of the mean
field. In particular, shell effects belong to everyday practice of nuclear physicists
and are responsible for dramatic effects in a multitude of phenomena like the abundances
of elements, the occurrence of stable deformations, the heights of fission barriers,
the existence of shape isomerism, etc.. And large shell effects are nothing but extreme
cases of the clustering or bunching of eigenvalues that we have been discussing. Would

the mean field be completely irregular, shell effects would not exist.

However, the origin of the success of GOE in describing the fluctuations
of the compound nucleus resonances has not to be searched in properties of the mean
field because we very well know that a single-particle theory is absolutely unable to
correctly predict the positions and widths of these resonances. The origin of this success
is to be found in more general properties which are not specific of shapes of boxes
or potentials. Remember that spectra of other systems (like atoms) show GOE-fluctuations.
Remember also that some particular systems, not necessarily billiards, which have
been studied, when they undergo a transition from the integrable to the ergodic strongly
chaotic regime in the classical case, the corresponding spectrum fluctuations in the
quantum case undergo a transition from Poisson-patterns to GOE-patterns. We thus
make Conjecture 2, which is more general than Conjecture 1 : Spectrum fluctuations
of quantal time-reversal invariant systems whose classical analogues are strongly chaotic
have GOE fluctuation patterns [BGS-84al. If the conjecture happens to be true, it

will then have been established the universality of the laws of level fluctuations in

spectra already found in nuclei, to a lesser extent in atoms and to a much lesser extent
in molecules. They should be tested systematically and should also be found in other

systems, such as hadrons, etc..

One of the main themes in these lectures has been the translation of a
scheme like the one shown in Fig.lll.22 into the quantum case. We think that although
some significant steps have been performed, most remainsto be done. For instance,
one should look for formal proofs of the equivalence of GOE- and spectral fluctuations
of chaotic billiards (we remember that most of the arguments rely only on a numerical
basis, although some attempts to give formal proofs should be noticed [Pe-83,Be-84]).
One should discover '"simple" systems showing spectrum fluctuations corresponding
to the other canonical ensembles of random matrices, namely GUE and GSE. For instance,
we expect that chaotic systems which are not time-reversal invariant will show GUE

fluctuations ; work in this direction is in progress.

To close these lectures let us finally remark that we have been dealing
with objects which are, at first sight, disconnected : quantal objects like compound
nucleus resonances, classical objects like eigenmodes of vibrating membranes, frequencies
in a cavity, mathematical objects like eigenvalues of random matrices, the structure
in phase space of irregular motions, the zeros of the Riemann zeta function, etc..

The unifying ability is one of the great privileges of theoretical physics, which moves
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between two distinct worlds, the world of physical phenomena and the world of mathema-
tics. Wigner, the "physicist", who has been at the origin of the theory of level fluctua-
tions in terms of random matrices, says, in his article suggestively entitled "The Unreaso-
nable Effectiveness of Mathematics in the Natural Sciences" : "The first point is that
mathematical concepts turn up in entirely unexpected connections. Moreover, they
often permit an unexpectedly close and accurate description of the phenomena in these
connections. Secondly, just because of this circumstance, and because we do not unders-
tand the reasons of their usefulness, we cannot know whether a theory formulated
in terms of mathematical concepts is uniquely appropriate" [Wi-67b]. Whereas Poincaré,
the "mathematician", who has been at the origin of the study of the stability of dynamical
systems, says : "La Physique ne nous donne pas seulement l'occasion de résoudre des
problémes..., elle nous fait pressentir la solution"... Almost with perfect reflexion anti-

symmetry |
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