
Advances in Physics, 2016
Vol. 65, No. 3, 239–362, http://dx.doi.org/10.1080/00018732.2016.1198134

REVIEW ARTICLE

From quantum chaos and eigenstate thermalization to statistical mechanics
and thermodynamics

Luca D’Alessioa,b, Yariv Kafric, Anatoli Polkovnikovb and Marcos Rigola∗

aDepartment of Physics, The Pennsylvania State University, University Park, PA 16802, USA;
bDepartment of Physics, Boston University, Boston, MA 02215, USA;

cDepartment of Physics, Technion, Haifa 32000, Israel

(Received 22 September 2015; accepted 2 June 2016 )

This review gives a pedagogical introduction to the eigenstate thermalization hypothesis
(ETH), its basis, and its implications to statistical mechanics and thermodynamics. In the
first part, ETH is introduced as a natural extension of ideas from quantum chaos and ran-
dom matrix theory (RMT). To this end, we present a brief overview of classical and quantum
chaos, as well as RMT and some of its most important predictions. The latter include the
statistics of energy levels, eigenstate components, and matrix elements of observables. Build-
ing on these, we introduce the ETH and show that it allows one to describe thermalization
in isolated chaotic systems without invoking the notion of an external bath. We examine
numerical evidence of eigenstate thermalization from studies of many-body lattice systems.
We also introduce the concept of a quench as a means of taking isolated systems out of equi-
librium, and discuss results of numerical experiments on quantum quenches. The second part
of the review explores the implications of quantum chaos and ETH to thermodynamics. Basic
thermodynamic relations are derived, including the second law of thermodynamics, the fun-
damental thermodynamic relation, fluctuation theorems, the fluctuation–dissipation relation,
and the Einstein and Onsager relations. In particular, it is shown that quantum chaos allows
one to prove these relations for individual Hamiltonian eigenstates and thus extend them to
arbitrary stationary statistical ensembles. In some cases, it is possible to extend their regimes
of applicability beyond the standard thermal equilibrium domain. We then show how one can
use these relations to obtain nontrivial universal energy distributions in continuously driven
systems. At the end of the review, we briefly discuss the relaxation dynamics and description
after relaxation of integrable quantum systems, for which ETH is violated. We present results
from numerical experiments and analytical studies of quantum quenches at integrability. We
introduce the concept of the generalized Gibbs ensemble and discuss its connection with ideas
of prethermalization in weakly interacting systems.
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Verily at the first Chaos came to be,
but next wide-bosomed Earth,

the ever-sure foundations of all. . .
Hesiod, Theogony

1. Introduction
Despite the huge success of statistical mechanics in describing the macroscopic behavior of phys-
ical systems [1,2], its relation to the underlying microscopic dynamics has remained a subject
of debate since the foundations were laid [3,4]. One of the most controversial topics has been
the reconciliation of the time reversibility of most microscopic laws of nature and the apparent
irreversibility of the laws of thermodynamics.

Let us first consider an isolated classical system subject to some macroscopic constraints
(such as conservation of the total energy and confinement to a container). To derive its equilib-
rium properties, within statistical mechanics, one takes a fictitious ensemble of systems evolving
under the same Hamiltonian and subject to the same macroscopic constraints. Then, a probabil-
ity is assigned to each member of the ensemble, and the macroscopic behavior of the system is
computed by averaging over the fictitious ensemble [5]. For an isolated system, the ensemble is
typically chosen to be the microcanonical one. To ensure that the probability of each configu-
ration in phase space does not change in time under the Hamiltonian dynamics, as required by
equilibrium, the ensemble includes, with equal probability, all configurations compatible with
the macroscopic constraints. The correctness of the procedure used in statistical mechanics to
describe real systems is, however, far from obvious. In actual experiments, there is generally no
ensemble of systems – there is one system – and the relation between the calculation just outlined
and the measurable outcome of the underlying microscopic dynamics is often unclear. To address
this issue, two major lines of thought have been offered.

In the first line of thought, which is found in most textbooks, one invokes the ergodic hypoth-
esis [6] (refinements such as mixing are also invoked [7]). This hypothesis states that during its
time evolution an ergodic system visits every region in phase space (subjected to the macroscopic
constraints) and that, in the long-time limit, the time spent in each region is proportional to its
volume. Time averages can then be said to be equal to ensemble averages, and the latter are the
ones that are ultimately computed [6]. The ergodic hypothesis essentially implies that the “equal
probability” assumption used to build the microcanonical ensemble is the necessary ingredient to
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capture the long-time average of observables. This hypothesis has been proved for a few systems,
such as the Sinai billiard [8,9], the Bunimovich stadium [10], and systems with more than two
hard spheres on a d-dimensional torus (d ≥ 2) [11].

Proving that there are systems that are ergodic is an important step towards having a math-
ematical foundation of statistical mechanics. However, a few words of caution are necessary.
First, the time scales needed for a system to explore phase space are exponentially large in the
number of degrees of freedom, that is, they are irrelevant to what one observes in macroscopic
systems. Second, the ergodic hypothesis implies thermalization only in a weak sense. Weak refers
to the fact that the ergodic hypothesis deals with long-time averages of observables and not with
the values of the observables at long times. These two can be very different. Ideally, one would
like to prove thermalization in a strong sense, namely, that instantaneous values of observables
approach the equilibrium value predicted by the microcanonical ensemble and remain close to it
at almost all subsequent times. This is what is seen in most experiments involving macroscopic
systems. Within the strong thermalization scenario, the instantaneous values of observables are
nevertheless expected to deviate, at some rare times, from their typical value. For a system that
starts its dynamics with a non-typical value of an observable, this is, in fact, guaranteed by the
Poincaré recurrence theorem [12]. This theorem states that during its time evolution any finite
system eventually returns arbitrarily close to the initial state. However, the Poincaré recurrence
time is exponentially long in the number of degrees of freedom and is not relevant to observations
in macroscopic systems. Moreover, such recurrences are not at odds with statistical mechan-
ics, which allows for atypical configurations to occur with exponentially small probabilities. We
should stress that, while the ergodic hypothesis is expected to hold for most interacting systems,
there are notable exceptions, particularly in low dimensions. For example, in one dimension, there
are many known examples of (integrable or near integrable1) systems that do not thermalize, not
even in the weak sense [13]. A famous example is the Fermi–Pasta–Ulam numerical experiment
in a chain of anharmonic oscillators, for which the most recent results show no (or extremely
slow) thermalization [14,15]. This problem had a major impact in the field of nonlinear physics
and classical chaos (see, e.g. Ref. [16]). Relaxation towards equilibrium can also be extremely
slow in turbulent systems [17] and in glassy systems [18].

In the second, perhaps more appealing, line of thought one notes that macroscopic observables
essentially exhibit the same values in almost all configurations in phase space that are compat-
ible with a given set of macroscopic constraints. In other words, almost all the configurations
are equivalent from the point of view of macroscopic observables. For example, the number
of configurations in which the particles are divided equally (up to non-extensive corrections)
between two halves of a container is exponentially larger than configurations in which this is not
the case. Noting that “typical” configurations vastly outnumber “atypical” ones and that, under
chaotic dynamics each configuration is reached with equal probability, it follows that “atypical”
configurations quickly evolve into “typical” ones, which almost never evolve back into “atypi-
cal” configurations. Within this line of thought, thermalization boils down to reaching a “typical”
configuration. This happens much faster than any relevant exploration of phase space required
by ergodicity. Note that this approach only applies when the measured quantity is macroscopic
(such as the particle number mentioned in the example considered above). If one asks for the
probability of being in a specific microscopic configuration, there is no meaning in separating
“typical” from “atypical” configurations and the predictive power of this line of reasoning is lost.
As appealing as this line of reasoning is, it lacks rigorous support.

Taking the second point of view, it is worth noting that while most configurations in phase
space are “typical”, such configurations are difficult to create using external perturbations. For
example, imagine a piston is moved to compress air in a container. If the piston is not moved
slowly enough, the gas inside the container will not have time to equilibrate and, as a result,
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during the piston’s motion (and right after the piston stops) its density will not be uniform, that
is, the system is not in a “typical” state. In a similar fashion, by applying a radiation pulse to
a system, one will typically excite some degrees of freedom resonantly, for example, phonons
directly coupled to the radiation. As a result, right after the pulse ends, the system is in an atypical
state. Considering a wide range of experimental protocols, one can actually convince oneself
that it is generally difficult to create “typical” configurations if one does not follow a very slow
protocol or without letting the system evolve by itself.

At this point, a comment about time-reversal symmetry is in order. While the microscopic
laws of physics usually exhibit time-reversal symmetry, notable exceptions include systems with
external magnetic fields, the resulting macroscopic equations used to describe thermodynamic
systems do not exhibit such a symmetry. This can be justified using the second line of reason-
ing – it is exponentially rare for a system to evolve into an “atypical” state by itself. Numerical
experiments have been done (using integer arithmetic) in which a system was started in an atyp-
ical configuration, was left to evolve, and, after some time, the velocities of all particles were
reversed. In those experiments, the system was seen to return to the initial (atypical) configura-
tion [19]. Two essential points to be highlighted from these numerical simulations are: (i) after
reaching the initial configuration, the system continued its evolution towards typical configura-
tions (as expected, in a time-symmetric fashion) and (ii) the time-reversal transformation needed
to be carried out with exquisite accuracy to observe a return to the initial (atypical) configuration
(hence, the need of integer arithmetic). The difficulty in achieving the return increases dramati-
cally with increasing system size and with the time one waits before applying the time-reversal
transformation. It is now well understood, in the context of fluctuation theorems [20,21], that vio-
lations of the second law (i.e. evolution from typical to atypical configurations) can occur with
a probability that decreases exponentially with the number of degrees of freedom in the system.
These have been confirmed experimentally (see, e.g. Ref. [22]). As part of this review, we derive
fluctuation theorems in the context of quantum mechanics [23–25].

Remarkably, a recent breakthrough [26–28] has put the understanding of thermalization in
quantum systems on more solid foundations than the one discussed so far for classical systems.
This breakthrough falls under the title of the eigenstate thermalization hypothesis (ETH). This
hypothesis can be formulated as a mathematical ansatz with strong predictive powers [29]. ETH
and its implications for statistical mechanics and thermodynamics are the subject of the review.
As we discuss, ETH combines ideas of chaos and typical configurations in a clear mathemati-
cal form that is unparalleled in classical systems. This is remarkable considering that, in some
sense, the relation between microscopic dynamics and statistical mechanics is more subtle in
quantum mechanics than in classical mechanics. In fact, in quantum mechanics one usually does
not use the notion of phase space as one cannot measure the positions and momenta of particles
simultaneously. The equation dictating the dynamics (Schrödinger’s equation) is linear which
implies that the key ingredient leading to chaos in classical systems, that is, nonlinear equations
of motion, is absent in quantum systems.

As already noted by von Neumann in 1929, when discussing thermalization in isolated quan-
tum systems one should focus on physical observables as opposed to wave functions or density
matrices describing the entire system [30]. This approach is similar to the one described above for
classical systems, in which the focus is put on macroscopic observables and “typical” configura-
tions. In this spirit, ETH states that the eigenstates of generic quantum Hamiltonians are “typical”
in the sense that the statistical properties of physical observables2 are the same as those predicted
by the microcanonical ensemble. As we will discuss, ETH implies that the expectation values
of such observables as well as their fluctuations in isolated quantum systems far from equilib-
rium relax to (nearly) time-independent results that can be described using traditional statistical
mechanics ensembles [26–28]. This has been verified in several quantum lattice systems and,
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244 L. D’Alessio et al.

according to ETH, should occur in generic many-body quantum systems. We also discuss how
ETH is related to quantum chaos in many-body systems, a subject pioneered by Wigner in the
context of Nuclear Physics [31]. Furthermore, we argue that one can build on ETH not only to
understand the emergence of a statistical mechanics description in isolated quantum systems, but
also to derive basic thermodynamic relations, linear response relations, and fluctuation theorems.

When thinking about the topics discussed in this review some may complain about the fact
that, unless the entire universe is considered, there is no such thing as an isolated system, that is,
that any description of a system of interest should involve a bath of some sort. While this obser-
vation is, strictly speaking, correct, it is sometimes experimentally irrelevant. The time scales
dictating internal equilibration in “well-isolated” systems can be much faster than the time scales
introduced by the coupling to the “outside world”. It then makes sense to question whether, in
experiments with well-isolated systems, observables can be described using statistical mechanics
on time scales much shorter than those introduced by the coupling to the outside world. This
question is of relevance to current experiments with a wide variety of systems. For example, in
ultracold quantum gases that are trapped in ultrahigh vacuum by means of (up to a good approx-
imation) conservative potentials [32,33]. The near unitary dynamics of such systems has been
observed in beautiful experiments on collapse and revival phenomena of bosonic [34–36] and
fermionic [37] fields, lack of relaxation to the predictions of traditional ensembles of statistical
mechanics [38–40], and dynamics in optical lattices that were found to be in very good agreement
with numerical predictions for unitary dynamics [41]. In optical lattice experiments, the energy
conservation constraint, imposed by the fact that the system are “isolated”, has also allowed
the observation of counterintuitive phenomena such as the formation of stable repulsive bound
atom pairs [42] and quantum distillation [43] in ultracold bosonic systems. Other examples of
nearly isolated systems include nuclear spins in diamond [44], pump–probe experiments in cor-
related materials in which dynamics of electrons and holes are probed on time scales much faster
than the relaxation time associated with electron–phonon interactions [45,46], and ensembles of
ultra-relativistic particles generated in high-energy collisions [47].

This review can naturally be separated in two parts, and an addendum. In the first part, Sec-
tions 2–4, we briefly introduce the concept of quantum chaos, discuss its relation to random
matrix theory (RMT), and calculate its implications to observables. We then introduce ETH,
which is a natural extension of RMT, and discuss its implications to thermalization in isolated
systems, that is, relaxation of observables to the thermal equilibrium predictions. We illustrate
these ideas with multiple numerical examples. In the second part, Sections 5–7, we extend our
discussion of the implications of quantum chaos and ETH to dynamical processes. We show
how one can use quantum chaos and ETH to derive various thermodynamic relations (such as
fluctuation theorems, fluctuation–dissipation relations, Onsager relations, and Einstein relations),
determine leading finite-size corrections to those relations, and, in some cases, generalize them
(e.g. the Onsager relation) beyond equilibrium. Finally, in the addendum (Section 8), we discuss
the relaxation dynamics and description after relaxation of integrable systems after a quench. We
introduce the generalized Gibbs ensemble (GGE), and, using time-dependent perturbation theory,
show how it can be used to derive kinetic equations. We note that some of these topics have been
discussed in other recent reviews [48–53] and special journal issues [54,55].

2. Chaos and random matrix theory (RMT)
2.1. Classical chaos
In this section, we very briefly discuss chaotic dynamics in classical systems. We refer the readers
to Refs. [56,57], and the literature therein, for further information about this topic. As the focus of
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Figure 1. Examples of trajectories of a particle bouncing in a cavity: (a) non-chaotic circular and (b) chaotic
Bunimovich stadium. The images were taken from scholarpedia [60].

this review is on quantum chaos and the eigenstate thermalization hypothesis, we will not attempt
to bridge classical chaos and thermalization. This has been a subject of continuous controversies.

While there is no universally accepted rigorous definition of chaos, a system is usually con-
sidered chaotic if it exhibits a strong (exponential) sensitivity of phase-space trajectories to small
perturbations. Although chaotic dynamics are generic, there is a class of systems for which
dynamics are not chaotic. They are known as integrable systems [58]. Specifically, a classical
system whose Hamiltonian is H(p, q), with canonical coordinates q = (q1, . . . , qN ) and momenta
p = (p1, . . . , pN ), is said to be integrable if it has as many functionally independent conserved
quantities I = (I1, . . . , IN ) in involution as degrees of freedom N :

{Ij, H} = 0, {Ij, Ik} = 0 where {f , g} =
∑

j=1,N

∂f
∂qj

∂g
∂pj

− ∂f
∂pj

∂g
∂qj

. (1)

From Liouville’s integrability theorem [59], it follows that there is a canonical transformation
(p, q) → (I,") (where I," are called action-angle variables) such that H(p, q) = H(I) [58].
As a result, the solutions of the equations of motion for the action-angle variables are trivial:
Ij(t) = I0

j = constant, and "j(t) = #jt +"j(0). For obvious reasons, the motion is referred to as
taking place on an N-dimensional torus, and it is not chaotic.

To get a feeling for the differences between integrable and chaotic systems, in Figure 1, we
illustrate the motion of a particle in both an integrable and a chaotic two-dimensional cavity [60].
Figure 1(a) illustrates the trajectory of a particle in an integrable circular cavity. It is visually
apparent that the trajectory is a superposition of two periodic motions along the radial and angu-
lar directions. This is a result of the system having two conserved quantities, energy and angular
momentum [61]. Clearly, the long-time average of the particle density does not correspond to a
uniform probability which covers phase space. Figure 1(b), on the other hand, shows a trajec-
tory of a particle in a chaotic Bunimovich stadium [10], which looks completely random. If one
compares two trajectories that are initially very close to each other in phase space one finds that,
after a few bounces against the walls, they become uncorrelated both in terms of positions and
directions of motion. This is a consequence of chaotic dynamics.

There are many examples of dynamical systems that exhibit chaotic behavior. A necessary,
and often sufficient, condition for chaotic motion to occur is that the number of functionally
independent conserved quantities (integrals of motion), which are in involution, is smaller than
the number of degrees of freedom. Otherwise, as mentioned before, the system is integrable and
the dynamics is “simple”. This criterion immediately tells us that the motion of one particle,
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without internal degrees of freedom, in a one-dimensional system, described by a static Hamil-
tonian, is integrable. The energy provides a unique (up to a sign) relation between the coordinate
and the momentum of the particle. In two dimensions, energy conservation is not sufficient to
constrain the two components of the momentum at a given position in space, and chaos is pos-
sible. However, if an additional conservation law is present, for example, angular momentum in
the example of Figure 1(a), then the motion is regular. As a generalization of the above, a many-
particle system is usually considered chaotic if it does not have an extensive number of conserved
quantities. For example, an ensemble of noninteracting particles in high-dimensional systems is
not chaotic in this sense, even if each particle exhibits chaotic motion in the part of phase space
associated with its own degrees of freedom. This due to the fact that the energy of each particle
is separately conserved. However, one expects that interactions between the particles will lead to
chaotic motion.

It is natural to ask what happens to an integrable system in the presence of a small integra-
bility breaking perturbation. The KAM theorem (after Kolmogorov, Arnold, and Moser [62–64])
states that, under quite general conditions and for systems with a finite number of degrees of
freedom, most of the tori that foliate phase space in the integrable limit persist under small per-
turbations [59]. This means that, in finite systems, there is a crossover between regular and chaotic
dynamics.

It is instructive to see how chaos emerges in simple system. The easiest way to do this is
to study one particle in one dimension and remove the energy conservation by applying a time-
dependent protocol. Very well-studied examples of such driven systems (usually exhibiting a
coexistence of chaotic and regular motion in different parts of phase space) include the Fermi–
Ulam model [65], the Kapitza pendulum [66], and the kicked rotor [67,68]. The latter example
provides, perhaps, the simplest realization of a chaotic system. As an illustration, we discuss it in
detail in Appendix A.

2.2. Random matrix theory
A focus of this review is on eigenstate thermalization which, as we argue in the following, is
closely related to quantum chaos (see, e.g. Refs.[69,70], for numerical studies that discuss it). In
this section, we review results from quantum chaos that will be needed later. We refer the readers
to more complete reviews on quantum chaos and RMT for further details [71–74].

From the early days of quantum mechanics, it was clear that the classical notion of chaos
does not directly apply to quantum-mechanical systems. The main reason is that Schrödinger’s
equation is linear and therefore cannot have exponentially departing trajectories for the wave
functions. As a matter of fact, the overlap between two different quantum states, evolved with
the same Hamiltonian, is constant in time. Also, while quantum mechanics can be formulated
in a phase-space language, for example, using the Wigner–Weyl quantization [75,76], one still
does not have the notion of a trajectory (and thus its sensitivity to small perturbations) since
coordinates and momenta of particles cannot be defined simultaneously due to the uncertainty
principle. It is then natural to ask what is the analogue of chaotic motion in quantum systems.

To better understand this question, let us first consider the single-particle classical limit. For
integrable systems, the physics was understood in the early days of quantum mechanics, based
on Bohr’s initial insight. Along allowed trajectories, the classical reduced action satisfies the
quantization condition: ∮

pdq ≈ 2π!n. (2)

Namely, the classical action is quantized in units of ". In 1926, this conjecture was formalized
by what is now known as the WKB (after Wentzel, Kramers, and Brillouin) approximation [77].
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Essentially, the WKB quantization implies that, in the semi-classical limit, one has to discretize
(quantize) classical trajectories. In chaotic systems, the situation remained unclear for a very long
time. In particular, it was not clear how to quantize classical chaotic trajectories, which are not
closed (in phase space). Initial attempts to resolve these issues go back to Einstein who wrote a
paper about them already in 1917 (see Ref. [78] for details). However, the question was largely
ignored until the 1970s when, after a pioneering work by Gutzwiller [79], it became the focus
of much research broadly falling under the title of quantum chaos. To this day, many questions
remain unresolved, including the precise definition of quantum chaos [80].

A set of crucial results on which quantum chaos builds came from works of Wigner [31,81,82]
who, followed by Dyson [83] and others, developed a theory for understanding the spectra of
complex atomic nuclei. This theory is now known as RMT [73]. RMT became one of the cor-
nerstones of modern physics and, as we explain later, underlies our understanding of eigenstate
thermalization. Wigner’s original idea was that it is hopeless to try to predict the exact energy lev-
els and corresponding eigenstates of complex quantum-mechanical systems such as large nuclei.
Instead, one should focus on their statistical properties. His second insight was that, if one looks
into a small energy window where the density of states is constant, then the Hamiltonian, in a
non fine-tuned basis, will look essentially like a random matrix. Therefore, by studying statistical
properties of random matrices (subject to the symmetries of the Hamiltonian of interest, such as
time reversal symmetry), one can gain insights on the statistical properties of energy levels and
eigenstates of complex systems. This latter insight was very revolutionary and counterintuitive.
It should be noted that whenever we attempt to diagonalize many-body physical Hamiltonians,
we usually write them in special bases in which the resulting matrices are very sparse and the
nonzero matrix elements are anything but random. This, however, does not contradict Wigner’s
idea which deals with “generic” bases.

The main ideas of RMT and the statistics of the energy levels (known as Wigner–Dyson
statistics) can be understood using 2 × 2 Hamiltonians whose entries are random numbers taken
from a Gaussian distribution [71–74]:

Ĥ
.=

⎡

⎢⎢⎣

ε1
V√

2
V ∗
√

2
ε2

⎤

⎥⎥⎦ . (3)

Here, the factor 1/
√

2 in the off-diagonal matrix elements is introduced since, as it will become
clear soon, this choice leaves the form of the Hamiltonian invariant under basis rotations. The
Hamiltonian in Equation (3) can be easily diagonalized and the eigenvalues are

E1,2 = ε1 + ε2

2
± 1

2

√
(ε1 − ε2)2 + 2|V |2. (4)

If the system is invariant under time reversal (e.g. there is no external magnetic field), then the
Hamiltonian can be written as a real matrix, so V = V ∗. For simplicity, we draw ε1, ε2, and
V from a Gaussian distribution with zero mean and variance σ . Using Equation (4), one can
compute the statistics of the level separations P(E1 − E2 = ω) ≡ P(ω) (here and in what follows,
unless otherwise specified, we set " to unity):

P(ω) = 1
(2π)3/2σ 3

∫
dε1

∫
dε2

∫
dVδ(

√
(ε1 − ε2)2 + 2V 2 − ω) exp

(
−ε

2
1 + ε2

2 + V 2

2σ 2

)
. (5)
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Before evaluating the integral over ε1, we make a change of variables ε2 = ε1 +
√

2ξ . Then,
integrating over ε1, which is a Gaussian integral, we are left with

P(ω) = 1
2πσ 2

∫∫
dξ dVδ(

√
2ξ 2 + 2V 2 − ω) exp

(
−ξ

2 + V 2

2σ 2

)
. (6)

The latter integrals can be evaluated using cylindrical coordinates, V = r cos(x), ξ = r sin(x),
and one finds:

P(ω) = ω

2σ 2
exp

[
− ω2

4σ 2

]
. (7)

In the absence of time-reversal symmetry, ℜ[V ] and ℑ[V ] can be treated as independent random
variables and, carrying out a similar calculation using spherical coordinates, leads to:

P(ω) = ω2

2
√
π(σ 2)3/2

exp
[
− ω2

4σ 2

]
. (8)

These distributions exhibit some remarkable (generic) properties: (i) there is level repulsion
since the probability P(ω) of having energy separation ω vanishes as ω → 0 and (ii) the proba-
bility decays as a Gaussian at large energy separation. The two distributions (7) and (8) can be
written as

P(ω) = Aβωβ exp[−Bβω2], (9)

where β = 1 in systems with time-reversal symmetry and β = 2 in systems that do not have
time-reversal symmetry. The coefficients Aβ and Bβ are found by normalizing P(ω) and fixing
the mean level spacing. The normalized distributions, with an average level spacing set to one,
are given by

P1(ω) = π

2
ω exp

[
−π

4
ω2
]

, P2(ω) = 32
π2
ω2 exp

[
− 4
π
ω2
]

. (10)

It turns out that the features described above are not unique to the 2 × 2 Hamiltonian (3). In
fact, this simple example can be generalized to larger matrices. In particular, one can define an
ensemble of matrices drawn from a random Gaussian distribution [72]:

P(Ĥ) ∝ exp
[
− β

2a2
Tr(Ĥ2)

]
≡ exp

⎡

⎣− β

2a2

∑

ij

HijHji

⎤

⎦ , (11)

where a sets the overall energy scale and, as before, β = 1 refers to systems with time-reversal
symmetry where all entries in the Hamiltonian are real and satisfy Hij = Hji, that is, the so-
called Gaussian orthogonal ensemble (GOE), and β = 2 refers to systems without time-reversal
symmetry, where the entities are complex and satisfy Hij = H∗

ji , that is, the so-called Gaussian
unitary ensemble (GUE).3 Note that the factor of

√
2 in Equation (3) ensures that the Hamiltonian

is described by the distribution (11).
The choice of the ensemble in Equation (11) is a natural one. The ensemble must be invariant

under any orthogonal (GOE) or unitary (GUE) transformation, so the probability distribution can
only depend on the invariant Tr(Ĥ2). It is Gaussian because Tr(Ĥ2) is a sum of many indepen-
dent contributions and should therefore satisfy the central limit theorem. We will not discuss the
details of the derivations of the level statistics for such random ensembles, which can be found in
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Refs. [71–74,84]. We only point out that the exact level spacing distributions (known as Wigner–
Dyson distributions) do not have a closed analytic form. However, they are qualitatively (and
quantitatively) close to the Wigner Surmise (9).

Following Wigner’s ideas, it was possible to explain the statistical properties of the spectra of
complex nuclei. However, for a long time, it was not clear which are the “complex systems” for
which RMT is generally applicable. In 1984, Bohigas, Giannoni, and Schmit, studying a single
particle placed in an infinite potential well with the shape of a Sinai billiard, found that at high
energies (i.e. in the semi-classical limit), and provided that one looks at a sufficiently narrow
energy window, the level statistics is described by the Wigner–Dyson distribution [85]. Based on
this discovery, they conjecture that the level statistics of quantum systems that have a classically
chaotic counterpart are described by RMT (this is known as the BGS conjecture). This conjecture
has been tested and confirmed in many different setups (we will show some of them in the next
section). To date, only non-generic counterexamples, such as arithmetic billiards, are known to
violate this conjecture [86]. Therefore, the emergence of Wigner–Dyson statistics for the level
spacings is often considered as a defining property of quantum chaotic systems, whether such
systems have a classical counterpart or not.

2.2.1. Chaotic eigenfunctions

RMT allows one to make an important statement about the eigenvectors of random matrices. The
joint probability distribution of components of eigenvectors can be written as [72,87]

PGOE(ψ1,ψ2, . . . ,ψN ) ∝ δ

⎛

⎝
∑

j

ψ2
j − 1

⎞

⎠ , PGUE(ψ1,ψ2, . . . ,ψN ) ∝ δ

⎛

⎝
∑

j

|ψj|2 − 1

⎞

⎠ ,

(12)

where ψj are the components of the wave functions in some fixed basis. This form follows from
the fact that, because of the orthogonal (unitary) invariance of the random matrix ensemble, the

distribution can depend only on the norm
√∑

j ψ
2
j (
√∑

j |ψ2
j |) of the eigenvector, and must be

proportional to the δ-functions in Equation (12) because of the normalization [87]. Essentially,
Equation (12) states that the eigenvectors of random matrices are random unit vectors, which
are either real (in the GOE) or complex (in the GUE). Of course, different eigenvectors are not
completely independent since they need to be orthogonal to each other. However, because two
uncorrelated random vectors in a large-dimensional space are, in any case, nearly orthogonal, in
many instances the correlations due to this orthogonality condition can be ignored.

One may wonder about the classical limit of quantum eigenvectors. The latter are stationary
states of the system and should therefore correspond to stationary (time-averaged) trajectories in
the classical limit. In integrable systems with a classical limit, the quantum eigenstates factorize
into a product of WKB-like states describing the stationary phase-space probability distribution
of a particle corresponding to one of the trajectories [77]. However, if the system is chaotic,
the classical limit of the quantum eigenstates is ill-defined. In particular, in the classical limit,
there is no smooth (differentiable) analytic function that can describe the eigenstates of chaotic
systems. This conclusion follows from the BGS conjecture, which implies that the eigenstates
of a chaotic Hamiltonian in non-fine-tuned bases, including the real space basis, are essentially
random vectors with no structure.

Let us address a point that often generates confusion. Any given (Hermitian) Hamiltonian,
whether it is drawn from a random matrix ensemble or not, can be diagonalized and its eigen-
vectors form a basis. In this basis, the Hamiltonian is diagonal and RMT specifies the statistics
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of the eigenvalues. The statistical properties of the eigenstates are specified for an ensemble of
random Hamiltonians in a fixed basis. If we fix the basis to be that of the eigenkets of the first
random Hamiltonian we diagonalize, that basis will not be special for other randomly drawn
Hamiltonians. Therefore, all statements made will hold for the ensemble even if they fail for one
of the Hamiltonians. The issue of the basis becomes more subtle when one deals with physical
Hamiltonians. Here, one can ask what happens if we diagonalize a physical Hamiltonian and use
the eigenvectors obtained as a basis to write a slightly modified version of the same Hamiltonian
(which is obtained, say, by slightly changing the strength of the interactions between particles).
As we discuss below (see also Ref. [72]), especially in the context of many-body systems, the
eigenstates of chaotic quantum Hamiltonians [which are away from the edge(s) of the spectrum]4

are very sensitive to small perturbations. Hence, one expects that the perturbed Hamiltonian will
look like a random matrix when written in the unperturbed basis. In that sense, writing a Hamil-
tonian in its own basis can be considered to be a fine-tuning of the basis. It is in this spirit that one
should take Wigner’s insight. The sensitivity just mentioned in chaotic quantum systems is very
similar to the sensitivity of classical chaotic trajectories to either initial conditions or the details
of the Hamiltonian.

2.2.2. The structure of the matrix elements of operators

Let us now analyze the structure of matrix elements of Hermitian operators

Ô =
∑

i

Oi|i⟩⟨i| where Ô|i⟩ = Oi|i⟩, (13)

within RMT. For any given random Hamiltonian, for which the eigenkets are denoted by |m⟩
and |n⟩,

Omn ≡ ⟨m|Ô|n⟩ =
∑

i

Oi⟨m|i⟩⟨i|n⟩ =
∑

i

Oi(ψ
m
i )∗ψn

i . (14)

Here, ψm
i ≡ ⟨i|m⟩ and similarly for ψn

i . Recall that the eigenstates of random matrices in any
basis are essentially random orthogonal unit vectors. Therefore, to leading order in 1/D, where
D is the dimension of the Hilbert space, we have

(ψm
i )∗(ψn

j ) = 1
D
δmnδij, (15)

where the average (ψm
i )∗(ψn

j ) is over random eigenkets |m⟩ and |n⟩. This implies that one has

very different expectation values for the diagonal and off-diagonal matrix elements of Ô. Indeed,
using Equations (14) and (15), we find

Omm = 1
D
∑

i

Oi ≡ Ō, (16)

and

Omn = 0 for m ̸= n. (17)
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Moreover, the fluctuations of the diagonal and off-diagonal matrix elements are suppressed by
the size of the Hilbert space. For the diagonal matrix elements

O2
mm − Omm

2 =
∑

i,j

OiOj(ψ
m
i )∗ψm

i (ψm
j )∗ψm

j −
∑

i,j

OiOj(ψ
m
i )∗ψm

i (ψm
j )∗ψm

j

=
∑

i

O2
i (|ψm

i |4 − (|ψm
i |2)2) = 3 − β

D2

∑

i

O2
i ≡ 3 − β

D
O2, (18)

where, as before, β = 1 for the GOE and β = 2 for the GUE. For the GOE (ψm
i are real numbers),

we used the relation (ψm
i )4 = 3[(ψm

i )2]2, while for the GUE (ψm
i are complex numbers), we

used the relation |ψm
i |4 = 2(|ψm

i |2)2. These results are a direct consequence of the Gaussian
distribution of the components of the random vector ψm

i . Assuming that none of the eigenvalues
Oi scales with the size of the Hilbert space, as is the case for physical observables, we see that
the fluctuations of the diagonal matrix elements of Ô are inversely proportional to the square root
of the size of the Hilbert space.

Likewise, for the absolute value of the off-diagonal matrix elements, we have

|Omn|2 − |Omn|2 =
∑

i

O2
i |ψm

i |2|ψn
i |2 = 1

D
O2. (19)

Combining these expressions, we see that, to leading order in 1/D, the matrix elements of any
operator can be written as

Omn ≈ Ōδmn +

√
O2

D
Rmn, (20)

where Rmn is a random variable (which is real for the GOE and complex for the GUE) with
zero mean and unit variance (for the GOE, the variance of the diagonal components Rmm is 2).
It is straightforward to check that the ansatz (20) indeed correctly reproduces the mean and the
variance of the matrix elements of Ô given by Equations (16)–(19).

In deriving Equations (16)–(19), we averaged over a fictitious ensemble of random Hamilto-
nians. However, from Equation (20), it is clear that for large D the fluctuations of operators are
small and thus one can use the ansatz (20) for a given fixed Hamiltonian.

2.3. Berry–Tabor conjecture
In classical systems, an indicator of whether they are integrable or chaotic is the temporal behav-
ior of nearby trajectories. In quantum systems, the role of such an indicator is played by the energy
level statistics. In particular, for chaotic systems, as we discussed before, the energy levels follow
the Wigner–Dyson distribution. For quantum integrable systems, the question of level statistics
was first addressed by Berry and Tabor in 1977 [88]. For a particle in one dimension, which we
already said exhibits non-chaotic classical dynamics if the Hamiltonian is time independent, we
know that if we place it in a harmonic potential all levels are equidistant, while if we place it in an
infinite well the spacing between levels increases as the energy of the levels increases. Hence, the
statistics of the level spacings strongly depends on the details of the potential considered. This
is unique to one particle in one dimension. It changes if one considers systems whose classical
counterparts have more than one degree of freedom, for example, one particle in higher dimen-
sional potentials, or many particles in one dimension. A very simple example of a non-ergodic
system, with many degrees of freedom, would be an array of independent harmonic oscillators
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with incommensurate frequencies. These can be, for example, the normal modes in a harmonic
chain. Because these oscillators can be diagonalized independently, the many-body energy levels
of such a system can be computed as

E =
∑

j

njωj, (21)

where nj are the occupation numbers and ωj are the mode frequencies. If we look into high ener-
gies, E, when the occupation numbers are large, nearby energy levels (which are very closely
spaced) can come from very different sets of {nj}. This means that the energy levels E are effec-
tively uncorrelated with each other and can be treated as random numbers. Their distribution then
should be described by Poisson statistics, that is, the probability of having n energy levels in a
particular interval [E, E + δE] will be

Pn = λn

n!
exp[−λ], (22)

where λ is the average number of levels in that interval. Poisson and Wigner–Dyson statistics are
very different in that, in the former there is no level repulsion. For systems with Poisson statistics,
the distribution of energy level separations ω (with mean separation set to one) is

P0(ω) = exp[−ω], (23)

which is very different from the Wigner Surmise (10). The statement that, for quantum sys-
tems whose corresponding classical counterpart is integrable, the energy eigenvalues generically
behave like a sequence of independent random variables, that is, exhibit Poisson statistics, is
now known as the Berry–Tabor conjecture [88]. While this conjecture describes what is seen in
many quantum systems whose classical counterpart is integrable, and integrable quantum sys-
tems without a classical counterpart, there are examples for which it fails (such as the single
particle in the harmonic potential described above and other harmonic systems [89]). Deviations
from Poisson statistics are usually the result of having symmetries in the Hamiltonian that lead
to extra degeneracies resulting in commensurability of the spectra.

The ideas discussed above are now regularly used when dealing with many-particle systems.
The statistics of the energy levels of many-body Hamiltonians serves as one of the main indi-
cators of quantum chaos or, conversely, of quantum integrability. As the energy levels become
denser, the level statistics asymptotically approaches either the Wigner–Dyson or the Poisson
distribution. It is interesting to note that in few-particle systems, like a particle in a billiard, the
spectra become denser by going to the semi-classical limit by either increasing the energy or
decreasing Planck’s constant, while in many-particle systems one can achieve this by going to
the thermodynamic limit. This means that the level statistics indicators can be used to charac-
terize whether a quantum system is chaotic or not even when it does not have a classical limit.
This is the case, for example, for lattice systems consisting of spins 1/2 or interacting fermions
described within the one-band approximation.

Finally, as we discuss later, the applicability of RMT requires that the energy levels analyzed
are far from the edges of the spectrum and that the density of states as a function of energy is
accounted for. The first implies that one needs to exclude, say, the ground state and low-lying
excited states and the states with the highest energies (if the spectrum is bounded from above).
It is plausible that in generic systems only states within subextensive energy windows near the
edges of the spectrum are not described by RMT.
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2.4. The semi-classical limit and Berry’s conjecture
One of the most remarkable connections between the structure of the eigenstates of chaotic
systems in the semi-classical limit and classical chaos was formulated by Berry [90], and is
currently known as Berry’s conjecture. (In this section, we return " to our equations since it will
be important for taking the classical limit ! → 0.)

In order to discuss Berry’s conjecture, we need to introduce the Wigner function W(x, p),
which is defined as the Wigner–Weyl transform of the density matrix ρ̂ [75,76]. For a pure state,
ρ̂ ≡ |ψ⟩⟨ψ |, one has

W(x, p) = 1
(2π!)3N

∫
d3Nξψ∗

(
x + ξ

2

)
ψ

(
x − ξ

2

)
exp

[
−i

pξ

!

]
, (24)

where x, p are the coordinates and momenta of N-particles spanning a 6N-dimensional phase
space. For a mixed state, one replaces the product

ψ∗
(

x + ξ

2

)
ψ

(
x − ξ

2

)
→
〈
x − ξ

2

∣∣∣∣ ρ̂
∣∣∣∣x + ξ

2

〉
≡ ρ

(
x − ξ

2
, x + ξ

2

)
, (25)

where ρ̂ is the density matrix. One can check that, similarly, the Wigner function can be defined
by integrating over momentum

W(x, p) = 1
(2π!)3N

∫
d3Nηφ∗

(
p + η

2

)
φ
(

p − η

2

)
exp

[
i
xη

!

]
, (26)

where φ(p) is the Fourier transform of ψ(x). From either of the two representations, it
immediately follows that

∫
d3N pW(x, p) = |ψ(x)|2 and

∫
d3N xW(x, p) = |φ(p)|2. (27)

The Wigner function is uniquely defined for any wave function (or density matrix) and plays
the role of a quasi-probability distribution in phase space. In particular, it allows one to compute
an expectation value of any observable Ô as a standard average [75,76]:

⟨Ô⟩ =
∫

d3N x d3N pOW (x, p)W(x, p), (28)

where OW (x, p) is the Weyl symbol of the operator Ô

OW (x, p) = 1
(2π!)3N

∫
d3Nξ

〈
x − ξ

2

∣∣∣∣ Ô
∣∣∣∣x + ξ

2

〉
exp

[
−i

pξ

!

]
. (29)

We note that instead of the coordinate and momentum phase-space variables one can, for exam-
ple, use coherent state variables to represent electromagnetic or matter waves, angular momentum
variables to represent spin systems, or any other set of canonically conjugate variables [76].

Berry’s conjecture postulates that, in the semi-classical limit of a quantum system whose
classical counterpart is chaotic, the Wigner function of energy eigenstates (averaged over a
vanishingly small phase space) reduces to the microcanonical distribution. More precisely, define

W(X, P) =
∫

0#1

dx1 dp1

(2π!)
· · ·
∫

0#N

dxN dpN

(2π!)
W(x, p), (30)

where0#j is a small phase-space volume centered around the point Xj, Pj. This volume is chosen
such that, as ! → 0, 0#j → 0 and at the same time !/0#j → 0. Berry’s conjecture then states
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that, as ! → 0,

W(X, P) = 1∫
d3N X d3N P δ[E − H(X, P)]

δ[E − H(X, P)], (31)

where H(X, P) is the classical Hamiltonian describing the system, and δ[· · · ] is a one-
dimensional Dirac delta function. In Berry’s words, “ψ(x) is a Gaussian random function of
x whose spectrum at x is simply the local average of the Wigner function W(x, p)”. Berry also
considered quantum systems whose classical counterpart is integrable. He conjectured that the
structure of the energy eigenstates of such systems is very different [90].

It follows from Berry’s conjecture, see Equations (28) and (31), that the energy eigenstate
expectation value of any observable in the semi-classical limit (of a quantum system whose
classical counterpart is chaotic) is the same as a microcanonical average.

For a dilute gas of hard spheres, this was studied by Srednicki in 1994 [27]. Let us analyze
the latter example in detail. Srednicki argued that the eigenstate corresponding to a high-energy
eigenvalue En can chosen to be real and written as

ψn(x) = Nn

∫
d3N pAn(p)δ(p2 − 2mEn) exp[ipx/!], (32)

where Nn is a normalization constant, and A∗
n(p) = An(−p). In other words, the energy eigen-

states with energy En are given by a superposition of plane-waves with momentum p such that
En = p2/(2m). Assuming Berry’s conjecture applies, An(p) was taken to be a Gaussian random
variable satisfying

⟨Am(p)An(p′)⟩EE = δmn
δ3N (p + p′)

δ(|p|2 − |p′|2)
. (33)

Here, the average should be understood as over a fictitious “eigenstate ensemble” of energy eigen-
states of the system indicated by “EE”. This replaces the average over a small phase-space volume
used by Berry. The denominator in this expression is needed for proper normalization.

From these assumptions, it follows that

⟨φ∗
m(p)φn(p′)⟩EE = δmnN2

n (2π!)3Nδ(p2 − 2mEn)δ
3N
V (p − p′), (34)

where φn(p) is the 3N-dimensional Fourier transform of ψn(x), and δV (p) ≡ (2π!)−3N
∫

V d3N x
exp[ipx/!] and V = L3 is the volume of the system. It is straightforward to check, using Equa-
tions (34) and (26), that the Wigner function averaged over the eigenstate ensemble is indeed
equivalent to the microcanonical distribution [Equation (31)].

Using Equations (32)–(34), one can compute observables of interest in the eigenstates of the
Hamiltonian. For example, substituting δV (0) → [L/(2π!)]3N , one can calculate the momentum
distribution function of particles in the eigenstate ensemble

⟨φnn(p1)⟩EE ≡
∫

d3p2 · · · d3pN ⟨φ∗
n (p)φn(p)⟩EE = N2

n L3N
∫

d3p2 · · · d3pNδ(p2 − 2mEn). (35)

Finally, using the fact that IN (A) ≡
∫

dN pδ(p2 − A) = (πA)N/2/[1(N/2)A], which through the
normalization of φn(p) allows one to determine N−2

n = L3N I3N (2mEn), one obtains

⟨φnn(p1)⟩EE = I3N−3(2mEn − p2
1)

I3N (2mEn)
= 1(3N/2)

1[3(N − 1)/2]

(
1

2πmEn

)3/2 (
1 − p2

1

2mEn

)(3N−5)/2

.

(36)
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Defining a microcanonical temperature using En = 3NkBTn/2, where kB is the Boltzmann
constant, and taking the limit N → ∞ one gets

⟨φnn(p1)⟩EE =
(

1
2πmkBTn

)3/2

exp
(

− p2
1

2mkBTn

)
, (37)

where we used that limN→∞ 1(N + B)/[1(N)NB] = 1, which is valid for B ∈ R. We imme-
diately see that the result obtained for ⟨φnn(p1)⟩EE is the Maxwell–Boltzmann distribution of
momenta in a thermal gas.

One can go a step further and show that the fluctuations of φnn(p1) about ⟨φnn(p1)⟩EE are
exponentially small in the number of particles [27]. Furthermore, it can be shown that if one
requires the wave function ψn(x) to be completely symmetric or completely antisymmetric one
obtains, instead of the Maxwell–Boltzmann distribution in Equation (37), the (canonical) Bose–
Einstein or Fermi–Dirac distributions, respectively [27]. An approach rooted in RMT was also
used by Flambaum and Izrailev to obtain, starting from statistical properties of the structure
of chaotic eigenstates, the Fermi–Dirac distribution function in interacting fermionic systems
[91,92]. These ideas underlie the eigenstate thermalization hypothesis, which is the focus of this
review.

In closing this section, let us note that formulating a slightly modified conjecture one can also
recover the classical limit from the eigenstates. Namely, one can define a different coarse-graining
procedure for the Wigner function:

⟨W(x, p)⟩ = 1
NδE

∑

m∈Em±δE
Wm(x, p), (38)

where the sum is taken over all, NδE, eigenstates in a window δE, which vanishes in the limit
! → 0 but contains an exponential (in the number of degrees of freedom) number of levels. We
anticipate that in the limit ! → 0 the function ⟨W(x, p)⟩ also reduces to the right-hand side (RHS)
of Equation (30), that is,

⟨W(x, p)⟩ = 1∫
d3N X d3N Pδ[E − H(X, P)]

δ[E − H(X, P)]. (39)

However, this result does not require the system to be ergodic. While this conjecture has little
to do with chaos and ergodicity, it suggests a rigorous way of defining classical microcanonical
ensembles from quantum eigenstates. This is opposed to individual quantum states, which as we
discussed do not have a well-defined classical counterpart.

3. Quantum chaos in physical systems
3.1. Examples of Wigner–Dyson and Poisson statistics
Random matrix statistics has found many applications since its introduction by Wigner. They
extend far beyond the framework of the original motivation, and have been intensively explored
in many fields (for a recent comprehensive review, see Ref. [93]). Examples of quantum sys-
tems whose spectra exhibit Wigner–Dyson statistics are: (i) heavy nuclei [94], (ii) Sinai billiards
(square or rectangular cavities with circular potential barriers in the center) [85], which are clas-
sically chaotic as the Bunimovich stadium in Figure 1, (iii) highly excited levels5 of the hydrogen
atom in a strong magnetic field [95], (iv) Spin-1/2 systems and spin-polarized fermions in one-
dimensional lattices [69,70]. Interestingly, the Wigner–Dyson statistics is also the distribution of
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256 L. D’Alessio et al.

Figure 2. Nearest neighbor spacing distribution for the “Nuclear Data Ensemble” comprising 1726 spacings
(histogram) vs. normalized (to the mean) level spacing. The two lines represent predictions of the random
matrix GOE ensemble and the Poisson distribution. Taken from Ref. [96]. See also Ref. [71].

spacings between zeros of the Riemann zeta function, which is directly related to prime numbers.
In turn, these zeros can be interpreted as Fisher zeros of the partition function of a particular sys-
tem of free bosons (see Appendix B). In this section, we discuss in more detail some examples
originating from over 30 years of research.

Heavy nuclei – Perhaps the most famous example demonstrating the Wigner–Dyson statistics
is shown in Figure 2. That figure depicts the cumulative data of the level spacing distribution
obtained from slow neutron resonance data and proton resonance data of around 30 different
heavy nuclei [71,96]. All spacings are normalized by the mean level spacing. The data are
shown as a histogram and the two solid lines depict the (GOE) Wigner–Dyson distribution
and the Poisson distribution. One can see that the Wigner–Dyson distribution works very well,
confirming Wigner’s original idea.

Single particle in a cavity – Next, let us consider a much simpler setup, namely, the energy
spectrum of a single particle in a cavity. Here, we can contrast the Berry–Tabor and BGS conjec-
tures. To this end, in Figure 3, we show the distribution of level spacings for two cavities: (left
panel) an integrable rectangular cavity with sides a and b such that a/b = 4

√
5 and ab = 4π

and (right panel) a chaotic cavity constructed from two circular arcs and two line segments
(see inset) [80]. These two plots beautifully confirm the two conjectures. The distribution on
the left panel, as expected from the Berry–Tabor conjecture, is very well described by the Pois-
son distribution. This occurs despite the fact that the corresponding classical system has only
two degrees of freedoms [recall that in the argument used to justify the Berry–Tabor conjecture,
Equations (21)–(23), we relied on having many degrees of freedom]. The right panel depicts
a level distribution that is in perfect agreement with the GOE, in accordance with the BGS
conjecture.

Hydrogen atom in a magnetic field – A demonstration of a crossover between Poisson statis-
tics and Wigner–Dyson statistics can be seen in another single-particle system – a hydrogen atom
in a magnetic field. The latter breaks the rotational symmetry of the Coulomb potential and hence
there is no conservation of the total angular momentum. As a result, the classical system has
coexistence of regions with both regular (occurring at lower energies) and chaotic (occurring
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Figure 3. (Left panel) Distribution of 250,000 single-particle energy level spacings in a rectangular two-di-
mensional box with sides a and b such that a/b = 4

√
5 and ab = 4π . (Right panel) Distribution of 50,000

single-particle energy level spacings in a chaotic cavity consisting of two arcs and two line segments (see
inset). The solid lines show the Poisson (left panel) and the GOE (right panel) distributions. From Ref. [80].

Figure 4. The level spacing distribution of a hydrogen atom in a magnetic field. Different plots correspond
to different mean dimensionless energies Ê, measured in natural energy units proportional to B2/3, where B
is the magnetic field. As the energy increases, one observes a crossover between Poisson and Wigner–Dyson
statistics. The numerical results are fitted to a Brody distribution (solid lines) [87], and to a semi-classical
formula due to Berry and Robnik (dashed lines) [97]. From Ref. [95].

at higher energies) motion [98]. Results of numerical simulations (see Figure 4) show a clear
interpolation between Poisson and Wigner–Dyson level statistics as the dimensionless energy
(denoted by Ê) increases [95]. Note that at intermediate energies, the statistics is neither Poisso-
nian nor Wigner–Dyson, suggesting that the structure of the energy levels in this range is richer.
In the plots shown, the numerical results are fitted to a Brody distribution (solid lines) [87],
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258 L. D’Alessio et al.

which interpolates between the Poisson distribution and the GOE Wigner surmise, and to a semi-
classical formula due to Berry and Robnik (dashed lines) [97]. We are not aware of a universal
description of Hamiltonian ensembles corresponding to the intermediate distribution.

Lattice models – As we briefly mentioned earlier, RMT theory and the Berry–Tabor conjec-
ture also apply to interacting many-particle systems that do not have a classical counterpart. There
are several models in one-dimensional lattices that fall in this category. They allow one to study
the crossover between integrable and nonintegrable regimes by tuning parameters of the Hamilto-
nian [33]. A few of these models have been studied in great detail in recent years [69,70,99–104].
Here, we show results for a prototypical lattice model of spinless (spin-polarized) fermions with
nearest and next-nearest neighbor hoppings (with matrix elements J and J ′, respectively) and
nearest and next-nearest neighbor interactions (with strengths V and V ′, respectively) [69]. The
Hamiltonian can be written as

Ĥ =
L∑

j=1

[
−J(f̂ †

j f̂j+1 + H.c.) + V
(

n̂j − 1
2

)(
n̂j+1 − 1

2

)

− J ′(f̂ †
j f̂j+2 + H.c.) + V ′

(
n̂j − 1

2

)(
n̂j+2 − 1

2

)]
, (40)

where f̂j and f̂ †
j are fermionic annihilation and creation operators at site j, n̂j = f̂ †

j f̂j is the occu-
pation operator at site j, and L is the number of lattice sites. Periodic boundary conditions are
applied, which means that f̂L+1 ≡ f̂1 and f̂L+2 ≡ f̂2. A classical limit for this model can be obtained
at very low fillings and sufficiently high energies. In the simulations presented below, the filling
(N/L) has been fixed to 1/3. Therefore, quantum effects are important at any value of the energy.
In this example, we approach a dense energy spectrum, and quantum chaos, by increasing the
system size L. The Hamiltonian (40) is integrable when J ′ = V ′ = 0, and can be mapped (up to
a possible boundary term) onto the well-known spin-1/2 XXZ chain [33].

It is important to stress that Hamiltonian (40) is translationally invariant. This means that
when diagonalized in quasi-momentum space, different total quasi-momentum sectors (labeled
by k in what follows) are decoupled. In addition, some of those sectors can have extra space
symmetries, for example, k = 0 has reflection symmetry. Finally, if J ′ = 0, this model exhibits
particle–hole symmetry at half-filling. Whenever carrying out an analysis of the level spacing
distribution, all those discrete symmetries need to be accounted for, that is, one needs to look at
sectors of the Hamiltonian that are free of them. If one fails to do so, a quantum chaotic system
may appear to be integrable as there is no level repulsion between levels in different symmetry
sectors. All results reported in this review for models with discrete symmetries are obtained after
properly taking them into account.

In Figure 5(a)–5(g), we show the level spacing distribution P(ω) of a system described by
the Hamiltonian (40), with L = 24 (see Ref. [69] for further details), as the strength of the inte-
grability breaking terms is increased. Two features are immediately apparent in the plots: (i) for
J ′ = V ′ = 0, that is, at the integrable point, P(ω) is almost indistinguishable from the Poisson
distribution and (ii) for large values of the integrability breaking perturbation, P(ω) is almost
indistinguishable from a Wigner–Dyson distribution [GOE in this case, as Equation (40) is time-
reversal invariant]. In between, as in Figure 4, there is a crossover regime in which the distribution
is neither Poisson nor Wigner–Dyson. However, as made apparent by the results in panel (h), as
the system size increases the level spacing statistics becomes indistinguishable from the RMT
prediction at smaller values of the integrability breaking parameters. This suggests that, at least
for this class of models, an infinitesimal integrability breaking perturbation is sufficient to gen-
erate quantum chaos in the thermodynamic limit. Recent numerical studies have attempted to

D
ow

nl
oa

de
d 

by
 [N

or
th

er
n 

Ill
in

oi
s U

ni
ve

rs
ity

] a
t 0

4:
12

 0
1 

A
ug

us
t 2

01
6 



Advances in Physics 259

Figure 5. (a)–(g) Level spacing distribution of spinless fermions in a one-dimensional lattice with Hamil-
tonian (40). They are the average over the level spacing distributions of all k-sectors (see text) with no
additional symmetries (see Ref. [69] for details). Results are reported for L = 24, N = L/3, J = V = 1 (unit
of energy), and J ′ = V ′ (shown in the panels) vs. the normalized level spacing ω. The smooth continuous
lines are the Poisson and Wigner–Dyson (GOE) distributions. (h) Position of the maximum of P(ω), denoted
as ωmax, vs. J ′ = V ′, for three lattice sizes. The horizontal dashed line is the GOE prediction. Adapted from
Ref. [69].

quantify how the strength of the integrability breaking terms should scale with the system size for
the GOE predictions to hold in one dimension [105,106]. These works suggest that the strength
needs to be ∝ L−3 for this to happen, but the origin of such a scaling is not understood. Moreover,
it is unclear how generic these results are. In particular, in disordered systems that exhibit many-
body localization, it has been argued that the transition from the Poisson to the Wigner–Dyson
statistics occurs at a finite value of the interaction strength. This corresponds to a finite thresh-
old of the integrability breaking perturbation even in the thermodynamic limit (see Ref. [51] and
references therein).

3.2. The structure of many-body eigenstates
As we discussed in Section 2, RMT makes important predictions about the random nature of
eigenstates in chaotic systems. According to Equation (12), any eigenvector of a matrix belonging
to random matrix ensembles is a random unit vector, meaning that each eigenvectors is evenly
distributed over all basis states. However, as we show here, in real systems the eigenstates have
more structure. As a measure of delocalization of the eigenstates over a given fixed basis, one
can use the information entropy:

Sm ≡ −
∑

i

|ci
m|2 ln |ci

m|2, (41)

where

|m⟩ =
∑

i

ci
m|i⟩ (42)

is the expansion of the eigenstate |m⟩ over some fixed basis |i⟩. For the GOE, this entropy, irre-
spective of the choice of basis, should be SGOE = ln(0.48D) + O(1/D) [93], where D is the
dimensionality of the Hilbert space. However, numerical analyses of various physical systems
indicate that Sm is only generically bounded from above by the RMT prediction [69,102,107].
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260 L. D’Alessio et al.

Figure 6. Information entropy (normalized using the GOE prediction) of the eigenstates of spinless fermions
in a one-dimensional lattice with Hamiltonian (40). Results are reported for L = 18, 21, and 24, N = L/3,
J = V = 1 (unit of energy), and J ′ = V ′ (reported in the panels) vs. the energy of the eigenstates. The
information entropy is calculated in the basis of the eigenstates of the integrable Hamiltonian (J = V = 1
and J ′ = V ′ = 0), and in the k = 2 quasi-momentum sector (D is the number of states in that sector). See
also Ref. [69].

This situation is characteristic of both few-particle and many-particle systems. For concreteness,
we will illustrate this using the eigenstates of the Hamiltonian (40) (see Ref. [69] for details).
For the fixed basis |i⟩, we use the eigenstates of the integrable limit of this Hamiltonian, corre-
sponding to J ′ = V ′ = 0. The results of the numerical simulations for the normalized Shannon
entropy Sm/SGOE are shown in Figure 6 [we note that Sm and SGOE were computed within a single
quasi-momentum sector of the translationally invariant Hamiltonian (40)]. It is clear from the
figure that the entropy of the states in the middle of the spectrum approaches the RMT prediction
as the strength of the integrability breaking perturbation and the system size increase, while the
states near the edges of the spectrum remain “localized”. The latter, namely, that the lowest and
highest (if the spectrum is bounded) energy states are usually non-chaotic, is a generic feature of
physical systems with few-body interactions and no randomness.

Another implication of RMT is that the eigenstates of different Hamiltonians are essen-
tially uncorrelated random vectors. This, of course, cannot be literary true in physical systems.
Indeed, let us consider a family of Hamiltonians characterized by some continuous parameters
like Ĥ(J ′, V ′) in Equation (40). If we change J ′ → J ′ + δJ ′ and V ′ → V ′ + δV ′, then, obviously,
for sufficiently small changes, δJ ′ and δV ′, the eigenstates of the Hamiltonians Ĥ(J ′, V ′) and
Ĥ(J ′ + δJ ′, V ′ + δV ′) will be almost the same. However, one can anticipate that a very small
parameter change, likely vanishing exponentially with the system size, is sufficient to mix dif-
ferent eigenstates of the original Hamiltonian with nearby energies such that new eigenstates
look essentially random in the old basis. This is indeed what is seen in the numerical simu-
lations. In Figure 7(a), we show the scaled information entropy S/SGOE of the eigenstates of
Ĥ(J ′ + δJ ′, V + δV ′) in the basis of Ĥ(J ′, V ′) as a function of δJ ′ = δV ′. These results show
that at fixed values of δJ ′ and δV ′, the information entropy rapidly increases with the system
size. In Figure 7(b), we show the same entropy plot vs. the integrability breaking perturbation,
but now scaled by a power of the mean level spacing δJ ′/(δε)α = δV ′/(δε)α . We found numer-
ically that there is good data collapse for α ≈ 0.43. While it is necessary to study much larger
system sizes to determine the exponent α accurately, for the system sizes available to us it is
already apparent that the relevant strength of the integrability breaking perturbation needed for
a complete randomization of the energy levels is exponentially small in the system size. Indeed,
δε ∝ exp[−S(E)], where S(E) is the thermodynamic entropy of the system, which scales lin-
early in the system size, and E is the average energy of the eigenstates for which the information
entropy is computed.
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Figure 7. Average information entropy (normalized using the GOE prediction) of the eigenstates of spinless
fermions in a one-dimensional lattice with Hamiltonian (42). The average is computed over the central
10% of the energy spectrum. Results are reported for L = 18, 21, and 24, N = L/3, J = V = 1 (unit of
energy), and J ′ = V ′ as one departs from J ′ = V ′ = 0.5. The information entropy is calculated in the basis
of the eigenstates of the nonintegrable Hamiltonian with J = V = 1 and J ′ = V ′ = 0.5, and in the k = 2
quasi-momentum sector (D is the number of states in that sector). (a) The average information entropy is
reported as a function of δJ ′ ≡ J ′ − 0.5 = δV ′ ≡ V ′ − 0.5. (b) The average information entropy is reported
as a function of δJ ′/(δε)0.43 = δV ′/(δε)0.43, where δε is the average level spacing between the eigenstates
used to compute the average entropy.

3.3. Quantum chaos and entanglement
So far, we have discussed manifestations of quantum chaos in the statistics of level spacings and
in the properties of many-body Hamiltonian eigenstates. At the same time, as we discussed in
Section 2, classical chaotic systems do not have a well-defined analogue of stationary eigenstates
because they do not have closed stationary orbits. Chaos in classical systems is usually defined
as the exponential divergence in time of nearby trajectories. But this language does not apply
to quantum systems, which do not have a well-defined notion of a trajectory. So, it seems that
there is a fundamental discrepancy between the quantum and classical ways of defining chaos.
Nevertheless, this discrepancy is somewhat superficial and one can treat quantum and classical
chaos on the same footing by analyzing delocalization of the system either in phase space or in
energy space, and using appropriate entropy measures to characterize this delocalization. Using
such measures, it is possible to smoothly interpolate between quantum and classical regimes in
chaotic systems and analyze various quantum to classical crossovers. However, some care is
needed in defining such measures. To this end, here we first discuss the problem for classical
systems and then extend the ideas to quantum systems.

Let us consider a setup in which the system is prepared in some initial state and is allowed
to evolve according to some time-independent Hamiltonian Ĥ . If the initial state is a stationary
state (namely, a stationary probability distribution) of some initial Hamiltonian Ĥ0 ̸= Ĥ , then this
is what is usually called a quench. For example, one can consider a gas of particles in thermal
equilibrium in a recipient with a given volume, and then one suddenly doubles the volume of the
recipient, for example, by moving a piston. Alternatively, one can consider an equilibrium system
of spins (classical or quantum) in which one suddenly changes a magnetic field or the coupling
between the spins. A strong physical manifestation of chaos in classical systems is delocalization
in the available phase space after the quench. A standard measure of this delocalization is the
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entropy, which is defined in phase space as

S = −
∫∫

dx dp
(2π!)D

ρ(x, p) ln[ρ(x, p)], (43)

where ρ(x, p) is the classical probability distribution, D is the dimensionality of the phase space,
and the usual factor of (2π!)D is introduced to make the integration measure dimensionless.
This entropy is maximized when ρ(x, p) is uniform in the available phase space. If the system
is isolated, then according to Liouville’s theorem the entropy (43) is conserved in time [108].
This is a consequence of the incompressibility of classical trajectories, which implies that the
phase-space volume occupied by any closed system does not change in time. Liouville’s theorem
and the lack of the entropy increase was a topic of controversy for a long time, since Boltzmann
introduced his H-theorem.

To circumvent this problem and use entropy as a measure of delocalization in the available
phase space, one can analyze the reduced probability distribution of NA particles obtained by
averaging over the positions and momenta of the remaining N − NA particles,

ρA(x1, . . . , xNA , p1, . . . , pNA
, t) =

∫∫
dxNA+1dpNA+1 · · · dxN dpNρ(x1, . . . , xN , p1, . . . , pN , t),

(44)
and compute the entropy of this reduced probability distribution. This entropy is not restricted
by Liouville’s theorem and after a quench, for sufficiently large subsystems of an ergodic system
(and for NA ≪ N), it is expected to increase in time to the maximum value given by the Gibbs
distribution.

In quantum systems, the situation is remarkably similar. Instead of a probability distribution,
one deals with a density matrix ρ̂. A direct analogue of the classical (Liouville) entropy (43) is
the von Neumann entropy:

Svn = −Tr[ρ̂ ln ρ̂]. (45)

Similar to classical systems, the von Neumann entropy is conserved in time for isolated systems,
which is a simple consequence of unitary evolution. Hence, extending the analogy to classical
systems, we can define the reduced density matrix of a quantum system using a partial trace
(typically, one traces over a region in real space):

ρ̂A = TrB[ρ̂] =
∑

nA,n′
A

|nA⟩⟨n′
A|
∑

nB

⟨nA, nB|ρ̂|n′
A, nB⟩, (46)

where |nA⟩ and |nB⟩ are the complete basis states of the subsystems A and B, respectively. One
can then define the von Neumann entropy of the reduced density matrix

SA
vn = −TrA[ρ̂A ln ρ̂A]. (47)

If the full density matrix is that of a pure state, that is, ρ̂ = |ψ⟩⟨ψ |, then this entropy SA
vn is also

called the entanglement entropy. The entanglement entropy has been studied in the context of
quenches and thermalization in clean interacting systems [109–113], as well as in disordered sys-
tems in the context of many-body localization following quantum quenches and in the presence
of a periodic drive [114–118].
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These ideas were recently tested in experiments with small systems involving supercon-
ducting qubits [119] and ultracold atoms [120]. We will discuss the superconducting qubit
experiment in the next section. Here, we review the results of the ultracold atom experiment.
There, the authors prepared two identical chains each with six sites. The Hamiltonian describing
the system is

Ĥ = U
2

∑

ij

n̂i,j(n̂i,j − 1) − Jx

∑

i,j

(â†
i,jâi+1,j + H.c.) − Jy

∑

i

(â†
i,1âi,2 + H.c.), (48)

where i = 1, . . . , 6 is the site coordinate along the x-direction and j = 1,2 is the site coordinate
along the y-direction. As usual, â†

i,j and âi,j are the boson creation and annihilation operators,

respectively, and n̂i,j = â†
i,jâi,j is the site occupation number.

The system was initialized in a Fock state with exactly one particle per site and both Jx and
Jy being essentially equal to zero. At time t = 0, the tunneling along the x-direction (Jx) was
quenched to Jx/U ≈ 0.64, with Jy remaining negligible. The system was then allowed to evolve.
This way, two identical copies of a many-body state were created. Implementing a swap oper-
ation [121,122], it was possible to measure the second Renyi entanglement entropy for each
chain:

SA
2 = − ln[Trρ̂2

A]. (49)

The latter is very similar to the von Neumann entanglement entropy. If the system is quantum
chaotic, SA

2 is expected to coincide with the corresponding entropy in the thermal ensemble
for LA/L < 1/2 (up to finite-size corrections). We note that, in general, SA

vn bounds SA
2 from

above. The two entropies are equal for (maximally entangled) infinite temperature states and
(non-entangled) product states.

In the left panel in Figure 8, we show the measured long-time result of the second Renyi
entanglement entropy after the quench as a function of the subsystem size. It is remarkable that,
even for such a small system, SA

2 is very close to the entropy of a Gibbs ensemble with the same
mean energy for the smallest subsystem sizes. This experiment shows that, even in small quantum
systems, one can see clear signatures of quantum chaotic behavior.

Next, it is important to discuss theoretical predictions that closely follow the experimental
findings. We focus on results for the spin-1/2 transverse field Ising chain, with Hamiltonian:

Ĥ =
L∑

j=1

gσ̂ x
j +

L−1∑

j=2

hσ̂ z
j + (h − J)(σ̂ z

1 + σ̂ z
L) + J

L−1∑

j=1

σ̂ z
j σ̂

z
j+1. (50)

This model exhibits quantum chaos in the parameter range studied in Figures 8 (right panel) and
9: h = (

√
5 + 1)/4, g = (

√
5 + 5)/8, and J = 1.

In the right panel in Figure 8, we show the entanglement entropy for representative eigen-
states of the Hamiltonian (50) as a function of the subsystem size [123]. Different curves are
labeled according to the temperature of the Gibbs ensemble that has the same mean energy as
the eigenstate. For small subsystem sizes, the entanglement entropy is clearly a linear function
of the subsystem size (as in the experimental results for the second Renyi entanglement entropy
shown in the left panel). Moreover, the slope is identical to the slope of the equilibrium entropy.
As the subsystem size increases, the entanglement entropy deviates from the equilibrium result
and the deviation increases as the effective temperature decreases. In Ref. [123], those deviations
were argued to be subextensive in L for any fixed ratio LA/L < 1/2. This means that, in the ther-
modynamic limit and for any nonvanishing effective temperature, the entanglement entropy of
eigenstates in quantum chaotic systems is expected to have a triangular shape as a function of
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Figure 8. (Left panel) Second Renyi entanglement entropy vs. subsystem size LA for a six-site Bose–Hub-
bard chain measured at long times after a quench (red symbols) and in the ground state (blue symbols).
Red and blue lines following the data points depict the theoretical predictions, while the gray (straight)
line depicts the theoretical prediction for the Renyi entropy of the system in thermal equilibrium. From
Ref. [120]. (Right panel) Entanglement entropy as a function of a subsystem size for different representa-
tive eigenstates of the spin-1/2 Hamiltonian (50) for L = 20. The inverse temperature β in both panels is
obtained by matching the energies to those of systems in thermal equilibrium. The entanglement entropy
grows linearly with LA, when LA and β are small, and coincides with the equilibrium entropy of the Gibbs
ensemble. From Ref. [123].

Figure 9. von Neumann’s entropy of the reduced density matrix obtained after tracing one half of a spin-1/2
chain as a function of time (see text for details). The initial state corresponds to a product state of randomly
polarized spins. The entropy grows linearly in time and saturates at a value which is very close to the
maximum, corresponding to the infinite temperature state: Smax = L ln 2/2 − 1/2. From Ref. [112].

LA/L, with a cusp at LA/L = 1/2. This is a result of the eigenstate thermalization phenomenon
that we discuss in Section 4.

More directly related to the experiments in Ref. [120], in Figure 9 we show the temporal
evolution of the entanglement entropy obtained numerically after tracing out one half of the
lattice in the transverse field Ising model (50). The initial state corresponds to a product of spins
with random orientations. Such a state has zero initial entropy. As seen in Figure 9, the entropy SA

vn
grows linearly in time and then saturates (as expected) close to that of a random pure state [124]:
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S∗ = L ln 2/2 − 1/2. This is exactly the result obtained in the right panel in Figure 8 for β = 0.
Following the findings in Figure 9, one can anticipate that if one studies a classical ergodic spin
chain, instead of a quantum spin chain, and begins the dynamics from a factorized probability
distribution one would get a similar increase of the Liouville entropy of one half of the system.

3.4. Quantum chaos and delocalization in energy space
Another way to reveal delocalization of classical systems in available phase space is to study the
time-averaged probability distribution over a time interval t0

ρt0(x, p) = 1
t0

∫ t0

0
ρ(x, p, t) (51)

and compute the entropy of this distribution. Because the negative logarithm is a convex function,
using Jensen’s inequality, it is straightforward to see that such an entropy can only increase as a
function of t0. For ergodic systems, it is expected that this entropy will increase to its maximally
allowed value, that is, to the microcanonical entropy, because the system on average visits all
points in phase space with equal probability. For non-ergodic systems, conversely, the system is
expected to remain more localized in phase space even after time averaging, so that the entropy
never reaches the microcanonical value.

Continuing the analogy with classical systems, a second possibility to use entropy to quantify
quantum delocalization is to study the entropy of the time-averaged density matrix. Assuming
that there are no degeneracies, the off-diagonal matrix elements of the density matrix in the basis
of the Hamiltonian oscillate in time according to [77]:

ρmn(t) = ρmn(t0) exp[−i(Em − En)(t − t0)]. (52)

Therefore, in the quantum language, time averaging is equivalent to projecting the initial density
matrix onto the diagonal subspace of the Hamiltonian, leading to what is known as the diagonal
ensemble6 density matrix [28]:

ρ̂DE ≡ ¯̂ρ ≡ lim
t0→∞

1
t0

∫ t0

0
ρ̂(t) dt =

∑

m

ρmm|m⟩⟨m|. (53)

Thus, studying delocalization of the classical probability distribution in phase space at long times
is equivalent, in the quantum language, to studying the spreading of the initial density matrix in
the basis of the eigenstates of the Hamiltonian, or, simply, in energy space. From the discussion
in Section 3.2, one can expect that the diagonal density matrix will generically be delocalized for
quantum chaotic systems. For integrable systems, on the other hand, the diagonal density matrix
can be more (or less) localized depending on the initial state.

The analogy between delocalization in energy space and classical chaos was recently explored
experimentally in a system of three coupled superconducting qubits [119], which effectively rep-
resent three 1/2 spins. The experiment was carried out in the sector where the effective total spin
is S = 3/2, and focused on periodic kicks with:

Ĥ(t) = π

2
Ŝy + κ

2S
Ŝ2

z

∑

n

δ(t − n), (54)

where Ŝy and Ŝz are spin operators. Like the kicked rotor model, this system in the S → ∞ clas-
sical limit has a mixed phase space with both chaotic and regular trajectories. In the experiment,
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266 L. D’Alessio et al.

Figure 10. Left panels: entanglement entropy averaged over three different qubits after a different number
of kicks N. In the color scale used, red signals a small entropy and blue signals the maximum entropy [ln(2)].
Different points on each panel correspond to different initial conditions, which are coherent states centered
around the phase-space point (θ0,φ0). Middle panels: Floquet diagonal entropy, which was computed as
the entropy of the full density matrix averaged over 20 kicks (top) and 10 kicks (bottom). Right panels:
phase-space portrait of the classical system. The top and bottom panels depict results for different kick
strengths: κ = 0.5 and κ = 2.5, respectively. From Ref. [119].

the quantum system was initialized in a coherent state centered around some point in the two-
dimensional phase space. The system was then allowed to evolve under kicks and, after long
times, both the entanglement entropy (of one qubit) and the diagonal entropy (the entropy of the
time-averaged density matrix) were measured through quantum tomography. The results were
contrasted with the phase-space dynamics of the S → ∞ classical limit.

In Figure 10, we show the dynamics of the entanglement entropy (left panels) and the entropy
of the density matrix averaged over several periods, which is equivalent to the Floquet diagonal
entropy (middle panels). The entropies are reported (in a color scale) for different initial coherent
states centered around spherical angles (θ0,φ0). The right panels show the phase-space portraits
of the corresponding classical systems. Both the entanglement entropy and the Floquet diagonal
entropy show strong correlations with classical regions of chaotic and non-chaotic motion, with
higher entropy corresponding to more chaotic behavior. Interestingly, these correlations persist
deep in the quantum regime (S = 3/2 is not particularly large). This experiment illustrates the
ideas discussed in this and the previous section, namely, that quantum chaos results in delocal-
ization of either the reduced density matrix of subsystems or the time-averaged density matrix of
the full system.

To illustrate delocalization of an initial wave function among energy eigenstates in a larger
quantum chaotic system, we follow Ref. [125], which reported results for quantum quenches
in one-dimensional periodic chains of interacting spinless fermions with Hamiltonian (40), and
hard-core bosons with Hamiltonian

Ĥ =
L∑

j=1

[
−J(b̂†

j b̂j+1 + H.c.) + V
(

n̂j − 1
2

)(
n̂j+1 − 1

2

)

−J ′(b̂†
j b̂j+2 + H.c.) + V ′

(
n̂j − 1

2

)(
n̂j+2 − 1

2

)]
, (55)

where b̂j and b̂†
j are hard-core bosons annihilation and creation operators at site j, n̂j = b̂†

j b̂j is the
occupation operator at site j, and L is the number of lattice sites. Hard-core bosons satisfy the
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Figure 11. Normalized energy distribution function P(E), see Equation (56), after quenches in hard-core
boson chains. Results are presented for two different initial states |ψI ⟩ corresponding to eigenstates of
Hamiltonian (55) with JI = 0.5, VI = 2 (top panels) and JI = 2, VI = 0.5 (bottom panels). The final
parameters of the Hamiltonian are J = V = 1. J ′ = V ′ remain unchanged during the quench. Their val-
ues are indicated in the figure. Smooth solid lines: best Gaussian fit to (

√
2πa)−1 exp[−(E − b)2/(2a2)]

for the parameters a and b; dashed lines: (
√

2πδE)−1 exp[−(E − Ē)2/(2δE2)], where Ē = ⟨ψI |Ĥ |ψI ⟩ and
δE2 = ⟨ψI |Ĥ2|ψI ⟩ − ⟨ψI |Ĥ |ψI ⟩2 is the energy variance after the quench. From Ref. [125].

same commutation relations as bosons but have the constraints b̂2
j = (b̂†

j )
2 = 0, which preclude

multiple occupancy of the lattice sites [33]. For J ′ = 0, the hard-core boson Hamiltonian (55) can
be mapped onto the spinless fermion Hamiltonian (40), up to a possible boundary term [33]. Like
the spinless fermion Hamiltonian (40), the hard-core boson one (55) is integrable for J ′ = V ′ = 0
and nonintegrable otherwise.

In Figure 11, we show the normalized energy distribution

P(E) =
∑

m

pmδ(E − Em), (56)

where

pm = |⟨m|ψI⟩|2, (57)

and ⟨m|ψI⟩ is the projection of the initial state |ψI⟩ on eigenstate |m⟩. The results presented are
for quenches in the hard-core boson chain. The top and bottom panels correspond to different
initial states. The parameters of the final Hamiltonian are J = V = 1, and J ′ = V ′ with the val-
ues indicated in the figure (increasing from left to right). Those plots make apparent that as the
system becomes more quantum chaotic (larger J ′ = V ′), the energy distribution becomes less
sparse, which means that the initial state becomes more delocalized among the eigenstates of the
final Hamiltonian. Another visible feature of the energy distribution is that in chaotic systems it
rapidly approaches a Gaussian centered around the mean energy Ē = ⟨ψI |Ĥ |ψI⟩ and the width
given by the variance of the energy in the initial state δE2 = ⟨ψI |Ĥ2|ψI⟩ − ⟨ψI |Ĥ |ψI⟩2. Similar
results were obtained for quenches in the spinless fermion chain [125] and in other many-body
Hamiltonians [101,102,126].

For states that are eigenstates of some Hamiltonian ĤI and are decomposed in the eigenstates
of a new Hamiltonian ĤF (as we did above), the normalized energy distribution is also known
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268 L. D’Alessio et al.

Figure 12. Entropies in hard-core boson chains with L = 24 (main panels) and L = 21 (insets). Results are
reported for the diagonal entropy (Sd ), the microcanonical entropy (Sm), and the canonical entropy (Sc), after
quenches as those described in Figure 11, for initial states corresponding to eigenstates of Hamiltonian (55)
with JI = 0.5, VI = 2 (a) and JI = 2, VI = 0.5 (b). The final parameters of the Hamiltonian are J = V = 1.
J ′ = V ′ remain unchanged in the quench and their values are depicted in the x-axis. Thin lines joining the
points are drawn to guide the eye. See also Ref. [125].

as the strength function [101,102,127–129]. If ĤF is taken to be ĤI plus a perturbation, it has
been shown that the normalized energy distribution (the strength function) evolves from a Breit–
Wigner form to a Gaussian form as the strength of the perturbation is increased [101,102,129].
The transition between those distributions, say, for a given state |i⟩ (an eigenstate of ĤI ), has
been argued to occur as the average value of the nonzero off-diagonal matrix elements |⟨i|ĤF |j⟩|
becomes of the same order of (or larger than) the average level spacing of the states |j⟩ (also
eigenstates of ĤI ) for which |⟨i|ĤF |j⟩| ̸= 0 [101]. Hence, if ĤF is quantum chaotic one expects
that, provided that the system is large enough (the density of states increases exponentially fast
with increasing system size), the normalized energy distribution will have a smooth Gaussian
form after a quench independent of the nature of ĤI . It has been recently shown that this is not the
case in generic (experimentally relevant) quenches to integrability. Namely, if ĤF is integrable,
the distribution of pm [see Equation (58)] ends up being sparse even in quenches whose initial
states are thermal states of nonintegrable Hamiltonians [130] (see Section 8.3). The sparseness
of pm at integrability is apparent in Figure 11 and, for much larger system sizes, has also been
explicitly shown in Refs. [131–133].

To quantify the level of delocalization one can use the von Neumann entropy of the diagonal
ensemble,7 which is known as the diagonal entropy [125,134]:

Sd = −
∑

m

pm ln pm. (58)

This entropy is the same as the information entropy of the initial state in the basis of the Hamil-
tonian governing the evolution, which we analyzed in Figure 7. In particular, the entropy plotted
in that figure is the diagonal entropy of the eigenstates of the Hamiltonian H(J ′ + δJ ′, V ′ + δV ′)
in the basis of the Hamiltonian H(J ′, V ′), averaged over eigenstates.

In Figure 12, we plot the diagonal entropy vs. J ′ = V ′ for quenches as those in Figure 11,
and systems with L = 21 and L = 24. We also plot the microcanonical entropy Sm = ln[#(Ē)δE],
and the canonical entropy Sc = −Tr[ρ̂CE ln ρ̂CE], where ρ̂CE = exp(−βĤ)/Tr[exp(−βĤ)] and
the inverse temperature β is fixed such that Tr(Ĥ ρ̂CE) = Ē. In all the quenches in Figures 11
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and 12, the initial state was selected such that β−1 ≈ 3J . Figure 12 shows that, as one departs
from the integrable point (J ′ = V ′ = 0), the diagonal entropy becomes almost the same as the
microcanonical entropy. This is up to finite-size effects, whose relevance to the results presented
is made apparent by the differences between Sm and Sc. As the system size increases, Sm/L and
Sc/L must approach each other as they are equal up to subextensive corrections. Numerical evi-
dence that the diagonal entropy after a quench and the thermal equilibrium entropy are identical
in nonintegrable systems in the thermodynamic limit has been obtained in numerical linked clus-
ter expansion studies [130,135]. We will explain why Sd/L agrees with the entropy in thermal
equilibrium in Section 5.3.1, when we discuss the fundamental thermodynamic relation. On the
other hand, in many numerical and analytical works it has been established that, in integrable
systems, extensive differences generally occur between the diagonal entropy and the thermal
entropy [125,130,135–140] (see Section 8.3). In the spirit of our current discussion, this implies
that integrable systems generally remain more localized in energy space.

4. Eigenstate thermalization
4.1. Thermalization in quantum systems
In 1929, von Neumann wrote a remarkable paper in which he discussed how statistical mechanics
behavior could emerge in quantum-mechanical systems evolving under unitary dynamics [30].
As mentioned in the Introduction, one of von Neumann’s crucial insights was to focus on macro-
scopic observables, as opposed to focusing on the wave function or the density matrix of the
entire system. He proved what he named the quantum ergodic theorem, which has been recently
discussed in detail by Goldstein et al. in Ref. [141]. In the words of the latter authors, the quantum
ergodic theorem (or “normal typicality”)8 states that

for a typical finite family of commuting macroscopic observables, every initial wave function from
a microcanonical energy shell evolves so that for most times in the long run, the joint probability
distribution of these observables obtained from the unitarily time-evolved wave function is close to
their microcanonical distribution

This theorem was a very important first step in the study of thermalization in quantum sys-
tems. However, some shortcomings are immediately apparent given our discussion so far. For
example, the theorem makes no distinction between integrable and nonintegrable systems, as
such, it leaves one wondering about the role of integrability. Also, typical observables in von
Neumann’s sense need not be relevant to experiments. As we discuss in Section 4.2.2, von Neu-
mann’s theorem is related to RMT. Hidden in it is the seed for eigenstate thermalization [145],
which is the topic of this section.

In the spirit of von Neumann’s theorem, in this review thermalization refers to observables
and is defined in a strong sense. Suppose that one prepares an isolated system in a nonstationary
state with a well-defined mean energy, and subextensive energy fluctuations. An observable is
said to thermalize if, during the time evolution of the system, it relaxes to the microcanonical
prediction and remains close to it at most later times. Whether the isolated system is in a pure or
mixed state is immaterial to the question of thermalization.

To understand the essential ingredients needed for thermalization to occur, let us consider a
simple setup in which an isolated system is initially prepared in a pure state |ψI⟩9 and evolves
under a time-independent Hamiltonian Ĥ . We assume that the Hamiltonian has eigenvectors |m⟩
and eigenvalues Em, that is, Ĥ |m⟩ = Em|m⟩. The time-evolving wave function can be written as

|ψ(t)⟩ =
∑

m

Cm e−iEmt|m⟩, (59)

D
ow

nl
oa

de
d 

by
 [N

or
th

er
n 

Ill
in

oi
s U

ni
ve

rs
ity

] a
t 0

4:
12

 0
1 

A
ug

us
t 2

01
6 



270 L. D’Alessio et al.

where Cm = ⟨m|ψI⟩ (notice that we set ! → 1); and we are interested in t ≥ 0. Obviously, the
density matrix of the system will remain that of a pure state at all times [ρ(t)2 = ρ(t)], that is,
it can never become a mixed (thermal) density matrix. Now, let us look at the time evolution of
some observable Ô, which in the basis of the eigenstates of the Hamiltonian can be written as

O(t) ≡ ⟨ψ(t)|Ô|ψ(t)⟩ =
∑

m,n

C∗
mCn ei(Em−En)tOmn

=
∑

m

|Cm|2Omm +
∑

m, n̸=m

C∗
mCn ei(Em−En)tOmn, (60)

where Omn = ⟨m|Ô|n⟩. As stated before, we say that the observable Ô thermalizes if: (i) after
some relaxation time, the average expectation value of this observable agrees with the micro-
canonical expectation value and (ii) temporal fluctuations of the expectation value about the
microcanonical prediction are small at most later times. This implies that the long-time aver-
age accurately describes the expectation value of Ô at almost all times and agrees with the
microcanonical prediction.

The initial difficulties in reconciling these requirements with Equation (60) are obvious. In
the long-time average, the second sum in Equation (60) averages to zero (provided there are no
degeneracies, or that there is a nonextensive number of them) and we are left with the sum of
the diagonal elements of Ô weighted by |Cm|2. Some of the natural questions one can ask are:
(i) Since the probabilities |Cm|2 are conserved in time, how is it possible for

∑
m |Cm|2Omm to

agree with the microcanonical average? (ii) Moreover, in many-body systems, the eigenener-
gies are exponentially close to each other and therefore, to make sure that the second sum in
Equation (60) averages to zero, one could potentially need to wait an exponentially (in system
size) long time. Such a time, even for moderately small systems, could exceed the age of our
universe, and therefore cannot be reconciled with the experimental observation that even large
systems thermalize over much shorter time scales than the age of the universe (we observe them
thermalize).

Remarkably, if the Hamiltonian Ĥ was a true random matrix, then using the RMT prediction
for observables [namely that Omm is independent of m and that Omn for m ̸= n is exponentially
small in the system size, see Equation (20)] one finds that the observables thermalize in the sense
specified above. This is because the first sum in Equation (60) becomes independent of the initial
state ∑

m

|Cm|2Omm ≈ Ō
∑

m

|Cm|2 = Ō, (61)

that is, it agrees with the microcanonical result. Note that within RMT, the microcanonical
ensemble has no energy dependence and is thus formally equivalent to the infinite temperature
ensemble. It also becomes clear that exponentially long times may not be needed for relaxation.
The off-diagonal matrix elements of Ô are exponentially small so, by destroying phase coherence
between a finite fraction of the eigenstates with a significant contribution to the expectation value,
it is possible to approach the infinite-time prediction with high accuracy in a time much shorter
than the inverse (many-body) level spacing, which is required to destroy coherence between
all eigenstates. We will come back to this later. The relevance of RMT for understanding ther-
malization in many-body quantum systems was discussed by Deutsch in a seminal paper in the
early 1990s [26]. There, he essentially extended Berry’s conjecture to arbitrary quantum sys-
tems assuming that the eigenstates of ergodic Hamiltonians are essentially uncorrelated random
vectors.

In order to describe observables in experiments, however, one needs to go beyond the RMT
prediction. This because, in contrast to random matrices, in real systems: (i) thermal expectation
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values of observables depend on the energy density (temperature) of the system10 and (ii) relax-
ation times are observable dependent. Hence, there is information in the diagonal and off-diagonal
matrix elements of observables in real systems that cannot be found in RMT. In groundbreaking
works throughout the 1990s, Srednicki provided the generalization of the RMT prediction that
is needed to describe observables in physical systems [27,29,146]. Srednicki’s ansatz is known
as the ETH. It was first shown to apply to realistic quantum systems, where thermalization was
observed for a strikingly small number of particles (5 bosons in 21 lattice sites), by Rigol et al.
[28]. We should mention that, in a remarkable discussion of numerical experiments with 7 spins,
Jensen and Shankar [147] advanced part of ETH [the first term on the RHS of Equation (62)].
The smallness of the system they studied precluded them from observing a qualitatively different
behavior between nonintegrable and integrable systems.

4.2. The eigenstate thermalization hypothesis (ETH)
ETH can be formulated as an ansatz for the matrix elements of observables in the basis of the
eigenstates of a Hamiltonian [29]:

Omn = O(Ē)δmn + e−S(Ē)/2fO(Ē,ω)Rmn, (62)

where Ē ≡ (Em + En)/2, ω ≡ En − Em, and S(E) is the thermodynamic entropy at energy E.
Crucially, O(Ē) and fO(Ē,ω) are smooth functions of their arguments, the value O(Ē) is identical
to the expectation value of the microcanonical ensemble at energy Ē and Rmn is a random real
or complex variable with zero mean and unit variance (R2

mn = 1 or |Rmn|2 = 1, respectively).
While there is no rigorous understanding of which observables satisfy ETH and which do not, it
is generally expected that Equation (62) holds for all physical observables, namely, observables
for which statistical mechanics applies (see, e.g. discussion in Ref. [108]). Specifically, ETH
has been numerically verified for few-body observables in a variety of lattice models, no matter
whether they are local or not (see Section 4.3.1). By few-body observables we mean n-body
observables with n ≪ N , where N is the number of particles, spins, etc., in the system. This is
the class of observables that can be experimentally studied in macroscopic systems. Projection
operators to the eigenstates of the many-body Hamiltonian, P̂m = |m⟩⟨m|, are operators for which
Equation (62), as well as the predictions of statistical mechanics, do not hold. In a recent study
of lattice systems, Garrison and Grover argued that ETH can hold for observables with support
in up to 1/2 of the system size [123].

The matrix elements of observables can be real or complex depending on the symmetries of
the Hamiltonian and the basis used to diagonalize it. If the system obeys time-reversal symmetry,
the eigenstates of the Hamiltonian can be chosen to be real and so will be the matrix elements of
observables (Hermitian operators). This is not possible if the system does not obey time-reversal
symmetry. By taking the Hermitian conjugate of Equation (62), we see that the function fO(Ē,ω)

and the random numbers Rmn must satisfy the following relations:

Rnm = Rmn, fO(Ē, −ω) = fO(Ē,ω) (real matrix elements),

R∗
nm = Rmn, f ∗

O(Ē, −ω) = fO(Ē,ω) (complex matrix elements).
(63)

Srednicki’s ansatz (62) is similar to the RMT result in Equation (20). The differences are: (i)
The diagonal matrix elements of observables O(Ē) are not the same in all eigenstates. Rather, they
are smooth functions of the energy of the eigenstates. (ii) For the off-diagonal matrix elements,
on top of the small Gaussian fluctuations, there is an envelope function fO(Ē,ω) that depends
on the mean energy and the energy difference between the eigenstates involved. This ansatz is
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272 L. D’Alessio et al.

consistent with results obtained in the semi-classical limit of quantum systems whose classical
counterpart is chaotic [26,27,148–152].

The ETH ansatz reduces to the RMT prediction if one focuses on a very narrow energy win-
dow where the function fO(Ē,ω) is constant. In single-particle diffusive systems, this scale is
given by the Thouless energy (see, e.g. Ref. [93]), which is essentially equal to Planck’s constant
divided by the diffusion time [153]:

ET = !D
L2

, (64)

where D is the diffusion constant and L is the linear size of the system. As we discuss in
Section 4.3.1, the same appears to be true in generic diffusive many-body quantum systems.
Namely, that if one focuses on an energy shell of width ω < ET then fO(E,ω) ≈ const, so that
the ETH ansatz is identical to RMT. In other words, there is no structure in the eigenstates of
ergodic Hamiltonians in an energy window narrower than the Thouless energy. As this window
vanishes in the thermodynamic limit, RMT has a very limited range of applicability. Note, how-
ever, that the level spacing vanishes much faster with the system size. Therefore, there is still an
exponentially large number of energy levels in the region where RMT applies. The situation can
be more subtle in systems with subdiffusive, for example, glassy dynamics. One can anticipate
that f (ω) will saturate at ω < !/τ ∗, where τ ∗ is the slowest physical time scale in the system.
As long as the corresponding energy window contains exponentially many energy levels, one
expects that RMT will apply in this window.11 Conversely, the ETH ansatz does not have these
RMT limitations and is believed to apply to arbitrary energies with the exception of the edges of
the spectrum. As we will see later, in Section 6.8, the dependence of fO(E,ω) on ω determines the
decay of nonequal-time correlation functions. It also determines the relaxation time following a
small perturbation about equilibrium (in the linear response regime) [29,154]. In ergodic systems,
it is expected that the diffusive time gives the slowest time scale in the system [155]. Within ETH,
this follows from the fact that the function fO(E,ω) becomes structureless (constant) for ω < ET .

4.2.1. ETH and thermalization

The ETH ansatz (62) has immediate implications for understanding thermalization in many-body
quantum systems. First, let us focus on the long-time average of observables. If there are no
degeneracies in the energy spectrum, which is a reasonable assumption for generic quantum
systems after removing all trivial symmetries, we obtain [using Equation (60)]

Ō ≡ lim
t0→∞

1
t0

∫ t0

0
dtO(t) =

∑

m

|Cm|2Omm = Tr[ρ̂DEÔ], (65)

where ρDE is the density matrix of the diagonal ensemble, defined in Equation (53). On the other
hand, statistical mechanics predicts

OME = Tr[ρ̂MEÔ], (66)

where ρ̂ME is the density matrix of the microcanonical ensemble (due to ensemble equivalence
one can, of course, use a canonical, or any other equilibrium, density matrix instead). We then
see that, independent of the actual values of Cm, so long as energy fluctuations in the diagonal
ensemble

δE ≡
√

⟨ψI |Ĥ2|ψI⟩ − ⟨ψI |Ĥ |ψI⟩2 (67)

are sufficiently small (e.g. behaving like in traditional statistical mechanics ensembles), Ō will
agree (to leading order) with the statistical mechanics prediction OME, provided that Tr[ρ̂MEĤ] =
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⟨ψI |Ĥ |ψI⟩ ≡ ⟨E⟩. This is because, using the ETH ansatz (62), one can rewrite Equations (65) and
(67) as

Ō ≃ O(⟨E⟩) ≃ OME. (68)

Furthermore, given Equation (62), one can quantify the difference between the two ensembles
due to the fact that δE is finite. Indeed, expanding the smooth function O(E) into a Taylor series
around the mean energy ⟨E⟩

Omm ≈ O(⟨E⟩) + (Em − ⟨E⟩) dO
dE

∣∣∣∣
⟨E⟩

+ 1
2
(Em − ⟨E⟩)2 d2O

dE2

∣∣∣∣
⟨E⟩

, (69)

and substituting this expansion into Equation (65), we find

Ō ≈ O(⟨E⟩) + 1
2 (δE)2O′′(⟨E⟩) ≈ OME + 1

2 [(δE)2 − (δEME)2]O′′(⟨E⟩), (70)

where δEME are the energy fluctuations of the microcanonical ensemble, which are subextensive.
If the energy fluctuations δE in the time-evolving system are subextensive, which is generically
the case in systems described by local Hamiltonians (see, e.g. the discussion in Section 4.3.2),
then the second term is a small subextensive correction to OME, which is negligible for large
system sizes. Moreover, the same Equation (71) describes the difference between the equilibrium
canonical and microcanonical expectation values of Ô if instead of δE2 one uses energy fluctu-
ations of the canonical ensemble. It is remarkable that, using ETH, one can show that Ō ≃ OME

without the need of making any assumption about the distribution of Cm, beyond the fact that it
is narrow. This is to be contrasted with the standard statistical mechanics statement about equiv-
alence of ensembles, for which it is essential that the energy distributions are smooth functions
of the energy.12

Using the ETH ansatz, one can also calculate the long-time average of the temporal
fluctuations of the expectation value of the observable Ô

σ 2
O ≡ lim

t0→∞

1
t0

∫ t0

0
dt[O(t)]2 − (Ō)2

= lim
t0→∞

1
t0

∫ t0

0
dt
∑

m,n,p,q

OmnOpqC∗
mCnC∗

pCq ei(Em−En+Ep−Eq)t − (Ō)2

=
∑

m,n̸=m

|Cm|2|Cn|2|Omn|2 ≤ max |Omn|2
∑

m,n

|Cm|2|Cn|2 = max |Omn|2 ∝ exp[−S(Ē)]. (71)

Thus, the time fluctuations of the expectation value of the observable are exponentially small in
the system size. These fluctuations should not be confused with the fluctuations of the observable
that are actually measured in experiments, which are never exponentially small [28,29]. Instead,
Equation (71) tells us that at almost any point in time the expectation value of an observable Ô is
the same as its diagonal ensemble expectation value. Thus, the ETH ansatz implies ergodicity in
the strong sense, that is, no time averaging is needed. In Section 6.8, we show that ETH implies
that temporal fluctuations of extensive observables satisfy standard fluctuation–dissipation rela-
tions. Let us point in passing that the results discussed so far are not restricted to pure states. They
all straightforwardly generalize to mixed states by using the following substitutions in Equa-
tions (60), (65), and (53): C∗

mCn → ρmn and |Cm|2 → ρmm, where ρmn are the matrix elements of
the initial density matrix in the basis of the eigenstates of the Hamiltonian.

D
ow

nl
oa

de
d 

by
 [N

or
th

er
n 

Ill
in

oi
s U

ni
ve

rs
ity

] a
t 0

4:
12

 0
1 

A
ug

us
t 2

01
6 
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To contrast Equation (71) with the fluctuations of Ô seen in experiments, let us also show the
expression for the latter:

δO2 = lim
t0→∞

1
t0

∫ t0

0
dt⟨ψ(t)|(Ô − Ō)2|ψ(t)⟩ =

∑

m

|Cm|2(O2)mm − Ō2. (72)

This quantity is nonzero even if the initial state is an eigenstate of the Hamiltonian (|ψI⟩ = |m⟩),
while σO is zero in that case. Assuming that δE is sufficiently small, and using the ETH ansatz
for Ô2, we find

δO2 ≈ δO2
ME + 1

2 [O2′′
(⟨E⟩) − 2O(⟨E⟩)O′′(⟨E⟩)][δE2 − (δEME)2]. (73)

And we see that the fluctuations of Ô scale as the equilibrium statistical fluctuations of Ô.
However, in this case, there is a second term which can be of the same order. We note that
Equation (73) describes the difference between the canonical and microcanonical fluctuations
of Ô if instead of δE2 one uses energy fluctuations of the canonical ensemble, that is, same
order corrections to fluctuations also occur in equilibrium statistical mechanics. In generic

cases, for example, for extensive observables in systems away from critical points,
√
δO2/Ō ≃√

δO2
ME/OME ≃ 1/

√
V , where V is the volume of the system.

An important question that we leave unaddressed here is that of relaxation times. Namely,
how long it takes for an observable to reach the diagonal ensemble result. The answer to this
question depends on the observable, the initial state selected, and the specifics of the Hamiltonian
driving the dynamics. As we will show when discussing results from numerical experiments, the
relaxation times of observables of interest in lattice systems are not exponentially large. They
actually need not even increase with increasing system size.

Summarizing our discussion so far, we see that the language used to describe thermalization
in isolated quantum systems is quite different from that in classical systems. Chaos, ergodicity,
and thermalization are hidden in the nature of the Hamiltonian eigenstates. Relaxation of observ-
ables to their equilibrium values is nothing but the result of dephasing, as follows from the second
term (in the last line) in Equation (60). Thus, the information about the eventual thermal state is
encoded in the system from the very beginning, the time evolution simply reveals it. In classical
systems, one usually thinks of thermalization in very different terms using the language of parti-
cle collisions and energy redistribution between different degrees of freedom. It is important to
realize that both approaches describe exactly the same processes. In Section 8.4, we will briefly
discuss how one can understand relaxation in weakly nonintegrable quantum systems through
the language of quantum kinetic equations. Kinetic equations, when justified, provide a unified
framework to describe relaxation in both quantum and classical systems.

4.2.2. ETH and the quantum ergodic theorem

Now that we have formulated ETH and seen its consequences for the dynamics of isolated quan-
tum systems, let us come back to von Neumann’s ergodic theorem and discuss how it relates to
ETH (or, more precisely, to RMT) [145]. As said before, von Neumann was interested in under-
standing what happens to observables during the unitary time evolution of all possible states
drawn from the microcanonical shell. His theorem was then about the behavior of typical observ-
ables at most times. To state it, we follow the discussion by Goldstein et al. in Ref. [141]. For a
recent generalization of this theorem, see Ref. [156].

von Neumann considered a Hamiltonian Ĥ with eigenstates |m⟩ and eigenvalues Em, that is,
Ĥ |m⟩ = Em|m⟩, and focused on a microcanonical energy window of width δE around an energy
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E. This microcanonical energy window defines a Hilbert space H of dimension D, which is
spanned by D energy eigenstates |m⟩ with energies Em ∈ (E − δE/2, E + δE/2). For example,
every state in the microcanonical energy window can be decomposed as |ψ⟩ =

∑
m∈H Cm|m⟩,

where Cm = ⟨m|ψ⟩. The Hilbert space H is then decomposed into mutually orthogonal sub-
spaces Hν of dimensions dν , such that H =

⊕
ν Hν and D =

∑
ν dν . Finally, the observables

in H are written as Ô =
∑

ν Oν P̂ν , where P̂ν is the projector onto Hν . Here, both D and dν are
assumed to be large. By definition, the expectation value of the observable at time t is O(t) =
⟨ψ | exp[iĤt]Ô exp[−iĤt]|ψ⟩ while its microcanonical average is ⟨Ô⟩ME =

∑
m∈H ⟨m|Ô|m⟩/D.

von Neumann’s quantum ergodic theorem states that: In the absence of resonances in Ĥ , namely,
if Em − En ̸= E′

m − E′
n unless m = m′ and n = n′, or m = n and m′ = n′, and provided that, for

any ν,

max
m

(
⟨m|P̂ν |m⟩ − dν

D

)2

+ max
m̸=n

|⟨m|P̂ν |n⟩|2 is exponentially small, (74)

then
|O(t) − ⟨Ô⟩ME|2 < ϵ⟨Ô2⟩ME (75)

for all but a fraction δ of times t, where ϵ and δ are small numbers. It is easy to see that condi-
tion (74) guarantees that the eigenstate expectation value of Ô is identical to the microcanonical
prediction [145]. In fact:

⟨m|Ô|m⟩ =
∑

ν

Oν⟨m|P̂ν |m⟩ ≈
∑

ν

Oν

dν
D

=
∑

m∈H ,ν

Oν

⟨m|P̂ν |m⟩
D

=
∑

m∈H

⟨m|Ô|m⟩
D

≡ ⟨Ô⟩ME, (76)

where the second equality holds up to exponentially small corrections, see Equation (74), and we
have used that

∑
m∈H ⟨m|P̂ν |m⟩ = dν . Next, we have that

⟨m|Ô|n⟩ =
∑

ν

Oν⟨m|P̂ν |n⟩, (77)

which is exponentially small if ⟨m|P̂ν |n⟩ is exponentially small [as required in Equation (74)] and
if Oν is not exponential in system size (as expected for physical observables).

We then see that Equations (76) and (77) are nothing but the RMT predictions summarized
in Equation (20), or, equivalently, the ETH ansatz restricted to the Thouless energy window
δE ∼ ET = !D/L2, where the function f (Ē,ω) is approximately constant. Without this condi-
tion, Equation (74) cannot be satisfied. Ultimately, Equations (20), (62), and (74) rely on the
fact that the overlap between the energy eigenstates and eigenstates of the observables is expo-
nentially small [145]. It is important to note that RMT provides a wealth of information about
the statistics of the level spacings and of the eigenstate components, which we have connected
to quantum chaotic Hamiltonians, that was absent in von Neumann’s (much earlier) theorem.
ETH goes beyond RMT (and the quantum ergodic theorem), as we mentioned before, because it
addresses what happens outside the featureless Thouless energy shell.

4.3. Numerical experiments in lattice systems
4.3.1. Eigenstate thermalization

Numerical evidence of the occurrence of eigenstate thermalization has been found in a num-
ber of strongly correlated nonintegrable lattice models in fields ranging from condensed matter
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276 L. D’Alessio et al.

Figure 13. Eigenstate expectation values of the occupation of the zero momentum mode [(a)–(c)] and the
kinetic energy per site [(d)–(f)] of hard-core bosons as a function of the energy per site of each eigenstate in
the entire spectrum, that is, the results for all k-sectors are included. We report results for three system sizes
(L = 18, 21, and 24), a total number of particles N = L/3, and for two values of J ′ = V ′ [J ′ = V ′ = 0.16
in panels (b) and (e) and J ′ = V ′ = 0.64 in panels (c) and (f)] as one departs from the integrable point
[J ′ = V ′ = 0 in panels (a) and (d)]. In all cases, J = V = 1 (unit of energy). See also Ref. [157].

to ultracold quantum gases. Such an evidence was first reported for a two-dimensional system
of hard-core bosons [28], and, since then, among others, it has been reported for a variety of
models of hard-core bosons and interacting spin chains [70,99,154,157–164], spinless and spin-
ful fermions [126,158,165,166], soft-core bosons [160,164,167–169], and the transverse field
Ising model in two dimensions [170]. Below, we discuss the evidence for ETH separately for the
diagonal and the off-diagonal matrix elements.

4.3.1.1. Diagonal matrix elements. We begin by illustrating the behavior of the diagonal
matrix elements of observables in the lattice hard-core boson model in Equation (55), which
transitions between the integrable limit and the chaotic regime as J ′ = V ′ departs from zero (see
Section 3.4) [69].

In Figure 13, we show in panels (a)–(c) the energy eigenstate expectation values of the zero
momentum mode occupation

m̂(k) = 1
L

∑

i,j

eik(i−j)b̂†
i b̂j. (78)

In panels (d)–(f), we show the kinetic energy per site

K̂ = 1
L

L∑

j=1

[−J(b̂†
j b̂j+1 + H.c.) − J ′(b̂†

j b̂j+2 + H.c.)]. (79)

Eigenstate expectation values are plotted as a function of the eigenenergies per site (Ep/L), for
three different system sizes as one increases J ′ = V ′. The qualitative behavior of mpp(k = 0)
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Figure 14. The first, second, fourth, and eighth largest values of rp in the central half of the spectrum,
as well as its mean value, are shown from top to bottom in both panels. (a) Results for the x-component
of the magnetization in a nonintegrable transverse Ising Hamiltonian. (b) Results for the nearest neighbor
density–density correlations in a nonintegrable hard-core boson Hamiltonian. From Ref. [161].

and Kpp vs. Ep/L, depicted in Figure 13, has been observed in other few-body observables and
models studied in the literature, and, as such, is expected to be generic. The main features to
be highlighted are: (i) At integrability, mpp(k = 0) and Kpp can have quite different expectation
values [see, particularly, mpp(k = 0)] in eigenstates of the Hamiltonian with very close energies.
Moreover, the spread does not change with increasing system size and the variance (not shown)
decreases as a power law of the system size. Similar results have been obtained in other integrable
models for larger system sizes than those available from direct full exact diagonalization of the
Hamiltonian [131–133,171,172]. (ii) As one departs from J ′ = V ′, or as one increases the system
size for any given value of J ′ = V ′ ̸= 0, the spread (or maximal differences) between the eigen-
state expectation values in eigenstates with very close energies decrease. This is true provided
that the eigenstates are not too close to the edges of the spectrum.

Recently, Kim et al. [161] studied the eigenstate-to-eigenstate fluctuations rp = Op+1p+1 −
Opp of both the x-component of the magnetization in a nonintegrable transverse Ising chain with
a longitudinal field and of the nearest neighbor density–density correlations in the nonintegrable
hard-core boson model (55). The results for the average value of |rp|, and for some of the largest
values of rp (in the central half of the spectrum), are shown in Figure 14 as a function of the
system size. They support the ETH expectation that eigenstate-to-eigenstate fluctuations decrease
exponentially fast with increasing system size (similar results were obtained in Ref. [170] for the
transverse field Ising model in two dimensions). Evidence that the variance of the eigenstate-to-
eigenstate fluctuations of various observables decreases exponentially fast with increasing system
size has also been presented in Refs. [159,160,170].

The results discussed so far suggest that, away from the edges of the spectrum and for suffi-
ciently large system sizes, any strength of an integrability breaking perturbation ensures that the
first term in Equation (62) describes the diagonal matrix elements of physical observables. By
sufficiently large system sizes, we mean the same conditions that were discussed for the onset of
quantum chaotic behavior in Section 3. Systems that exhibit a many-body localization transition
do not conform with this expectation [51].

4.3.1.2. Off-diagonal matrix elements. In Figure 15, we show the matrix elements of the
zero momentum mode occupation m̂(k = 0) between the 100 eigenstates whose energy is
closest to the energy of the canonical ensemble with temperature13 T = 3. Figure 15(a) and
15(b) illustrates some of the most important properties of the off-diagonal matrix elements of
few-body observables in integrable and nonintegrable systems. They have been discussed in
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278 L. D’Alessio et al.

Figure 15. Off-diagonal matrix elements of m̂(k = 0) in the eigenstates of the Hamiltonian for a system
with L = 24, N = L/3, and J = V = 1 (unit of energy). (a) J ′ = V ′ = 0 and (b) J ′ = V ′ = 0.32. Results are
shown for the matrix elements between the 100 eigenstates with energy closest to (a) E/L = −0.16 and (b)
E/L = −0.19. Those energies were selected from canonical ensembles with T = 3 in both systems. See also
Ref. [158].

Refs. [28,70,158] for various lattice models in one and two dimensions and, recently, system-
atically studied in Refs. [154,159,164]. The first obvious property, seen in Figure 15(a) and
15(b), is that no matter whether the system is integrable or not, the average value of the off-
diagonal matrix elements is much smaller than the average value of the diagonal ones. In the
integrable regime, Figure 15(a), a few off-diagonal matrix elements can be seen to be relatively
large, while many are seen to be zero [154,164]. In the nonintegrable regime, Figure 15(b), the
(small) values of the off-diagonal matrix elements appear to have a more uniform distribution.
Note that, in contrast to the integrable limit, no relatively large outliers can be identified among
the off-diagonal matrix elements in the nonintegrable regime. In the latter regime, the values of
the off-diagonal matrix elements have been shown to exhibit a nearly Gaussian distribution with
zero mean [159,164], and to be exponentially small in system size [164].

A better quantitative understanding of the behavior of the off-diagonal matrix elements of
observables can be gained by plotting them as a function of Ep − Eq for a small window of
values (Ep + Eq)/2. This is done in Figure 16 for a one-dimensional model of hard-core bosons
with the Hamiltonian [154]

Ĥ = −J
L−1∑

j=1

(b̂†
j b̂j+1 + H.c.) + V

∑

j<l

n̂jn̂l

|j − l|3
+ g

∑

j

x2
j n̂j. (80)

The number of bosons was set to be L/3. The three terms in this Hamiltonian describe, from
left to right, hopping (J = 1 sets the energy scale), dipolar interactions, and a harmonic potential
(xj is the distance of site j from the center of the trap). We note that Ĥ in Equation (80) is not
translationally invariant so that the thermodynamic limit needs to be taken with care [33]. For
V = 0, this model is integrable (mappable to noninteracting spinless fermions) irrespective of the
value of J and g.
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Figure 16. Absolute value of the off-diagonal matrix elements of the site occupation in the center of the
system [n̂(x = 0)] and of the zero momentum mode occupation [m̂(k = 0)] in the eigenenergy basis vs. the
eigenenergy difference Ep − Eq, for a small window of energies (Ep + Eq)/2 (the center of the window was
selected to be the energy of a canonical ensemble with T = 5). Results are shown for an integrable (a) and
a nonintegrable (b) system with L = 18. Lines are running averages (|Opq|avg) for the matrix elements of
m̂(k = 0). The insets show histograms of the relative differences between the matrix elements of m̂(k = 0)

and the running averages. The relative difference is defined as (|Opq| − |Opq|avg)/|Opq|avg. The running
averages were computed over 50 matrix elements for L = 15 and over 200 matrix elements for L = 18.
Adapted from Ref. [154].

In Figure 16(a), we show results at integrability (V = 0 and g ̸= 0), while, in Figure 16(b),
we show results away from integrability (V = 2 and g ̸= 0). For both cases, results are reported
for two observables, the site occupation at the center of the trap and the zero momentum mode
occupation. The off-diagonal matrix elements of both observables are qualitatively different in
the integrable and nonintegrable regimes. In the integrable model, there is a small fraction of
large outliers among the matrix elements (whose absolute value is orders of magnitude larger
than that of the median of the nonvanishing absolute values). In addition, there is a large fraction
of matrix elements that vanish. As a matter of fact, one can see in Figure 16(a) that only a few
off-diagonal matrix elements of the site occupation are nonzero (this observable is the same for
hard-core bosons and for the noninteracting fermions to which they can be mapped [33]). For the
zero momentum mode occupation (which is not the same for hard-core bosons and noninteracting
fermions [33]), the histogram of the differences between the absolute values and their running
average [inset in Figure 16(a)] makes apparent that there is also a large fraction (increasing with
system size [154]) of vanishing matrix elements. This demonstrates that, in the integrable model
and for the observables shown, the off-diagonal matrix elements are not described by the ETH
ansatz. In contrast, one does not find large outliers among the off-diagonal matrix elements in the
nonintegrable model. In addition, the near flat histogram in the inset in Figure 16(b) shows that
there is no large fraction of them that vanish as in the integrable case. One can then conclude that
the running average of the off-diagonal matrix elements, that is, the absolute value of the function
fO(E,ω) in Equation (62), is a well-defined quantity in nonintegrable systems.

This function is studied in detail in Figure 17 for the occupation at the center of the trap
(see figure caption for a precise definition of the observable). Results are reported for the same
system described above but with L/2 bosons. By selecting a narrow energy window in the center
of the spectrum, and by comparing results for two different system sizes (including the largest
we are able to solve numerically), it is possible to identify three qualitatively different regimes
at large, intermediate, and small energy separation ω = Ep − Eq [in what follows, we drop “E”
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Figure 17. Plot of the function |fO(ω)| vs. the eigenenergy difference ω = Ep − Eq for a system of L/2
bosons described by the Hamiltonian (80) with parameters J = 1, U = 1 and g = 16/(L − 1)2. The observ-
able Ô is the occupation at the center of the trap (more precisely, the average of the occupation of the two
central sites, as the calculations were done in the even sector when taking into account reflection symmetry
and the center of the trap is in the middle of two sites) and the function |fO(ω)| is obtained in a small energy
window centered around the middle of the spectrum. (a) At large ω, |fO(ω)| decays exponentially. (b) At
intermediate ω, |fO(ω)| is proportional to L1/2 and has a broad peak whose position scales as L−1. (c) At
small ω, |fO(ω)| exhibits a plateau. |fO(ω)| in the plateau is proportional to L1/2, and the extension of the
plateau is proportional to L−2.

from fO(E,ω), keeping in mind that E is that in the center of the spectrum]. These three regimes
are shown in panels (a), (b), and (c). (a) For ω ≫ 1, the function |fO(ω)| decays exponentially and
the curves corresponding to different system sizes show an excellent collapse supporting the ETH
ansatz (62). (b) At intermediate ω, |fO(ω)| is proportional to L1/2 and, around the point marked
with a vertical dashed line, one can see a broad peak whose position scales with L−1. (c) For
ω ≪ 1, |fO(ω)| exhibits a plateau. Our results suggest that |fO(ω)| in the plateau is proportional
to L1/2, and that its width is proportional to L−2. The results in panel (c) are noisier than in panels
(a) and (b) because of poor statistics, which is the result of having only few pairs of eigenstates
in the center of the spectrum such that ω = Ep − Eq ≪ 1.

The three regimes identified above, for large, intermediate, and small values of ω, determine
what happens to the observable at short, intermediate, and long times during the dynamics (c.f.,
Section 6.8). In the fast, high-frequency, regime |fO(ω)| is an exponentially decaying function
independent of the system size. In Section 6.8, we show that |fO(ω)|2 is related to the spectral
function of the observable Ô and to the dissipative part of the linear response susceptibility. Its
exponential decay at high frequencies is expected on general grounds from perturbation theory,
at least for systems with a bounded spectrum.14 Such a high-frequency exponential tail was dis-
cussed, for example, in Ref. [173] for the conductivity, corresponding to the case where the
observable Ô is the current operator. (ii) At intermediate times, the independence of |fO(ω)|
vs. ωL on the system size indicates the existence of ballistic dynamics. (iii) At long times, the
approximate collapse of |fO(ω)| vs. ωL2 for different system sizes indicates diffusive dynamics.
Remarkably, at frequencies smaller than a characteristic frequency ωc ∼ 1/L2 (corresponding to
times longer than the diffusive time tc ∼ L2), the function |fO(ω)| saturates at a constant value
proportional to L1/2. It is in this regime that the ETH ansatz (62) becomes equivalent to the RMT
ansatz.15 As the diffusive time is the longest relaxation time scale in the system, one expects that
in this regime physical observables do not evolve. The fact that |fO(ω)| at the plateau is propor-
tional to L1/2 can be understood as follow. The function |fO(ω)|2 is related to the nonequal-time
correlation function of the observable Ô, see Section 6.8. In particular, when evaluated at ω = 0,
we have

|fO(ω = 0)|2 ∝
∫ tc

0
dt⟨Ô(t)Ô(0) + Ô(0)Ô(t)⟩c ∝

∫ tc

0

dt√
t

∝
√

tc ∝ L, (81)
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where we have used that the diffusive time scale tc sets an upper bound for the time integral, and
that, assuming diffusive behavior, the nonequal-time correlation function of Ô is expected to be
∝ t−1/2. It then follows that fO(ω = 0) ∝

√
L. Remarkably, our results suggests that the scaling of

fO(ω) with L1/2 is also valid at the intermediate frequencies that are relevant to ballistic transport
[see Figure 17(b)].

4.3.2. Quantum quenches and thermalization in lattice systems

Now, let us see what happens when systems such as those studied in Section 4.3.1 are taken out
of equilibrium. Among the most common protocols for taking systems out of equilibrium are the
so-called sudden quenches or, simply, quenches. As explained in Section 3.4, in a quench the
system is assumed to be initially in equilibrium and then suddenly some parameter(s) is (are)
changed. The dynamics proceeds without any further changes of parameters. For example, in
ultracold gases experiments in optical lattices, one can suddenly change the depth of the optical
lattice [34–37,41], displace the center of the trapping potential [174–176], or turn off a trapping
potential while keeping the optical lattice on [43,177,178]. Theoretically, one can think of a
quench as a protocol in which one starts with a stationary state of a given Hamiltonian, often
the ground state, and then suddenly changes some Hamiltonian parameter(s). The initial state is
not stationary in the new (time-independent) Hamiltonian, as a result of which it has a nontrivial
unitary dynamics. Quenches in which one changes parameters throughout the system are called
global quenches, while quenches in which parameters are only changed in a finite region are
called local quenches. In the former class of quenches, one generally adds an extensive amount
of the energy to the system, while, in the latter class, the change in energy is subextensive.

A remarkable property of quantum quenches involving local Hamiltonians is that one can
actually prove, under very general conditions, that the width δE of the energy distribution
after a quench scales with the square root of the volume (or of the number of particles) [28].
This behavior is expected from thermodynamics, and is essentially a consequence of the cen-
tral limit theorem. This width sets the effective “microcanonical window” of the equivalent
thermodynamic ensemble. It depends on the details of the initial state and the quench protocol.

To prove that after a global quench δE ∼
√

V , we consider, for concreteness, a lattice system
prepared in an initial state |ψI⟩ which is an eigenstate (not necessarily the ground state) of the
initial Hamiltonian Ĥ0. After the quench, the Hamiltonian is Ĥ = Ĥ0 + Ĥ1, where Ĥ1 is a sum of
local operators Ĥ1 =

∑
j ĥj. One can then write [28]

δE ≡
√

⟨ψI |Ĥ2|ψI⟩ − ⟨ψI |Ĥ |ψI⟩2 =
√

⟨ψI |Ĥ2
1 |ψI⟩ − ⟨ψI |Ĥ1|ψI⟩2

=
√∑

j1,j2

[⟨ψI |ĥj1 ĥj2 |ψI⟩ − ⟨ψI |ĥj1 |ψI⟩⟨ψI |ĥj2 |ψI⟩]. (82)

From the expression above, one concludes that, in the absence of long-range connected correla-
tions between ĥj in the initial state, and if all matrix elements are finite,16 the width δE scales at
most as the square root of the number of lattice sites in the system, that is, δE ∼

√
V . Because

the energy itself is extensive in the volume of the system, we see that the relative energy fluctua-
tions are inversely proportional to the square root of the volume δE/E ∼ 1/

√
V as expected from

equilibrium thermodynamics. This result is a consequence of the locality of the Hamiltonian and,
hence, is unrelated to whether the system is integrable or nonintegrable. This scaling of energy
fluctuations, in combination with eigenstate thermalization, ensures that in generic systems with
local interactions thermalization occurs after a quench. Generalizing this proof to continuous
systems is straightforward.
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Next, we address two important questions whose precise answer depends on the specifics of
the system and of the observable of interest, but whose qualitative answer has been found to be
quite similar for several strongly correlated lattice models and observables studied. The first ques-
tion is how long it takes for experimentally relevant observables to relax to the diagonal ensemble
predictions. The second one is how large the system sizes need to be for the relative difference
between the diagonal ensemble and the statistical mechanics predictions to be small. These ques-
tions have been mainly addressed in numerical experiments. We reproduce some results of these
numerical experiments below.

4.3.2.1. Dynamics. We consider the dynamics of observables in the hard-core boson
model (55). Some numerical results for this model were already discussed in Sections 3.4 and
4.3.1. For the quench dynamics discussed here, the initial states are taken to be eigenstates
of the Hamiltonian with JI = 0.5, VI = 2, J ′ = V ′, and the time evolutions are studied under
final Hamiltonians with J = V = 1 (unit of energy), and J ′ = V ′ [157]. Hence, only the nearest
neighbor parameters are changed during the quench. The strengths (J ′ = V ′) of the integrability
breaking terms remain unchanged. To characterize the dynamics of the entire momentum distri-
bution function and of the kinetic energy (by comparing them to the diagonal ensemble results),
the following relative differences are computed:

δm(t) =
∑

k |m(k, t) − mDE(k)|∑
k mDE(k)

and δK(t) = |K(t) − KDE|
|KDE|

, (83)

respectively. In these expressions, t refers to time and the subscript “DE” refers to the diagonal
ensemble prediction [recall Equation (53)]. In order to be able to compare results for systems with
different Hamiltonian parameters in a meaningful way, the initial state for each quench is selected
to be the eigenstate of the initial Hamiltonian that, after the quench, has the closest energy to
that of a system with temperature T, namely, ⟨ψI |Ĥ |ψI⟩ = Tr[Ĥ exp(−Ĥ/T)]/Tr[exp(−Ĥ/T)],
where the Boltzmann constant is set to unity. For the quenches discussed in what follows, T = 3
as in Figure 15. This temperature is such that eigenstate thermalization can be seen in these small
systems and O(Ē) is not featureless as expected in the center of the spectrum (i.e. at “infinite
temperature”).

In Figure 18(a)–18(c), we show results for δm(t) vs. t for systems with L = 21 (blue lines)
and L = 24 (red lines), and for three values of J ′ = V ′. The behavior of δm(t) vs. t is qualita-
tively similar for all values of J ′ = V ′. Namely, at t = 0, one can see that δm is large (! 10%,
except for J ′ = V ′ = 0.16) and then it quickly decreases (in a time scale of the order of !/J) and
starts oscillating about a small nonzero value (∼ 2% for L = 24). With increasing system size,
the value about which δm(t) oscillates, as well as the amplitude of the oscillations, decrease.
A qualitatively similar behavior, though with a significantly smaller mean and amplitude of
the oscillations about the mean, can be seen during the time evolution of δK(t) [Figure 18(d)–
18(f)]. Comparable results have been obtained for other nonintegrable models and observables
[28,99,154,157,158,169,179–185]. All that numerical evidence makes clear that, despite the
exponentially small (in system size) level spacing in many-body quantum systems, the relaxation
of physically relevant observables to the diagonal ensemble results does not take exponentially
long time. Furthermore, in accordance with our expectations based on the ETH ansatz, numerical
experiments have also shown that the scaling of the variance of the time fluctuations of expecta-
tion values of observables is consistent with an exponential decrease with increasing system size
[185].

Note that the results reported in Figure 18 were obtained in systems in which there are only
seven and eight hard-core bosons, for L = 21 and L = 24, respectively. Namely, the time fluctu-
ations of the expectation values of observables can be very small even for systems with a very
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Figure 18. (a)–(c) Relative difference between the instantaneous momentum distribution function and the
diagonal ensemble prediction (see text) as a function of time. (d)–(f) Relative difference between the instan-
taneous kinetic energy and the diagonal ensemble prediction (see text) as a function of time. The strength
of the integrability breaking terms (J ′ = V ′) increases from top to bottom: (a),(d) J ′ = V ′ = 0 (integrable
point); (b),(e) J ′ = V ′ = 0.16; and (c),(f) J ′ = V ′ = 0.64. Results are reported for two system sizes (L = 21
and 24) and N = L/3. In all cases, J = V = 1 (unit of energy). Time is given in units of !/J . See also
Ref. [157].

small number of particles (see Ref. [28] for an analysis of a two-dimensional system with only
five hard-core bosons that exhibits a qualitatively similar behavior).

4.3.2.2. Post relaxation. After showing that even small finite systems relax to the predictions
of the diagonal ensemble and remain close to them, we need to check how close the diagonal
ensemble predictions are to those made by standard statistical mechanics. This is the final step
needed to know whether thermalization takes place. Since we are dealing with small systems,
which ensemble is taken among the microcanonical, canonical, and grand canonical ensembles
makes a difference. Considering that the systems of interest here are isolated, the most appro-
priate statistical ensemble is the microcanonical ensemble [28,157]. Therefore, we compute the
following relative differences to characterize whether the system thermalizes or not:

0m =
∑

k |mDE(k) − mME(k)|∑
k mDE(k)

and 0K = |KDE − KME|
|KDE|

. (84)

In these expressions, the subscripts “DE” and “ME” refer to the diagonal and microcanonical
ensemble predictions, respectively.

The main panel (inset) in Figure 19(a) depicts results for 0m (0K) in the hard-core boson
systems whose dynamics was reported in Figure 18. The corresponding results when the hard-
core bosons are replaced by spinless fermions are shown in Figure 19(b). One can see that the
behavior of 0m (0K) is qualitatively similar for hard-core bosons and spinless fermions. The
largest differences between the predictions of the diagonal and microcanonical ensembles are
seen at (and close to) the integrable point. As one departs from the integrable point, the dif-
ferences decrease. After a fast decrease, there is an interval of values of J ′ = V ′ at which 0m
(0K) becomes almost independent of the exact value of J ′ = V ′ (up to finite-size fluctuations).
In that interval, 0m (0K) can be seen to decrease as one increases system size (up to finite-
size fluctuations). This is consistent with the expectation that those differences vanish in the
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Figure 19. (Main panels) Relative difference between the predictions of the diagonal and microcanonical
ensembles for the momentum distribution function (see text) as a function of the strength of the integrability
breaking terms. (Insets ) The same as the main panels but for the kinetic energy. Results are reported for
hard-core bosons (a) and for spinless fermions (b), and for two system sizes L = 21 (blue lines) and L = 24
(red lines) with N = L/3. In all cases, J = V = 1 (unit of energy). See also Refs. [157,158].

thermodynamic limit. Numerical evidence that, in the thermodynamic limit, the predictions of the
diagonal ensemble for observables after a quench to a nonintegrable model are identical to those
from traditional statistical mechanics ensembles has been obtained in numerical linked cluster
expansion studies [130,135]. On the other hand, in quenches to integrable points in the thermo-
dynamic limit, it was found that lack of thermalization is ubiquitous [130,135] (see Section 8.3).
For finite systems, it is striking that the differences between the diagonal and the microcanonical
ensembles can be a fraction of a percent even for systems with less than 10 particles (which makes
their experimental detection unlikely). Similar results have been obtained for other observables
in Refs. [28,99,154,157,158,169].

The results presented in this section support the expectation that nonintegrable quantum sys-
tems exhibit eigenstate thermalization and therefore thermalize in the strong sense as defined in
this review.

5. Quantum chaos and the laws of thermodynamics
If one assumes that a system is prepared in a Gibbs, or other equivalent ensemble, then one
does not need assumptions about chaos and ergodicity to prove various statements of statis-
tical mechanics and thermodynamics. For example, the fluctuation–dissipation relation can be
straightforwardly proved using standard perturbation theory. Quantum chaos and ETH allow one
to prove all the statements for individual eigenstates of chaotic Hamiltonians, and therefore for
arbitrary stationary ensembles (with subextensive energy fluctuations). This distinction is at the
heart of the importance of quantum chaos for the proper understanding of thermodynamics in
isolated systems. In the earlier sections, we argued that eigenstate thermalization is generally
needed for isolated quantum systems taken far from equilibrium to thermalize. Likewise, in the
following sections, we will show that the same assumptions of quantum chaos together with ETH
are sufficient for establishing thermodynamic relations in such isolated systems.

5.1. General setup and doubly stochastic evolution
Equilibrium thermodynamics studies transformations between equilibrium states of macroscopic
systems. During such a transformation, thermodynamic quantities (such as the free energy,
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magnetization, and pressure) evolve in time. These changes are usually induced by either heat
exchange with another macroscopic system or the work done on the system via changing some
macroscopic parameters in time (like its volume or the applied magnetic field), or both. For
example, consider a phase transformation from a solid to a liquid as temperature is changed, or
the exchange of energy, in the form of heat and work, in heat engines. The laws of thermodynam-
ics dictate which process are possible and which are not. They give bounds for engine efficiencies
and provide relations between superficially different quantities (e.g. the Onsager relations, which
will be discussed in the next section).

Since equilibrium thermodynamics provides relations between different equilibrium states,
the concept of a quasi-static process is central to the development of the theory. A quasi-static
process is one in which the state of the system is changed very slowly through a sequence of
equilibrium states. However, it is important to stress that thermodynamics is not limited to quasi-
static processes. For example, in one formulation of the second law of thermodynamics, one
considers an equilibrated isolated system that undergoes a dynamical process (which need not
be quasi-static). As a result, the entropy difference between the final equilibrium state of the
system and the initial equilibrium state is positive or zero independent of how rapidly the pro-
cess is carried out. Moreover, this entropy difference is uniquely determined by the total energy
change in the system, no matter how fast or slow the process of energy exchange is. Another
remarkable example of thermodynamic relations are the recently discovered fluctuation theo-
rems [20,25,186,187], which make exact statements about work, heat, and free energy changes
in arbitrary nonequilibrium processes.

To derive thermodynamic relations, one needs to consider dynamical processes that start from
a stationary state. To this end, we focus on an isolated system initially prepared in a stationary
state, which undergoes a unitary evolution in response to an external change. The latter is mod-
eled by a change in time of macroscopic parameters in the Hamiltonian according to a prescribed
protocol. The protocol considered is such that the parameters are changed during a finite time,
after which the Hamiltonian is time independent and the system is allowed to relax to equilib-
rium. As an example, one can think of a gas confined in a container by a piston (see Figure 20). In
this case, the macroscopic parameter is the position of the piston, which is changed in time from
position z = A to z = B according to a protocol z(t). At the end of the process, the piston is kept
fixed at position z = B and the gas is allowed to equilibrate. While we focus on isolated systems,

Figure 20. Schematic representation of a gas undergoing a compression.
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our setup can also describe open systems. This is because, if the dynamical process involves
changing parameters only in a part of the system (a local operation), the rest of the system can
act as a thermal bath. If the bath is much larger than the part of the system in which the dynam-
ical process is implemented, the intensive quantities characterizing the latter (such as the energy
density defining the temperature or the pressure) after it relaxes to equilibrium will be identical
to their initial values.

Mathematically, the assumption that the systems start in a stationary (i.e. a state that is trans-
lationally invariant in time) amounts to taking the initial density matrix to be diagonal in the basis
of the initial Hamiltonian (if there are degeneracies in the spectrum, one just needs to find a basis
where the density matrix is diagonal)

ρ(0)
nm = ρ(0)

nn δnm. (85)

It is important to note that, at the moment, we make no assumptions on the structure of the density
matrix beyond stationarity. After the system undergoes a dynamical process, the density matrix
in the basis of the final Hamiltonian, that is, the Hamiltonian at the end of the dynamical process,
is not diagonal anymore. As discussed previously, the off-diagonal matrix elements dephase and,
at long times, the expectation values of observables are solely determined by the diagonal matrix
elements. The latter are given by

ρm̃m̃ =
∑

n

Um̃nρ
(0)
nn U†

nm̃, (86)

where Unm are the matrix elements of the evolution operator

Û = Tt exp
[
−i
∫ t

0
dt′Ĥ(t′)

]
, Um̃n = ⟨m̃|Û |n⟩. (87)

Here, Tt denotes time ordering, and the “tilde” indicates that the states |m̃⟩ are eigenstates of the
Hamiltonian after the evolution, while |n⟩ are the eigenstates of the initial Hamiltonian. The two
basis sets coincide only in the special case of cyclic processes.

Equation (86) can be rewritten as a master equation for the occupation probabilities of the
microstates

ρ
(1)
m̃m̃ =

∑

n

ρ(0)
nn (Um̃nU†

nm̃) ≡
∑

n

ρ(0)
nn pn→m̃, (88)

where we have defined the transition probabilities between states |n⟩ and |m̃⟩ associated with the
dynamical process to be17

pn→m̃ = Um̃nU†
nm̃ = |Um̃n|2. (89)

The last equality trivially follows from the identity U†
nm̃ = (Um̃n)

∗, where the star indicates
complex conjugation.

From the unitarity of the evolution operator, it follows that
∑

m̃

Um̃nU†
km̃ = δnk and

∑

n

U†
nk̃

Um̃n = δk̃m̃. (90)

Setting k = n and k̃ = m̃, we immediately see that
∑

m̃

pn→m̃ = 1,
∑

n

pn→m̃ = 1. (91)
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These conditions allow for a simple physical interpretation if we rewrite it changing the dummy
indices n and m in the second sum, namely

∑

m̃ ̸=ñ

pn→m̃ =
∑

m̸=n

pm→ñ. (92)

In other words, the sum of incoming probabilities to any given state |ñ⟩ of the final Hamiltonian
is equal to the sum of the outgoing probabilities from an equivalent, for example, adiabatically
connected state |n⟩ of the initial Hamiltonian. For a cyclic process, one can remove the tildes
and simply say that the sum of incoming probabilities to any eigenstate is equal to the sum of
outgoing probabilities from the same state.

The transition probabilities pn→m̃ = |Unm̃|2 are positive semi-definite for any pair of states.
This, combined with the constraints above, leads to

0 ≤ pn→m̃ ≤ 1, (93)

as expected. Any semi-positive matrix p satisfying the constraints (91) and (93) is called doubly
stochastic [188]. The corresponding evolution described by the master equation (88) is called a
doubly stochastic evolution.

As it has been known for a long time, the constraints (91) have far-reaching consequences
and, for example, play a prominent role in the formulation of the kinetic theory of gases [189].
Moreover, doubly stochastic evolution is the proper framework to discuss thermodynamic pro-
cesses in isolated quantum systems since it emerges naturally based on the assumptions that: (i)
the system starts from a stationary state, (ii) the system evolves unitarily, and (iii) the long-time
behavior of the observables is determined only by the diagonal elements of the density matrix in
the basis of the final Hamiltonian. With this in mind, we review some general properties of the
master equation, and those associated with doubly stochastic matrices in particular.

5.1.1. Properties of master equations and doubly stochastic evolution

Equation (88) is a discrete-time master equation. The matrix p, with elements pn,m̃ = pn→m̃

satisfying the first of the two conditions in Equation (91), is known as a Markov matrix or,
equivalently, as a stochastic matrix. The action of p on a probability vector, in our case ρ(0)

(with elements ρ(0)
nn ), gives a new probability vector ρ(1) (with elements ρ(1)

m̃m̃), which is the result
of stochastic transitions between the different states of the system. For completeness, we briefly
review some of the properties of a Markov matrix that will be used in our discussion. More details
and complete proofs can be found, for example, in Ref. [190].

We first note that the conservation of probability implies that the outgoing transition prob-
abilities from any state must sum to one [first condition in Equation (91)], so that the sum
over each column of the Markov matrix is 1. This holds for any master equation. Indeed, from
Equation (88),

∑

m̃

ρ
(1)
m̃m̃ =

∑

m̃

∑

n

ρ(0)
nn pn→m̃ =

∑

n

ρ(0)
nn = 1. (94)

In general, the matrix p is not symmetric and therefore admits separate left and right eigenvectors
(the spectrum associated with left and right eigenvectors is the same). If one applies the matrix
p many times on a probability vector, one expects that the probability distribution relaxes to a
steady state. This implies that the matrix p has one eigenvalue λ0 = 1 whose corresponding right
eigenvector is the steady-state probability distribution [190]. The existence of the eigenvalue
λ0 = 1 is straightforward to prove as the left vector (1, 1, 1 . . .) is always, by conservation of
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probability, the corresponding left eigenvector. One can show that if the Markov matrix does
not have a block diagonal form, which implies that some states cannot be reached from others,
then the right eigenvector corresponding to the eigenvalue 1 is unique [190]. Finally, we note
that the relaxation to the steady state following many applications of p is dictated by the other
eigenvectors and their corresponding eigenvalues. One then expects that the eigenvalues λi satisfy
|λi| ≤ 1 (this can be proved rigorously [190]).

Next, we turn to the second condition in Equation (91), which is associated with the doubly
stochastic nature of p. It states that the incoming transition probabilities to any state sum to one.
This constraint is less trivial and does not generally hold for non-unitary evolution.18 At the same
time, doubly stochastic evolution is more general than unitary evolution. In particular, the product
of two doubly stochastic matrices is a doubly stochastic matrix [see Equation (95)]. This implies
that any projective measurement performed during the evolution, which breaks unitarity, keeps
the transition matrix doubly stochastic. Moreover, any statistical mixture of doubly stochastic
matrices is doubly stochastic. This implies that if, for example, one repeats slightly different
dynamical protocols starting with the same density matrix and ending with the same final Hamil-
tonian, then the transition matrix describing the average effect of these dynamical protocols is still
doubly stochastic. Because of this, various dephasing mechanisms (e.g. the presence of external
noise or fluctuating waiting times between different pulses) keep the evolution doubly stochastic,
even if they generally break its unitarity. The second condition in Equation (91) is a direct con-
sequence of the fact that any doubly stochastic matrix can be represented as pn→m̃ = |⟨m̃|Û |n⟩|2
for some (maybe fictitious) unitary operator Û , see Ref. [191]. For a unitary process, one can
always define its inverse. Therefore, the role of the initial and final states is interchangeable, and
the same sum rule applies to both summations over n and m̃. The doubly stochastic condition is
schematically illustrated in Figure 21, where it is shown that the sum of the outgoing rates from
a state |2⟩ (red lines) is equal to the sum of the incoming probabilities into the state |2̃⟩ (black
lines).

Figure 21. Schematic representation of a doubly stochastic evolution for a cyclic process. An isolated sys-
tem undergoes some dynamical process where the control parameter λ changes in time in some arbitrary
way (top). The cumulative effect of the evolution is given by the transition probabilities (bottom). Red
arrows indicate the outgoing transition probabilities from the level |2⟩ of the initial Hamiltonian to levels
|1̃⟩ and |3̃⟩ of the final Hamiltonian (which in this case are the same as |1⟩ and |3⟩ because we consider
a cyclic process). Black arrows describe the incoming transition probabilities to the level |2̃⟩ of the final
Hamiltonian: |1⟩ → |2̃⟩ and |3⟩ → |2̃⟩. Doubly stochastic evolution implies that p21̃ + p23̃ = p12̃ + p32̃.
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The easiest way to satisfy the doubly stochastic constraint is to have identical transition proba-
bilities between any two pair of energy levels, pn→m̃ = pm̃→n. This condition is known as detailed
balance for an isolated system.19 Detailed balance is satisfied in: (i) two level systems, (ii) systems
with more than two energy levels within first order of perturbation theory (e.g. a Fermi golden
rule) [192], and (iii) systems with real Hamiltonians, which satisfy instantaneous time-reversal
symmetry, subjected to symmetric cyclic protocols such that Ĥ(t) = Ĥ(T − t), where T indicates
the total duration of the dynamical process [193]. In general, however, pairwise transition proba-
bilities are not the same, that is, the detailed balance condition pn→m̃ = pm̃→n is violated and only
the sum rules (91) are satisfied.

In passing, we note that doubly stochastic matrices are intimately related to permutation matri-
ces, as stated by Birkhoff’s theorem, which is presented in Appendix D. This theorem allows one
to make physical predictions for arbitrary doubly stochastic evolution of systems with many
degrees of freedom. For example, it allows one to rigorously bound the maximum amount of
work that can be extracted from a microcanonical bath [194].

Repeated processes. Next, we show that doubly stochastic matrices form a group under mul-
tiplication, that is, the product of two doubly stochastic matrices p and q is a doubly stochastic
matrix s (the remaining group properties follow trivially):

sn→k ≡
∑

m

pn→mqm→k ⇒

⎧
⎨

⎩

∑
n sn→k =

∑
m qm→k = 1,

∑
k sn→k =

∑
m pn→m = 1,

(95)

where, to simplicity the notation, we dropped the tilde over the state labels. Physically,
Equation (95) tells us that performing a sequence of two (or more) doubly stochastic processes
on a system is again a doubly stochastic process. This property allows one to split any doubly
stochastic process in a sequence of arbitrary many doubly stochastic processes. We now apply
this result to a concrete setup in which an initially stationary density matrix ρ(0)

nn undergoes an
arbitrary dynamical process that is interrupted by a sequence of ideal projective measurements,
that is, we consider the sequence:

ρ(0)
nn −→︸︷︷︸

U1

M1 −→︸︷︷︸
U2

M2 · · · −→︸︷︷︸
UN

MN , (96)

where Uj represents an arbitrary dynamical process and Mj an arbitrary projective measurement.
Immediately after each projective measurement, the density matrix is diagonal in the basis of the
projection operator Mj. Hence, the previous sequence is equivalent to:

ρ(0)
nn −→︸︷︷︸

U1

ρ
(1)
ll −→︸︷︷︸

U2

ρ
(2)
kk · · · −→︸︷︷︸

UN

ρ(N)
mm , (97)

where ρ(j) is a diagonal matrix in the basis of the projection operator Mj.20 Each fundamental
block is a doubly stochastic process and is represented by a proper doubly stochastic matrix. For
example:

ρ
(j−1)
ll −→︸︷︷︸

Uj

ρ
(j)
kk ⇔ ρ

(j)
kk =

∑

l

ρ
(j−1)
ll p(j)

l→k . (98)

Using the group property discussed above, the sequence is described by a single doubly stochastic
matrix s obtained as the (matrix) product of the doubly stochastic matrices of the fundamental
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processes:

ρ(N)
mm =

∑

n

ρ(0)
nn sn→m, s = p(N) · · · p(2)p(1), (99)

where the bold symbols indicate matrices.
One can generally think of projective measurements as quenches to a measurement Hamilto-

nian and dephasing. For example, let us imagine we have a system of (possibly interacting) spins
and we want to do a projective measurement of the z-magnetization of a given spin. Formally, we
can simply say that we project this spin to the z-axis and read probabilities. Alternatively, one can
think about the same process as a quench to a very strong local magnetic field along the z-axis,
such that the remaining part of the Hamiltonian does not matter, and then dephasing (or time
averaging) of the density matrix. Thus, this combination of quench and dephasing projects the
local spin density matrix into a statistical mixture of “up” and “down” states. For this reason, the
factorization property of the transition matrix (99) holds if we have a series of quenches with long
random waiting times in between. These random waiting times are equivalent to the projection
of the density matrix to the basis of the Hamiltonian after each quench or, formally equivalent, to
the projective measurement of the energy of this intermediate Hamiltonian.

In ergodic systems, random waiting times are not needed, it is sufficient to wait times that are
longer than the relevant relaxation time. As we discussed in the previous section, apart from small
fluctuations, from the point of view of observables the density matrix is effectively dephased (see
Ref. [195] for a more formal discussion of this point, and Ref. [196] for caveats). If the waiting
time between quenches (random or not) is shorter than the relaxation time, then the transition
matrix describing the whole dynamical process is doubly stochastic but it is not the product of
the transition matrices corresponding to the individual quenches. For example, if one considers
a large periodically driven ergodic system, one can anticipate that, if the driving period is longer
than the relaxation time, the exact periodicity of the driving protocol is not important and the
transition probability factorizes (in small ergodic systems the factorization can be violated even
for long driving periods [196]). If the period is short compared to the relaxation time, one has
to use the Floquet formalism (see, e.g. Ref. [197] for review) to accurately describe the time
evolution after many periods. In this case, the dynamics between periods is coherent and the
factorization property of the transition probability (99) does not apply. Still, the overall evolution
remains doubly stochastic.

Let us now discuss the implications of doubly stochastic evolution for time-reversed pro-
cesses. The two conditions (91) imply that one can define the transpose transition rate matrix
pT

m̃→n = pn→m̃, which is also a doubly stochastic matrix that corresponds to a reversed process in
which the role of initial and final states is swapped. For a unitary process (i.e. a process without
projective measurements or dephasing), the time-reversal process corresponds to the transition
matrix pT, that is, pt.r. = pT. Indeed, for the time-reversal process, the evolution operator is given
by Û−1 = Û†. Therefore

pt.r.
m̃→n ≡ |U†

nm̃|2 = |Um̃n|2 = pn→m̃. (100)

In practice, time-reversal processes are very difficult to realize. They require either an overall
change of sign of the Hamiltonian or taking the complex conjugate of the wave function, which
in the classical language is equivalent to changing the sign of the velocities of all particles. As
noted in Ref. [25], the dynamics leading to the transition probabilities pt.r.

m̃→n can be achieved
much more easily by using the so-called reversed protocol. To see the difference between the
time-reversal and reversed processes, consider again a unitary evolution. The evolution operator
and its time inverse are given by the time-ordered exponentials (such that later times t appear on

D
ow

nl
oa

de
d 

by
 [N

or
th

er
n 

Ill
in

oi
s U

ni
ve

rs
ity

] a
t 0

4:
12

 0
1 

A
ug

us
t 2

01
6 



Advances in Physics 291

the left):

Û = Tt exp
[
−i
∫ T

0
Ĥ(t) dt

]
, Û† = Tt exp

[
i
∫ T

0
Ĥ(T − t) dt

]
. (101)

Let us now define the reverse protocol as the forward time evolution with the Hamiltonian
H(T − t), that is, the Hamiltonian for which we simply reverse the dynamical protocol. The
corresponding evolution operator is given by

Û r = Tt exp
[
−i
∫ T

0
Ĥ(T − t) dt

]
. (102)

Note that Û r and Û† are very different. For example, ÛÛ† is the identity while ÛÛr is not. Nev-
ertheless, if the Hamiltonian Ĥ(t) is real at each moment of time, that is, satisfies instantaneous
time-reversal symmetry, then Û r and Û† lead to the same transition probabilities. Using this fact,
the eigenstate |n⟩ and |m̃⟩ can be chosen to be real in that case, we find

⟨n|Ûr|m̃⟩∗ = ⟨n∗|(Ûr)∗|m̃∗⟩ = ⟨n|Û†|m̃⟩. (103)

Therefore

pr
m̃→n = |U r

nm̃|2 = |⟨n|U†|m̃⟩|2 = pt.r.
m̃→n. (104)

Unlike the time-reversal process, which generally exists only for unitary evolution, the reverse
process is defined even if the forward protocol is not unitary. For example, if it involves pro-
jection measurements along the way. As we discussed, in this case the transition probability
matrices factorize into products of transition probability matrices corresponding to processes
between measurements. It is then straightforward to see that for the reversed process, which
involves exactly the same sequence of measurement performed in the opposite order, one still
has pr

m̃→n = pn→m̃. If the protocol is time symmetric, that is, Ĥ(T − t) = Ĥ(t), then Û = Û r

and hence pr
m→n = pm→n. Combining this condition with pr

m→n = pn→m, we see that for such
symmetric protocols, detailed balance is automatically satisfied, that is, pn→m = pm→n.

5.2. General implications of doubly stochastic evolution
We now derive the physical implications of doubly stochastic evolution. The results in this sub-
section rely only on doubly stochasticity and are therefore valid for both nonintegrable and
integrable systems.

5.2.1. The infinite temperature state as an attractor of doubly stochastic evolution

First, let us consider a cyclic process. In this case, the basis m̃ and m are identical and the master
Equation (88) becomes:

ρ(1) = pρ(0), (105)

where on the RHS we have a matrix vector multiplication. If we repeat the process N times, we
obtain

ρ(N) = pNρ(0). (106)

On physical grounds one expects that, after many applications of a dynamical process, all
eigenstates of the Hamiltonian should have an equal occupation:

lim
N→∞

ρ(N)
mm = const. = 1

D
, (107)
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where D is the dimensionality of the Hilbert space. The state characterized by ρmm = const. is
often called an “infinite temperature state” since it is formally identical to a Gibbs distribution,
ρnn = e−βEn/Z, in the limit β → 0. The invariance of the infinite temperature state under dou-
bly stochastic evolution trivially follows from the master equation. By substituting the infinite
temperature state (which is the right eigenvector of p corresponding to λ0 = 1) in the master
equation, we obtain

ρ(N+1)
mm =

∑

n

pn→mρ
(N)
nn = 1

D
∑

n

pn→m = 1
D

= ρ(N)
nn . (108)

In Appendix C, we prove that the infinite temperature state is an attractor of the doubly stochastic
evolution. The approach to the steady state is controlled, as discussed in Section 5.1.1, by the
eigenvalues of p whose absolute value is smaller than one.

Let us discuss in detail the three-level system depicted in Figure 21. Besides providing a
concrete example of the approach to infinite temperature, this example clarifies under which
conditions the system always relaxes to the infinite temperature state. Instead of considering the
most general doubly stochastic evolution (which is discussed in Appendix D in connection with
Birkhoff’s theorem), we assume that: (i) the process is cyclic (therefore we can drop tilde signs
over eigenstate labels of the final Hamiltonian), (ii) the transition probabilities satisfy the detailed
balance condition pn→m = pm→n, and (iii) the only nonzero transition probabilities are between
states 1 and 2 (p12 = γ12) and states 2 and 3 (p23 = γ23). From probability conservation, we must
have p11 = 1 − γ12, p22 = 1 − γ12 − γ23 and p33 = 1 − γ23

p =

⎛

⎝
1 − γ12 γ12 0
γ12 1 − γ12 − γ23 γ23

0 γ23 1 − γ23.

⎞

⎠ . (109)

Note that p is symmetric because of the detailed balance condition. Its eigenvalues are

λ0 = 1, λ1 = 1 − γ12 − γ23 +
√
γ 2

12 + γ 2
23 − γ12γ23,

λ2 = 1 − γ12 − γ23 −
√
γ 2

12 + γ 2
23 − γ12γ23. (110)

One can then see that unless either γ12 = 0 or γ23 = 0, that is, unless the transition matrix is
block diagonal, |λ1|, |λ2| < 1. As a result, for a repeated process, any probability distribution
will relax to the eigenstate corresponding to the eigenvalue λ0 = 1, which is nothing but the
uniform probability distribution (1/3, 1/3, 1/3).

5.2.2. Increase of the diagonal entropy under doubly stochastic evolution

As shown above, any initial state evolving under a repeated doubly stochastic process approaches
the “infinite temperature state”. This state is the one with the maximal spread in the eigenstates
of any final Hamiltonian. As we discussed in Section 3.4, a natural measure of the spreading of
states, in the basis of a given Hamiltonian, is the diagonal entropy:

Sd = −
∑

n

ρnn ln ρnn. (111)

This entropy is maximized for the uniform occupation probability (which, as shown in
Appendix C, is an attractor) so one can anticipate that Sd can only increase under doubly
stochastic evolution.
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The diagonal entropy has many interesting properties. For example, it coincides with the
usual von Neumann entropy for stationary density matrices. In addition, the diagonal entropy can
be viewed as the entropy of the time averaged density matrix. The diagonal entropy also sets
a natural “distance” between the density matrix ρ and the infinite temperature density matrix.
Indeed given two discrete distributions P and Q a natural distance between them, also known as
the Kullback–Leibler (KL) divergence [198], is 21

DKL(P||Q) =
∑

n

Pn ln(Pn/Qn). (112)

It is straightforward to see that this distance is non-negative and that it is zero only when the two
distributions coincide, that is, only when Pn = Qn for all values of n. If we substitute Pn → ρnn

and Qn → 1/D, then

DKL(ρnn||ρ∞) = S∞ − Sd ≥ 0, (113)

where S∞ = ln(D) is the entropy of the infinite temperature state (the highest possible entropy).
Therefore, an increase of the diagonal entropy is equivalent to decreasing the distance between
the actual and the infinite temperature energy distributions.

We prove next that doubly stochastic evolution leads to an increase of the diagonal entropy.
First, recall that if a function is convex in a given interval then

f (x) ≥ f (y) + (x − y)f ′(y) (114)

for any x,y in that interval. In particular, if we chose the function f (x) = x ln(x), which is convex
for any x ≥ 0, we obtain

x ln(x) − y ln(y) ≥ (x − y)[ln(y) + 1]. (115)

By replacing x → ρ(0)
nn and y → ρ

(1)
m̃m̃, we obtain

ρ(0)
nn ln ρ(0)

nn − ρ
(1)
m̃m̃ ln ρ(1)

m̃m̃ ≥ (ρ(0)
nn − ρ

(1)
m̃m̃)(ln ρ(1)

m̃m̃ + 1). (116)

Multiplying both sides of the equation above by pn→m̃, and summing over n, leads to

∑

n

(pn→m̃ρ
(0)
nn ln ρ(0)

nn ) − ρ
(1)
m̃m̃ ln ρ(1)

m̃m̃ ≥ 0, (117)

where we have used that
∑

n pn→m̃ = 1 and
∑

n ρ
(0)
nn pn→m̃ = ρ

(1)
m̃m̃. Finally, summing this inequal-

ity over m̃ and using that
∑

m̃ pn→m̃ = 1, one obtains

0Sd ≡ S(1)
d − S(0)

d =
∑

n

ρ(0)
nn ln ρ(0)

nn −
∑

m̃

ρ
(1)
m̃m̃ ln ρ(1)

m̃m̃ ≥ 0. (118)

This implies that, under any doubly stochastic evolution, the diagonal entropy can only increase
or stay constant. Hence, the distance from the uniform or infinite temperature distribution mono-
tonically decreases or stays constant. It is interesting that this statement is not tied in any way to
quantum chaos. For example, if we take an arbitrary two level system in a stationary state and
apply any sequence of pulses, then the diagonal entropy cannot decrease. This statement, how-
ever, does not hold if the initial state is nonstationary. In that case, the evolution is not doubly
stochastic and the diagonal entropy can decrease.
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The increase of the diagonal entropy under doubly stochastic evolution should be contrasted
with the exact conservation of von Neumann’s entropy Svn = −Tr[ρ̂ ln ρ̂] under any unitary evo-
lution. These two results do not contradict each other. In fact, the relation between these two
results can be understood by considering a unitary evolution of an initially stationary density
matrix. Then, the following chain of relations hold:

Sd(0) = Svn(0) = Svn(t) ≤ Sd(t). (119)

The first equality follows from the fact that, for a stationary density matrix, the von Neumann
and the diagonal entropy are identical. The second equality reflects the obvious fact that under
unitary evolution, the von Neumann entropy is conserved. Finally, the last inequality follows
from Equation (118). This has a direct analogy in classical systems where Liouville’s theorem
conserves the volume in phase space while the total entropy of an isolated system increases or
stays constant.

The fact that

Sd(t) ≥ Sd(0), (120)

means that, under unitary evolution starting from a stationary state, the diagonal entropy at any
time t > 0 is larger than (or equal to) the initial diagonal entropy. This does not mean that the diag-
onal entropy increases continuously in time, that is, in general it is not true that Sd(t2) ≥ Sd(t1)
for t2 > t1 > 0 because at intermediate times the system might retain coherence. A monotonic
increase occurs if we consider repeated doubly stochastic processes, as discussed in Section 5.1.1.
One can also prove a more general statement without assuming any dephasing, namely, that if one
waits for a fixed long time between two pulses the probability that the diagonal entropy increases
in time is higher (exponentially higher for many particles) than the probability that it decreases.
The proof of this statement is beyond the scope of this review and can be found in Ref. [195].

5.2.3. The second law in the Kelvin formulation for passive density matrices

As shown above, under repeated doubly stochastic evolution that starts from a stationary density
matrix, the diagonal entropy increases until it reaches its maximum value, corresponding to an
“infinite temperature state”.

Now, we take a step further and assume that the initial probabilities decrease monotonically
in energy, that is, for any n and m

(ρ(0)
nn − ρ(0)

mm)(En − Em) ≤ 0, (121)

where En and Em are eigenenergies of the system. Relying on this assumption, one can prove
that, for any doubly stochastic cyclic evolution (in particular, for any cyclic unitary process), the
energy of the system can only increase or stay constant [188,199]:

∑

n

Enρ
(1)
nn ≥

∑

n

Enρ
(0)
nn . (122)

By energy conservation, this difference must be equal to the average work done on the system
during the cyclic process

⟨W⟩ =
∑

n

Enρ
(1)
nn −

∑

n

Enρ
(0)
nn ≥ 0. (123)

Diagonal density matrices satisfying the inequality (121) are termed passive [188] and are com-
mon. The Gibbs distribution for systems in thermal equilibrium, ρnn = e−βEn/Z, is a passive
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density matrix. Therefore, condition (123) is quite general and can be interpreted as a manifesta-
tion of the second law of thermodynamics in Kelvin’s formulation – one cannot extract work from
a closed equilibrium system by carrying out a cyclic process. As all the results in Section 5.2, this
statement is solely based on doubly stochastic evolution and on the passivity of the initial density
matrix (and therefore, applies to both integrable and nonintegrable systems). In Section 7, we
show explicitly how it works for a single particle driven in a chaotic cavity.

The proof of Equation (123) relies on the fact that any doubly stochastic evolution tends to
make the occupation probabilities uniform. In the case of an initial passive density matrix, this
process requires a transfer of probability from low- to high-energy states causing the energy of
the system to increase. If a stronger detailed balance condition is satisfied, that is, pn→m = pm→n

for any m,n, then the proof becomes particularly simple [192]:

⟨W⟩ =
∑

n,m

Enpn→m[ρ(0)
mm − ρ(0)

nn ] = 1
2

∑

n,m

pn→m(En − Em)[ρ(0)
mm − ρ(0)

nn ] ≥ 0. (124)

The second equality follows from symmetrizing with respect to n and m and using the detailed
balance condition. However, in general, pairwise transition probabilities are not the same
and only the sum rule (91) is satisfied. In this case, the proof is more complicated but still
straightforward [188]. For completeness, it is presented in Appendix E.

5.3. Implications of doubly stochastic evolution for chaotic systems
In the previous three subsections, we discussed three important results that are all manifesta-
tions of the second law of thermodynamics. In Section 5.2.1 (and Appendix C), we showed that
the “infinite temperature state” is the only generic attractor of a doubly stochastic evolution. In
Section 5.2.2, we proved that under a repeated doubly stochastic evolution the diagonal entropy
increases until it reaches its maximum value, which corresponds to that of the “infinite tem-
perature state”. Finally, in Section 5.2.3, we proved that any cyclic doubly stochastic evolution
leads to an increase of the (average) energy of the system (provided the initial density matrix is
passive). This statement is equivalent to the second law of thermodynamics in the Kelvin form.

All these statements rely only on doubly stochastic evolution and therefore apply to both
integrable (and in particular noninteracting) and chaotic systems. In this section, we take a step
further and assume that the system undergoing the dynamical process is chaotic.

5.3.1. The diagonal entropy and the fundamental thermodynamic relation

The entropy of a system in thermal equilibrium is a unique function of its energy and other
relevant extensive variables (denoted by λ). This fact implies the fundamental thermodynamic
relation

dS = 1
T

(dE + Fλ dλ). (125)

Here, Fλ is the generalized force conjugate to λ. Since this expression is directly derived from
S(E, λ), it applies to both reversible and irreversible processes. In the case of a reversible transfor-
mation, we can identify TdS as the heat transferred and Fλ dλ as the work done by the system. In
contrast, for an irreversible transformation, one cannot make these identifications. Equation (125)
is then taken as a mathematical relation between thermodynamic functions. For example, if an
isolated gas in a container is expanded by a volume dλ by moving a partition very quickly (a Joule
experiment), there is no work done and the energy change in the system is zero. The fundamental
relation then implies that the change in entropy is given by dS = Fλ dλ/T with Fλ being the pres-
sure before the expansion. If one insists on giving an interpretation to the equation as describing
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a dynamical process, it can be thought of as a fictitious reversible process (expansion with work
and heat exchange) that is not related to the actual (irreversible) process that has taken place. As
we show in this and the following subsection, thinking about the fundamental relation from a
microscopic point of view is illuminating. The changes in the entropy can actually be assigned to
underlying, in general irreversible, physical processes (which may result from work and/or heat
exchange). The entropy change is then simply related to transitions between the energy levels of
the system during the dynamical process.

From the microscopic point of view, the fundamental relation is not at all trivial (see, e.g.
Ref. [200]). The energy and its change are uniquely defined by the density matrix and the energy
eigenstates. The generalized force is also expressed through the density matrix and the Hamilto-
nian. Thus, for the fundamental relation to apply microscopically, we need to define an object,
the entropy, which can also be expressed through the density matrix and possibly the Hamilto-
nian and ensure that Equation (125) holds for any dynamical process both for open and isolated
systems. Let us show that the diagonal entropy, which we defined earlier as the measure of delo-
calization in the energy space, satisfies the fundamental relation in chaotic systems [125,134]. As
we will see, Sd satisfies

dE = T dSd − Fλ dλ, (126)

for both reversible and irreversible processes. Once we identify Sd with the entropy, this
constitutes the fundamental relation.

To derive the fundamental relation, let us first use standard statistical mechanics and come
back to the role of quantum chaos later. We assume that the initial density matrix is described by
a Gibbs distribution (the extension to other ensembles is straightforward)

ρnm(λ) = 1
Z(λ)

e−βEn(λ)δnm. (127)

Using that the energy of the system is given by E(λ) =
∑

n ρnnEn(λ), and calculating its change
for an arbitrary ‘small’ dynamical process (we are not assuming here that the system is isolated
or that the process is unitary), we find

dE(λ) = d

(
∑

n

ρnnEn(λ)

)

=
∑

n

[
En(λ) dρnn + ρnn

dEn

dλ
dλ
]

=
∑

n

En(λ) dρnn − Fλ dλ,

(128)
where Fλ = −

∑
n ρnn dEn(λ)/dλ. Next, we compute the change in the diagonal entropy for the

same process. This gives

dSd = −d

[
∑

n

ρnn ln(ρnn)

]

= −
∑

n

dρnn ln(ρnn) −
∑

n

dρnn = β
∑

n

En(λ) dρnn, (129)

where we used that, by conservation of probability,
∑

n dρnn = 0. Comparing Equations (128)
and (129), and noting that the generalized force can be also written as

Fλ = −∂E(λ)

∂λ

∣∣∣∣
Sd

, (130)

we recover that the diagonal entropy indeed satisfies the fundamental thermodynamic relation,
Equation (126), for any dynamical process. Remarkably, under the assumption that the system
is initially described by the Gibbs distribution, the fundamental relation applies exactly for both
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large and small systems whether they are open or closed during the dynamical process. Moreover,
it applies to integrable and nonintegrable systems alike.

To see where quantum chaos enters, assume that an isolated system undergoes a quench (or
any other dynamic process) protocol. Then, according to ETH, physical observables after relax-
ation are described by an equilibrium thermal ensemble. This is true despite the fact that the
density matrix of the entire system is not that of the Gibbs ensemble. With this in mind, we want
to prove that if the system is chaotic then the fundamental relation holds up to possible subex-
tensive corrections. The easiest way to prove it without assuming a standard equilibrium density
matrix is to show that the diagonal entropy, which is a function of the density matrix, coin-
cides with the thermodynamic entropy up to subextensive corrections. Then, the fundamental
relation and its generalization immediately follows. Recall that we already presented numerical
evidence that the diagonal entropy coincides with the thermodynamic entropy in Section 3.4,
when discussing implications of quantum chaos and RMT to delocalization in energy space (see
Figure 12).

We start our discussion by noticing that, for large system sizes (no matter whether they are in
a pure or in a mixed state), the diagonal entropy can written as an integral over energies

Sd ≃ −
∫

dE#(E)ρ(E) ln[ρ(E)], (131)

where ρ(E) is an interpolating function satisfying ρ(En) = ρnn and #(E) is the smoothed many-
body density of states. We note that ρ(E)#(E) = P(E) is the energy distribution function in the
system [see Equation (56)], from which all moments of the energy can be computed. For example,
the average energy is given by ⟨E⟩ =

∫
dEEP(E). One can rewrite the diagonal entropy as

Sd = −
∫

dEP(E) ln
[

P(E)δE
#(E)δE

]
=
∫

dEP(E)Sm(E) −
∫

dEP(E) ln[P(E)δE], (132)

where Sm(E) = ln[#(E)δE] is the microcanonical entropy at energy E (δE is the width of the
microcanonical energy window).

The last term in Equation (132) is the one that exhibits a qualitatively different behavior in
integrable and chaotic systems [125]. In nonintegrable systems, one expects P(E) to be a smooth
function of the energy (see, Section 3.4). As a result,

∫
dEP(E) ln P(E) is not extensive because∫

dEP(E) is normalized to one and the width of the energy distribution is not exponentially large
in the system size (see Section 4.3.2). In integrable systems, on the other hand, P(E) after a
dynamical process (such as a quench) generally exhibits large fluctuations (see, e.g. left panels in
Figure 11). As a result, the last term in Equation (132) can be extensive and, therefore, compa-
rable to the contribution of the first term, that is, Sd can differ from the thermodynamic entropy.
Numerical studies have indeed found that Sd agrees (disagrees) with the thermodynamic entropy
in quenches in nonintegrable (integrable) systems [125,130,135] (for results at integrability, see
Section 8.3).

Actually, if P(E) after a dynamical process is well approximated by a smooth Gaussian
(expected for sufficiently large nonintegrable systems, see Section 3.4)

P(E) ≈ 1√
2πσ 2

exp
[
− (E − ⟨E⟩)2

2σ 2

]
, (133)

with σ 2 being, at most, extensive (for a discussion of σ 2 after a quench, see Section 4.3.2), then
the fact that Sd agrees with the thermodynamic entropy follows straightforwardly. To show that,
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let us expand Sm(E) around the mean energy ⟨E⟩

Sm(E) ≈ Sm(⟨E⟩) + ∂Sm(E)

∂E

∣∣∣∣
⟨E⟩

(E − ⟨E⟩) + 1
2
∂2Sm(E)

∂E2

∣∣∣∣
⟨E⟩

(E − ⟨E⟩)2 + · · · . (134)

By substituting Equations (133) and (134) into Equation (132), and computing the Gaussian
integrals, we obtain

Sd ≈ Sm(⟨E⟩) − 1
2

(
σ 2

σ 2
c

− 1
)

, (135)

where Sm(⟨E⟩) = ln[#(⟨E⟩)
√

2πσ ] is the von Neumann entropy of a microcanonical distribution
with mean energy ⟨E⟩ and energy width δE =

√
2πσ . In the expression above

σ−2
c = − ∂β(E)

∂E

∣∣∣∣
⟨E⟩

with β(E) = ∂S(E)

∂E
. (136)

We note that here the inverse temperature β(E) is defined solely by the density of states at energy
E, and that σ 2

c is the variance of the energy in a canonical ensemble with inverse temperature
β(⟨E⟩).22 Since σ 2

c is extensive, the last term in Equation (135) is clearly non-extensive and can
be ignored in large systems. We then see that, in chaotic systems, one can define a functional of
the density matrix (the diagonal entropy) that coincides with the thermodynamic entropy both in
open and closed systems after they are driven from equilibrium and allowed to relax. For closed
systems, this is a nontrivial statement that relies on the assumption that the final Hamiltonian
(the one after the dynamical process) is quantum chaotic (nonintegrable). From this result, the
fundamental thermodynamic relation for chaotic systems follows without the assumption that the
system is in thermal equilibrium.

To conclude this section, let us mention an apparent paradox that is frequently raised to argue
that there is a deficiency in the diagonal entropy (or, for that matter, von Neumann’s entropy) for
quantum systems. A similar “paradox” can be argued to occur for Liouville’s entropy for classical
systems. If one starts a cyclic process from an eigenstate of an ergodic Hamiltonian, where von
Neumann’s entropy is zero by definition, after reaching the new equilibrium the energy change
can be made arbitrarily small while the entropy change cannot. The latter will be the thermody-
namic entropy. Hence, the equality dE = TdS seems to be violated. There is, in fact, no paradox.
The entropy of a single eigenstate is a singular quantity. Any arbitrarily small perturbation will
immediately lead to mixing exponentially many eigenstates of the Hamiltonian and lead to the
thermodynamic entropy (see, e.g. the discussion in Ref. [109]). In particular, any attempt to mea-
sure the temperature of the eigenstate, which is necessary to test the fundamental relation, will
introduce an extensive thermodynamic entropy and thus the paradox is immediately removed.

5.3.2. The fundamental relation vs. the first law of thermodynamics

It is interesting to put the results presented in the previous subsection in the context of the first
law of thermodynamics:

dE = dQ + dW . (137)

This law is a statement about energy conservation and implies that the energy of the system
can change only due to heat (defined as the energy flow from one system to another at fixed
macroscopic couplings) and work (defined as the energy change in the system due to a dynamical
change of these couplings). Note that, as previously stressed, the fundamental relation (125) is a
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mathematical expression relating equilibrium quantities, while the first law only deals with the
conservation of energy.

From the microscopic stand point it is convenient to split an infinitesimal energy change into
two contributions [see Equation (128)]:

dE = dQ̃ + dWad. (138)

The first one, dQ̃ =
∑

n En dρnn, results from changes in occupation numbers of the microscopic
energy levels (and is not to be confused with the common definition of heat in the first law) and
the second one, dWad =

∑
n dEnρnn, results from the changes of the energy spectrum at fixed

occupation numbers. This last term, as we discussed, can be written as the full derivative of
the energy (assuming that the energy spectrum is differentiable) and thus represents the adia-
batic work done on the system, dWad = −Fλ dλ [see Equation (130)]. If the dynamical process
is infinitesimally slow, changing the macroscopic parameter of the system does not change occu-
pation probabilities. Formally, one can prove this statement using adiabatic perturbation theory,
similarly to what was done for energy in Ref. [201]. We thus see that for infinitesimally slow
processes dQ̃ = T dS = dQ and dW = dWad, which is well known from thermodynamics. We
note that in large systems the strict quantum-mechanical adiabatic limit requires exponentially
slow processes in order to suppress transitions between many-body eigenstates. This is another
way of saying that isolated eigenstates are very fragile. Thermodynamic adiabaticity on the other
hand requires that the dynamical process is slow with respect to physical time scales, which are
much shorter than the inverse level spacing. This is of course consistent with Equation (138) as
transitions between nearest eigenstates lead to exponentially small heating and essentially do not
contribute to dQ̃ and hence to dE. So the only way to have significant heating is to introduce
transitions across exponentially many energy levels, which requires much faster dynamics.

The situation becomes somewhat different in a setup where the process is not infinitesimally
slow, even if it is still effectively quasi-static. For example, one can imagine a compression and
expansion of a piston containing a gas (see Figure 20) at some finite rate. At the end of the
process, when the piston is back at its original position, the energy of the gas is higher than its
initial energy. This is essentially the way microwave ovens function. There, the food heats up
because of the non-adiabatic work performed by the time-dependent electromagnetic field. This
process can still be quasi-static because if in each cycle the energy of the system increases by
a small amount then it can be approximately described by local equilibrium. This “microwave
heating” in ergodic systems is indistinguishable, at the end of the process, from conventional
heating resulting from connecting the system to a thermal reservoir.

Therefore, from a microscopic standpoint, it is more natural to define dQ̃ (and not dQ) as
heat. In the literature, dQ̃ has been called heat [192], excess heat [202], excess energy [203],
non-adiabatic work [193], and others. We will not argue one way or another in terming dQ̃. We
only note that, physically, it represents the heating of the system, that is, the energy change in the
system caused by transitions between levels, independent of whether those transitions are induced
by contact with another system or by changing non-adiabatically some coupling λ, or both. As
we proved earlier [see Equation (126)], for small changes in ergodic systems, one always has
dQ̃ = T dSd , so this energy change is uniquely associated with the entropy change. If an isolated
system starts in the stationary state, then, as we proved, the entropy change is always non-negative
and thus one always has dQ̃ ≥ 0. This, in turn, implies that dW ≥ dWad (in the latter dQ = 0), in
agreement with the results in Section 5.2.3.23 If the system is not closed, then, by definition,

dQ̃ = dQ + (dW − dWad). (139)

As a result, dQ̃ ≥ dQ so that T dSd ≥ dQ, as expected from thermodynamics.
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6. Quantum chaos, fluctuation theorems, and linear response relations
The recently discovered fluctuation theorems are remarkable equalities involving thermodynamic
variables. They are valid for systems initially prepared in equilibrium and then driven far from
equilibrium in an arbitrary way (see, e.g. Refs. [25,187] for reviews). These theorems effectively
replace many thermodynamic inequalities by equalities (e.g. the second law of thermodynamics
in the Kelvin form discussed previously). In many cases, the proof of the fluctuation theorems,
as previously done for the fundamental relations, assumes that the initial state is described by a
Gibbs distribution. When this is the case, one does not need any additional assumptions, such as
quantum chaos. However, if the system is not weakly coupled to an equilibrium bath, then the
assumption of a Gibbs distribution is often not justified and one has to rely on quantum chaos
and ETH to prove these relations.

In this section, we derive the fluctuation theorems for individual eigenstates and hence extend
them to arbitrary stationary distributions that are narrow in energy. Based on these fluctuation
theorems, we derive energy drift–diffusion relations for both isolated and open systems, and dis-
cuss how they lead to nontrivial asymptotic energy distributions for driven isolated systems. For
clarity, we derive these fluctuation relations in two ways. First, we show a standard derivation for
an initial Gibbs ensemble, and then, for quantum chaotic systems, we generalize this derivation
to systems prepared in individual eigenstates. The latter approach clarifies in which situations
fluctuation theorems apply to isolated systems. It also allows us to derive finite-size corrections
and to extend them to open systems that are strongly coupled to a bath.

6.1. Fluctuation theorems
Particularly simple proofs of fluctuation theorems are obtained by considering isolated quantum
systems initially prepared in contact with a thermal bath at temperature T. The bath is then dis-
connected from the system which undergoes a unitary (or, more generally, doubly stochastic)
evolution in response to an external protocol that changes some macroscopic parameter in time.
The protocol has a specified duration after which the parameter is kept constant and the system
is allowed to relax back to equilibrium.

Thermodynamics tell us that the average external work, W, done on the system during a ther-
modynamic protocol is bounded from below by the difference in the equilibrium free-energies (at
the same temperature T) evaluated at the initial (A) and final (B) value of the control parameters.
Specifically,

⟨W⟩ ≥ 0F ≡ FB,T − FA,T . (140)

Because the system is isolated, there is no heat flowing to the system, and according to the first
law of thermodynamics ⟨W⟩ = Wad + Q̃, where Q̃ [introduced in Equation (138) in the previ-
ous section] is the irreversible work or, microscopically, the energy change associated with the
transitions between different energy levels. Then, Equation (140) becomes

Q̃ ≥ 0. (141)

For a cyclic process, Wad = 0. Therefore, ⟨W⟩ = Q̃, and this inequality reduces to Kelvin’s
formulation of the second law. For an adiabatic process, Q̃ = 0, and the inequality (141) becomes
an equality.

By properly taking into account the fluctuations, the Jarzynski equality turns the inequal-
ity (140) into an equality even if the protocol drives the system far from equilibrium. This equality
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reads:

⟨e−W/kBT ⟩ = e−0F/kBT , (142)

where the angular brackets denote the average over many experimental realizations of the same
protocol. In particular, for cyclic processes (for which A = B), the Jarzynski equality reduces to

⟨e−W/kBT ⟩ = 1, (143)

which was first discovered by Bochkov and Kuzovlev [205,206] as a nonlinear generalization
of the fluctuation–dissipation theorem. Equation (143) is frequently referred to as the Bochkov–
Kuzovlev work-fluctuation theorem [25].

To clarify the meaning of Equation (142), it is better to refer to a concrete example, say, the
compression of a gas by a moving piston (see Figure 20). Initially, the gas is assumed to be in
thermal equilibrium connected to a bath, with the piston at position z(0) = A. We assume that,
during the protocol z(t), the system is not connected to the bath anymore, that is, it can be regarded
as isolated. At the end of the protocol, the control parameter reaches the value z(t) = B. We record
the external work W, which is formally defined as the energy change of the piston. Note that the
free energy FB,T is not the free energy of the system after the protocol. It is rather the equilibrium
free energy evaluated at the initial temperature and the final value of the control parameter.24

Upon repeating the protocol many times, the work will fluctuate around some average value.
The Jarzynski equality (142) states that the exponential of the work done, averaged over many
realizations of the same experiment, is equal to the exponential of the equilibrium free energy
difference. Hence, the Jarzynski equality connects a dynamical quantity, work, which depends
on the details of the protocol, and an equilibrium quantity, the free energy difference, which only
depends on the initial and final values of the control parameter. In particular, this relation can be
used to measure free energy differences in small systems by measuring the work. In large systems,
the Jarzynski relation is generally not very useful unless W is small. This because the average
of the function exp[−βW ] will be dominated by rare events in which the work is negative. The
assumption that the system is not connected to the bath during the protocol, which was present
in the original work of Jarzynski [20] and which caused some confusion, is not necessary (see
Ref. [207] and the proof below).

Equation (142) can be understood as a constraint on the work distribution P(W). This con-
straint is independent of the details of the protocol z(t), and depends only on the initial and final
values of the macroscopic parameter, A and B, respectively, through the free energy difference
0F ≡ FB,T − FA,T . Note that the full distribution P(W) depends on the details of z(t). If we take
the logarithm of Equation (142), and perform the cumulant expansion, we obtain the expression:

∑

n≥1

(−1)n

n!
⟨W n⟩c

(kBT)n
= −0F

kBT
. (144)

We therefore see that the Jarzynski equality constraints different cumulants of the work. If the
work is small, or if the temperature is high, then only a few cumulants effectively enter the
sum. When this happens, the constraint has an important consequence and leads to standard
thermodynamic relations. However, if many cumulants contribute to the expansion (as expected
when W is large), then the constraint does not place strong restrictions to the moments of the
work.

Note that, by combining the Jarzynski equality (142) and Jensen’s inequality ⟨exp[x]⟩ ≥
exp[⟨x⟩], we recover the Clausius inequality (140). Let us emphasize that this inequality only
applies to the average work. The work carried out in a single realization of the experiment can be
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smaller than 0F. This can be the case especially in small systems, where fluctuations are large.
The Jarzynski equality allows one to estimate the likelihood of such rare events [207].

Closely related to the Jarzynski equality is the Crooks theorem, which was originally formu-
lated for classical systems [186] and then extended to quantum systems [23,24]. The Crooks
theorem relates the probability of performing a work W during the forward process, PF(W)

(A → B), with the probability of performing a work −W during the reverse process, PR(−W)

(B → A, in a time-reversed manner):

PF(W)

PR(−W)
= e(W−0F)/kBT . (145)

The expression above can be interpreted as a symmetry of the distribution function between the
forward and the reverse process. Note that this symmetry is with respect to W = 0 and not with
respect to the average work. Rewriting the Crooks relation as

PF(W) e−W/kBT = PR(−W) e−0F/kBT , (146)

and integrating over W, one recovers the Jarzynski equality.

6.1.1. Fluctuation theorems for systems starting from a Gibbs state

Here, we derive the Jarzynski equality (142) and the Crooks theorem (145) for a system that is
initially in a Gibbs state and is not coupled to a bath during its evolution. In this case, neither
quantum chaos nor the limit of a large system size needs to be invoked. The derivation relies
exclusively on the symmetry of the doubly stochastic evolution between the forward and the
reverse process [see Equation (104)]:

pr
m̃→n = pn→m̃. (147)

We recall that a doubly stochastic evolution describes unitary dynamics of systems starting from
stationary states and extends to some non-unitary processes involving projective measurements
or dephasing.

Let us consider a system prepared in a state characterized by an initial energy EA, correspond-
ing to an initial value of the control parameter λ(0) ≡ λA, drawn from the Gibbs ensemble of the
initial Hamiltonian. Then, the system undergoes an arbitrary dynamical process described by a
doubly stochastic evolution. At the end of the process, the system has an energy EB, which is a
random variable. The fluctuating work25 is formally defined as W = EB − EA [23,24]. This work
is characterized by the probability distribution:

PF(W) =
∑

n,m̃

ρ(0)
nn pn→m̃δ(Ẽm̃ − En − W) =

∑

n,m̃

e−βEn

ZA
pn→m̃δ(Ẽm̃ − En − W), (148)

where n and En (m̃ and Ẽm̃) refer to states and the spectrum of the initial (final) Hamilto-
nian, and ZA is the partition function associated with the initial value of the control parameter
λA. The probability of performing work −W during the reverse process, starting from a Gibbs
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distribution, is

PR(−W) =
∑

n,m̃

e−βẼm̃

ZB
pr

m̃→nδ(En − Ẽm̃ + W)

=
∑

n,m̃

e−β(En+W)

ZB
pn→m̃δ(Ẽm̃ − En − W) = PF(W) e−βW ZA

ZB
, (149)

where ZB is the partition function associated with the thermal equilibrium distribution at the final
value of the control parameter, that is, λB. Writing the free energy difference as 0F = FB(T) −
FA(T), and using the relation between free energy and partition function, that is, ZA,B = e−βFA,B ,
one sees that Equation (149) is nothing but the Crooks theorem (145).

For cyclic symmetric protocols, for which the reverse process is identical to the forward
process, the Crooks theorem simplifies to

P(W) e−βW = P(−W), (150)

where we suppressed the indexes F and R since, in this case, they are redundant. In turn, this
relation can be recast in the form of a symmetry relation for the cumulant generating function
G(ζ ):

G(ζ ) = ln
[∫

dWP(W) e−ζW
]

=
∞∑

n=1

⟨W n⟩c
(−ζ )n

n!
. (151)

To see this, we multiply both sides of Equation (150) by eζW :

P(W) e−βW eζW = P(−W) eζW , (152)

and integrate over W to obtain
G(β − ζ ) = G(ζ ). (153)

The generating function formalism is a convenient tool for deriving various linear response rela-
tions, for example, Onsager relations and their nonlinear generalizations (see Ref. [208] and the
discussion below).

6.1.2. Fluctuation theorems for quantum chaotic systems

Now, let us focus on eigenstates of many-body chaotic Hamiltonians and derive the corre-
sponding fluctuation relations for isolated systems. The applicability of fluctuation relations to
individual eigenstates allows one to extend them to arbitrary initial stationary distributions so
long as they are sufficiently narrow. The approach based on individual eigenstates also allows
us to derive the leading finite-size corrections to the cumulant expansion of these relations and
prove these relations for open systems, even if they are strongly coupled to the bath throughout
the dynamical process.

Let us analyze the probability of doing work W during the forward process starting from a
given many-body energy eigenstate |n⟩. By definition, this is given by

PF(En → En + W) ≡ PF(En, W) =
∑

m̃

pn→m̃δ(Ẽm̃ − En − W)

=
∫

dẼ#B(Ẽ)p(En → Ẽ)δ(Ẽ − En − W), (154)

where #B is the density of states at the final value of the control parameter and we used the
fact that, for chaotic systems, the probability pn→m̃ ≈ p(En → Ẽ) is a smooth function of the
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energy Ẽm̃, up to a small Gaussian noise (c.f., Section 3.4). In non-chaotic systems, the transition
probability pn→m̃ can fluctuate strongly between states that are close in energy, that is, changing
the summation over m̃ by an integration over Ẽ is not justified and, in general, is not valid.
Integrating the expression above over the energy, we find

PF(En → En + W) = p(En → En + W)#B(En + W). (155)

Using similar considerations, we find that the transition probability for doing work −W during
the reverse process starting from state |m̃⟩ is:

PR(Ẽm̃ → Ẽm̃ − W) ≡ PR(Ẽm̃, −W) =
∑

n

pr
m̃→nδ(En − Ẽm̃ + W)

=
∑

n

pn→m̃δ(En − Ẽm̃ + W) =
∫

dE#A(E)p(E → Ẽm)δ(E − Ẽm̃ + W)

= p(Ẽm̃ − W → Ẽm̃)#A(Ẽm̃ − W). (156)

Comparing the expressions for the forward and backward processes, and substituting En → E
and Ẽm̃ → E + W , we obtain

PF(E, W)

PR(E + W , −W)
= #B(E + W)

#A(E)
≡ eSB(E+W)−SA(E), (157)

which is known as the Evans–Searles fluctuation relation [209] (for classical derivations of a
similar nature, see Ref. [210]). This result tells us that the ratio of probabilities of doing work W
in the forward process and −W in the reverse process is simply equal to the ratio of the final and
initial densities of states, that is, the ratio of the number of available microstates. Typically, as
schematically illustrated in Figure 22, the density of states is an exponentially increasing function
of the energy (corresponding to positive temperature states). Hence, the number of available
microstates is larger for processes corresponding to an energy increase. This asymmetry is the
microscopic origin of the higher probability of doing positive work, despite the equivalence of
the forward and backward microscopic rates. Note that these considerations are only valid for
chaotic systems. For integrable systems, not all microstates might be accessible and one needs to
refine the argument.

Figure 22. Illustration of relation (157). A system is composed of many closely spaced energy levels. In
response to some dynamic process, during the forward process (red arrow) the system undergoes a transition
from an initial state |n⟩ to a final state |m̃⟩ with the energy Ẽm̃ = En + W . During the reverse process (green
arrow), the opposite transition happens. The ratio of probabilities of doing work W for the red process and
−W for the green process is given by the ratio of the density of states of the corresponding final states [see
Equation (157)].
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Relation (157) is very general. In particular, it contains fluctuation theorems and, in a sense,
generalizes them. To see this, consider a total system with N particles and let us assume that a
dynamical process is applied only to a small subsystem with N1 particles, such that N1 is kept
fixed as N → ∞ (N1 can be arbitrarily small, e.g. just one particle, or can be macroscopic). If
the subsystem is weakly coupled to the rest of the system, it is expected that the rest of the
system will act as a thermal bath and, as discussed previously, from ETH we expect that the
small subsystem is described by the Gibbs ensemble. In this case, we are back to the standard
setup considered in Section 6.1.1. On the contrary, when the subsystem is strongly coupled to the
rest of the system the assumption about the Gibbs distribution is not justified. However, even in
this case, the Crooks theorem (145) (and, hence, the Jarzynski equality) still applies. The proof is
straightforward. Since W is at most proportional to N1 and it is therefore non-extensive in N, we
can expand the entropy in Equation (157) to the leading order in W :

SB(E + W) − SA(E) = ∂SB

∂E
W + SB(E) − SA(E) + O(N1/N) = βW − β0F + O(N1/N),

(158)
where we used the standard thermodynamic result that at constant temperature

− β0F = S(E, λB) − S(E, λA) ≡ SB(E) − SA(E). (159)

Therefore, up to N1/N corrections, Equation (157) implies that

PF(E, W)

PR(E + W , −W)
= eβ(W−0F), (160)

irrespective of whether the subsystem is described by the Gibbs ensemble or not. Note that the
free energy difference here is that of the whole system. It becomes the free-energy difference in
the subsystem only for a weak coupling between the subsystem and the rest of the system.

If the work W is small but extensive, for example, coming from a global protocol, or if one
does not take the thermodynamic limit, one can still perform a Taylor expansion of the entropy in
Equation (157) in powers of W. Then, corrections to the Crooks relation will be generally finite. In
particular, in Section 6.3, we will discuss how such corrections affect the Einstein drift–diffusion
relation for the energy current (as occurs, for example, in microwave heating) of a driven iso-
lated system, and to the Onsager relations. In what follows, we discuss various implications of
Equation (157) to setups involving both isolated and open systems.

6.2. Detailed balance for open systems
Let us use the general relation (157) to derive the familiar detailed balance condition for open
systems. Imagine we have two weakly coupled systems I and II. We do not need to make any
assumption about system I. It can be arbitrarily small, for example, consisting of one spin, and can
be either integrable or ergodic. We assume that system II is quantum chaotic. For convenience,
we call system II a bath, but we emphasize that we do not assume that system II is much bigger
than system I. The weak coupling assumption is made explicit by writing the Hamiltonian of the
entire system as

Htot = HI + HII + γHI−II , (161)

with γ small. Initially, the two systems are prepared in a stationary state with respect to the
uncoupled Hamiltonian HI + HII and then they are allowed to interact. The initial state can be the
product of two Gibbs states with different temperatures or can be the product of two eigenstates.
Because of the coupling, energy is allowed to flow between the two systems. If the coupling
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306 L. D’Alessio et al.

Figure 23. Schematic representation of the setup considered to prove the detailed balance condition,
Equation (168). A system I, which can be either quantum chaotic or not is coupled to another system II
(bath), which is quantum chaotic. The two systems are weakly coupled and are allowed to exchange energy.
The microscopic transition probabilities from a pair of states |nI, nII⟩ to another pair of states |mI, mII⟩ (red
arrows) is the same as the probability of the reverse process (green arrows). However, if one is only inter-
ested in transition probabilities in system I, irrespective of the outcome in the bath, this symmetry is broken
and one obtains the standard equilibrium detailed balance.

is weak, then the sum of the energies of systems I and II is (approximately) conserved. This
implies that only microscopic transitions between states |nI, nII⟩ and |mI, mII⟩ satisfying the energy
conservation EI

nI
+ EII

nII
= EI

mI
+ EII

mII
are allowed (see the red arrows in Figure 23). This setup is

formally equivalent to a quench in the coupling γ . Therefore, the transition probabilities are
doubly stochastic. Moreover, as we discussed in the previous section, within the Fermi golden
rule (or because this quench can be viewed as a time-symmetric protocol) these probabilities
satisfy the stronger global detailed balance condition

pnI,nII→mI,mII = pmI,mII→nI,nII . (162)

Suppose that we are interested in the transition between microstates only in system I, irrespective
of the outcomes in bath II. Hence, we have to sum over all final states of the bath. Using that in
quantum chaotic systems the transition probabilities are the same for nearby eigenstates

pI(nI → mI) =
∑

mII

pnI,nII→mI,mII = pnI,nII→mI,mII#II(EII
mII

). (163)

This equation is a direct analogue of Equation (155), with the solely difference being that only
the density of states of the bath enters the RHS, as the sum is carried out over the final states of
the bath. For the reverse process (green arrows in Figure 23), using the same arguments, we find

pI(mI → nI) = pmI,mII→nI,nII#II(EII
nII

). (164)

Comparing these two results, using the conservation of energy together with the global detailed
balance condition, and simplifying notations EII

nII
→ EII (162), we find

pI(nI → mI)

pI(mI → nI)
=
#II(EII + EI

nI
− EI

mI
)

#II(EII)
= eSII(EII+EI

nI
−EI

mI
)−SII(EII). (165)

If the bath is large, or if the energy change δEI
mn ≡ EI

mI
− EI

nI
is small compared to EII, as before,

one can expand the entropy difference in the energy change. By doing that, one recovers the
detailed balance condition in its most familiar form [211]:

pI(nI → mI)

pI(mI → nI)
≈ e−βII(EII)δEI

mn , (166)

where βII(EII) is the temperature of the bath corresponding to the energy EII.

D
ow

nl
oa

de
d 

by
 [N

or
th

er
n 

Ill
in

oi
s U

ni
ve

rs
ity

] a
t 0

4:
12

 0
1 

A
ug

us
t 2

01
6 



Advances in Physics 307

6.3. Einstein’s energy drift–diffusion relations for isolated and open systems
In Section 6.1, we showed that the Jarzynski equality can be viewed as a constraint on the cumu-
lant expansion of the work generating function [see Equation (144)]. Consider, for example, the
Jarzynski equality for a cyclic process applied to a small subsystem of a large system or to a
system initialized in a Gibbs state. In these cases, the Jarzynski equality is exact and, given the
fact that the process is cyclic, 0F = 0, so that

⟨e−βW ⟩ = 1. (167)

Next, let us perform a cumulant expansion of this equality:

0 = ln⟨e−βW ⟩ = −β⟨W⟩ + 1
2β

2⟨W 2⟩c + 1
6β

3⟨W 3⟩c + · · · . (168)

where ⟨W 2⟩c = ⟨W 2⟩ − ⟨W⟩2 and ⟨W 3⟩c = ⟨W 3⟩ − 3⟨W 2⟩⟨W⟩ + 2⟨W⟩3. If the average work
performed is small and its distribution is close to Gaussian or if temperature is high, then
cumulants of order three and higher in the expansion above can be neglected leading to:

0 ≈ −β⟨W⟩ + 1
2
β2⟨W 2⟩c ⇒ ⟨W⟩ = β

2
⟨W 2⟩c. (169)

The relation above can be interpreted as a fluctuation–dissipation relation for a system coupled
to an external noise. ⟨W⟩ is the average work characterizing energy dissipation in the system
and ⟨W 2⟩c characterizes the uncertainty in the work. Equation (169) can also be interpreted as
an analogue of Einstein’s drift–diffusion relation for the energy. Indeed, ⟨W⟩ is the average work
done on the system during the cyclic process, which is the energy drift, and ⟨W 2⟩c represents the
work fluctuations, which is the energy diffusion.

Next we consider a system prepared in a single eigenstate (hence, the results equally apply to
a setup where we start from an arbitrary narrow stationary distribution). We focus on the general
expression for the work probability distribution, Equation (157). For simplicity, we focus once
again on cyclic26 and symmetric protocols.27 Then

P(E, W) e−S(E+W)+S(E) = P(E + W , −W). (170)

In order to proceed further, let us assume that the work W is small (though it can be extensive).
Then, the probability P(E, W) is a slow function of the first argument and a fast function of the
second argument W. Similarly, the entropy is a slow function of W. Formally, the RHS of the
equation above can be rewritten as

P(E + W , −W) = eW∂E P(E, −W), (171)

where we used the notation ∂E = ∂/∂E. Finally, expanding the entropy S(E + W) in
Equation (170) to second order in W, and integrating over W, we find

⟨e−βW−(W 2/2)(∂β/∂E)⟩E ≈ ⟨e−W∂E ⟩E, (172)

where ⟨· · · ⟩E means that an average is taken with respect to the probability distribution P(E, W)

at fixed E. Taking the logarithm of both sides of this relation, and performing the cumulant
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expansion to the second order, one finds

− β⟨W⟩E + 1
2β

2⟨W 2⟩E,c − 1
2∂Eβ⟨W 2⟩E ≈ −∂E⟨W⟩E + 1

2 [∂2
EE⟨W 2⟩E − (∂E⟨W⟩E)2]. (173)

Note that ⟨W 2⟩E = ⟨W 2⟩E,c + ⟨W⟩2
E, where the first term on the RHS is linear and the second is

quadratic in cumulants. By equating all linear terms in the cumulants28 Equation (173) reduces to:

− β⟨W⟩E + 1
2β

2⟨W 2⟩E,c − 1
2∂Eβ⟨W 2⟩E,c ≈ −∂E⟨W⟩E + 1

2∂
2
EE⟨W 2⟩E,c. (174)

Using that
∂Eβ⟨W 2⟩E,c = ∂E(β⟨W 2⟩E,c) − β∂E⟨W 2⟩E,c, (175)

and regrouping all the terms, one finds that the equation above simplifies to

− β

(
⟨W⟩E − β

2
⟨W 2⟩E,c − 1

2
∂E⟨W 2⟩E,c

)
+ ∂E

(
⟨W⟩E − β

2
⟨W 2⟩E,c − 1

2
∂E⟨W 2⟩E,c

)
= 0.

(176)
Therefore, the first and the second cumulant have to satisfy the relation:

⟨W⟩E = β

2
⟨W 2⟩E,c + 1

2
∂E⟨W 2⟩E,c. (177)

Equation (177) extends Einstein’s drift–diffusion relation (169) connecting work and work
fluctuations for a system prepared in a single eigenstate (and hence to a microcanonical shell). In
large systems, the last term in Equation (177) is a subleading correction since the energy is exten-
sive. So, in the thermodynamic limit, this term can be dropped and one is back to Equation (169).
However, if one is dealing with a small chaotic system, then the last term cannot be neglected.
As we will show in the next section, it has important implications for determining the correct
asymptotic distribution of driven chaotic systems. Relation (177) was first obtained by C. Jarzyn-
ski for a single classical particle moving in a shaken chaotic cavity [212,213], and then extended
to arbitrary quantum or classical systems along the lines of our derivation in Ref. [193].

The exact same analysis can be carried out if, instead of a single driven system, one considers
two weakly coupled systems I and II as illustrated in Figure 23. For the purposes of this dis-
cussion, we will assume that both systems are ergodic. Let us assume that the two systems are
initialized in eigenstates with energies EI and EII and then coupled weakly. This coupling leads
to an energy exchange between the two systems. Since the dynamics is unitary, and after the
assumption that each system is quantum chaotic, we can apply Equation (170) to this setup. The
only new ingredient is that the entropy S is replaced by the sum of entropies of the systems I and
II (corresponding to the factorization of the densities of states of the uncoupled systems). Thus

P(EI → EI + W , EII → EII − W) ≡ P(EI, EII, W)

= eSI(EI+W)+SII(EII−W)−SI(EI)−SII(EII)P(EI + W , EII − W , −W). (178)

Note that, here, we use W to denote the energy exchange between systems I and II (even though
now it means heat). As we will see shortly, for isolated chaotic systems an external drive is
equivalent to a coupling to an infinite temperature bath βII. Therefore, we prefer to keep the
same notation for both coupled and isolated driven systems. Repeating exactly the same steps as
before, that is, expanding the two entropies and P with respect to W up to the second order and
integrating over the distribution function P(EI, EII, W), one obtains (see Appendix G):

⟨W⟩EI,EII = βI − βII

2
⟨W 2⟩EI,EII,c + 1

2
(∂EI − ∂EII)⟨W 2⟩EI,EII,c, (179)

where the symbol ⟨· · · ⟩EI,EII means that an average is taken with respect to the probability dis-
tribution P(EI, EII, W) at fixed EI and EII, the suffix “c” means connected, and βI − βII is the
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difference in temperature between the two systems. If both systems are large, then the last term
is again subextensive and can be dropped. It is interesting to note that Einstein’s relation for cou-
pled systems (179) reduces to the one for isolated systems (177) if the temperature of system II
is infinite βII = 0 and ⟨W 2⟩EI,EII,c is either negligible or independent of EII. Hence, from the point
of view of energy flow, driving an isolated system by means of an external cyclic perturbation
(like it happens, e.g. in microwave ovens) is equivalent to coupling it to an infinite temperature
reservoir.

6.4. Fokker–Planck equation for the heating of a driven isolated system
The drift–diffusion relation (177) can be used to understand energy flow (or heating) in a driven
ergodic system not coupled to a bath. Let us imagine that the process consists of many pulses,
well separated in time, such that the system can relax between pulses to the diagonal ensemble.
Then, after coarse-graining, one can view this as a continuous (in number of pulses) process. If
the mean energy deposited in each pulse is small, then both ⟨W⟩ and ⟨W 2⟩c (as well as other
cumulants of W ) scale linearly with the number of pulses and, hence, with the coarse-grained
time. Next, instead of a series of discrete processes, one can consider a single continuous process.
Then, as long as the relaxation time is faster than the characteristic time for the energy change
in the system, ⟨W⟩ and ⟨W 2⟩c are approximately linear in time. It is well known that under
such assumptions transport (energy transport in our case) can be described by the Fokker–Planck
equation. The derivation of the Fokker–Planck equation is fairly standard (see, e.g. [190]) but
we repeat it here for completeness. We start from the microscopic master Equation (88). For
simplicity, assuming a cyclic process and dropping the tildes:

ρn(t + δt) =
∑

m

pm→n(δt)ρm(t), (180)

where δt is a small interval of time. By assumption, pm→n(δt) ∝ δt. Let us define the energy
distribution function

:(En, t) = ρn(t)#(En). (181)

Now, replacing the summation over m in the master equation by an integration over W (and
multiplying by the density of states), recalling that the probability of performing work W is
P(En, W) = pn→m#(Em), where Em = En + W , and dropping the index n in En, we can rewrite
Equation (180) as

:(E, t + δt) =
∫

dWP(E − W , W):(E − W , t). (182)

Note that P(E − W , W) is a fast function of the second argument with the width δW 2 ≡ ⟨W 2⟩c ∝
δt, but a slow function of the total energy of the system, that is, of the first argument. Similarly,
the probability distribution :(E, t) is expected to be a slow function of E on the scale of δW .
Hence, we can use the Taylor expansions:

:(E − W , t) = :(E, W) − W∂E:(E, W) + · · · ,

P(E − W , W) = P(E, W) − W∂EP(E, W) + · · ·

By substituting these expansions in Equation (182), and expanding to second order in the work
W, we find:

:(E, t + δt) −:(E, t) = −⟨W⟩E∂E:(E, t) − ∂E⟨W⟩E:(E, t) + 1
2 ⟨W 2⟩E∂

2
EE:(E, t)

+ ∂E⟨W 2⟩E∂E:(E, t) + 1
2∂

2
EE⟨W 2⟩E:(E, t). (183)
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310 L. D’Alessio et al.

Dividing the equation above by δt, and using the notation

JE = ⟨W⟩E

δt
, DE = ⟨W 2⟩E,c

δt
, (184)

we find the Fokker–Planck equation

∂:(E, t)
∂t

= −∂E[JE:(E, t)] + 1
2
∂2

EE[DE:(E, t)]. (185)

To obtain this result, we notice that the cumulants of the work are linear in transition probabilities
and, hence, they are linear in δt. So, in the limit δt → 0, one can substitute ⟨W 2⟩E → ⟨W 2⟩E,c.

This Fokker–Planck equation for the energy drift and diffusion is completely general.
Effectively, it describes the evolution of the energy distribution function under many small uncor-
related pulses or under a continuous slow driving such that, at each moment of time, the system is,
approximately, in a stationary state. In general, the drift JE and diffusion DE coefficients are inde-
pendent. However, in ergodic systems, they are related to each other by Equation (177), which,
after dividing by δt, reads [193]

JE = β

2
DE + 1

2
∂EDE. (186)

Likewise, for open systems, Equation (179) implies that [212–214]

JE = 0β

2
DE + 1

2
∂EDE. (187)

In the next section, we will see how powerful this result is for finding universal energy distri-
butions in driven isolated and open systems. We note that the Fokker–Planck equation can be
derived using a different approach, as done in Refs. [215,216].

Interestingly, one can derive Equations (186) and (187) from a very simple argument [193].
Let us discuss it here only for an isolated setup, which is relevant to Equation (186). It is straight-
forward to extend the discussion to open systems, relevant to Equation (187). According to the
discussion in Section 5.2.1, the only attractor for the probability distribution of a driven sys-
tem is the infinite temperature distribution: ρ∗

n = C1, where C1 is a constant. This implies that
:∗(E) = C2 exp[S(E)], with C2 another constant, should be stationary under the Fokker–Planck
equation or, in other words, that

− ∂E[JE:
∗(E)] + 1

2∂
2
EE[DE:

∗(E)] = 0, (188)

which, in turn, implies that

− JE eS(E) + 1
2∂E[DE eS(E)] = C3 = 0. (189)

The integration constant C3 has to be equal to zero because one can go to (typically, low) ener-
gies where there are no states and, hence, JE = DE = 0. From Equation (189), one immediately
recovers the drift–diffusion relation (186).

6.5. Fluctuation theorems for two (or more) conserved quantities
Until now we focused on systems with only one conserved quantity, the energy. Quite often one
deals with situations where, in addition to the energy, there are other conserved quantities, such
as the number of particles, magnetization, momentum, charge, and volume. In this section, we
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Figure 24. Two systems are connected and exchange energy and particles. (Top) Initially, the two sys-
tems have a well-defined energy and number of particles. (Middle) Then, they are connected and allowed
to exchange energy and particles. (Bottom) Finally, they are disconnected and each system is allowed to
equilibrate at the new fixed values of energy and particle numbers.

extend the fluctuation relations and their implications to such setups. To simplify our derivations,
we will focus on systems with two conserved quantities: energy E and the number of particles
N. At the end of Section 6.6, we comment on how to extend our results to an arbitrary (non-
extensive) number of conserved quantities. We focus on a particular setup, where two initially
separated chaotic systems I and II are weakly coupled allowing for energy and particle exchange
(see Figure 24). The expressions obtained in this setup can also be used to describe a single
system, say, system I, coupled to an external driving by setting ∂SII/∂EII = ∂SII/∂NII = 0. We
assume that the two systems are connected to each other for a short period of time τ and then
detached again and allowed to equilibrate (i.e. reach a diagonal ensemble), see Figure 24. It is
intuitively clear that this assumption of connecting and disconnecting the systems is not needed
if the coupling between them is weak and the two systems are in an approximate stationary
state with respect to the uncoupled Hamiltonian at each moment of time. This intuition can be
formalized using time-dependent perturbation theory (see Appendix F).

Repeating the same steps as in Section 6.3, one can straightforwardly generalize
Equation (170) to:

P(EI, EII, NI, NII, W , δN)

P(EI + W , EII − W , NI + δN , NII − δN , −W , −δN)

= eSI(EI+W ,NI+δN)+SII(EII−W ,NII−δN)−SI(EI,NI)−SII(EII,NII), (190)

where

P(EI, EII, NI, NII, W , δN) ≡ P(EI → EI + W , EII → EII − W , NI → NI + δN , NII → NII − δN).

If the energy and particle changes are small, one can expand the entropy and the probability
distribution P in Taylor series. If W and δN are small and non-extensive, then only the leading
derivatives of the entropy need to be kept and we find a Crooks-type relation for two conserved
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312 L. D’Alessio et al.

quantities:

P(EI, EII, NI, NII, W , δN) e−0βW−0κδN ≈ P(EI, EII, NI, NII, −W , −δN), (191)

where 0β = βI − βII, and 0κ = κI − κII, with

κi = ∂Si

∂Ni
= −βiµi, i = I, II. (192)

As in Section 6.1.1, this relation is exact if the two systems I and II are described by grand canon-
ical distributions. It is also asymptotically exact to order 1/N (with N of the order of the number
of particles in each system) irrespective of the distribution, if the two systems are extensive while
the energy and particle exchanges are not (which is, e.g. the typical setup if two large macro-
scopic systems are connected through a surface). For the specific case of effusion of an ideal gas
between two reservoirs kept at different temperatures and chemical potentials, Equation (191)
was derived microscopically in Ref. [217]. Following Ref. [208], we can use the fluctuation rela-
tion (191) to derive the symmetry property of the cumulant generating function for W and δN ,
see Equation (153). Namely, multiplying both sides of Equation (191) by eζW+δN

P(EI, EII, NI, NII, W , δN) e−(0β−ζ )W−(0κ−η)δN = P(EI, EII, NI, NII, −W , −δN) eζW+δN (193)

for arbitrary ζ and η, and integrating over W and δN , we find

G(0β − ζ ,0κ − η) = G(ζ , η) (194)

together with the normalization condition G(0, 0) = 1. For the particular choices of ζ and η, the
symmetry relation (194) is equivalent to two different Jarzynski-type relations:

⟨exp[−0βW −0κδN]⟩ = 1, ⟨exp[−0βW ]⟩ = ⟨exp[−0κδN]⟩, (195)

where the left relation holds for ζ = η = 0 and the right for ζ = 0, η = 0κ . As in Section 6.3
the angular brackets imply averaging over W and δN starting at EI, EII and NI, NII.

6.6. Linear response and Onsager relations
Continuing with the setup of the previous section, one can perform the cumulant expansion
of Equation (195) up to the second order, or, alternatively, perform a Taylor expansion of the
cumulant generating function and using relation (194). One obtains

−0β⟨W⟩ −0κ⟨δN⟩ + 0β2

2
⟨W 2⟩c + 0κ2

2
⟨δN2⟩c +0β0κ⟨WδN⟩c = 0, (196)

−0β⟨W⟩ + 0β2

2
⟨W 2⟩c = −0κ⟨δN⟩ + 0κ2

2
⟨δN2⟩c. (197)

First, we move all the terms to the left-hand side (LHS) of Equation (197), then by adding
and subtracting the resulting expression with Equation (196), we obtain the two completely
symmetric relations:

⟨W⟩ = 0β

2
⟨W 2⟩c + 0κ

2
⟨WδN⟩c, ⟨δN⟩ = 0κ

2
⟨δN2⟩c + 0β

2
⟨WδN⟩c. (198)

If the coupling between the systems is weak, then either from Fermi’s golden rule or using the
same arguments as presented above Equation (180), we conclude that ⟨W⟩ and ⟨δN⟩ (as well as
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other cumulants such as ⟨W 2⟩c) are linear functions of the coupling time δt. Then, one can define
the energy and particle currents JE = ⟨W⟩/δt and JN = ⟨δN⟩/δt; as well as DWW = ⟨W 2⟩c/δt,
D2

NN = ⟨δN2⟩c/δt, and DWN = ⟨WδN⟩c/δt. Equations (198) can then be rewritten in the matrix
form [218]:

(
JE

JN

)
= 1

2

(
DWW DWN

DWN DNN

)(
0β

0κ

)
. (199)

These equations are analogous to Equation (169) and are known as the Onsager relations. On
the LHS one has the energy and particle currents, while on the RHS one has the symmetric
fluctuation matrix multiplied by the thermodynamic biases (0β and 0κ) that drive the energy
and particle currents. Note that we obtained these relations as a cumulant expansion, not as a
gradient expansion. This means that they remain valid for arbitrarily large 0β and 0κ as long
as the distribution P(W , δN) is approximately Gaussian. For this reason, the diffusion matrix in
Equation (199) does not have to be the one in equilibrium, that is, does not have to correspond to
the one for0β = 0κ = 0. When the temperature and the chemical potential gradients are small,
contributions from higher order cumulants are suppressed because of the higher powers of 0β
and 0κ . As a result, the usual Onsager relations apply.

This derivation of the Onsager relations applies to large systems. As with the Einstein rela-
tion (179), there is a correction that can be important for small systems. The derivation of
this correction is analogous to the derivation of Equation (179). The starting point is now
Equation (190). One needs to expand the entropy and the probability distribution as a function of
EI,II ± W and NI,II ± δN to second order in W and δN , and then to carry out a cumulant expansion
with these additional corrections. We leave the details of the derivation to Appendix G and show
only the final result, which is the natural extension of Equation (179):

⟨W⟩ = 0β

2
⟨W 2⟩c + 0κ

2
⟨WδN⟩c + 1

2
∂E⟨W 2⟩c + 1

2
∂N ⟨WδN⟩c,

⟨δN⟩ = 0κ

2
⟨δN2⟩c + 0β

2
⟨WδN⟩c + 1

2
∂N ⟨δN2⟩c + 1

2
∂E⟨WδN⟩c. (200)

The terms with derivatives are clearly subextensive and not important for large systems, but
they can play an important role in small or mesoscopic systems. It is interesting to note that the
Onsager relations can still be written in the conventional form (199) if one redefines the energy
and particle currents as

JE = 1
τ

⟨W⟩ − 1
2τ
∂E⟨W 2⟩c − 1

2τ
∂N ⟨WδN⟩c, JN = 1

τ
⟨δN⟩ − 1

2τ
∂N ⟨δN2⟩c − 1

2τ
∂E⟨WδN⟩c.

(201)
Let us comment that these results immediately generalize to more (M ≥ 3) conserved quan-

tities. For example, in the Onsager relation (199) one will need to use M -component vectors
for the currents and the gradients and a symmetric M × M diffusion matrix. Similarly, one can
generalize corrections to the currents (201) writing them using an M -component gradient form.

6.7. Nonlinear response coefficients
Along the lines of Refs. [208,218], one can go beyond the Onsager relation and use the sym-
metry relation of the generating function (194) to constrain nonlinear response coefficients. It is
convenient to work using a vector notation for M -conserved quantities δN⃗ , where δN1 stands for
the energy, and δN2, . . . , δNM for other conserved quantities. Similarly, let us denote by 0κ⃗ the
gradients of affinities (or thermodynamic forces) κα = ∂S/∂Nα (such that κ1 = β) and 0κα is
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the difference in affinities between the systems I and II. Ignoring subextensive corrections, the
symmetry relation (194) reads

G(0κ⃗ − ζ⃗ ) = G(ζ⃗ ), (202)

where we recall that 〈

exp

[

−
∑

α

ζαδNα

]〉

= exp[G(ζ⃗ )]. (203)

Differentiating this equality with respect to ζα and using that G(0) = 1, we find

Jα ≡ ⟨δNα⟩ = −∂G(ζ⃗ )

∂ζα

∣∣∣∣∣
ζ⃗=0

. (204)

To simplify the notation, we set τ = 1 so that ⟨δNα⟩ = Jα is the current of the α-th conserved
quantity. The symmetry relation (202) thus implies that

Jα = −∂G(ζ⃗ )

∂ζα

∣∣∣∣∣
ζ⃗=0

= −∂G(0κ⃗ − ζ⃗ )

∂ζα

∣∣∣∣∣
ζ⃗=0

= ∂G(ζ⃗ )

∂ζα

∣∣∣∣∣
ζ⃗=0κ⃗

. (205)

Let us write explicitly the cumulant expansion of the generating function G(ζ⃗ ):

G(ζ⃗ ) = −
∑

α

ζαJα + 1
2

∑

αβ

Dαβζαζβ − 1
3!

∑

αβγ

Mαβγ ζαζβζγ + · · · , (206)

where Dαβ = ⟨δNαδNβ⟩c is the covariance matrix (second-order joint cumulant matrix), Mαβγ is
the third-order cumulant tensor, and so on. By substituting this expansion into Equation (205),
we find

2Jα =
∑

β

Dαβ0κβ − 1
2

∑

βγ

Mαβγ0κβ0κγ + · · · (207)

Using this expansion and the symmetry relations of joint cumulant tensors, such as Dαβ = Dβα

and Mαβγ = Mβαγ , one can extend the Onsager reciprocity relations to higher order cumulants.
As in the previous section, these results extend to externally driven systems by substituting 0κ⃗
by κ⃗I. Note that because we carry out a cumulant expansion, and not a gradient expansion, all
cumulant tensors, such as Dα,β and Mαβγ , are functions of 0κ⃗ , that is, they are evaluated away
from the global equilibrium corresponding to 0κ⃗ = 0. If one further re-expands these tensors in
gradients 0κ⃗ , one obtains a more standard gradient expansion around equilibrium [208].

6.8. ETH and the fluctuation–dissipation relation for a single eigenstate
In Section 4.2, we introduced the ETH ansatz for the matrix elements of physical operators in
the eigenstates of a quantum chaotic Hamiltonian (62). This ansatz contains two smooth func-
tions of the mean energy Ē = (En + Em)/2, and the energy difference ω = Em − En. The first
function, O(Ē), is nothing but the microcanonical average of the observable Ô. The second func-
tion, fO(Ē,ω), contains information about the off-diagonal matrix elements of the operator Ô.
Let us elaborate on the second function here and show its relation to nonequal-time correlation
functions of the observable Ô (see also Ref. [154]). In parallel, we will be able to prove the
fluctuation–dissipation relation for individual eigenstates.
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We begin by using the ETH ansatz (62) to analyze the quantum fluctuations of an observable
Ô in the eigenstate |n⟩:

δO2
n = ⟨n|Ô2|n⟩ − ⟨n|Ô|n⟩2 =

∑

m̸=n

|Onm|2 =
∑

m̸=n

e−S(En+ω/2)|fO(En + ω/2,ω)|2|Rnm|2, (208)

where we used that Ē = (En + Em)/2 = En + ω/2. For concreteness, we consider the most
general case in which the matrix elements of observables are complex.

Because of the ETH requirement that the function fO is smooth, the fluctuations of |Rnm|2
average out in the sum and one can replace the summation over states m by an integration over
ω:
∑

m →
∫

dω#(En + ω) =
∫

dω exp[S(En + ω)]. To shorten the notation, we will drop the
subindex n in En and, unless otherwise specified, will identify E with the energy of the energy
eigenstate |n⟩. Then

δO2
n =

∑

m̸=n

e−S(E+ω/2)|fO(E + ω/2,ω)|2 =
∫ ∞

−∞
dω eS(E+ω)−S(E+ω/2)|fO(E + ω/2,ω)|2. (209)

We are interested in expectation values of few-body (usually local) operators (such as the magne-
tization in a given region of space) or sums of those operators (such as the total magnetization).
This kind of operators generally connect states that differ by non-extensive energies, implying
that the function fO(E + ω/2,ω) rapidly decreases with the second argument ω [29,154] (see
Figures 16 and 17). On the other hand, the entropy S(E + ω) and the function fO as a function of
the first argument can only change if ω changes by an extensive amount. This means that one can
expand these functions in Taylor series around ω = 0:

S(E + ω) − S(E + ω/2) = βω

2
+ ∂β

∂E
3ω2

8
+ · · · ,

fO(E + ω/2,ω) = fO(E,ω) + ∂fO(E,ω)

∂E
ω

2
+ · · · .

By substituting this expansion in Equation (209) and keeping terms up to the linear order in ω,
one obtains

δO2
n ≈

∫ ∞

−∞
dω eβω/2

[
|fO(E,ω)|2 + ∂|fO(E,ω)|2

∂E
ω

2

]
. (210)

The function fO(E,ω) therefore determines the quantum fluctuations of the operator Ô in
eigenstates of the Hamiltonian and, as a result, in the associated microcanonical ensembles.

In passing, we note that the result above shows that fluctuations of Ô within each eigenstate
are slow functions of the energy. Combining this observation with an earlier discussion of fluctu-
ations of observables in the diagonal ensemble (see Section 4.2.1), we can rewrite Equation (72)
as

δO2 ≈ δO2
n +

(
∂Ō
∂E

)2

δE2, (211)

where n is the eigenstate corresponding to the mean energy: En = ⟨E⟩. We see that fluctuations of
any observable in a diagonal ensemble have essentially two independent contributions, the first
coming from fluctuations within each eigenstate and the second from the energy fluctuations. For
extensive observables, these two contributions are of the same order but, for intensive observables
confined to a finite subsystem, the second contribution becomes subleading and all fluctuations
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are essentially coming from δO2
n. This is nothing but a manifestation of equivalence of ensembles

applied to the diagonal ensemble.
The previous derivation immediately extends to more general nonequal-time correlation

functions:

CO(t) ≡ ⟨n|Ô(t)Ô(0)|n⟩c ≡ ⟨n|Ô(t)Ô(0)|n⟩ − ⟨n|Ô(t)|n⟩⟨n|Ô(0)|n⟩, (212)

where Ô(t) = eiĤtÔe−iĤt is the operator in the Heisenberg picture. Repeating the same steps as
before, one finds

CO(t) ≈
∫ ∞

−∞
dω eβω/2−iωt

[
|fO(E,ω)|2 + ∂|fO(E,ω)|2

∂E
ω

2

]
. (213)

It is convenient to define the spectral density of the operator Ô as the Fourier transform of CO(t)

SO(E,ω) =
∫ ∞

−∞
dt eiωtCO(t). (214)

By substituting here the expression for CO(t), one obtains

|fO(E,ω)|2 + ω

2
∂|fO(E,ω)|2

∂E
= e−βω/2

2π
SO(E,ω). (215)

Noting that |fO(E,ω)|2 is an even function of ω and ω|fO(E,ω)|2 is an odd function, changing
ω → −ω in Equation (215), and adding and subtracting the two resulting equations, one finds
that

|fO(E,ω)|2 = 1
4π

[e−βω/2SO(E,ω) + eβω/2SO(E, −ω)]

= 1
4π

[cosh(βω/2)S+
O (E,ω) − sinh(βω/2)S−

O (E,ω)],

∂|fO(E,ω)|2

∂E
= 1

2πω
[cosh(βω/2)S−

O (E,ω) − sinh(βω/2)S+
O (E,ω)], (216)

where

S+
O (E,ω) = SO(E,ω) + SO(E, −ω) =

∫ ∞

−∞
dt eiωt⟨n|{Ô(t), Ô(0)}|n⟩c,

S−
O (E,ω) = SO(E,ω) − SO(E, −ω) =

∫ ∞

−∞
dt eiωt⟨n|[Ô(t), Ô(0)]|n⟩c, (217)

are the Fourier transforms of the symmetric and antisymmetric correlation functions, {·, ·} stands
for the anti-commutator and [·, ·] stands for the commutator of two operators. The symmetric
correlation function appears in the quantum fluctuations of physical observables and the antisym-
metric correlation function appears in Kubo’s linear response. We thus see that the absolute value
of the function fO(E,ω) and its derivative with respect to E are determined by the Fourier trans-
forms of the symmetric and antisymmetric nonequal-time correlation functions of the operator Ô
taken in the many-body eigenstate state |n⟩, or, equivalently, in the microcanonical ensemble con-
sisting of a single eigenstate with the energy E = En. The phase of this function is not uniquely
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defined because, in Equation (62), the random function Rnm is defined up to a random phase. One
can also invert the relations (216) and obtain

S+
O (E,ω) = 4π

[
cosh(βω/2)|fO(E,ω)|2 + ω

2
sinh(βω/2)

∂|fO(E,ω)|2

∂E

]
,

S−
O (E,ω) = 4π

[
sinh(βω/2)|fO(E,ω)|2 + ω

2
cosh(βω/2)

∂|fO(E,ω)|2

∂E

]
. (218)

Let us recall that S(E,ω) also determines Kubo’s linear response susceptibility (see, e.g.
Ref. [219]):

χO(ω) = i
∫ ∞

0
dt eiωt⟨[Ô(t), Ô(0)]⟩ = i

∫ ∞

0
dt eiωt[CO(t) − CO(−t)], (219)

where we used that, for any stationary distribution (including an energy eigenstate),
⟨Ô(0)Ô(t)⟩c = ⟨Ô(−t)Ô(0)⟩c = CO(−t). Using Equation (213), and that

∫ ∞

0
dt eiνt = πδ(ν) + iP

(
1
ν

)
, (220)

where P(1/ν) stands for the principal value, we find

χO(E,ω) = 2π i
[

sinh(βω/2)|fO(E,ω)|2 + cosh(βω/2)
ω

2
∂|fO(E,ω)|2

∂E

]

+ P
∫ ∞

−∞
dν
[

2|fO(E, ν)|2 sinh(βν/2)

ν − ω
+ ∂|fO(E, ν)|2

∂E
ν cosh(βν/2)

ν − ω

]
.

Hence, the imaginary part of Kubo’s susceptibility is also determined by |fO(E,ω)|2:

I[χO(E,ω)] = 2π
[
|fO(E,ω)|2 sinh(βω/2) + ω

2
∂|fO(E,ω)|2

∂E
cosh(βω/2)

]
= 1

2
S−

O (E,ω).

(221)
If Ô is a local operator, or a sum of local operators, then the terms with derivatives of the total

energy become unimportant for very large systems, and Equations (218) and (221) simplify to:

S+
O (E,ω) ≈ 4π cosh(βω/2)|fO(E,ω)|2, I[χO(E,ω)] ≈ 2π |fO(E,ω)|2 sinh(βω/2), (222)

which imply the famous fluctuation–dissipation relation [219]:

S+
O (E,ω) ≈ 2 coth

(
βω

2

)
I[χO(E,ω)]. (223)

We see that, as with the fluctuation theorems, the fluctuation–dissipation relation does not rely on
the assumption of a Gibbs distribution. It is satisfied for every eigenstate of a chaotic Hamilto-
nian (away from the edges of the spectrum, where ETH is expected to hold), and hence for any
stationary ensemble with non-extensive energy fluctuations.
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318 L. D’Alessio et al.

For finite systems, one can calculate corrections to the fluctuation–dissipation relation. For
example, combining the relations in Equation (216), one finds that

[
sinh

βω

2

(
1 − ω2

4σ 2
c

)
+ ω

2
cosh

βω

2
∂E

]
S+

O (E,ω)

=
[

cosh
βω

2

(
1 − ω2

4σ 2
c

)
+ ω

2
sinh

βω

2
∂E

]
S−

O (E,ω), (224)

which replaces the standard relation

sinh
βω

2
S+

O (E,ω) ≈ cosh
βω

2
S−

O (E,ω), (225)

valid for Gibbs ensembles or for individual eigenstates in very large systems. This more general
fluctuation–dissipation relation for individual eigenstates (224) still connects the noise and the
dissipative response but in a more complicated way.

6.9. ETH and two-observable correlation functions
In the previous section, we established a relation between fO(E,ω) and the Fourier transform
SO(E,ω) of the nonequal-time correlation function of Ô, see Equation (216). Here, we discuss
how the ETH ansatz for two observables Ô(1) and Ô(2) are related to their nonequal-time (con-
nected) correlation function ⟨n|Ô(1)(t)Ô(2)|n⟩c. Because of its experimental relevance, a case of
particular interest is when Ô(1) ≡ Ô(x1) and Ô(2) ≡ Ô(x2). This because ⟨n|Ô(x1, t)Ô(x2, 0)|n⟩c

determines the Ô–Ô structure factor. Another commonly encountered situation correspond to Ô(1)

and Ô(2) representing different components of some observable, such as the magnetization, the
current, and the electric polarization.

We rewrite the ETH ansatz for the two observables [see Equation (62)] as

O(j)
mn = O(j)(Ē)δmn + e−S(Ē)/2ϒ (j)

mn(E,ω), (226)

where j = 1,2, and ϒ (j)
mn(E,ω) ≡ fO(j) (E,ω) RO(j)

mn . This allows us to write

⟨n|Ô1(t)Ô2(0)|n⟩c =
∫

dω eβω/2−iωtK12(E + ω/2,ω), (227)

where the noise kernel

K12(E + ω/2,ω) ≡ ϒ
(1)
nm (E + ω/2,ω)ϒ

(2)
mn (E + ω/2,ω). (228)

The overline indicates an average over states |m⟩ within a narrow energy window, that is, at fixed
E and ω (or, equivalently, an average over a fictitious Random Matrix ensemble).

It is apparent in the expressions above that the noise terms RO(1)

mn and RO(2)

mn must, in general,
be correlated with each other, or else ⟨n|Ô1(t)Ô2(0)|n⟩c ≡ 0. Hence, the assumption that they
are random numbers with zero mean and unit variance is oversimplifying and only applicable
if we are interested in ⟨n|Ô(t)Ô(0)|n⟩c. In order to generalize ETH to deal with nonequal-time
correlations of different observables, one can still take ϒ (j)

mn to be Gaussian with zero mean but its
noise kernel with other observables generally needs to be nonvanishing.
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Inverting Equation (227), one has that

K12(E + ω/2,ω) = e−βω/2

2π
S12(E,ω), (229)

where

S12(E,ω) =
∫ ∞

−∞
dt eiωt⟨n|O1(t)O2(0)|n⟩c. (230)

For nonequal-space correlation functions in translationally invariant systems, when indexes 1
and 2 represent spatial coordinates x1 and x2 for a given observable Ô, one can write

K12(E + ω/2,ω) ≡ K(E + ω/2,ω, x1 − x2). (231)

In this case, it is convenient to define the spatial Fourier transform K and work in the momentum
space, as one does with structure factors. If the system exhibits Lorentz or Galilean invariance,
one can further restrict the functional form of the noise kernel.

We note that, as we did in Section 6.8, one can further simplify Equation (227) splitting the
correlation function into its symmetric and antisymmetric parts and Taylor expanding the noise
kernel K1,2(E + ω/2,ω) with respect to the first argument. However, we should stress that the
extension of ETH that we have introduced in this section still needs to be verified numerically. In
particular, one needs to understand the regime of validity of the Gaussian ansatz and its applica-
bility to the study of higher order correlation functions. These important questions are left open
to future investigations.

7. Application of Einstein’s relation to continuously driven systems
In this section, we discuss several examples illustrating how one can use the Einstein relation
to obtain nontrivial information about driven systems. We focus first on driven isolated sys-
tems which, in the absence of the drive, have only one conserved quantity (energy). We study
the energy distribution obtained after a generic quasi-static process, where the driven system is
approximately in equilibrium at each moment of time. Schematically, a quasi-static process in an
isolated system can be represented as a series of small quenches and relaxation to the diagonal
ensemble (see Figure 25). As described in the previous section, the same setup applies to contin-
uous driving protocols provided that the relevant relaxation time in the system is fast compared
to time over which the energy of changes significantly.29 As we will show, this setup, besides

Figure 25. Schematic representation of a continuous process as a series of quenches followed by relaxation
to the diagonal ensemble. This approximation is justified if the relevant relaxation time in the system is short
compared to the characteristic time scale associated with the change of λ.
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320 L. D’Alessio et al.

Figure 26. Schematic comparison between the usual thermal heating (traditional oven, top) and an energy
increase due to non-adiabatic work (microwave oven, bottom).

being common, allows one to take full advantage of the predictive power of the fluctuation the-
orems to derive results even if the overall energy change in the process is not small, and which,
as we will see, might lead to energy distributions that are non-thermal. This setup is analogous to
heating in a microwave oven. In the latter, heating occurs not due to the coupling to an external
heat reservoir (like in the conventional oven) but rather due to the non-adiabatic work performed
by the time-dependent electromagnetic field, see Figure 26. Even though this field is periodic
in time, the typical relaxation time in the system is much faster than the pulse frequency and
therefore the process is quasi-static. Such a process is quasi-static but it is not adiabatic since
each electromagnetic pulse performs irreversible work dQ̃ [see Equation (138)] on the system.
That work accumulates and leads to heating. This heating can be described by the Fokker–Planck
drift–diffusion equation, where the drift and diffusion terms are connected by Einstein’s relation
(see Section 6.4).

In what follows, we apply these relations to several setups and show how they allow one to
make nontrivial statements about the asymptotic energy distribution after long times. Moreover,
one can even predict the existence of dynamical phase transitions. All the examples analyzed in
this section are classical. The reason is that microscopic simulations of long-time dynamics in
quantum chaotic systems are very difficult. It is expected, however, that the general expressions
and the Fokker–Planck formalism apply equally to classical and quantum systems.

7.1. Heating a particle in a fluctuating chaotic cavity
We start by considering a very simple problem, that of a classical particle bouncing elastically
in a cavity in two spatial dimensions. When the cavity is stationary, the energy of the particle is
conserved. If the cavity is chaotic, in the long-time limit, the particle reaches a uniform position
distribution and an isotropic momentum distribution. We consider a process in which the system
is repeatedly driven by deforming the cavity. At the end of each cycle, the cavity comes back to its
original shape30 and the system is allowed to relax in the sense described above (see Figure 27).
In a single collision with the moving wall, the particle’s kinetic energy can either increase or
decrease. However, it will always increase on average and eventually the particles velocity will
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Figure 27. Schematic representation of a particle moving in a two-dimensional chaotic cavity with moving
boundaries. The driving protocol consists in repeatedly deforming the cavity between the two shapes shown,
while keeping its volume fixed.

become much greater than the velocity of the wall, so that the work per cycle automatically
becomes small. The assumption that the cavity is chaotic implies that there are no correlations
between consequent collisions. If this is the case, then one can consider a continuous driving
protocol instead of repeated quenches and all the results will be the same. Such a setup was ana-
lyzed by Jarzynski [213] followed by other works [193,220–224]. An interesting and nontrivial
result that emerges from this analysis is a non-equilibrium exponential velocity distribution (to be
contrasted with the Gaussian Maxwell distribution). Here, we analyze this problem in two ways.
First, using standard kinetic considerations and then using the Einstein relation.

Let us denote the velocity of the particle as v⃗ and velocity of the wall as V⃗ . Note that the
wall velocity is perpendicular to the boundary and, by convention, it points outward, that is,
V⃗ = Vn̂, where n̂ is the outward normal vector to the boundary. Since we assumed that the cavity
deformations are volume preserving V⃗ averaged either over time, or over the boundary of the
cavity, is zero. By elementary kinematics we know that, during a collision, the component of the
relative velocity perpendicular to the boundary is reversed while the component parallel to
the boundary is unchanged:

v⃗ → v⃗′ = v⃗ − 2(v⃗ · n̂ − V⃗ · n̂)n̂ = v⃗ − 2(v⃗⊥ − V⃗ ), (232)

where, in the last equality, we have used that V⃗ = Vn̂ and v⃗⊥ ≡ v⊥n̂ = (v⃗ · n̂)n̂. Note that for
a collision to happen we need to have v⊥ − V > 0, indicating that the particle and the wall are
approaching each other. As a check, we verify that when the boundary is stationary, that is, V⃗ = 0,
the update rule (232) simplifies to

v⃗ → v⃗′ = v⃗ − 2v⃗⊥ = v⃗∥ − v⃗⊥, (233)

where v⃗∥ ≡ v⃗ − v⃗⊥. As expected, this expression simply states that the perpendicular component
of the velocity is reversed while the parallel component is unchanged.

The energy change of the particle during a collision is

0E = m
2

(|v⃗′|2 − |v⃗|2) = 2m(V 2 − Vv⊥). (234)

We therefore see that the sign of the energy change depends on the sign of V 2 − Vv⊥. Combining
this result with the constraint v⊥ − V > 0, which ensures that a collision takes place, we obtain
that: (i) the energy increases if the boundaries move inward, that is, V < 0 and (ii) the energy
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322 L. D’Alessio et al.

decreases if the boundaries move outward, that is, V > 0. The probability of a collision per
unit length, L, is proportional to the relative velocity between the particle and the wall v⊥ − V
(provided this is positive). For the collisions where the energy of the particle increases (i.e. V
< 0), the latter is

p> = cδt
8L

(v⊥ − V )θ(v⊥ − V ) = cδt
8L

(v⊥ + |V |)θ(v⊥ + |V |), (235)

where θ is the Heaviside step function, c is a proportionality constant (for many particles, c is
proportional to the particle density), and 8 was introduced for convenience. On the other hand,
for collisions in which the energy of particles decreases (i.e. V > 0) the probability of collision is

p< = cδt
8L

(v⊥ − V )θ(v⊥ − V ) = cδt
8L

(v⊥ − |V |)θ(v⊥ − |V |). (236)

We are interested in the limit in which the wall moves slowly compared to the particle, that
is, |v⊥| ∼ |v| ≫ |V | and therefore the two-step functions above can be simplified to θ(v⊥),
indicating that v⊥ > 0. Rewriting expression (234) for the energy increasing (decreasing)
collisions as

0E> = 2m(V 2 + |V ||v⊥|), 0E< = 2m(V 2 − |V ||v⊥|), (237)

and using the expressions above for the collision probabilities, we find the average heating rate
(energy drift) and the energy diffusion:

JE = 1
δt

[0E>p> +0E<p<] = cmV 2|v⊥|θ(v⊥),

DE = 1
δt

[(0E>)2p> + (0E<)2p<] ≈ cm2V 2|v⊥|3θ(v⊥),
(238)

where, in the second line, we have kept only the leading contribution in |V |/v⊥. The overline
indicates averaging over the velocity distribution. It is convenient to use polar coordinates, where
v⊥ = |v⃗| cos(φ) with φ ∈ [−π/2,π/2] to ensure v⊥ > 0. Using that the particle energy is E =
m|v⃗|2/2, we obtain

JE = cmV 2

L

(
2E
m

)1/2 1
2π

∫ π/2

−π/2
dφ cosφ,

DE = cm2V 2

L

(
2E
m

)3/2 1
2π

∫ π/2

−π/2
dφ cosφ3.

(239)

Computing the integral over the angle φ, we obtain

JE = C
√

E, DE = C
4
3

E3/2, (240)

where C = cV 2
√

2m/(Lπ) is a constant with dimensions of
√

energy/time. Note that when com-
puting the averages over v⊥ in Equation (239), we have used a uniform measure, that is, we
took all angles φ to be equally probable. This is justified because the cavity is assumed to be
chaotic. We note that the same analysis can be carried out in an arbitrary spatial dimension d. The
only difference arises when computing the corresponding angular integrals. A straightforward
generalization of the analysis above leads to:

JE = Cd

√
E, DE = Cd

4
d + 1

E3/2, (241)

where Cd is an overall constant that depends on the dimensionality d.
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These coefficients satisfy the Einstein relation (186):

2JE = β(E)DE + ∂EDE. (242)

To see this, we note that the single-particle density of states in d dimensions is #(E) ∝ E(d−2)/2

and therefore

β(E) = ∂E ln[#(E)] = d − 2
2E

. (243)

Combining this with Equation (241), it is easy to see that Einstein’s relation is indeed satisfied.
In fact, there was no need to carry out these relatively elaborate calculations. It was sufficient
to note that JE in all dimensions must be proportional to

√
E, which, for example, follows from

the fact that the average number of collisions is proportional to |v⊥| ∼
√

E. Then, the Einstein
relation immediately fixes the energy diffusion DE with respect to the energy drift JE.

With relation (241) in hand, we can rewrite the Fokker–Planck equation describing the heating
process in an arbitrary spatial dimension d as

∂tP(E, t) = −Cd∂E[
√

EP(E, t)] + 2
d + 1

Cd∂EE[E3/2P(E, t)]. (244)

As a preliminary step, we define a new variable t′ = tCd and write ∂t = Cd∂t′ so that the constant
Cd disappears from the Fokker-Plank equation for P(E, t′):

∂t′P(E, t′) = −∂E[
√

EP(E, t′)] + 2
d + 1

∂EE[E3/2P(E, t′)]. (245)

We observe that, by a scaling analysis of this equation, t′ ∼
√

E. Therefore, we can use the
following scaling ansatz:

P(E, t′) = 1

2αt′
√

E
f

(√
E
αt′

)

≡ 1

2t′α
√

E
f (ξ). (246)

where α is a constant of order one, which will be fixed later, and the prefactor 1/(2αt′
√

E) has
been chosen so that the normalization condition becomes

1 =
∫ ∞

0
dEP(E, t′) =

∫ ∞

0

dE

2αt′
√

E
f

(√
E
αt′

)

=
∫ ∞

0
dξ f (ξ). (247)

By substituting ansatz (246) into the Fokker–Planck Equation (245), we find

2α(1 + d)f (ξ) + [2 − d + 2α(1 + d)ξ ] f ′(ξ) + ξ f ′′(ξ) = 0. (248)

It is therefore convenient to choose α−1 = 2(1 + d) so that the equation assumes a particularly
simple form:

f (ξ) + (2 − d + ξ)f ′(ξ) + ξ f ′′(ξ) = 0 ⇒ f (ξ) = 1
(d − 1)!

ξ d−1 e−ξ , (249)

where the normalization constant was fixed using Equation (247).
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Defining τ = αt′ = tCd/[2(d + 1)], we obtain the final result for the asymptotic energy
distribution P(E, τ ) (see also Refs. [223,224]):

P(E, τ ) = 1
2(d − 1)!

E(d−2)/2

τ d
e−

√
E/τ . (250)

This distribution is universal in the sense that it does not depend on any details of the driving
protocol. It is interesting to compare this result with the equilibrium canonical distribution at
temperature β:

Pc(E,β) = 1
1[d/2]

βd/2E(d−2)/2 e−βE. (251)

Clearly, these two distributions are different but share some properties. In particular, they both
decay in energy faster than any power law so that all energy moments are well defined. However,
P(E, τ ) decay in energy is slower than the Pc(E,β) one, that is, the former is “wider”. To quantify
this, we compute the first and second moments of the energy with respect to both P(E, τ ) and
Pc(E,β):

⟨E⟩τ =
∫ ∞

0
dEEP(E, τ ) = d(d + 1)τ 2, ⟨E2⟩τ = d(d + 1)(d + 2)(d + 3)τ 4

⟨E⟩c =
∫ ∞

0
dEEPc(E,β) = d

2β
, ⟨E2⟩c = d(2 + d)

4β2
,

(252)

and define the relative energy width as a figure of merit to compare the width of the two
distributions:

σ 2
τ

⟨E⟩2
τ

≡ ⟨E2⟩τ
⟨E⟩2

τ

− 1 = 6 + 4d
d(d + 1)

,
σ 2

c

⟨E⟩2
c

≡ ⟨E2⟩c

⟨E⟩2
c

− 1 = 2
d

. (253)

Clearly, the non-equilibrium distribution P(E, τ ) is wider than Pc(E,β) in any spatial dimension.
In particular, as d increases from d = 1 to d = ∞, the ratio of the relative energy widths changes
from 2.5 to 2. In the analysis above, the dimensionality d only enters through the density of states.
If we deal with a gas of weakly interacting particles in three dimensions, and the relaxation time
of the gas is fast compared to the characteristic rate of energy change due to the cavity’s motion,
then the same analysis can be applied. The only difference is that d → 3N , where N is the number
of particles. Therefore, the result that the asymptotic width of the energy distribution of a driven
gas is twice as large as the width of the Gibbs distribution applies to any weakly interacting many-
particle gas in any spatial dimension. The gas asymptotically approaches a universal distribution
(at least has universal energy fluctuations), but it is not the canonical distribution. In the examples
that follow, we will show that a generalization of this result applies to arbitrary driven interacting
systems.

Since the distribution P(E, τ ) is a non-equilibrium distribution, it should also have lower
entropy than the equivalent Gibbs distribution. The two entropies are

Sτ = −
∫ ∞

0
dEP(E, τ ) ln

[
P(E, τ )
#(E)

]
= d(1 + ln τ ) + ln(21[d]),

Sc = −
∫ ∞

0
dEPc(E,β) ln

[
Pc(E,β)

#(E)

]
= d

2
(1 − lnβ) + ln(1[d/2]).

(254)

In order to compare these two entropies, we evaluate Sc at β−1 = 2(d + 1)τ 2 (so that the
distributions P(E, τ ) and Pc(E,β) have identical average energy) and compute Sc − Sτ :

Sc − Sτ = d
2

ln
[

2(d + 1)

e

]
+ ln

(
1[d/2]
21[d]

)
. (255)
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This function is positive and increases monotonically from 0.07 for d = 1 to (1 − ln 2)/2 ≈ 0.15
for d → ∞. Note that, for large d, the first term of both entropies in Equation (254) is pro-
portional to d, so the relative difference between them decreases with the dimensionality.31

According to our previous discussion, in a weakly interacting gas one has to substitute d → 3N
so that, in the thermodynamic limit (N → ∞), the driven gas has a thermal entropy up to
subextensive corrections. If, conversely, we are dealing with a gas of noninteracting particles
(implying that the their relaxation time is longer than the heating time) the entropy difference
between the driven and the thermal gas will be extensive. This happens despite the fact that
the total energy distribution of the noninteracting gas is still a Gaussian due to the central limit
theorem. This extensive entropy difference can be used, for example, to build more efficient heat
engines and even to beat the fundamental Carnot bound in some cases (see the discussion in
Ref. [225]).

Let us note that the form of the distribution (250) was obtained under the assumption of
constant driving, that is, V 2 = const. If one uses feedback control mechanisms such that velocity
of the wall is tied to the velocity of the particle, that is, V = V (E), then one can change the
energy dependence of JE ∝ V 2

√
E and, hence, change the resulting non-equilibrium distribution.

One can even induce dynamical phase transitions (see the next example).
In passing, we note that the same results for the energy distribution have been derived in the

context of the Lorentz gas [226]. This gas is defined as a system of noninteracting light particles
colliding with an interacting gas of heavy particles moving with an average velocity V. If the
ratio of the masses is very large, then there is no effect of the collision on the heavy particles
so the latter serve precisely the role of moving boundaries. In this case, the behavior of the light
particles can be obtained exactly via the Lorentz–Boltzmann kinetic equation. It is interesting
to note that the ensemble of heavy particles can be viewed as an infinite temperature heat bath.
Indeed, the average energy of heavy particles M ⟨V 2⟩/2, which defines temperature, diverges in
the limit M → ∞ at fixed ⟨V 2⟩. Thus, according to the general discussion of Section 6, this
simple example shows that an external quasi-static driving of an isolated system is equivalent to
the coupling to the infinite temperature bath.

While the single-particle example considered here is relatively simple, it teaches us several
important lessons that can be extended to many-particle systems. In particular, it shows: (i) the
possibility of non-equilibrium universal distributions, and (ii) that doubly stochastic evolution for
quasi-static driving protocols is sufficiently constraining to predict such universality irrespective
of the details of the driving protocol (in our example, the details are encoded in the overall
constant Cd ).

7.2. Driven harmonic system and a phase transition in the distribution function
Next, we consider a driven single particle in a harmonic trap [193]. This particle is weakly cou-
pled to a finite system composed of N identical particles, so that the overall system is ergodic.
The details of the larger system define the density of states #(E), and therefore β(E). Repeated
impulses of short duration act on the particle and drive it away from equilibrium. The time scale
between impulses is taken to be larger than the equilibration time of the particle. In addition,
we assume that the coupling of the particle to the rest of the system is so weak that during the
impulse it can be ignored. This setup can be easily generalized to impulses acting on an extensive
number of particles. The energy of the particle ε (we use this notation to distinguish it from the
total energy of the system E) between cycles is given by

ε = 1
2

kx2 + p2

2
. (256)
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For simplicity, we work in one dimension. In Equation (256), x is the coordinate of the particle,
v its velocity, m = 1 its mass, and k is the spring constant. Because the system is ergodic and N is
large, at any given energy of the system, the probability distribution for (x, v) before the impulse
is Gibbs: ρ(x, v) ∝ exp[−β(E)ε]. We take the impulse magnitude to be F(x)δt, with δt short
enough so that, during the impulse, the particle’s position does not change appreciably and the
coupling to the rest of the system can be ignored. Following the impulse, the momentum changes
according to p → p + F(x)δt. It is straightforward to calculate both the drift JE and the diffusion
constant DE [193]:

JE = ⟨[F(x)]2⟩δt
2

τ
,

DE = 2
β(E)

⟨[F(x)]2⟩δt
2

τ
,

where the angular brackets denote an average over ρ(x, v) and τ is the time (or average time)
between impulses. As in the previous example, one could have calculated JE and deduced DE

from the Einstein relation. Note that here, in contrast to the single-particle example, the ∂EDE

term in the relation 2JE = β(E)DE + ∂EDE is a 1/N correction, which is negligible. Technically,
this correction would amount to the fact that, at finite but large N, the single-particle distribution
ρ(x, v) slightly deviates from a Gibbs distribution.

Next, we consider the probability distribution for the energy of the system after the application
of many impulses. To proceed, we have to assume a specific form for#(E) [or equivalently β(E)]
and for F(x). For simplicity, we take β(E) ∝ E−α and F(x) ∝ sign(x)|x|r so that

JE ∝ ⟨x2r⟩ ∝ Eαr ≡ Es, (257)

where we used ⟨x2⟩ ∝ β(E)−1 ∝ Eα , with the first proportionality following from the equipar-
tition theorem. For large N, due to the central limit theorem, the energy distribution is approxi-
mately Gaussian. Therefore, to characterize the distribution, it suffices to find the mean energy as
a function of time and its variance as a function of the mean energy.

To find the relation between the mean energy and its variance, to leading order in 1/N, we
can multiply the Fokker–Planck equation (187) by E and E2 and integrate over all energies.
This yields the following differential equations describing the time evolution of ⟨E⟩ and σ 2 =
⟨E2⟩ − ⟨E⟩2, where angular brackets stand for averaging over the probability distribution P(E, t):

∂t⟨E⟩ = ⟨JE⟩,

∂tσ
2 = ⟨DE⟩ + 2(⟨JEE⟩ − ⟨JE⟩⟨E⟩).

Combining these equations yields

∂σ 2

∂⟨E⟩
= ⟨DE⟩ + 2(⟨JEE⟩ − ⟨JE⟩⟨E⟩)

⟨JE⟩
. (258)

Moreover, if the energy distribution P(E) is narrow, as is the case of large N, we can evaluate the
averages within the saddle-point approximation. Using the Einstein relation JE = β(E)DE/2, we
obtain

∂σ 2

∂⟨E⟩
= 2
β(⟨E⟩)

+ 2
∂EJE(⟨E⟩)
JE(⟨E⟩)

σ 2(⟨E⟩). (259)
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Integrating this equation between the initial energy of the system ⟨E⟩0 and its final energy ⟨E⟩
gives

σ 2(⟨E⟩) = σ 2
0

JE(⟨E⟩)2

JE(⟨E⟩0)2
+ 2J2

E(⟨E⟩)
∫ ⟨E⟩

⟨E⟩0

dE′

JE(E′)2β(E′)
, (260)

where σ0 is the initial width of the distribution and ⟨E⟩0 is the initial mean energy.
We now use this equation in conjunction with the results obtained for the particle in a

harmonic trap. In that case, the change of the mean energy of the system is given by

∂t⟨E⟩ = JE(⟨E⟩) = c⟨E⟩s. (261)

Note that the values of α (recall that αr = s), which define the specific heat exponents, are
constrained by thermodynamic reasons to 0 < α ≤ 1. The lower bound is required due to the
positivity of the specific heat, and the upper bound assures that the entropy [S(E) ∝ E1−α] is an
increasing unbounded function of the energy (the latter condition can be violated in systems with
bounded energy spectrum). To prevent the energy of the system from diverging at finite time, we
require s ≤ 1 [as follows from integrating Equation (261)].

For simplicity, we assume that σ0 → 0, that is, that we are starting from a very narrow
microcanonical distribution. As done in Section 7.1, it is useful to compare the width σ 2 to
the equilibrium canonical width σ 2

c = −∂β⟨E⟩ ∼ ⟨E⟩1+α/α. This comparison reveals that, as the
functional form of the impulse (specifically, the value of r) is changed, the system displays a
transition between two behaviors. To see this, note that σ 2(⟨E⟩) is controlled by the exponent
η = 2αr − α − 1 = 2s − α − 1, which determines if the integral in Equation (260) is controlled
by its lower or upper bound: (i) When η < 0, the width is Gibbs-like with σ 2/σ 2

c → 2α/|η|, that
is, the ratio σ 2/σ 2

c asymptotically approaches a constant value that can be either larger or smaller
than one. Smaller widths correspond to protocols with large and negative s. Namely, protocols
where JE is a strongly decreasing function of the energy. (ii) When η > 0, there is a run-away
regime. Here, the width increases with a higher power of the energy than the canonical width:
σ 2/σ 2

c ∼ Eη. The resulting distribution is significantly wider than the canonical one. Given the
constraint on the value of s, this regime can only be reached if α < 1 (in particular, this regime
is unreachable for a driven classical ideal gas). The transition between the two regimes occurs
when η = 0. In this case, σ 2/σ 2

c ∼ 2α ln(⟨E⟩/⟨E⟩0). One can show that close to this transition,
when |η| ≪ 1, there is a divergent time scale (in terms of the number of impulses) required to
reach the asymptotic regime, see Ref. [193] for details. Therefore, this setup realizes a dynamical
transition for the asymptotic energy distribution of the system, which is qualitatively similar to a
continuous phase transition. The parameter η plays the role of the tuning parameter.

For concreteness, consider a system with α = 1/2 (such as a Fermi liquid or the one-
dimensional harmonic system above). When r = 1, we have η = 2αr − α − 1 = −1/2 and the
resulting distribution is Gibbs-like with σ 2/σ 2

c = 2. When r = 3/2, we are at the critical regime
η = 0. Finally, for r = 2, one has η = 1/2 leading to the run-away regime with σ 2/σ 2

c ∼ E1/2.
Note that Equation (262) implies that the existence of these three regimes is generic. In particular,
depending on the functional form of JE(E) and β(E), the variance of the distribution can be larger
or, surprisingly, smaller than the width of the equilibrium Gibbs distribution at the same mean
energy. Specifically, σ 2(E)/σ 2

c (E) can be made arbitrarily small by a proper choice of JE(E).
Also, the existence of the dynamical phase transition described for this simple model is only tied
to whether the integral in Equation (262) diverges or converges at high energy. The emergence of
a nontrivial universal asymptotic behavior of the energy distribution is insensitive to the details
of the driving protocol, such as the driving amplitude and shape of the pulse.

While in the examples in this section we focused on classical systems, the same conclusions
apply to driven quantum systems (see Ref. [193] for specific examples). One can also anticipate
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nontrivial universal non-equilibrium distributions in driven systems with more than one con-
served quantity. In this case, the Onsager relations will be responsible for constraining the mean
flows of the conserved quantities and the flows of their fluctuations.

7.3. Two equilibrating systems
As a final example, we follow Ref. [214] and describe the equilibration of two weakly coupled
systems, as those shown in Figure 24, but with no particle exchange (JN = 0). When one of
the systems is much bigger than the other one, the bigger system serves as a heat bath for the
small system and the two systems equilibrate at the temperature of the bath, which does not
change during the equilibration process. The situation changes, however, when the two systems
are comparable to each other, so that both systems are affected by the heat exchange. Assuming
that the energy flow between the two systems is much slower than the characteristic relaxation
time of each of the systems, and that the total energy Etot is not fluctuating, we can again use the
Fokker–Planck formalism and the analysis in the previous example. The only difference is that,
instead of β(E), we need to use0β(E) = βI(EI) − βII(EII), where βI and βII are the temperatures
of systems I and II, respectively, and EI and EII are their respective energies. The latter satisfy
the constraint EI + EII = Etot = const. Then, instead of Equation (262), we find the following
expression for the energy fluctuations in system I:

σ 2
I (⟨EI⟩) = σ 2

I,0
JE(⟨EI⟩)2

JE(⟨EI⟩0)2
+ 2JE(⟨EI⟩)2

∫ ⟨EI⟩

⟨EI⟩0

1
JE(E′)2[βI(E′) − βII(Etot − E′)]

dE′, (262)

where JE is the rate of the heat flow into system I. This equation describes the evolution of the
width of the energy distribution of system I. As the system equilibrates, one expects that

JE = C(E − Eeq
I ), (263)

where Eeq
I is the equilibrium steady-state mean energy of system I, for a given total energy Etot.

Likewise

βI(E′) − βII(Etot − E′) ≈ −
(

1
σ 2

I,c

+ 1
σ 2

II,c

)

(E′ − Eeq
I ), (264)

where σ 2
I,c = −∂EI/∂βI is the variance of the energy distribution in the canonical ensemble of

system I with mean energy Eeq
I and, similarly, σ 2

II,c is defined for system II. The two expressions
above ensure that, in the steady state, when EI = Eeq

I , the (average) heat flux is zero and the tem-
peratures of the two subsystems are identical. By substituting this expansion in Equation (262),
we find the asymptotic result for the energy fluctuations in system I after equilibration:

σ 2
I = σ 2

II ≈
σ 2

II,cσ
2
I,c

σ 2
II,c + σ 2

I,c

. (265)

If one of the systems, say system I, is much smaller than the other, then this result simply
implies that, after equilibration, the energy fluctuations in both systems are given by the canon-
ical energy fluctuations of the smallest system. If the two systems are identical, then the energy
fluctuations in either one of the systems are equal to one half of the canonical ones.

Equation (262) is, however, more general and can be used to study the full evolution of the
distribution as the systems equilibrate (and not just the approach to the asymptotic result). Again,
following Ref. [214], let us consider a specific example of a gas of hard spheres in a box. They
are simulated using an event-driven molecular dynamics [227]. The gas has NI particles of mass
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Figure 28. Equilibration of a system consisting of 50 particles with two different masses confined in a box.
We plot results for ⟨EI⟩ vs. σ 2 (dots), and compared them to the theoretical prediction in Equation (262)
(solid line). Inset: Energy EI(t) in a single run (solid line), and the average energy ⟨EI⟩(t) (dashed line). The
particle numbers used in the simulations are NI = 30 and NII = 20. The initial velocities are sampled from
a Maxwell–Boltzmann distribution with very different initial temperatures: βI = 60 and βII = 3. The total
energy constraint is enforced by a (small) rescaling of the velocities of the mII-particles. The masses are
chosen to be mI = 10−4 and mII = 1 (in arbitrary units). The box is a unit cube with reflecting boundaries,
and the added volume of the particles is taken to occupy a 5% of the volume of the box.

mI and NII particles of mass mII, all of equal size. These groups of particles represent the two
systems I and II. This setup is similar to the Lorentz gas analyzed in Section 7.1, which in turn is
identical to a single particle in a chaotic cavity. The difference is that here the two masses are both
finite while, in the Lorentz gas analyzed earlier, one type of atoms was infinitely heavier than the
other. It is straightforward to check studying the collision between two particles that, if the two
masses are very different, the energy transfer in each collision is small. In this case, a significant
energy transfer occurs only over many collisions. Numerical simulations were repeated for many
runs to evaluate the width of the distribution as a function of the average energy. In addition, dur-
ing the evolution, the energy transfer between the two systems was evaluated and Equation (262)
was used to compute the width of the distribution. The results, shown in Figure 28, indeed con-
firm the predictions of the Fokker–Planck derivation based on the Einstein relation for the open
systems (187).

8. Integrable models and the generalized Gibbs ensemble (GGE)
One of the focuses of this review has been understanding what happens in isolated nonintegrable
quantum systems that are taken far from equilibrium by means of a sudden quench. We have dis-
cussed the relaxation dynamics of physical observables and their properties after relaxation. We
explained that quantum chaos, through eigenstate thermalization, is the reason behind thermal-
ization in those systems. In this section, we briefly discuss what happens in integrable systems.
Such systems do not exhibit eigenstate thermalization.

We note that the very definition of quantum integrability is a topic of debate (see, e.g.
Ref. [228–230]), but we will not touch upon that here. A rather standard definition of quan-
tum integrability, based on the existence of an extensive number of local operators (or, more
precisely, operators that are extensive sums of local operators) Îk that commute with the Hamil-
tonian and with each other, will be sufficient for the discussion here. The requirement that the
conserved quantities are local/extensive is essential and it excludes the projection operators to
the eigenstates of the Hamiltonian. In fact, for any quantum Hamiltonian, integrable or not, the
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projection operators to its eigenstates commute with the Hamiltonian and with each other, that
is, they are conserved, but they are neither local nor extensive. As we have argued for quantum
chaotic systems, the existence of those conserved quantities does not preclude the thermalization
of physical observables. Exactly the same can be said about higher moments of the Hamiltonian,
which are separately conserved but play no role both in equilibrium thermodynamics and in the
thermalization of chaotic systems (see, e.g. the discussion in Section 4.3.2).

8.1. Constrained equilibrium: the GGE
The main difference between chaotic and integrable systems becomes apparent already at the
single-particle level, see Figure 1. In the classical chaotic billiard any trajectory, after some time,
uniformly fills the available phase space at a given energy. As a result, the long-time average
and the microcanonical ensemble average of an observable agree with each other. In contrast,
in the integrable cavity the particle’s motion is constrained by other conserved quantities and
the time average and the microcanonical ensemble average need not agree. Nevertheless, the
particle might still uniformly fill the available phase space. This means that the long-time average
could still be described by an ensemble average, but it needs to be a generalized microcanonical
ensemble that accounts for all conserved quantities in the system [231].

In the quantum language, this amounts to saying that, in order to describe time averages
of observables in integrable systems, one needs a constrained ensemble which is built using
eigenstates of the Hamiltonian involved in the dynamics (they are selected by the initial state).
As in classical systems, in which conserved quantities preclude the exploration of all phase space,
the failure of integrable quantum systems to exhibit eigenstate thermalization can be traced back
to the fact that they have an extensive number of nontrivial (local/extensive) conserved quantities
{Îk}, as opposed to the O(1) number of extensive conserved quantities in nonintegrable systems
(energy, momentum, etc.). Despite the existence of the conserved quantities {Îk}, and because
of dephasing (like in nonintegrable systems), observables in integrable systems are expected to
relax to stationary values and remain close to those values at most later times.

Remarkably, in Ref. [232], the previous statements were shown to hold for an integrable
model of hard-core bosons. Instead of a generalized microcanonical ensemble, a generalized
grand canonical one was introduced in that work. It is now known as the GGE, whose density
matrix:

ρ̂GGE = exp(−
∑

k λk Îk)

Tr[exp(−
∑

k λk Îk)]
, (266)

was obtained by maximizing the entropy [233,234] under the constraints imposed by conserved
quantities that make the system integrable. The values of the Lagrange multipliers were deter-
mined by requiring that, for all k’s, Tr[ρ̂GGE Îk] equals the expectation value of Îk in the initial
state. It is a priori not obvious that the exponential form in Equation (266) is warranted. For
extensive integrals of motion, one can justify the exponential form in the same way as it is done
in traditional statistical mechanics, namely, noting that: (i) because of the equivalence of ensem-
bles for subsystems, which is a direct consequence of the extensivity of the conserved quantities,
the precise form of the distribution is not essential, and (ii) the exponential distribution leads to
statistical independence of subsystems, which is naturally expected after relaxation in a system
governed by a local Hamiltonian.

The fact that observables in integrable systems do not, in general, relax to the same values
seen in thermal equilibrium, and that the GGE describes few-body observables after relaxation,
has been verified in a large number of studies of integrable models. These can be either solved
numerically for much larger system sizes than those accessible to full exact diagonalization or
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analytically solved in the thermodynamic limit [131,133,232,235–255]. We should emphasize,
however, that special initial states may still lead to nearly thermal expectation values of observ-
ables in integrable systems after relaxation [136,137,145,236,256–259]. Hence, finding nearly
thermal results for some initial states does not automatically mean that a system is noninte-
grable. In what follows, we discuss several examples for which the GGE can be used. These
will highlight the reasons for its applicability.

8.1.1. Noninteracting spinless fermions

Noninteracting systems are possibly the simplest class of integrable systems. Let us discuss one
particular noninteracting system that clarifies some important features of the GGE introduced
above. We focus on noninteracting spinless fermions in a one-dimensional lattice (relevant to the
hard-core boson system discussed in Section 8.1.2)

ĤSF = −J
L−1∑

j=1

(f̂ †
j f̂j+1 + H.c.) +

L∑

j=1

ujn̂
f
j , (267)

where f̂ †
j (f̂j) is a fermionic creation (annihilation) operator at site j, n̂f

j = f̂ †
j f̂j is the site j

occupation operator, J is the hopping parameter, and uj are arbitrary site potentials.
The single-particle Hamiltonian (267) can be straightforwardly diagonalized: ĤSFγ̂

†
k |0⟩ =

εk γ̂
†
k |0⟩, where εk are the single-particle eigenenergies, |k⟩ ≡ γ̂

†
k |0⟩ are the single-particle

eigenstates, and k = 1, 2, . . . , L. The occupations of the single-particle eigenstates η̂k = γ̂
†
k γ̂k

immediately form a set of L nontrivial nonlocal conserved quantities for a system consisting of
many noninteracting spinless fermions. These conserved quantities are not extensive. However,
carrying out the GGE analysis for this set of conserved quantities, imposing that Tr[ρ̂GGEη̂k] =
⟨ψI |η̂k|ψI⟩ ≡ ηI

k , one finds that the Lagrange multipliers are given by the expression [232]

λk = ln
[

1 − ηI
k

ηI
k

]
, (268)

that is, the Lagrange multipliers are smooth functions of ηI
k .

In Figure 29, we show results for ηI
k and λk after a quench in which a superlattice potential

[uj = u(−1)j in Equation (267)] is turned off. In this quench, the initial state is taken to be the
ground state for uI ̸= 0 and the time evolution is carried out under a final Hamiltonian with u = 0.
An important feature, made apparent by the results in Figure 29, is that increasing the system size
by a factor of 10 leads to essentially the same curve for ηI

k vs. k but with 10 times the number of
data points. This smooth dependence of λ on k′ = k/L allows one, for sufficiently large system
sizes, to define extensive integrals of motion by taking the sum

∑
k′∈[k′′−δk′′/2,k′′+δk′′/2] λk′ η̂k′ as

being equal to λk′′ η̂′
k′′ where now η̂′

k′′ =
∑

k′∈[k′′−δk′′/2,k′′+δk′′/2] η̂k′ is extensive. Hence, the mode
occupations η̂k can be thought of as being extensive in a coarse-grained sense and the justification
of the GGE exponential form [see Equation (266)] presented above remains valid [131,133,136].
The formal equivalence between the GGE constructed using occupation modes (as done here)
and using extensive conserved quantities was established in Ref. [252]. It extends beyond non-
interacting systems to integrable models that may or may not be mappable to noninteracting
ones.

Having justified the applicability of the GGE to the occupation modes of the single-particle
Hamiltonian of noninteracting many-particle systems, one can go a step further and prove that
the GGE defined this way provides exact results for the time average of all one-body observables
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332 L. D’Alessio et al.

Figure 29. (a) Expectation value of the conserved quantities in quenches from uI ̸= 0 (as indicated in the
figure) to u = 0. (b) The corresponding Lagrange multipliers. The conserved quantities are ordered such that
εk increases with increasing k. The results denoted by symbols (lines) correspond to systems with L = 38
(380) sites at half-filling (N = L/2). Adapted from Ref. [136].

(without finite-size errors) [132,260]. The proof, following Ref. [132], is straightforward. Project-
ing the many-body time-evolving wave function ρ̂(t) = |ψ(t)⟩⟨ψ(t)| onto the one-body sector,
and using the fact that all eigenstates of the many-body Hamiltonian are (antisymmetrized) direct
products of the single-particle states |k⟩, the time evolution of the one-body density matrix can
be written as

ρ̂ob(t) =
∑

k,k′

ckk′ e−i(εk−εk′ )t|k⟩⟨k′|. (269)

In the absence of degeneracies in the single-particle spectrum, the infinite-time average of ρ̂ob(t)
can be written as

ρ̂ob(t) = lim
t′→∞

1
t′

∫ t′

0
dtρ̂ob(t) =

∑

k

ηI
k|k⟩⟨k|, (270)

which is, by construction, the one-body density matrix within the GGE, as ηI
k =

∑
n

|⟨n|ψI⟩|2ηk,n ≡ tr[ρ̂GGEη̂k], where ηk,n = 1 (ηk,n = 0) if the single-particle state |k⟩ is (is not) part
of the particular many-body state |n⟩, and Tr[ρ̂GGEγ̂

†
k γ̂k′] ≡ 0 for k ̸= k′ . We should emphasize

at this point that this does not mean that all one-body observables equilibrate at their GGE values
(they do not, see Refs. [132,238,255,260]), but simply that their time average is given by the
GGE prediction.

8.1.2. Hard-core bosons

We now turn our attention to hard-core bosons, described by the Hamiltonian

ĤHCB = −J
L−1∑

j=1

(b̂†
j b̂j+1 + H.c.) +

L∑

j=1

ujn̂b
j , (271)

where b̂†
j (b̂j) is the hard-core boson creation (annihilation) operator at site j, n̂b

j = b̂†
j b̂j is the site

j occupation operator, J is the hopping parameter, and uj are arbitrary site potentials. Hard-core
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bosons satisfy the same commutation relations as bosons but with the additional constraint that
there cannot be multiple occupancy of any lattice site, that is, (b̂†

j )
2 = b̂2

j = 0 [33].
The hard-core boson Hamiltonian above can be mapped onto a spin-1/2 chain through the

Holstein–Primakoff transformation [33,261] and the spin-1/2 chain onto the spinless fermion
Hamiltonian in Equation (267) via the Jordan–Wigner transformation [33,262]

b̂†
j → f̂ †

j

j−1∏

ℓ=1

e−iπ f̂ †
ℓ f̂ℓ , b̂j →

j−1∏

ℓ=1

eiπ f̂ †
ℓ f̂ℓ f̂j, n̂b

j → n̂f
j . (272)

This means that the dynamics of the hard-core boson site occupations is identical to that of the
fermions, but the momentum distribution function of hard-core bosons, which involves a Fourier
transform of one-body correlations in real space, is very different from that of the fermions. The
hard-core momentum distribution function can be efficiently calculated for eigenstates of the
Hamiltonian [263], for systems out of equilibrium [264], and in the grand canonical ensemble
[265] using properties of Slater determinants. The conserved quantities to construct the GGE
can be taken to be the same as for the noninteracting spinless fermions in Section 8.1.1, namely,
single-particle mode occupations.

In Figure 30, we show results for an integrable model of hard-core bosons in the presence
of a harmonic trap after a quench in which a superlattice potential is turned off [236] – in this
case, uj = v(j − L/2)2 + u(−1)j, where v and u set the strength of the harmonic trap and the
superlattice potential, respectively. In the main panels, one can see the time average of the site
(a) and momentum (b) occupation profiles after relaxation. They are clearly different from the
predictions of a grand canonical ensemble for a system whose Hamiltonian is the one after the
quench. The temperature and chemical potential of the grand canonical ensemble are fixed so
that the mean energy and number of particles match those of the time-evolving state. We note
that the system considered here is large enough so that the observed differences between the

Figure 30. (Main panels) Site (a) and momentum (b) occupations in a trapped integrable system of hard-core
bosons after a quench in which the initial state is the ground state of a trapped system (vI ̸= 0) in the
presence of a superlattice potential (uI ̸= 0) and the dynamics is carried out in the presence of the same trap
(v = vI ) but with no superlattice potential (u = 0), see text. Results are presented for the time average of the
occupations after relaxation, as well as for the GGE and the grand canonical ensemble (GE) predictions.
The insets show the dynamics of the occupation of site 251 (a) and of the zero momentum occupation (b).
The horizontal lines correspond to the results in the GGE and grand canonical ensemble, as depicted in the
main panels. The system has 900 sites and 299 hard-core bosons. Times are reported in units of !/J , and k
is reported in units of 1/a, where a is the lattice spacing. See also Ref. [236].

D
ow

nl
oa

de
d 

by
 [N

or
th

er
n 

Ill
in

oi
s U

ni
ve

rs
ity

] a
t 0

4:
12

 0
1 

A
ug

us
t 2

01
6 



334 L. D’Alessio et al.

time-averaged profiles and the thermal predictions are not due to finite size effects [236]. On the
other hand, the predictions of the GGE, which like the grand canonical ensemble also has energy
and particle number fluctuations, are indistinguishable from the results of the time average. The
insets exemplify the relaxation dynamics by depicting the time evolution of the occupation of
one site [Figure 30(a)] and of the zero momentum mode [Figure 30(b)]. They can both be seen
to relax towards, and oscillate about, the GGE prediction. The grand canonical ensemble results
are clearly incompatible with the results after relaxation. The amplitude of the fluctuations about
the time average reveals another qualitative difference between nonintegrable and integrable sys-
tems. In quenches involving pure states in isolated integrable systems mappable to noninteracting
models (and in the absence of localization), time fluctuations only decrease as a power law of the
system size [131,245,255,260,266,267]. This is to be contrasted to the exponential decrease of
the amplitude of the time fluctuations as a function of the system size expected, and seen [185],
in nonintegrable systems. In Ref. [185], it was argued based on numerical experiments that the
time fluctuations of observables in integrable systems that are not mappable to noninteracting
ones can also decrease exponentially fast with increasing system size.

8.2. Generalized eigenstate thermalization
One may ask at this point why is it that the GGE is able to describe observables after relaxation in
isolated integrable systems following a quantum quench. After all, Equation (60) is still dictating
the dynamics and, once eigenstate thermalization does not occur, one might expect that the results
after relaxation will depend on the exponentially large (in the system size) number of parame-
ters Cn ≡ ⟨n|ψI⟩ that are set by the initial state while the GGE depends only on a polynomially
large number of parameters. As discussed in Ref. [131], the validity of the GGE can be under-
stood in terms of a generalization of eigenstate thermalization in integrable systems. Namely,
if eigenstates of integrable Hamiltonians with similar distributions of conserved quantities have
similar expectation values of physical observables (we call this phenomenon generalized eigen-
state thermalization32), then the GGE will describe those observables after relaxation following a
quench. This can be understood as follows. In the diagonal ensemble (after quenches to integrable
systems), the fluctuations of each extensive conserved quantity are expected to be subextensive
for physical initial states – as we showed for the energy in Section 4.3.2. This, together with the
fact that the GGE is constructed to have the same expectation values of conserved quantities as
the diagonal ensemble and combined with generalized eigenstate thermalization, is what leads to
the agreement between the GGE and the results after relaxation.

Numerical evidence for the occurrence of generalized eigenstate thermalization was presented
in Refs. [131,132] for integrable hard-core boson systems (similar to those in Figure 30), and in
Ref. [133] for the transverse field Ising model. In addition, for some observables, the occurrence
of generalized eigenstate thermalization was proved analytically in Ref. [133]. In what follows,
we review results for the transverse field Ising model.

The relation between the transverse field Ising model and the hard-core boson model in
Equation (271) can be understood as follows. The hard-core boson chain can be mapped onto
a spin-1/2 chain via:

Ŝz
j = b̂†

j b̂j − 1
2 , Ŝ+

j = b̂†
j , Ŝ−

j = b̂j. (273)

After these substitutions, using that Ŝ+
j = Ŝx

j + iŜy
j and Ŝ−

j = Ŝx
j − iŜy

j , the Hamiltonian (271)
reads

ĤXX = −2J
L−1∑

j=1

(Ŝx
j Ŝx

j+1 + Ŝy
j Ŝy

j+1) +
L∑

j=1

uj

(
Ŝz

j + 1
2

)
, (274)
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This Hamiltonian is known as the isotropic XY model (or the XX model) in a transverse field.
Its anisotropic version, for periodic boundary conditions in the presence of a uniform field of
strength h, can be written as

ĤXY = −J
(1 + γ )

2

L∑

j=1

σ̂ x
j σ̂

x
j+1 − J

(1 − γ )

2

L∑

j=1

σ̂
y
j σ̂

y
j+1 + h

L∑

j=1

σ̂ z
j , (275)

where we used that Ŝαj = σ̂ αj /2, and γ is the anisotropy parameter. In the hard-core boson lan-

guage, γ ̸= 0 leads to non-number-conserving terms of the form (b̂†
j b̂†

j+1 + H.c.). In the extreme
anisotropic limit γ = 1, the model in Equation (275) is known as the transverse field Ising
model [268].

In Figure 31, we show results for the weights of the many-body eigenstates of the transverse
field Ising model (color coded in the scale on the right) as a function of the energy of the eigen-
states and of the eigenstate expectation values of σ̂ x

j σ̂
x
j+2. In the top panels, we show weights in the

diagonal ensemble and in the bottom panels we show weights in the GGE, in each case for three
different system sizes. The black regions mark the existence of eigenstates with the correspond-
ing eigenenergies and eigenstate expectation values, but with vanishing weight in the ensembles.
The fact that those black regions do not narrow with increasing system size (they can be seen
to slightly widen) is to be contrasted to the results in Figure 13 for nonintegrable systems. The

Figure 31. Density plots of the weights of the eigenstates of the transverse field Ising Hamiltonian
[Equation (275) with γ = 1 and J = 1] as a function of their eigenenergies and of the eigenstate expec-
tation values of the next-nearest neighbor correlation function σ̂ x

j σ̂
x
j+2. Panels (a)–(c) depict the weights in

the diagonal ensemble and panels (d)–(f) depict the weights in the GGE, in each case for three different
system sizes. The initial state is the ground state for hI = 0.1, and after the quench h = 1.5. Black pixels
mark the presence of eigenstates (with vanishing weight), while gray pixels signal their absence. Colored
pixels show the nonvanishing weights in the diagonal ensemble [panels (a)–(c)] and in the GGE [panels
(d)–(f)]. These results were provided by Lev Vidmar (see also Ref. [133]).
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contrast makes apparent that in the transverse field Ising model eigenstate thermalization does
not occur.

More remarkably, Figure 31 shows that the eigenstates of the Hamiltonian with a significant
weight in the diagonal ensemble and the GGE are located in approximately the same small region
in the plane defined by the eigenstate energies and expectation values of σ̂ x

j σ̂
x
j+2 (see Ref. [133]

for similar results for other observables). In Ref. [133], it was shown that, in both ensembles, the
width of the energy distribution and of the distribution of expectation values of σ̂ x

j σ̂
x
j+2 vanishes as

1/
√

L with increasing system size. If one adds to this finding the fact that, in both ensembles, the
mean value of the energy is the same by construction and the expectation value of σ̂ x

j σ̂
x
j+2 is found

to agree, as in previous examples, one concludes that the eigenstates of the final Hamiltonian that
determine the results in the diagonal ensemble and in the GGE in the thermodynamic limit are
located at the same point in the aforementioned plane. Generalized eigenstate thermalization is
reflected by the fact that the width of the distribution of eigenstate expectation values vanishes
with increasing system size. These results make apparent that the exact distribution of weights in
the diagonal ensemble and the GGE is irrelevant, the overwhelming majority of the states they
sample have the same expectation values of the observable. This is why the GGE can predict the
expectation values of observables in integrable systems after relaxation following a quench, even
though the number of parameters required to construct the GGE increases polynomially with the
system size while for the diagonal ensemble it increases exponentially with the system size. In
this spirit, in Ref. [249] it was argued that a single representative state is sufficient to describe the
relaxed state of integrable systems after a quench in the thermodynamic limit. This statement is
indeed very reminiscent of ETH for nonintegrable systems.

8.2.1. Truncated GGE for the transverse field Ising model

As for hard-core bosons, for the transverse field Ising model in Figure 31 the GGE was con-
structed using occupations of single-particle fermionic quasiparticles (Bogoliubov fermions)
[133]. Alternatively, one can construct a different equivalent set of integrals of motion, which
are explicitly local and extensive. Following Ref. [252], these integrals of motion can be ordered
according to their locality and come in pairs Î+

k and Î−
k , such that I+,−

k contains sums of products
of up to k + 2 neighboring spin operators [252]. They can be written as

Î+
0 = Ĥ = −J

∑

j

Ŝxx
j,j+1 + h

∑

j

σ̂ z
j ,

Î+
1 = −J

∑

j

(Ŝxx
j,j+2 − σ̂ z

j ) − h
∑

j

(Ŝxx
j,j+1 + Ŝyy

j,j+1),

Î+
n≥2 = −J

∑

j

(Ŝxx
j,j+n+1 + Ŝyy

j,j+n−1) − h
∑

j

(Ŝxx
j,j+n + Ŝyy

j,j+n),

Î−
n = −J

∑

j

(Ŝxy
j,j+n+1 − Ŝyx

j,j+n+1), (276)

where Ŝαβj,j+l = σαj [σ z
j+1 · · · σ z

j+l−1]σβj+l.
An important question one might ask is, given a desired accuracy for some observable, how

many conserved quantities are needed for the GGE to describe the result after relaxation. On this
point, the locality of the observable and of the conserved quantities included in the GGE turn out
to be crucial. For the model above, Fagotti et al. showed numerically that if one is interested in the
reduced density matrix of a subsystem of size L′, then only the first L′ integrals of motion: I+,−

k
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Figure 32. Norm distance D(y)
∞ , in the thermodynamic limit, between reduced density matrices in the GGE

and in the truncated GGE obtained by imposing local conservation laws with support in at most y + 1
consecutive sites, for a particular quench in the transverse Ising model. The subsystem size ranges from l = 5
to l = 50. The color and size of the symbols in the figure change gradually as a function of the subsystem
size l. For y > l, the norm distance decays exponentially in y, with an l-independent decay constant. From
Ref. [252].

with k " L′, that is, the integrals of motion that can “fit” on the subsystem, are important [252].
All other “less local” integrals of motion have an exponentially small effect on the subsystem
(see Figure 32). This is expected to be generic in integrable models, whether they are mappable
or not to noninteracting ones.

8.3. Quenches in the XXZ model
An area of much current interest within the far from equilibrium dynamics of integrable systems
is that of quenches in models that are not mappable to noninteracting ones. One model in this
class, which is particularly important due to its relevance to experiments with ultracold bosons in
one-dimensional geometries, is the Lieb–Liniger model. Studies of quenches within this model,
in which repulsive interactions were suddenly turned on, revealed that the expectation values of
conserved quantities diverge. As a result, a straightforward implementation of the GGE is not
possible [269,270]. A lattice regularization for this problem was discussed in Refs. [254,269]
(generalized eigenstate thermalization was argued to occur in this regularized model [254]).
Despite progress in constructing GGEs for field theories [271], an explicit construction of the
GGE for the Lieb–Liniger is still lacking.

Another model that has attracted much recent interest, and which is the focus of this
subsection, is the XXZ model

ĤXXZ = −J
L∑

j=1

(σ̂ x
j σ̂

x
j+1 + σ̂

y
j σ̂

y
j+1 +0σ̂ z

j σ̂
z
j+1). (277)

This model is, up to a possible boundary term, mappable onto the models in Equations (40)
and (55) when J ′ = V ′ = 0. Studies of quenches in the XXZ model revealed that the GGE
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Figure 33. Quenches in the XXZ chain in the thermodynamic limit. (a) Next-nearest neighbor correlations
⟨σ̂ z

1 σ̂
z
3⟩ following a quench starting from a Néel state to a finite value of the anisotropy parameter0. Results

are reported for the expected steady state obtained using Bethe ansatz (solid line) and for the GGE prediction
(dashed line). (b) Comparison between the steady state ⟨σ̂ z

1 σ̂
z
3⟩sp, the GGE ⟨σ̂ z

1 σ̂
z
3⟩GGE, and the NLCE for the

diagonal ensemble ⟨σ̂ z
1 σ̂

z
3⟩NLCE results close to the isotropic point. The GGE results are seen to depart from

the others. Error bars in the NLCE data display an interval of confidence. Inset in (a): Relative difference
between the steady-state Bethe ansatz result and the GGE, δ⟨σ̂ z

1 σ̂
z
3⟩ = (⟨σ̂ z

1 σ̂
z
3⟩GGE − ⟨σ̂ z

1 σ̂
z
3⟩sp)/|⟨σ̂ z

1 σ̂
z
3⟩sp|.

From Ref. [272].

constructed using all known local conserved quantities at the time failed to describe few-body
observables after relaxation [272–275]. In Figure 33(a), we show results for the next-nearest
neighbor correlation ⟨σ̂ z

1 σ̂
z
3⟩ in this model after a quench from an initial Néel state to a finite

value of the anisotropy parameter 0 [equivalent to V/(2J) in Equation (55) for J ′ = V ′ =
0]. The results expected for that correlation in the steady state, which were obtained in the
thermodynamic limit using Bethe ansatz, (⟨σ̂ z

1 σ̂
z
3⟩sp, continuous line) are almost indistinguish-

able from the GGE results (⟨σ̂ z
1 σ̂

z
3⟩GGE, dashed line). However, plotting the relative difference

δ⟨σ̂ z
1 σ̂

z
3⟩ = (⟨σ̂ z

1 σ̂
z
3⟩GGE − ⟨σ̂ z

1 σ̂
z
3⟩sp)/|⟨σ̂ z

1 σ̂
z
3⟩sp|, see the inset in Figure 33(a), reveals that they are

not identical. The differences are largest close to the isotropic Heisenberg point. Near that point,
calculations using numerical linked cluster expansions (NLCEs) for the diagonal ensemble [135]
after the same quench [276] agree with the steady-state predictions obtained using Bethe ansatz,
see Figure 33(b). The discrepancy between the GGE results and the others suggested that, given
the set of conserved quantities selected, generalized eigenstate thermalization did not occur in
this model (in Ref. [277], it was argued that it fails for integrable models that support bound
states). Hence, other local conserved quantities (not known at the time) were expected to also
be important. The extra conserved quantities needed were recently found [278,279] and the GGE
constructed using them has been shown to describe the steady state of observables after relaxation
following the quench for the XXZ model described above [279].

It is important to emphasize at this point that we expect generalized eigenstate thermalization
to be a generic phenomenon in integrable systems (as eigenstate thermalization is in nonin-
tegrable systems) and that, as a result, GGEs allow one to describe observables in integrable
systems after relaxation. However, in contrast to nonintegrable systems in which the conserved
quantities are trivial to find and, as a result, traditional statistical mechanics can be used almost
as a black box, the same is not true in integrable systems. For the latter, a careful analysis needs
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Figure 34. NLCE results after quenches in which the initial state is a thermal equilibrium state of the
nonintegrable Hamiltonian (55) with > ≡ J ′

I = V ′
I ̸= 0 and the system is quenched to J ′ = V ′ = 0, that is,

to the integrable XXZ model written in the hard-core boson language. J = V = 1 remains unchanged during
the quench. (a) Relative entropy differences δSl [see Equation (280)] and (b) relative momentum distribution
differences δml [see Equation (281)] vs. the order l of the NLCE for the diagonal ensemble. Results are
shown for TI = 2 and six values of >. δSl and δml for > = 0, that is, in the absence of a quench, decrease
exponentially fast with the order l of the NLCE. All other differences saturate to a nonvanishing value
reflecting lack of thermalization. Similar results were obtained in Ref. [130] for other initial temperatures
and observables. Adapted from Ref. [130].

to be done (specially for models that are not mappable to noninteracting ones) in order to identify
the appropriate conserved quantities needed to construct the GGE.

In all quenches discussed so far for integrable systems, mappable or not mappable to noninter-
acting ones, the initial states were taken to be eigenstates (mostly ground states) of an integrable
model. One may wonder whether the lack of thermalization we have seen in those quenches is
a result of the special initial states selected. In order to address this question, NLCEs were used
in Ref. [130] to study the diagonal ensemble results (in the thermodynamic limit) for observ-
ables in quenches to the J ′ = V ′ = 0 hard-core boson model in Equation (55), which is the XXZ
model (279) written in the hard-core boson language. The initial states for those quenches were
taken to be thermal equilibrium states of Hamiltonian (55) for > ≡ J ′

I = V ′
I ̸= 0, that is, thermal

equilibrium states of a nonintegrable model. Those are the kind of initial states that one expects
to have usually in experiments.

In Figure 34, we show results for the relative entropy differences

δSl =
SGE

18 − SDE
l

SGE
18

, (278)

between the grand canonical ensemble (GE) and the diagonal ensemble (DE) predictions, and the
relative momentum distribution differences

δml =
∑

k |mk
DE
l − mk

GE
18 |

∑
k mk

GE
18

, (279)

also between the GE and the DE predictions, plotted as a function of the order l of the NLCE for
the diagonal ensemble. The initial states were taken to have a temperature TI = 2J (the results
for other initial temperatures are qualitatively similar [130]). After the quench, the temperature
and chemical potential in the grand canonical ensemble were fixed so that the mean energy and
number of bosons per site agree (up to machine precision) with those in the diagonal ensemble.
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The NLCE was carried out up to order l = 18. SGE
18 and mk

GE
18 were checked to be converged to the

thermodynamic limit result up to machine precision (see Ref. [130] for details).
The results for δSl and δml in Figure 34 are qualitatively similar. For > = 0, that is, in the

absence of a quench (J ′
I = V ′

I = J ′ = V ′ = 0), one can see that δSl and δml vanish exponentially
fast with increasing l, that is, the convergence of the NLCE expansion to the thermodynamic
limit result is exponential in l. However, as soon as > ̸= 0, that is, as soon as there is a quench,
the differences saturate to a nonzero value.33 This means that the entropy and the momentum
distribution function in the diagonal ensemble are different from their grand canonical coun-
terpart in the thermodynamic limit. This is to be contrasted with the opposite quench, from
integrable to nonintegrable points, for which the numerical results are consistent with vanish-
ing δSl→∞ and δml→∞ [130]. For quenches to the integrable point, the fact that δSl→∞ ̸= 0 [as
suggested by Figure 34(a)] means that the energy distribution is not a smooth Gaussian function
(or else δSl→∞ = 0, see Section 5.3.1). Hence, the sparseness of the energy density appears to be
a generic feature in physically relevant quenches and not a consequence of specially fine-tuned
initial states. This is why, after the quench, observables such as the momentum distribution func-
tion do not thermalize [δml→∞ ̸= 0 as suggested by Figure 34(b)]. The latter phenomenon also
appears to be generic. These results highlight how careful one needs to be when using typicality
arguments [142–144]. Those arguments might lead one to conclude that a fine-tuning of the ini-
tial state is needed for integrable systems not to thermalize after a quench, while this appears not
to be the case in physically relevant situations.

8.4. Relaxation of weakly nonintegrable systems: prethermalization and quantum kinetic
equations

Integrable systems are unlikely to be found in nature. Nevertheless, there are many examples
of models which are nearly integrable, where the integrability breaking terms are irrelevant for
relatively long times. As early as in 1834, Scott Russel observed the soliton created by a boat
in a narrow canal near Edinburgh [280]. In our language, the solitary wave is an example of a
macroscopic non-thermalizing perturbation. It was not until 30 years later that it was realized that
this phenomenon can be attributed to the integrability of the Korteweg–de Vries (KdV) equation,
which approximately describes water waves in narrow one-dimensional channels [281]. Since the
KdV equation only provides an approximate description of the problem, one can expect that after
long times the soliton will decay and the system will thermalize. Similarly, in a recent experiment
with ultracold atoms [38], the lack of thermalization of the one-dimensional bosonic gas was
attributed to the integrability of the Lieb–Liniger model that quite accurately describes those
systems [33]. Like the KdV equation, the Lieb–Liniger model provides only an approximate
description of the experimental system and there are various integrability breaking corrections
that need to be taken into account at long times (see, e.g. Ref. [282]).

For nearly integrable systems, one can naturally expect a relatively fast relaxation to an
approximate steady state determined by the integrable model, and then a much slower relaxation
to the true thermal equilibrium. Such a scenario is now known under the name of prethermal-
ization. This term was introduced by Berges et al. in the context of cosmology [283], though
the ideas of multi-time thermalization are much older. Recently, several different prethermal-
ization scenarios have been explored both theoretically and experimentally. Just to name a
few: relaxation of weakly interacting fermions after an interaction quench [183,237,284–287],
prethermalization plateaus in various one-dimensional nonintegrable systems [39,288–293],
prethermalization in interacting spin systems [294], two-dimensional superfluids with slow vor-
tices and other topological defects [295–297], prethermalization after turning on a long-range
interaction in a spinless Fermi gas in two dimensions [298], the emergence of nonthermal fixed
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points, and, in particular, the emergence of turbulence [299–301]. On the latter, it is actually
interesting to note that a GGE based on momentum occupation numbers (for the limit of weakly
interacting particles) can be used to explain Kolmogorov’s law [299].

In few-particle classical systems, the KAM theorem ensures that chaotic motion does not
appear immediately after one breaks integrability. Instead, one can have coexistence of regions
of chaotic and regular motion. As the strength of integrability breaking perturbation increases,
chaotic regions spread and eventually occupy all available phase space (see, e.g. Figure A1). It
is not known whether a similar scenario is realized in many-particle systems. If situations like
that exist, so that an extensive number of integrals of motion can survive small integrability
breaking perturbations then, instead of prethermalization, one can anticipate relaxation to a GGE
defined with respect to deformed integrals of motion. Such deformations have been discussed
in the literature for transitionally invariant integrable systems with small integrability breaking
perturbations [292,302,303], and, in the context of many-body localization, for weakly interacting
disordered systems [304,305]. At the moment, it is unclear whether in non-disordered extended
systems (either classical or quantum) in the thermodynamic limit there can be a finite threshold
for ergodicity breaking. Thus, it is not clear whether the emerged deformed GGEs can only
describe transient states (although potentially long lived) or can represent true steady states. The
former scenario is probably more generic but we are not aware of any strong evidence for it.

Arguably, the most successful approach for describing relaxation of weakly interacting (i.e.
weakly nonintegrable) systems to equilibrium is the kinetic theory (see, e.g. Ref. [189]). Recently,
Stark and Kollar [306] derived kinetic equations using time-dependent perturbation theory
applied to the GGE. These equations describe the relaxation from a prethermalized GGE to a
thermal state. Below, we closely follow that work, extending it to arbitrary integrable systems.

Let us assume that we have an integrable system described by the Hamiltonian Ĥ0 and a weak
integrability breaking perturbation Ĥ ′

Ĥ = Ĥ0 + Ĥ ′, (280)

The Hamiltonian Ĥ0 commutes with a set of mutually commuting linearly independent inte-
grals of motion Îk , that is, [Ĥ0, Îk] = 0. For example, in the spirit of what was discussed in
Section 8.1.1, in a system of interacting fermions or bosons, these integrals of motion can be
the occupations of the single-particle eigenstates.

Let us now assume that the system is prepared in some non-equilibrium initial state, for exam-
ple, by a quantum quench, and we are interested in its relaxation. If Ĥ ′ is a weak perturbation of
Ĥ0, then, at short times after a quench, the system “does not know” that it is nonintegrable and
the effect of Ĥ ′ on the dynamics is small and the system relaxes to an appropriate GGE, possibly
described by deformed integrals of motion of Ĥ0. This was found to be the case numerically in
several systems (see, e.g. Refs. [292,306].) At long times, Ĥ ′ is expected to lead to relaxation to
thermal equilibrium.

Since Ĥ ′ is assumed weak compared to Ĥ0, the dynamics generated by Ĥ ′ is slow compared
to the dynamics generated by Ĥ0. This time scale separation translates into the fact that, at each
moment of the evolution, the system is approximately stationary with respect to Ĥ0 so that it can
be described by a GGE with slowly evolving Lagrange multipliers plus a small correction δρ̂(t).
This leads to the following ansatz for the density matrix of the system:

ρ̂(t) ≡ ρ̂GGE(t) + δρ̂(t),

ρ̂GGE(t) ≡ exp(−
∑

k λk(t)Îk)

Tr[exp(−
∑

k λk(t)Îk)]
.

(281)
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If the system thermalizes, one expects that the Lagrange multiplier associated with the energy
approaches the inverse temperature β, while all others approach zero.

Since Ĥ ′ is small, it is convenient to go to the interaction picture with respect to Ĥ0:

ρ̂I(t) = e−iĤ0tρ̂(t) eiĤ0t, Ĥ ′(t) = eiĤ0tĤ ′ e−iĤ0t. (282)

where von Neumann’s equation becomes:

i∂tρ̂I(t) = [Ĥ ′(t), ρ̂I(t)]. (283)

Our strategy will be to solve the von Neumann equation (283) using time-dependent perturbation
theory with the GGE ansatz as the initial condition. This will allow us to find small changes in the
expectation values of the integrals of motion ⟨Îk⟩, which in turn define the Lagrange multipliers
in the GGE (281). In this way, the slow evolution of ρ̂GGE is determined self-consistently:

dt⟨Îk⟩ = dt(Tr[Îkρ̂I(t)]) = Tr(Îk∂t[ρ̂I(t)]) = iTr(Îk[ρ̂I(t), H ′(t)]), (284)

where we used Equation (283), and that Îk is commute with Ĥ0 and thus remain time inde-
pendent in the interaction picture. To leading order of perturbation theory in Ĥ ′(t), we have
ρ̂I(t) ≈ ρ̂GGE,34 and therefore

dt⟨Îk⟩ ≈ iTr(Îk[ρ̂GGE, Ĥ ′(t)]) = 0. (285)

The last equality follows from the cyclic property of trace and the fact that ρ̂GGE and Îk commute.
Therefore, we have to go to the next order of perturbation theory: ρ̂I(t) ≈ ρ̂GGE + δρ̂I(t), where
from Equation (283)

δρ̂I(t) ≈ i
∫ t

t0
dt′[ρ̂GGE, Ĥ ′(t′)] = i

∫ t−t0

0
dτ [ρ̂GGE, Ĥ ′(t − τ )]. (286)

Here, t0 is some arbitrary time in the past. By substituting this correction to Equation (284), we
obtain

dt⟨Îk⟩ = iTr(Îk[δρ̂I(t), Ĥ ′(t)]) ≈ −
∫ t−t0

0
dτTr(Îk[[ρ̂GGE, Ĥ ′(t − τ )], Ĥ ′(t)])

= −
∫ t−t0

0
dτ ⟨[[Îk , Ĥ ′(t − τ )], Ĥ ′(t)]⟩GGE, (287)

where, once again, we have used the cyclic property of the trace and the fact that ρ̂GGE and Îk

commute. To simplify this expression further, we note that the correlation functions appearing in
Equation (287) depend only on time differences. Also, because the relaxation of nearly conserved
integrals of motion is very slow compared to the time scales set by Ĥ0, the correlation functions
appearing in the integral above decay fast so one can take the limit t − t0 → ∞. After these
simplifications, one obtains the desired quantum kinetic equations for the integrals of motion

dt⟨Îk⟩ ≈ −
∫ ∞

0
dt⟨[[Îk , Ĥ ′(0)], Ĥ ′(t)]⟩GGE. (288)

Both the expectation value on the LHS and RHS of the equation above can be written in terms of
the Lagrange multipliers specifying ρ̂GGE [see Equation (281)]. Solving these equations, it is pos-
sible to determine the evolution of the Lagrange multipliers and therefore the slow relaxation of
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the GGE to the thermal equilibrium state. Being a set of coupled scalar equations, Equation (288)
is much simpler than the original von Neumann equation.

It is instructive to rewrite the kinetic equations using the Lehman representation in the basis
of Ĥ0. Using the identity

∫ ∞

0
dt ei(ϵn−ϵm)t = πδ(ϵn − ϵm) + P

i
ϵn − ϵm

, (289)

and, for simplicity, assuming that both the Hamiltonian and the integrals of motion are real, we
rewrite Equation (288) as

dt⟨Îk⟩ = 2π
∑

nm

(ρGGE
nn − ρGGE

mm )⟨n|Îk|n⟩|⟨n|Ĥ ′|m⟩|2δ(ϵ0
n − ϵ0

m). (290)

where ϵ0
n is the eigenvalue of Ĥ0 corresponding to eigenstate |n⟩, that is, Ĥ0|n⟩ = ϵ0

n |n⟩. In this
form, it becomes clear that the thermal distribution (where ρnn is only a function of energy) is a
stationary solution of these kinetic equations, that is, dt⟨Îk⟩ = 0 for any Îk . Also, the delta function
of (ϵ0

n − ϵ0
m) ensures that dt⟨Ĥ0⟩ = 0. So relaxation to thermal equilibrium occurs in the presence

of energy conservation. Both properties are, of course, expected from general considerations.
Let us now apply the kinetic equation (287) to a common setup dealing with a gas of weakly

interacting particles, bosons or fermions. For simplicity, we assume that they are spinless. Also,
to shorten notations, we will use a scalar notation for the momentum modes, keeping in mind that
this can be a vector index. Then, the Hamiltonian reads

Ĥ0 =
∑

k

ϵk ĉ†
k ĉk . (291)

For the integrability breaking term, we take the usual (normal ordered) density–density interac-
tions

Ĥ ′ =
∑

ij

V (i, j)ĉ†
i ĉ†

j ĉjĉi =
∑

k1,k2,k3,k4

ĉ†
k1

ĉ†
k2

Vk1,k2,k3,k4 ĉk3 ĉk4 . (292)

For translationally invariant interactions, Vk1,k2,k3,k4 is nonzero only when k1 + k2 = k3 + k4, and it
depends only on the transferred momentum q = k1 − k3. But, since our formalism applies even if
translational invariance is broken, we will keep the interaction matrix element in the most general
form. The obvious integrals of motion are the momentum occupation numbers n̂k = ĉ†

k ĉk . Let us
first compute the commutator

[n̂k′ , Ĥ ′] = 2
∑

k2,k3,k4

[ĉ†
k′ ĉ

†
k2

Vk′,k2,k3,k4 ĉk3 ĉk4 − ĉ†
k2

ĉ†
k3

Vk2,k3,k′,k4 ĉk′ ĉk4 ], (293)

where we used the invariance of the interaction matrix element with respect to permutation of k1

with k2 and k3 with k4. Plugging this into Equation (288) and using Wick’s theorem, which works
for any GGE with quadratic integrals of motion, we find

ṅk′ ≈ 16π
∑

k2,k3,k4

(ñk′ ñk2 nk3 nk4 − nk′nk2 ñk3 ñk4)|Vk′,k2,k3,k4 |2δ(ϵk′ + ϵk2 − ϵk3 − ϵk4), (294)

where ñk = 1 ± nk with a plus sign referring to bosons and a minus sign referring to fermions
and nk = ⟨n̂k⟩. Classical kinetic equations are obtained by taking the limit nk ≪ 1 and effectively
replacing ñk by unity. Solving these kinetic equations can be tedious, but it is numerically feasible
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for very large systems. Let us check that the thermal distribution is a fixed point of these kinetic
equations. For example, for fermions, the equilibrium distribution reads

nk = 1
1 + exp[β(ϵk − µ)]

, (295)

then

ñk′ ñk2 nk3 nk4 − nk′nk2 ñk3 ñk4 = (1 − nk′ − nk2)nk3 nk4 − nk′nk2(1 − nk3 − nk4)

= [eβ(ϵk′+ϵk2 −2µ) − eβ(ϵk3 +ϵk4 −2µ)]nk′nk2 nk3 nk4 = 0, (296)

where the last equality relies on the total energy conservation. With more effort, one can show
that the equilibrium fixed distribution is the attractor of the kinetic equations.

This example connects the ideas of GGE as a generic stationary state of integrable systems,
prethermalized states as slowly evolving GGE states, and the kinetic theory as the perturbation
theory in time describing the final evolution to thermal equilibrium. As previously mentioned,
more work is needed to understand the generality of this approach and its applicability to systems
other than those for which one can take the occupations of the single-particle eigenstates to be
the nearly conserved quantities.
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Notes
1. We briefly discuss classical integrability and chaos in Section 2 and quantum integrability in Section 8.
2. We will explain what we mean by physical observables when discussing the ETH ansatz.
3. There is a third ensemble, corresponding to β = 4, known as the Gaussian simplectic ensemble. We

will not discuss here.
4. That one needs to be away from the edges of the spectrum can already be inferred from the fact that

BGS found that the Wigner–Dyson distribution occurs only at sufficiently high energies [85]. We will
discuss this point in detail when presenting results for many-body quantum systems.
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5. The low-energy spectra of this system exhibit Poissonian level statistics. This is understand-
able as, at low energies, the motion of the equivalent classical system is regular [95]. See also
Figure 4.

6. The diagonal ensemble will play a crucial role throughout this review.
7. One could also use the inverse participation ratio: IPR = (

∑
m p2

m)−1, with pm defined as in
Equation (58). IPR = 1 if only one state is occupied and it is maximized when all states are occupied
with equal probability: IPR = D, where D is the dimension of the available Hilbert space.

8. Not to be confused with canonical typicality [142–144], which makes statements about the reduced
density matrix of typical states in the microcanonical energy shell. As discussed in the Introduction,
experimental out-of-equilibrium states are atypical as a result of the way they are created. Canonical
typicality does not tell how typical states can be reached.

9. Everything we discuss in what follows can be straightforwardly generalized to mixed states.
10. For simplicity, we assume that the energy is the only conserved quantity in the system. If there are other

conserved quantities, they have to be treated in a similar fashion.
11. In a very recent work by D. Luitz [Phys. Rev. B 93, 134201 (2016)], the Gaussian ansatz for the

off-diagonal matrix elements was found to hold for diffusive spin chains. At the same time it was
found that, in sub-diffusive disordered chains, the distribution of off-diagonal matrix elements becomes
non-Gaussian (it acquires long tails).

12. The energy distributions after quenches to nonintegrable Hamiltonians are expected to be smooth, see
Section 3.4. However, because of ETH, thermalization in nonintegrable systems occurs independent of
whether the energy distributions are smooth or not.

13. T = 3 was selected so that the eigenstates considered are not too close to the ground state and do
not correspond to infinite temperature either. These results are relevant to the quenches discussed in
Section 4.3.2.

14. When the energy spectrum is bounded, in order to absorb energy ω ≫ 1, many-body processes
are required. These processes appear only in high orders of perturbation theory, which leads to an
exponential suppression of |fO(ω)| for ω ≫ 1.

15. It is likely that tc ≈ L2/D, where D is the diffusion constant.
16. This is guaranteed if the operator norm of each ĥj is finite.
17. Note that the transition probabilities are conditional, that is, they define the probability of a transition

from state |n⟩ to state |m̃⟩ if the system is initially prepared in state |n⟩.
18. For example, if the Markov process admits an absorbing state, this condition is violated since the sum

of the incoming transition probabilities into the absorbing state is larger than one.
19. For systems in contact with a thermal bath at temperature T, the detailed balance condition is pn→m̃ =

pm̃→n exp[β(En − Em̃)], where β = (kBT)−1 is the inverse temperature. In Section 6.2, we show how
this condition follows from the doubly stochastic transition rates.

20. To simplify the presentation, here we denote all basis states using the same notation. One needs to keep
in mind that the initial state is always diagonal on the basis of the initial (measurement) Hamiltonian
and the final state is always diagonal on the basis of the final (measurement) Hamiltonian.

21. Some caution is needed here as the KL divergence is not symmetric and does not satisfy the triangular
inequalities. Therefore, it is not a distance in the metric sense.

22. We assume that we are not at a phase transition, at which σ 2
c might diverge.

23. For processes that are not infinitesimally slow, in the presence of unavoidable level crossings, there can
be exceptions where dW < dWad [204].

24. It would be the free energy of the system if it is reconnected to the same bath and allowed to re-
equilibrate. Since no work is done on the system during its re-equilibration, such a process does not
affect the Jarzynski equality.

25. There is an active discussion on how to define work in quantum systems, with many conflicting def-
initions. We use the definition due to Kurchan [23] and Tasaki [24], which has a transparent physical
meaning, namely, the energy change in the system. By energy conservation, W is also the energy change
of the macroscopic degree of freedom associated with the control parameter.

26. If the protocol is not cyclic, the total work W is the sum of the adiabatic work Wad , which is not
fluctuating, and the non-adiabatic work Q̃ which is fluctuating. Then, the following derivation remains
valid if one identifies W with Q̃.
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27. If the protocol is not symmetric, one has to distinguish between forward and reverse processes.
28. Formally, this can be justified by introducing some parameter Ïţ such that all cumulants are linear in Ïţ.

This parameter can be, for example, duration of the pulse ε = dt or the size of the subsystem that is
coupled to the driving term. Since the relation (170) is valid in all orders in Ïţ, it is sufficient to verify it
only to linear order.

29. In standard thermodynamics, by a quasi-static process one usually understands a process in which
the irreversible work comes from heat exchange with a heat bath. However, such a definition is very
restrictive.

30. This requirement can be further relaxed. It is only important that the cavity comes back to the original
volume, as the density of states only depends on the volume.

31. The β or τ independent terms in both entropies play no role in thermodynamics.
32. What changes from nonintegrable to integrable Hamiltonians is that, in the latter, the expectation values

of few-body observables in any eigenstate are determined by the values of all conserved quantities and
not just the energy.

33. The quantitative difference between the values at which each relative difference saturates is related
to the fact that δSl→∞ ∝ >2 while δml→∞ ∝ >. This is something that was argued analytically and
demonstrated numerically for δSl=18 and δml=18 in Ref. [130], but that it is not important for the
discussion here.

34. We note that the GGE density matrix is not affected by the transformation to the interaction picture.
35. In this discussion, we ignore cases in which the Markov matrix cannot by diagonalized. The proof can

be extended to these cases as well.
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Appendix A. The kicked rotor
In this appendix, we discuss how chaos emerge in the simplest setup, namely, a driven single-particle system
in one dimension. In the presence of driving, there is no energy conservation and, as a result, the system is
not integrable. The Hamiltonian of the classical kicked rotor reads

H(p, x, t) = p2

2
− K cos(x)

∞∑

n=−∞
δ(t − nT). (A1)

If one thinks of p as angular momentum and x as the canonically conjugate angle, this Hamiltonian describes
a freely rotating particle that is periodically kicked at times t = nT. We choose the minus sign in front of
K so that the time-averaged Hamiltonian reduces to a conventional pendulum with an energy minimum at
x = 0 (there is no loss of generality as this sign can always be changed by x → x + π ). For simplicity, in
what follows we refer to p and x as momentum and position, respectively.

The equations of motion for the kicked rotor are

dx
dt

= {x, H} = ∂H
∂p

= p,
dp
dt

= {p, H} = −∂H
∂x

= −K sin(x)
∞∑

n=−∞
δ(t − nT). (A2)

These equations can be easily integrated between kicks. Let us denote by pn and xn the momentum and
the position of the particle, respectively, just before the nth kick, that is, at time t = nT − ϵ, where ϵ → 0.
Then, the equations of motion result in the following recursion relations:

xn+1 = xn + Tpn+1, pn+1 = pn − K sin(xn). (A3)

These equations provide a discrete map (known as the Chirikov standard map) that allows one to uniquely
determine the position and the momentum of the particle. If nT < t < (n + 1)T , then p(t) = pn+1 and x(t) =
xn + pn+1(t mod T). Note that one can confine momentum to any periodic interval of length 2π/T . Indeed,
from Equation (A3), it is obvious that shift of the momentum by 2π/T and the coordinate by 2π leaves the
map invariant. Let us analyze the time evolution that follows from this map. The dynamics is determined
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by the kick strength K, the period T, and the initial values of p and x. The map depends only on the product
KT so we can set T = 1 and analyze the map as a function of K keeping in mind that K ≪ 1 is equivalent to
the short period limit.

If K ≪ 1 and p0 ≪ 1, from Equations (A3), one can see that both p and x change very little during each
period. Hence, instead of solving discrete equations, one can take the continuum limit and write

∂x
∂n

≈ p,
∂p
∂n

= −K sin(x) → ∂2x
∂n2 ≈ −K sin(x). (A4)

This equation describes the motion of a pendulum in a cosine potential, which is regular. Depending on the
initial conditions there are two types of trajectories, corresponding to oscillations (p ≪ K) and full rotations
(p ≫ K). A careful analysis shows that one does not need to assume that p is initially small, the only crucial
assumption is that K ≪ 1.

Next, one needs to check the stability of the obtained trajectories. It might happen that, if one includes
corrections to the continuum approximation, chaos occurs. However, as proved by Kolmogorov, Arnold,
and Moser (KAM) [62–64], this is not the case. As mentioned in the Introduction, the KAM theorem states
that regular motion is stable against small perturbations. For the kicked rotor problem, one can check the
stability of the solution above perturbatively. In particular, Equations (A3) can be written as

xn+1 − 2xn + xn−1 = −K sin(xn). (A5)

If K is small, we can assume that x is a nearly continuous variable. By expanding in Taylor series one gets

d2x
dn2 + 1

12
d4x
dn4 ≈ −K sin(x). (A6)

From the unperturbed solution, we see that (at least in the localized regime) the natural frequency of oscil-
lations is

√
K. This means that, in Equation (A6), the term with the fourth derivative is proportional to K2,

that is, it is small when K ≪ 1.
When K is large, the continuum approximation for the map fails. p and x “jump” from kick to kick.

Since both are determined modulo 2π , one may guess that the motion is chaotic. A rigorous analytical proof
that this is the case does not exist. Hence, we discuss indications for the occurrence of chaos for large values
of K by analyzing the stability of the fixed points of the map:

xn+1 = xn + pn+1 = xn, pn+1 = pn − K sin(xn) = pn. (A7)

There are only two possible solutions: pn = 0, xn = 0 and pn = 0, xn = π . Now, let us perturb the
trajectories and see whether they remain stable. The linearized equations read

δxn+1 − 2δxn + δxn−1 = −K cos(xn)δxn = ∓Kδxn, (A8)

where the minus and plus signs refer to the fixed points x = 0 and x = π , respectively. In Equation (A8),
one might recognize the equation of motion of coupled harmonic oscillators, where ±K plays the role of the
frequency squared. For a harmonic chain, it is standard to introduce normal Fourier modes, i.e, λ = exp[iq].
Here, we need to be careful because the frequency,

√
±K, can be imaginary. Because this is a translationally

invariant system, we seek the solution of the form δxn+1 = λδxn = λnδx0. Using our ansatz for the solution,
Equation (A8) reduces to a simple quadratic equation

λ2 − (2 ∓ K)λ+ 1 = 0, (A9)

which has two solutions

λ1,2 = 1 ∓ K
2

±

√

∓K + K2

4
. (A10)

Let us analyze these solutions separately for the two fixed points. For x = 0, corresponding to the “ − ” sign,
we have two solutions

λ1,2 = 1 − K
2

±

√
K2

4
− K. (A11)

For 0 < K < 4, the expression in the square root is negative leading to an imaginary contribution to λ. In the
same range of K, the absolute value of the real part of λ is smaller than one. This means that the solution is

D
ow

nl
oa

de
d 

by
 [N

or
th

er
n 

Ill
in

oi
s U

ni
ve

rs
ity

] a
t 0

4:
12

 0
1 

A
ug

us
t 2

01
6 



Advances in Physics 355

Figure A1. Phase-space portrait (Poincare cross-section) of the kicked rotor for different values of the
parameter K. From left to right, K = 0.5, 0.971635, and 5. Images taken from scholarpedia [308].

stable. Indeed, if one introduces a small deviation to the stable position then, as the discrete time n increases,
that deviation does not grow. Moreover, in this range, we can check that

|λ2| = (1 − K/2)2 + K − K2/4 = 1 (A12)

implying that λ = exp[iq], as for a harmonic chain. This means that any small deviation leads to oscillations
around the fixed point.

If K > 4, the outcome of introducing a small deviation is completely different. This is because now there
are two real solutions for λ. The solution with the negative sign,

λ2 = 1 − K
2

−

√
K2

4
− K, (A13)

satisfies |λ2| > 1. This means that any small deviation from the fixed point grows exponentially in time
without bound, at least in the linearized regime. This exponential growth does not prove that the motion is
chaotic, but is a strong indicator of it. The exponent characterizing the rate of growth, ln(λ), is called the
Lyapunov exponent. In chaotic systems with many degrees of freedom, there are many Lyapunov exponents.
Typically, the largest one determines the rate of divergence of nearby phase-space trajectories.

The analysis of the other fixed point, with x = π , is even simpler

λ1,2 = 1 + K
2

±

√

K + K2

4
. (A14)

Clearly, for any positive K, there are two real solutions with one larger than one, that is, this point is always
unstable. This is not surprising since this fixed point corresponds to the situation where a mass sits at
a potential maximum. It is interesting that if, instead of δ kicks, one applies a fast periodic drive to the
pendulum: K = K0 + a sin(νt), one can stabilize x = π to be an equilibrium position. This is known as the
Kapitza effect (or Kapitza pendulum), and can be seen to occur in many physical systems [66,197,307].

In Figure A1, we show phase-space portraits of the kicked rotor for different values of K. For small
values of K (left panel), the motion is essentially regular everywhere except in the vicinity of the unstable
fixed point x = π , p = 0. As K increases, chaotic regions gradually cover a larger and larger fraction of phase
space. At K = Kc (center panel), with 0.971635 " Kc < 63/64 [309–311], there is a percolation transition.
Isolated chaotic regions for K < Kc percolate through phase space for K > Kc. This implies that the system
can increase its energy without bound. For sufficiently large values of K, chaotic regions cover phase space
almost entirely (right panel).

The Chirikov standard map can be quantized. A discussion of the quantum map can be found in
Ref. [308], and references therein.

Appendix B. Zeros of the Riemann zeta function
Here, we discuss a remarkable manifestation of RMT, which highlights a connection between GUE statistics
and prime numbers. There is no clear understanding of the origin of this connection and, at the moment, it
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represents one of the biggest mysteries associated with prime numbers. The Riemann zeta function ζ(s) is
formally defined (for ℜ(s) > 1) as

ζ(s) =
∑

n≥1

1
ns . (B1)

For other values of s, it is defined by an appropriate analytic continuation through the integral:

ζ(s) = 1
1(s)

∫ ∞

0

xs−1

ex − 1
dx. (B2)

As proved by Euler in 1859, the Riemann zeta function is related to prime numbers (again for ℜ(s) > 1):

ζ(s) =
∏

p=prime

1
1 − p−s . (B3)

The proof of this result is simple and elegant. Notice that we can construct a function I2(s)

I2(s) = ζ(s) − 1
2s ζ(s) = 1 + 1

3s + 1
5s + · · · , (B4)

which is a sum that lacks terms that are inverse powers of integer multiples of 2. Similarly, one can construct
I3(s)

I3(s) = I2(s) − 1
3s I2(s) = ζ(s)

(
1 − 1

2s

)(
1 − 1

3s

)
= 1 + 1

5s + 1
7s + 1

11s + · · · , (B5)

which is a sum that lacks terms that are inverse powers of integer multiples of 2 and 3. Continuing this exer-
cise, and using the fundamental theorem of arithmetic, that is, that any number has a unique decomposition
into prime numbers, ones proves that, as n → ∞, In(s) → 1, and hence proves Equation (B3).

Equation (B3) allows one to map ζ(s) onto the partition function of a noninteracting harmonic chain in
which the frequencies of the normal modes are related to the prime numbers. The partition function for a
single oscillator is

zp(β) =
∑

n

exp[−βωpn] = 1
1 − exp[−βωp]

. (B6)

If we associate prime numbers with normal modes, ωp = ln(p), and require that β = s, then

Z(β) =
∏

p

zp(β) = ζ(β). (B7)

The (complex) zeros of the zeta function are thus the (complex) zeros of the partition function of this
model. The zeros of the partition function are known as Fisher zeros [312], which are closely related to
Yang–Lee zeros [313]. Condensation of these zeros near the real temperature axis is an indicator of a phase
transition [312]. Recently, it was conjectured that concentration of Fisher zeros at complex infinity is related
to the ergodicity of the system [314]. Physically, the Fisher zeros correspond to the zeros of the Fourier
transform of the energy distribution function P(E) (closely connected to the Loshmidt echo and zeros of the
work distribution for the quench problems [315]). Indeed

P(E) = 1
Z(β)

∑

n

exp[−βEn]δ(En − E), (B8)

where

Z(β) =
∑

n

exp[−βEn] (B9)

is the partition function. Hence

W̃(τ ) ≡
∫ ∞

−∞
dEP(E) exp[iEτ ] = 1

Z(β)

∑

n

exp[−(β − iτ )En] = Z(β − iτ )
Z(β)

. (B10)
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Figure B1. Distribution of the spacings between approximately one billion zeros of the Riemann zeta func-
tion near zero number 1023 + 17,368,588,794, and the statistics of level spacings in the Gaussian unitary
ensemble (continuous line). These results were provided by Andrew Odlyzko (see also Ref. [316]).

Thus, in the physics language, the complex zeros of the partition function Z(β − iτ ) correspond to the zeros
of the Fourier transform of the energy distribution for a system of phonons with normal modes given by the
natural logarithm of the prime numbers.

Riemann’s zeta function has many fascinating properties. One of them is that the nontrivial zeros of
ζ(s), that is, zeros that are nonnegative integers, lie on the line ℜ(s) = 1/2. This conjecture is called the
Riemann hypothesis and it remains one of the greatest unsolved problems in mathematics. By now, it has
been checked for the first 1022 zeros [316]. Remarkably, the distribution of the normalized spacings of the
zeros of Riemann’s zeta function is the same as that of level spacings in the GUE (see Figure B1). This
agreement hints, as mentioned before, a deep connection between prime numbers and random numbers.

Appendix C. The infinite temperature state as an attractor
To prove that the infinite temperature distribution is an attractor, let us recall that any stochastic matrix M
or, equivalently, Markov matrix has one eigenvalue λ0 = 1, while all the other eigenvalues have absolute
value less or equal than one, that is, |λα>0| ≤ 1 [190]. The eigenvalue λ0 = 1 clearly corresponds to the
steady state of the system while the others denote processes where the probability distribution decays to the
steady state. The left and right eigenvectors corresponding to the eigenvalue λ0 = 1 satisfy the relation

L0M = L0, MR0 = R0. (C1)

Note that, by construction, the right eigenvector R0 is the steady-state probability distribution of the sys-
tem so that its elements should, by normalization, sum to 1. By the conservation of probability, that is,∑

m Mn→m = 1, and by direct substitution, it is easy to see that the left eigenvector is given by the con-
stant vector L0 = (1, 1, . . . , 1). Note that with this choice L0 · R0 = 1. Of course, the right eigenvector R0
depends on the details of the Markov matrix M and in general has a nontrivial structure.

To see this, let us decompose the vector of initial probabilities ρ(0)
nn in terms of the right eigenvectors

as34

ρ(0) =
D∑

α=0

cαRα = R0 +
D∑

α>0

cαRα , (C2)
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where we have used the fact that the coefficients cα are determined by projection on the left eigenvectors
cα =

∑
n ρ

(0)
nn (Lα)n and therefore c0 = 1. Plugging the expression above into the master equation (108), we

obtain

ρ(N) =
D∑

α=0

cα(λα)N Rα ≈ R0, (C3)

where we have used that c0 = 1, λ0 = 1, and assumed that |λα>0| < 1 so that λN
α>0 ≈ 0. This equation

shows that ρ(N) approaches the stationary state R0 exponentially fast in the number of processes N. The
only exception to this result is when the doubly stochastic matrix admits other eigenvalues with absolute
value one. This situation, however, is not generic. It corresponds to systems that are not ergodic so that some
portions of the configuration space cannot be accessed from others, see Appendix D.

Doubly stochastic matrices p are a special subgroup of Markov matrices which, besides satisfying the
conservation of probability

∑
m pn→m = 1, satisfy the additional constraint

∑
n pn→m = 1. This additional

property allows one to prove that the right eigenvector corresponding to the λ0 = 1 eigenvalue has the
specific form Rds

0 = (1/D, . . . , 1/D)T, where D is the dimension of the matrix p. Therefore, for doubly
stochastic matrix, the stationary state is the “infinite temperature state”. To this end, we simply check
explicitly that pRds

0 = Rds
0 :

pRds
0 = p

⎛

⎜⎝
1/D

...
1/D

⎞

⎟⎠ =

⎛

⎜⎝
D−1 ∑

m p1→m
D−1 ∑

m p2→m
...

⎞

⎟⎠ =

⎛

⎜⎝
D−1

D−1

...

⎞

⎟⎠ = Rds
0 , (C4)

where the third equality follows directly from the doubly stochastic condition (91). Next, we prove that
|λα | ≤ 1. Let us assume that there is an eigenvalue λα larger than one. Then, the corresponding eigenvector
Rα grows exponentially under the repeated action of p, that is, pN Rα = λN

α Rα . This implies that there are
entries of pN that are larger than one. However, pN is a product of doubly stochastic matrices so it is itself
a doubly stochastic matrix (see Section 5.1.1). Therefore, all its entries need to be smaller than one, see
Equation (93). As a result, we conclude that there cannot be any eigenvalue larger than one.

Appendix D. Birkhoff’s theorem and doubly stochastic evolution
Birkhoff’s theorem [191] states that any doubly stochastic matrix is given by the convex sum of permutation
matrices #α :

p =
∑

α

kα#α ,
∑

α

kα = 1, 0 ≤ kα ≤ 1. (D1)

We can then rewrite the doubly stochastic master equation (88) as

ρ(1) = pρ(0) =
∑

α

kα#αρ
(0). (D2)

When only one permutation matrix contributes, the master equation simply describes a perfect transfer of
population between two states. For example, for a three level system in which only one permutation matrix
contributes, say, between states one and two, the permutation matrix is given by

:1↔2 =

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ (D3)

and the master equation above simply reduces to:

ρ
(1)
11 = ρ

(0)
22 , ρ

(1)
22 = ρ

(0)
11 , ρ

(1)
33 = ρ

(0)
33 . (D4)

If we apply the master equation with this transition matrix, the system will enter a cycle that will neither
lead to an entropy increase nor to an energy increase.
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In general, however, many permutation matrices contribute to the master equation. Using Birkhoff’s
theorem, it is easy to see that the most general doubly stochastic matrix for the three level system considered
above is

p =

⎛

⎝
δ + β α + η γ + µ
α + µ δ + γ β + η
γ + η β + µ δ + α

⎞

⎠ , (D5)

which describes the transfer of probabilities between states 1 and 2 with weight α, between states 2 and 3
with weight β, between states 1 and 3 with weight γ , no transfer of probabilities with weight δ, cyclic per-
mutations 1 → 2 → 3 → 1 with probability η, and cyclic permutations 3 → 2 → 1 → 3 with probability
µ. Note that the sum of the weights is one, that is, α + β + γ + δ + η + µ = 1, so that the matrix above is
doubly stochastic (i.e. the sum of each row and each column is one). Also note that, while p is not symmetric
in general, it is symmetric when only pairwise permutation are present.

The most general master equation for a three level system, using p in Equation (D5), has the form:

ρ
(1)
11 = (δ + β)ρ

(0)
11 + (α + η)ρ

(0)
22 + (γ + µ)ρ

(0)
33 ,

ρ
(1)
22 = (α + µ)ρ

(0)
11 + (δ + γ )ρ

(0)
22 + (β + η)ρ

(0)
33 ,

ρ
(1)
33 = (γ + η)ρ

(0)
11 + (β + µ)ρ

(0)
22 + (δ + α)ρ

(0)
33 ,

(D6)

and is already quite complicated when compared to the particular case in Equation (D4). The complexity
increases as the number of states increases. However, as we discussed in the main text, the doubly stochastic
form of the transition matrix leads to several important general consequences (see also Ref. [194]).

Appendix E. Proof of ⟨W ⟩ ≥ 0 for passive density matrices and doubly stochastic evolution
In this appendix, we prove that ⟨W⟩ ≥ 0 if the initial density matrix is passive and the evolution is doubly
stochastic (see also Ref. [188]).

Let us arrange the energy levels in order of increasing energies and, hence, by passivity, decreasing
occupation probabilities, that is, E1 ≤ E2 ≤ · · · ED and ρ(0)

11 ≥ ρ
(0)
22 ≥ · · · ρ(0)

DD. We also assume that the
Hilbert space size D is finite (one can always take the limit D → ∞ at the end). The general expression for
the average work is

⟨W⟩ =
∑

m

ρ(1)
mmEm −

∑

n

ρ(0)
nn En

=
∑

m,n

ρ(0)
nn pn→mEm −

∑

n

ρ(0)
nn En =

∑

n

ρ(0)
nn

[
∑

m

pn→mEm − En

]

, (E1)

where the sums over n and m go from 1 to D. Next, we define

0k
n ≡ ρ(0)

nn − ρ
(0)
D−k,D−k . (E2)

Clearly, from the passivity condition (121), 00
n = ρ

(0)
nn − ρ

(0)
DD ≥ 0. Then, we rewrite Equation (E1) as

⟨W⟩ =
D∑

n=1

00
n

[ D∑

m=1

pn→mEm − En

]

+ K0, (E3)

where, using the doubly stochastic condition for transition rates, that is,
∑D

n=1 pn→m = 1, one can show that

K0 = ρ
(0)
DD

D∑

n=1

[ D∑

m=1

pn→mEm − En

]

= 0. (E4)

Finally, noting that 00
D = 0, we rewrite (E3) as

⟨W⟩ =
D−1∑

n=1

00
n

[ D∑

m=1

pn→mEm − En

]

. (E5)
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360 L. D’Alessio et al.

Next, we write 00
n in terms of 01

n, that is, 00
n = 01

n + ρ
(0)
D−1,D−1 − ρ

(0)
D,D, and plug it in the equation

above to obtain

⟨W⟩ =
D−1∑

n=1

01
n

[ D∑

m=1

pn→mEm − En

]

+ K1, (E6)

where

K1 = (ρ
(0)
D−1,D−1 − ρ

(0)
D,D)

D−1∑

n=1

[ D∑

m=1

pn→mEm − En

]

≥ 0. (E7)

To see why K1 ≥ 0 note that: (i) the passivity condition, Equation (121), implies ρ(0)
D−1,D−1 ≥ ρ

(0)
D,D, and that

(ii) the remaining sum can be rewritten as

D−1∑

n=1

[ D∑

m=1

pn→mEm − En

]

=
D∑

m,n=1

pn→mEm −
D∑

m=1

pD→mEm −
D−1∑

n=1

En

=
D∑

m=1

Em −
D−1∑

n=1

En −
D∑

m=1

pD→mEm

= ED −
D∑

m=1

pD→mEm ≥ ED −
D∑

m=1

pD→mED = 0, (E8)

where we have used the doubly stochastic (91) condition multiple times. Finally, noting that01
D−1 = 0, we

rewrite Equation (E6) as

⟨W⟩ ≥
D−2∑

n=1

01
n

[ D∑

m=1

pn→mEm − En

]

. (E9)

Equation (E9) is similar to Equation (E5) except that the external sum in Equation (E9) extends only up to
D − 2 and not to D − 1 as in Equation (E5).

The proof continues iteratively. For example, in the next iteration, we write 01
n in terms of 02

n, that is,
01

n = 02
n + ρ

(0)
D−2,D−2 − ρ

(0)
D−1,D−1 to obtain

⟨W⟩ ≥
D−2∑

n=1

02
n

[ D∑

m=1

pn→mEm − En

]

+ K2, (E10)

where

K2 = (ρ
(0)
D−2,D−2 − ρ

(0)
D−1,D−1)

D−2∑

n=1

[ D∑

m=1

pn→mEm − En

]

. (E11)

The prefactor (ρ
(0)
D−2,D−2 − ρ

(0)
D−1,D−1) is positive by the passivity condition, Equation (121). Moreover,

using similar steps as above, we rewrite the sum as

D−2∑

n=1

[ D∑

m=1

pn→mEm − En

]

= ED + ED−1 −
D∑

m=1

p(D−1)→mEm −
D∑

m=1

pD→mEm

= ED + ED−1 − 2ED−1 +
D∑

m=1

[p(D−1)→m + pD→m]δEm

≥ ED + ED−1 − 2ED−1 + [p(D−1)→D + pD→D]δED

≥ ED + ED−1 − 2ED−1 + (ED−1 − ED) = 0, (E12)
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where we have defined δEm ≡ ED−1 − Em. In the third line, we have used that δEm ≥ 0 for any m ≤ D −
1 and, in the fourth line, we have used that p(D−1)→D + pD→D ≤ 1, which is guaranteed by the doubly
stochastic condition

∑
m pm→D = 1. We therefore conclude that K2 ≥ 0. Finally, noting that 02

D−2 = 0 we
arrive at:

⟨W⟩ ≥
D−3∑

n=1

02
n

[ D∑

m=1

pn→mEm − En

]

, (E13)

where now the external sum extends only up to D − 3.
Clearly, comparing Equations (E5), (E9) and (E13), we see that at each iteration the upper limit of the

external sum decreases by one and the index k in 0k
n increases by one. Continuing this iterative process,

eventually, the external sum will include only one element proportional to0D−1
1 , which is zero by definition

[see Equation (E2)]. Therefore one can conclude that ⟨W⟩ ≥ 0.

Appendix F. Derivation of the drift–diffusion relation for continuous processes
We already showed how one can derive the drift–diffusion relation (177) by means of a cumulant expansion
of the Evans–Searles fluctuation relation (157). Here, we show how the same result can be derived directly
from the ETH ansatz (62) applied to continuous driving protocols. In particular, let us focus on a setup in
which the external parameter λ, conjugate to the observable Ô = −∂λĤ , changes in time at a constant rate.
For example, this parameter can be the position of a macroscopic object moving in some media (quantum
or classical).

Within leading order in adiabatic perturbation theory (see Ref. [201] for further details), the energy
dissipation in the system is given by (we have set ! = 1 so that the energy has dimension of time−1):

dQ̃
dt

≈ λ̇2
∑

n,m

ρn − ρm

Em − En
⟨n|Ô|m⟩⟨m|Ô|n⟩δ(En − Em), (F1)

where ρn and ρm are the stationary probabilities to occupy the many-body eigenstates |n⟩ and |m⟩ corre-
sponding to the energies En and Em, respectively. All matrix elements and energies here correspond to the
instantaneous value of λ. For the Gibbs distribution, ρn ∝ exp[−βEn], it is easy to see that

ρn − ρm

Em − En
δ(En − Em) = βρnδ(En − Em) (F2)

and Equation (F1) reduces to the standard expression for the energy dissipation (see, e.g. Ref. [317]). As in
many places in this review, let us focus instead on the dissipation from a single many-body energy eigenstate,
ρn = δn,n0 . If the relation holds for any eigenstate, it holds for any stationary distribution with subextensive
energy fluctuations. For a single eigenstate, Equation (F1) becomes

dQ̃
dt

= 2λ̇2
∑

m̸=n0

1
Em − En0

⟨n0|Ô|m⟩⟨m|Ô|n0⟩δ(En0 − Em), (F3)

Let us now use the ETH ansatz (62) and, as usual, replace the summation over the eigenstates by an inte-
gration over ω = Em − En0 ≡ Em − E:

∑
m →

∫
dω exp[S(E + ω)] (for simplicity, we drop the index n0

in the energy). Then

dQ̃
dt

= 2λ̇2P
∫

dω
eS(E+ω)−S(E+ω/2)

ω
|fO(E + ω/2,ω)|2δ(ω), (F4)

where P
∫

stands for the principal value of the integral. Noting that

eS(E+ω)−S(E+ω/2) ≈ eβω/2 = 1 + βω

2
+ · · · ,

|fO(E + ω/2,ω)|2 = |fO(E,ω)|2 + ω

2
∂E|fO(E,ω)|2 + · · · , (F5)
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and using the fact that |fO(E,ω)|2 is an even function of ω, we find

dQ̃
dt

≡ JE = λ̇2[β|fO(E, 0)|2 + ∂E|fO(E, 0)|2]. (F6)

We note that, formally, the function |fO(E, 0)|2 diverges in the thermodynamic limit (see Figure 17). How-
ever, physically, this divergence is cutoff by the inverse relaxation time in the system, which defines the
broadening of the δ-function in Equation (F1).

Similarly, from adiabatic perturbation theory, one can show that

d(δE2)

dt
≡ DE = 2λ̇2

∑

m̸=n0

⟨n0|Ô|m⟩⟨m|Ô|n0⟩δ(En0 − Em) = 2λ̇2|fO(E, 0)|2. (F7)

Comparing Equations (F6) and (F7), we recover the desired drift–diffusion relation (177).

Appendix G. Derivation of Onsager relations
In this appendix, we derive Equations (179) and (200). Since Equation (200) is more general, we show
its derivation first and then obtain Equation (179) as a special case. First, in the Crooks relation (200), we
expand the entropy and the probability distribution as a function of EI,II ± W and NI,II ± δN to second order
in W and δN to obtain

P(EI, EII, NI, NII, W , δN) exp

[

−0βW −0κδN − W2

2
∂E0β − δN2

2
∂N0κ − WδN

2
(∂N0β + ∂Eδκ)

]

= exp[W∂E + δN∂N ]P(EI, EII, NI, NII, −W , −δN), (G1)

where 0β = βI − βII, 0κ = κI − κII, βI = ∂EI SI, κI = ∂δNI SI, and similarly for II (I → II). The par-
tial derivatives ∂E and ∂N are understood as derivatives with respect to energy and particle exchange:
∂Ef (EI, EII) ≡ ∂EI f (EI, EII) − ∂EII f (EI, EII). Next, one needs to integrate over W and δN and perform the
cumulant expansion to second order. Following the discussion after Equation (173), we keep only the terms
linear in the cumulants to obtain

−0β⟨W⟩ −0κ⟨δN⟩ − ⟨W2⟩c

2
∂E0β − ⟨δN2⟩c

2
∂N0κ − ⟨WδN⟩c

2
(∂N0β + ∂E0κ)

+ (0β)2

2
⟨W2⟩c + (0κ)2

2
⟨δN2⟩c +0β0κ⟨WδN⟩c

= −∂E⟨W⟩ − ∂N ⟨δN⟩ + 1
2
∂2

EE⟨W2⟩c + 1
2
∂2

NN ⟨δN2⟩c + ∂2
EN ⟨WδN⟩c. (G2)

Using the following identities:

⟨W2⟩c∂E0β = ∂E(0β⟨W2⟩c) −0β∂E⟨W2⟩c,

⟨δN2⟩c∂N0κ = ∂N (0κ⟨δN2⟩c) −0κ∂N ⟨δN2⟩c,

⟨WδN⟩c(∂N0β + ∂E0κ) = ∂N (0β⟨WδN⟩c) −0β∂N ⟨WδN⟩c + ∂E(0κ⟨WδN⟩c) −0κ∂E⟨WδN⟩c,

we can rewrite Equation (G2) as

(0β − ∂E)

[
−⟨W ⟩ + 0β

2
⟨W2⟩c + 0κ

2
⟨WδN⟩c + 1

2
∂E⟨W2⟩c + 1

2
∂N ⟨WδN⟩c

]

+ (0κ − ∂N )

[
−⟨δN⟩ + 0κ

2
⟨δN2⟩c + 0β

2
⟨WδN⟩c + 1

2
∂N ⟨δN2⟩c + 1

2
∂E⟨WδN⟩c

]
= 0. (G3)

Since this relation holds for any value of0β and0κ , each term in the square brackets must be zero, leading
to Equation (200). By assuming that the systems do not exchange particles, that is, that δN = 0, we recover
Equation (179).
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