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We report the observation of rotational Bloch oscillations in a gas of nitrogen molecules kicked by a
periodic train of femtosecond laser pulses. A controllable detuning from the quantum resonance creates
an effective accelerating potential in angular momentum space, inducing Bloch-like oscillations of the
rotational excitation. These oscillations are measured via the temporal modulation of the refractive index of
the gas. Our results introduce room-temperature laser-kicked molecules as a new laboratory for studies
of localization phenomena in quantum transport.
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The periodically kicked quantum rotor [1] is known for
nonclassical effects such as quantum localization in angular
momentum space [2–4] or quantum resonances in rota-
tional excitation [2,5]. These phenomena have been studied
in diverse systems mimicking the kicked rotor, such as cold
atoms in optical lattices [6,7] or coupled photonic struc-
tures [8–10]. Recently, it was predicted [11–14] that several
solid state quantum localization phenomena—Anderson
localization [15], Bloch oscillations [16,17], and Tamm-
Shockley surface states [18,19]—may manifest themselves
in the rotational dynamics of laser-kicked molecules.
Bloch oscillations present one of the most famous and

intriguing quantum localization effects in solid state phys-
ics: Electrons in crystalline solids subject to an external dc
electric field exhibit oscillatory motion instead of a mere
uniform acceleration as in empty space. This effect was
predicted at the inception of quantum mechanics in 1929
[16,17], but it took more than 60 years to first observe
Bloch oscillations in semiconductor superlattice structures
[20]. Bloch oscillations were later observed in the momen-
tum distribution of ultracold atoms driven by a constant
force [21]. Recently, it was proposed to induce Bloch
oscillations in the rotation of linear molecules excited by
periodic trains of short nonresonant laser pulses [13]. This
proposal is based on an analogy between coherent rota-
tional excitation caused by the laser pulses and propagation
of an electron in a one-dimensional periodic lattice.
In this Letter, we report the observation of rotational

Bloch oscillations in a gas of nitrogen molecules kicked by a
periodic train of femtosecond laser pulses. A controllable
detuning from the quantum resonance creates an effective
accelerating potential in angular momentum space, inducing
Bloch-like oscillations of the rotational excitation. These
oscillations are measured via the temporal modulation of the
refractive index of the gas. Our results introduce room-
temperature laser-kicked molecules as a new laboratory for
studies of localization phenomena in quantum transport.
A nonresonant, linearly polarized short laser pulse acts as

a kick to a molecule. It excites a rotational wave packet via

multiple coherent Raman-type interactions [22,23]: jΨiðtÞ¼P
JCJðtÞjJi, where jJi are the angular momentum states,

and the projection quantum number M is dropped since it
is not changing. Under field-free conditions, the coefficients
CJðtÞ oscillate as exp½−iBJðJ þ 1Þt=ℏ�, where B is the
molecular rotational constant. Note that in contrast to
Ref. [13], we neglect the centrifugal distortion here, as
the experiment is performed under conditions of rigid rotor
dynamics. The dynamics of the wave packet are determined
by a single parameter, the rotational revival time trev ¼
πℏ=B. The wave packet revives exactly at integer multiples
of the revival time [24] when all the time-dependent phase
factors become equal to unity.
Consider a train of laser kicks with a constant time delay τ

between the pulses. The time delay is chosen to be slightly
detuned from the rotational revival time: τ ¼ ð1þ δÞtrev.
Because of the detuning, each component of the rotational
wave packet acquires a small phase ϕJ ¼ πδJðJ þ 1Þ from
pulse to pulse. (Integer multiples of 2π are dropped.) From
now on, we follow the dynamics stroboscopically, by
considering only CJðnÞ, the wave packet coefficients just
after the nth kick. For weak pulses and small detuning, the
change of CJðnÞ from the nth to the ðnþ 1Þth pulse is given
as (see the Supplemental Material [25])

CJðnþ 1Þ − CJðnÞ ≈ i
P
4
½CJþ2ðnÞ þ CJ−2ðnÞ�

− iϕðJÞCJðnÞ: ð1Þ
The first term on the right-hand side describes the laser
coupling of the rotational levels, where P ¼ ðΔα=4ℏÞR
E2ðtÞdt is an effective strength of the laser pulse [26].

[Δα is the molecular polarizability anisotropy, and EðtÞ is
the envelope of the laser electric field.] Note that the laser
field only couples states of the same parity ΔJ ¼ 0;�2.
The second term is caused by the detuning of the pulse train
period from the rotational revival time trev. As the change of
CJðnÞ is small, the difference equation (1) can be recast as a
differential equation, wheren becomes a continuous variable:
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i
dCJðnÞ
dn

¼ −
P
4
½CJþ2ðnÞ þ CJ−2ðnÞ� þ ϕðJÞCJðnÞ: ð2Þ

Equation (2) looks like the Schrödinger equation for a particle
moving in a periodic 1D lattice, where the number of pulses n
plays the role of dimensionless time. The sites of the lattice
are the angularmomentum states jJi. (Note that even and odd
J form two independent lattices.) The first term on the right-
hand side of Eq. (2) describes the coherent hopping between
lattice sites. The second term can be interpreted as an on-site
potential VðJÞ ¼ ϕðJÞ ¼ πδJðJ þ 1Þ.
At the quantum resonance τ ¼ trev (i.e., δ ¼ 0), the

potential is VðJÞ ¼ 0. In this case, Eq. (2) describes the
standard tight-binding model in solid state physics [27],
depicted in Fig. 1(a). The eigenstates of this model are
Bloch waves, which are characterized by the continuous
quasimomentum k and the energy dispersion relation εðkÞ.
The latter is given as εðkÞ ¼ −ðP=2Þ cosð2kÞ. Wave pack-
ets formed by these states propagate without limitation,
reaching very large J values. This is the signature of the
rotational quantum resonance effect [2,5].
To treat the case of nonzero detuning, one can derive

semiclassical equations of motion for the wave vector k and
the lattice coordinate J [27]:

dk
dn

¼ −
dVðJÞ
dJ

;
dJ
dn

¼ dεðkÞ
dk

¼ P sinð2kÞ: ð3Þ

The first equation is Newton’s second law, and the second
one defines the group velocity of the Bloch waves in the

lattice. Equations (3) can also be derived in a nonpertur-
bative way for strong laser pulses using the formalism of
ϵ classics [28]. For negative detuning δ < 0, VðJÞ is an
accelerating potential [as depicted in Fig. 1(b)], and
Eqs. (3) are similar to the ones describing electrons in
crystalline solids subject to a constant electric field, the
famous problem treated by Bloch and Zener [16,17]. For
low J, the force −dV=dJ is weak, and the dynamics
resembles the case of the quantum resonance. As the
Bloch wave packet moves to larger J, the quasimomentum
k grows and approaches the end of the Brillouin zone at
k ¼ π=2, where the length of the Bloch waves is compa-
rable to the “lattice constant” ΔJ ¼ 2. As a result, the wave
is reflected due to Bragg scattering. The now backwards
moving wave packet is decelerated by the potential, until it
stops and the cycle starts again.
To illustrate the above predictions, we simulated the

population distribution of the rotational levels J for 14N2

molecules interacting with a train of pulses. We model
the nonresonant laser-molecule interaction by the effective
potential U ¼ −ðΔα=4ÞE2ðtÞ cos2 θ, where Δα is the
molecular polarizability anisotropy, EðtÞ is the envelope
of the laser electric field, and θ is the angle between the
molecular axis and the laser polarization direction. The wave
function is expanded in the spherical harmonics, and we
solve numerically the time-dependent Schrödinger equation
to obtain the expansion coefficients. To take into account
thermal effects, we average over the initial states, where each
result is weighted by the Boltzmann factor (including nuclear
spin statistics) of the initial state. A detailed description of
the numerical method can be found in Ref. [29].
The result of the simulations is shown in Fig. 2, where

we calculated the population distribution of the rotational
levels J for 14N2 molecules at room temperature, interact-
ing with a train of pulses with P ¼ 5 and a detuning of
δ ¼ −0.2%. One can clearly see the predicted oscillations
of the rotational excitation. For the first four pulses, the

k= π/2

Quantum Resonance: tight−binding model

JJ−2 J+2
angular momentum

P/4 P/4

(a)
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Bragg reflectionacceleration

(b)

potential V(J)

Rotational Bloch oscillations

FIG. 1 (color online). The periodically kicked rotor as a particle
in a 1D lattice. (a) For a rotor kicked at the exact quantum
resonance, the dynamics can be described by a tight-binding
model. The angular momentum levels J form a discrete 1D grid,
and the laser pulses couple sites with ΔJ ¼ �2, where the
coupling strength is proportional to the effective kick strength P
of the pulses (see the text). (b) A detuning from the quantum
resonance introduces an effective potential VðJÞ to the model.
The dynamics are then similar to Bloch oscillations: A wave
packet (particle) is accelerated by the effective potential, and its
wave vector k grows. When it reaches the edge of the Brillouin
zone (here at k ¼ π=2), the wave is reflected by Bragg reflection.

FIG. 2 (color online). Bloch oscillations in the angular mo-
mentum of laser-kicked 14N2 molecules. The figure displays the
simulated population of the angular momentum levels J, as a
function of the number of laser pulses. The initial rotational
temperature is 298 K. The considered pulse train parameters are
τ ¼ 8.36 ps (0.2% less than the revival time of 8.38 ps) and an
effective interaction strength of P ¼ 5 (see the text).
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angular momentum population shifts to higher J; the shift
per pulse is constant. From the the fifth pulse on, the
movement is reversed and directed towards lower J. After
eight pulses, the system returns approximately to the initial
state, and the cycle starts again.
To observe the rotational Bloch oscillations experimen-

tally, we employ a scheme similar to the one proposed earlier
[13]. The experimental setup is depicted in Fig. 3. A triple-
nested interferometer setup is utilized to split a single 3 mJ
70 fs 800 nm pulse into a periodic eight pulse pump train, as
well as a weak probe pulse as described previously [30]. This
train is focused by an off-axis parabola into a fused silica cell
containing a constant flow of dry 14N2 gas. The induced
rotational dynamics are encoded in the time dependence of
the angular alignment of the molecules (for recent reviews on
laser molecular alignment, see Refs. [29,31,32]), and gives
rise to a weak optical birefringence. This time-dependent
birefringence is probed using a circularly polarized 400 nm
probe pulse with a variable optical path length. The
birefringence within the sample causes the probe’s polari-
zation to become weakly elliptical after propagation. The
probe is split with a Glan-type polarizer, and the polarization
component amplitudes are recorded as a function of probe
delay time. This measurement is performed with the pump
train both present and blocked in rapid succession, and the
normalized difference is proportional to the molecular
alignment signal at the selected time delay between the
pump and probe arms. A detailed description of the setup is
presented in precedent work [30].
We use the fact that the time-averaged alignment is

effectively a monotonic function of the angular momentum
J, especially at high temperatures [4,33]. An increase
(decrease) in the expectation value hJi of the angular
momentum translates into an increase (decrease) of the
time-averaged alignment. Therefore, one can observe the
Bloch oscillations indirectly via the time-averaged align-
ment signal (population alignment). Each value of the

population alignment is found by averaging the molecular
alignment signal over one rotational revival time; this signal
is sampled at about 100 uniformly spaced probe delay
times. The probe times are arranged to accurately show the
population alignment and avoid contamination by the
coherent alignment, which has different decoherence mech-
anisms. Each population alignment value is measured over
150 000 laser shots and has negligible statistical error.

FIG. 3 (color online). Simplified sketch of the experimental setup. ATi:sapphire source generates an 800 nm pulse that enters a pump-
probe setup. The pump is split into an eight pulse train using three nested interferometers. The probe pulse is converted to circularly
polarized 400 nm with variable path length. The beams are focused using an off-axis parabola (depicted as a lens). Molecular alignment
triggered by the strong pump train causes birefringence that alters the circular polarization of the weak probe pulse. The probe’s
polarization is split and measured, yielding a time-dependent molecular alignment signal that can be time-averaged to yield population
alignment. The abbreviations used are BS, beam splitter; IF, interferometer; HWP, half wave plate; L, lens; DL, automated delay line;
BBO, β-BBO crystal; QWP, quarter wave plate; BPF, blue pass filter; GC, gas cell; GTP, Glan-Taylor polarizer; and PD, photodiode.
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FIG. 4 (color online). Measured and simulated time-averaged
alignment signal. We compare the measured and simulated time-
averaged alignment signals for periodically kicked nitrogen
molecules, for different values of the kick strength P and the
detuning δ. The statistical error of the experimental data is much
less than the plot symbols and therefore not plotted.
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Figure 4 shows the time-averaged alignment signal for
several pulse train parameters P and δ, and demonstrates the
predicted oscillatory behavior. The following trends can be
observed: First, the amplitude of the oscillations increases
with the effective kick strength P, but decreases when the
detuning jδj is increased. In addition, the oscillation period
decreases both with increasing P and jδj. The same trends
are found for the solutions of Eqs. (3). The statistical
uncertainties are smaller than the plot symbols. The visibility
of the measured oscillations is reduced compared to the
simulations. We attribute this to collisional decoherence as
well as to imperfections of the pulse train.
To further compare the predictions with the experiments,

we solved Eqs. (3), choosing Jð0Þ ¼ 0 and kð0Þ ¼ π=4 as
initial conditions. This value of the quasimomentum corre-
sponds to an initial growth rate of dJ=dn ¼ P of the angular
momentum (the typical change of J by a single pulse).
Figure 5 shows the oscillation period (measured and
calculated) as a function of the detuning δ for different kick
strengths. Both Figs. 4 and 5 demonstrate a reasonably good
agreement between the prediction of the simple semiclassical
model of Eqs. (3) and the experimental measurements.
Summarizing, we described the first observation of

Bloch oscillations in a quantum rotational system. We
used nitrogen molecules at room temperature and standard
pressure conditions, kicked by a periodic train of femto-
second laser pulses, close to the quantum resonance
condition. Our results demonstrate that laser-kicked mol-
ecules are subject to the same localization phenomena that
are seen in quantum transport.
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