
85

Topological Defects and Phase Transitions
Nobel Lecture, December 8, 2016

by John Michael Kosterlitz
Brown University, Providence, Rhode Island, USA

1. INTRODUC TION

It is a great honor to speak to you today about “theoretical discoveries of topolog-
ical phase transitions and topological phases of matter.” Since the main character, 
David �ouless, is not able to speak here, the two minor characters, Duncan 
Haldane and I, have been asked to speak for David. �is is a very daunting task 
which I agonized over for a considerable period of time as I feel inadequate for 
this. Eventually, time ran out and I was forced to produce something relevant so 
I decided to start by talking my earliest experience of David and how we ended as 
collaborators on our prize winning work. �en I will summarize my understand-
ing of his seminal contributions to his applications of topology to classical (ħ = 
0) Berezinskii-Kosterlitz-�ouless or BKT phase transition. David has worked
on many more applications of topology to quantum mechanical systems such as
the Quantum Hall e�ect and Duncan Haldane will talk about David’s contribu-
tions to these.

My �rst experience of David �ouless took place in 1961 when I was a fresh-
man at Cambridge University. I was in a large introductory class on mathematics 
for physics waiting for the instructor to appear to enlighten us when a young man 
who was clearly too young for this advanced science course walked in. Obviously, 
he had wandered into the wrong lecture hall. To our astonishment, he stopped 
in front of the class and proceeded to talk about various complicated pieces 
of mathematics which most of the class had either not met before or had not 
understood. It rapidly became clear that the class was in the presence of a mind 
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which operated on a di�erent level to those of the audience. My later experiences 
of David merely reinforced this early impression. My next meeting with him was 
in 1971 in the Department of Mathematical Physics at Birmingham University 
in England where I went by accident as a postdoctoral fellow in high energy 
physics. A�er being frustrated for a year, I looked for a new tractable problem 
and David introduced me to the new worlds of topology and phase transitions 
in two dimensional systems.

As far as I am concerned, the study of topological excitations started in 1970 
when I was a postdoc in high energy physics at the Istituto di Fisica Teorica at 
Torino University, Italy. As a very disorganized person, I failed to submit my 
application for a position at CERN, Geneva in a timely fashion and, instead, 
found myself without a position for the following year. A�er replying to some 
advertisements in the British newspapers, I was o�ered a postdoctoral position 
in the department of Mathematical Physics at Birmingham University in Eng-
land. I did not want to go to Birmingham which, at that time, was a large indus-
trial city in the �at middle of England where a lot of cars and trucks were built. It 
was certainly not my ideal place to live, but my girlfriend and I decided that it was 
better than the alternative of unemployment. During my �rst year there, I con-
tinued some elaborate �eld theory calculations but I had an unhappy experience. 
I was about to write up my calculations for publication when a preprint from 
a group in Berkeley doing exactly the same thing appeared on my desk. A�er 
two or three repeats of this, I became very disillusioned. In desperation, I went 
round the department looking for a tractable problem in any branch of physics. 
I appeared in David �ouless’ o�ce listening to him describing several new and 
mysterious concepts such as topology, vortices in super�uids and dislocations 
in two dimensional crystals. To make matters even worse, my knowledge of sta-
tistical mechanics was almost non-existent as I had omitted that course as irrel-
evant to high energy physics which I considered to be the only �eld of physics of 
any interest. However, to my surprise, David’s ideas made sense to me as being 
new and very di�erent and they seemed worth considering. We began to work 
on the problem of phase transitions mediated by topological defects, which to 
my untutored mind seemed just another application of �eld theoretic ideas and 
was therefore worthy of consideration. Little did I know just how di�erent and 
important these ideas and their applications would be in the following decades 
and where they would take us.

At this point, I would like to talk about David’s vital contribution to our 
understanding of two dimensional phase transitions. In fact, one of our moti-
vations for looking at two dimensions was that we thought that life was easier 
in two than in three dimensions. David had already done some work on the 
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importance of topological defect driven phase transitions in the context of the 
one dimensional Ising chain with interactions between spins decaying as 1/r2. 
�is model can be discussed in terms of topological defects, or domain walls, 
interacting as lnr/a [1] and David had shown that the magnetization dropped 
discontinuously to zero at Tc although it was not a �rst order transition. �is was 
later made quantitative by Anderson and Yuval [2] who used an early version of 
the renormalization group. �is work was very in�uential in our thinking about 
defect driven phase transitions because it led us to seek other systems in which 
there are point topological defects with a logarithmic interaction. Examples of 
this are point vortices in 4He �lms, in superconducting �lms and point disloca-
tions in 2D crystals. �is, in turn, led us to the Coulomb gas description of such 
systems. However, those of you who are paying attention to the details will have 
noticed a serious �aw in this analogy since our basic 1D example is di�erent 
from our other systems which are Coulomb gases in 2D. �e reason why the 
1D system with logarithmic interactions works is because of the constraint that 
the charges or domain walls alternate in sign along the line. If this constraint is 
relaxed, the phase transition disappears. Of course, this is not the �rst time that 
a correct conclusion is arrived at for the wrong reason.

�e �rst thing we had to understand was the role of long range order in 
crystals and super�uids, as the standard picture of a crystal in two dimensions 
is a system of molecules in which knowledge of the position of a single particle 
means that one knows the positions of all the others from the equation r(n,m) = 
ne1 + me2 where e1,e2 are the fundamental lattice vectors and n, m = ±1, ±2, . . . 
± ∞. �e problem here is the Peierls argument [3, 4] which says that long range 
order is not possible in two dimensional solids because low energy phonons give 
a mean square deviation of atoms from their equilibrium positions in an L × L 
system increasing logarithmically with the size of the system, L. A useful picture 
of a two dimensional crystal is to consider a �at elastic sheet on which is drawn 
a lattice of dots representing the atoms of a crystal. Now, stretch some regions 
and compress other regions of the sheet without tearing it, representing smooth 
elastic distortions of the crystal. Clearly, the dots (particles) will move far from 
their initial positions—in fact a distance proportional to lnL—although the lat-
tice structure is preserved. �e absence of long range order in this form has been 
shown rigorously by Mermin [5]. Similar arguments show that there is no spon-
taneous magnetization in a 2D Heisenberg magnet [6] and that the expectation 
value of the super�uid order parameter vanishes in a 2D Bose liquid is zero [7].

According to the conventional wisdom of the early 1970s, this implies that 
there can be no phase transition to an ordered state at any �nite temperature 
because an ordered state does not exist! However, this minor contradiction did 
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not deter David and myself because David understood the subtleties of the situ-
ation and could see a way out of the apparent contradiction while I was too igno-
rant to realize that there was any such contradiction. In hindsight, I understood 
that, very occasionally, being ignorant of the fact that a problem is insoluble, 
allows one to proceed and solve it anyway. As luck had it, this was one of those 
few occasions for me. Of course, it also helped that there existed some experi-
mental and numerical evidence for transitions to more ordered low temperature 
phases in 2D crystals [8, 9], very thin �lms of 4He [10, 11] and 2D models of 
magnets [12, 13, 14]. �e most compelling piece of experimental evidence for 
us is shown in Figure 1 where the deviation of −∆f, the decrease in the resonant 
frequency f of the crystal with a �lm of 4He adsorbed on the surface, from the 

FIGURE 1. �e horizontal axis is a measure of the total areal mass density of the adsorbed 
�lm and the vertical axis is −∆f, a measure of the adsorbed mass which decouples from 
the oscillating substrate. Reprinted from M. Chester, L. C. Yang and J. B. Stephens, Phys. 
Rev. Lett. 31 211 (1972) with permission. Copyright American Physical Society.
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straight line is a measure of the areal super�uid mass density. Clearly, the 2D
�lm undergoes an abrupt transition as the adsorbed mass density increases with 
a probable �nite discontinuity in ρs(T). �is behavior seemed very strange as 
conventional wisdom said that ρs would increase continuously from zero as the 
ordered phase is entered. �is needed an explanation which, clearly, had to be 
rather di�erent from anything known previously.

2. BREAKTHROUGH

�e solution to this puzzle is that there can be a more subtle type of order called 
topological order in some two dimensional systems. �e simplest example is the 
Ising ferromagnet which consists of a set of spins Sα = ±1 on a D-dimensional 
cubic lattice. �e rules of statistical mechanics are (i) any con�guration of the 
system occurs with probability e(–E/kBT) where E is the energy of that con�gura-
tion and (ii) compute the partition function Z(T) ≡ exp −E / kBT( )configs∑ , which 
gives all necessary thermodynamic information. �e most probable excitations 
are the low energy ones which are responsible for the absence of true long range 
order but, otherwise, have no e�ect. To discuss the destruction of super�uidity 
and the melting of a 2D crystal, we have to include the very improbable high 
energy topological defects responsible for the destruction of a super�uid and of a 
crystal. �ese are the vortices in a super�uid and dislocations in a crystal [15, 16, 
17]. I should point out that similar ideas had been proposed a bit earlier by Ber-
ezinskii [18, 19] but, when we did our work, we were not aware of this. For some 
reason, our work has received much more attention than that of Berezinskii.

Of course, you may well ask about the connection between topology which 
is the study of spheres with N holes while our physical systems all lie on a �at 
simply connected 2D surface with no holes. �e topology we are considering is 
determined by the underlying physics and its corresponding energetics and a 
phase transition can be thought of as a transition between topological sectors 
de�ned by the topological invariants. We can discuss the importance of topol-
ogy by comparing the 2D planar rotor magnet with two component spins and 
the Heisenberg model with three component spins. For the planar rotor model

 

si = six ,siy( )= s cosφi ,sinφi( )
Ψi = six + isiy = se

iφi
 

where s denotes the length of the spins, usually taken as unity. Consider a large 
Lx × Ly system with periodic boundary conditions (similar considerations hold 
for other boundary conditions). In the planar rotor model, the direction of 
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magnetization in a region is de�ned by the angle ϕ which varies slowly in space. 
Although the angle ϕ �uctuates by a large amount in a large system, the number 
of multiples of 2π it changes by on a path which goes completely round the 
system is a topological invariant, so that

 

1
2π

∂φ
∂x dx

0

Lx

∫ =nx ,

1
2π

∂φ
∂x dy

0

Ly

∫ =ny ,

are numbers de�ning a particular metastable state. Transitions can take place 
from one metastable state to another only if a vortex–antivortex pair is formed, 
separate and recombine a�er one has gone right round the system. �is process 
causes nx or ny to change by one, but there is an energy barrier proportional to 
the logarithm of the system size to prevent such a transition.

�e same system composed of three component spins

 
si = six ,siy ,siz( )= s sinθi cosφi ,sinθi sinφi ,cosθi( )

is called the Heisenberg model. A quantity such as 
1
2p

∂φ
∂x0

Lx

∫  is not a topological 
invariant. A twist of the azimuthal angle ϕ by 2π across the system can be con-
tinuously unwound by changing the polar angle θ, which we take to be the same 
everywhere from π/2 to zero. In fact, the Heisenberg model in two dimensions 
has a single topological invariant N = 0, ±1, ±2, . . . where

 
N = 1

4p dxdy sinθ∫
∂θ
∂x

∂φ
∂y

− ∂θ
∂y

∂φ
∂x

⎛
⎝⎜

⎞
⎠⎟
.

 

If we regard the direction of magnetization in space as giving a mapping of 
the space on to the surface of a unit sphere, the invariant N measures the number 
of times space encloses the unit sphere. �is invariant is of no signi�cance in 
statistical mechanics because the energy barrier separating con�gurations with 
di�erent values of N is of order unity. �us, there is no barrier between di�erent 
topological sectors (di�erent values of N) which implies that there is no ordered 
state for the 2D n = 3 Heisenberg magnet. In the 2D planar rotor model, there is 
an in�nite energy barrier between di�erent topological sectors parametrized by 
nx and ny and, in consequence, there is a phase transition when the system can 
�uctuate between di�erent topological sectors.
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We can show this by showing how a con�guration with N = 1 can be continu-
ously deformed into one with N = 0. A simple example of an N = 1 con�gura-
tion is one where θ is a continuous function of r = x 2 + y 2  and θ = π for r > 
a and θ(r = 0) = 0. �e angle ϕ(x,y) = tan−1(y/x). �e energy of a slowly varying 
con�guration is

 
E = Js2

2 dxdy∫ (∇q)2 + sin2 q(∇f)2[ ]= pJs2 dq
dr

⎛
⎝

⎞
⎠

2

+ sin2 q
r 2

⎡
⎣⎢

⎤
⎦⎥0

a

∫ rdr
 

for this con�guration. Even if θ varies linearly between r = 0 and r = a, E is �nite 
and independent of a. Of course, for small values of a this expression for the 
energy is invalid, but the number of spins in the disk of radius a is small so that 
any energy barrier is also small and the topological invariant N can be changed 
by small thermal �uctuations. �e conclusion is that the 2D planar rotor and 
related models can have a �nite temperature topologically ordered state while the 
three component Heisenberg model does not. �is is consistent with numerical 
studies [14], a later renormalization group study by Polyakov [20] and experi-
ments on super�uids [10, 11]. Note that the calculation by Polyakov is performed 
in a single topological sector N = 0 so that the absence of a phase transition in 
the 2D Heisenberg model is veri�ed by both arguments separately.

3. VORTICES IN THE PLANAR ROTOR MODEL IN T WO DIMENSIONS

�e importance of topological defects in phase transitions in these two dimen-
sional systems was discussed in our 1972 paper [15] where our defect free energy 
argument was presented. �e planar rotor and the super�uid �lm free energy 
can be written as

 

H
kBT

= K0(T )
2

d2r
a0
2∫ ∇q(r)( )2

 

where a0 is the lattice spacing or some microscopic cut-o� length scale and

 

K0(T )=

J
kBT

planar rotor

!2rs
0(T )

m2kBT
superfluid film

.

⎧

⎨

⎪
⎪

⎩

⎪
⎪
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Here, J is the exchange interaction between nearest neighbor unit length 

spins so that H[{s}] = J2 s(r)− s( ′r )[ ]2
<r , ′r >∑  = J 1− cos q(r)−q( ′r )( )[ ]<r , ′r >∑

. For a 4He �lm,

 
H = 1

2
d2r
a0
2∫ rs

0(T ,r)v s
2

where vs =
!
m∇q  is the super�uid velocity, θ(r) is the phase of the super�uid 

order parameter ψ(r) = |ψ(r)|eiθ(r) and ρ0
s(T,r) is the position dependent bare 

super�uid density. ρ0
s(T,r) = 0 at the vortex cores and constant elsewhere. It turns 

out that its exact spatial dependence is irrelevant as the only important conse-
quence is that there is a �nite energy Ec associated with each vortex core. �e 
physical reason is that a vortex core costs a �nite free energy because the vortex 
core is a region where the super�uid order parameter vanishes. Now we can see 
how the topology arises—each vortex corresponds to a hole in the surface and 
the super�uid lives on the 2D surface with a set of holes where dq

C!∫  = 2πn and 
a vortex can be called a topological defect.

Since vortices interact pairwise by a logarithmic energy

 

H
kBT

= −pK0(T ) n(R)n( ′R )ln R− ′R
a

⎛
⎝⎜

⎞
⎠⎟ − ln y0 n2(R)

R
∑

R , ′R
∑

 

the Hamiltonian is exactly that of a neutral plasma of Coulomb charges. Also, 
one can restrict consideration to the lowest charges n = 0, ±1 since the larger 
values are suppressed by powers of the fugacity y0 = e−Ec/kBT << 1. Our �rst attempt 
at solving this was to consider a single isolated vortex of unit circulation in a L × 
L system. �e free energy of such a vortex is ∆F = ∆E − T∆S = kBT(πK0(T) − 2)
ln(L/a) since ∆E/(kBT) = πK0(T)lnL/a and the entropy ∆S = kBlnL2/a2. Now, at 
low temperature T, 2kBT < πJ, ∆F → +∞ and the probability of having a vortex P 
∝ e−∆F/kBT → 0 while, for 2kBT > πJ, P → 1 and there will be a �nite concentration 
of free vortices. David and I realized that we could treat the Coulomb plasma of 
n charges q = +1 and nq = −1 charges by introducing a scale dependent dielectric 
function ∈(r) such that the force between a pair of test charges separated by a 

distance r is 2πK0/r∈(r) = 2πK(r)/r. �e energy of this pair is E(r) = d ′r K( ′r )
′ra

r

∫  
= U(r)ln(r/a). Our self consistent equation for K(r = el) becomes

 
K −1(l)= K −1(0)+ 4p 3y0

2 d ′l e4 ′l −2pU ( ′l )

0

l

∫
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Kosterlitz and �ouless [15] derived this self consistent integral equation for the 
e�ective interaction energy [16].

�e central problem is to solve this equation since it is clear that a transi-
tion between a phase of bound dipoles and a phase of free charges will happen 
when πK(∞) = 2. However, to �nd the behavior of the system near Tc requires 
solving the self consistent equation for K(l). Unfortunately, KT made an unnec-
essary approximation by replacing U(r) by K(r) and solving self consistently for 
K(r). �e approximation was justi�ed on the grounds that U(r) − K(r) << 1 but 
this led to incorrect results. A proper treatment has been given by Young [21] 
who showed that this is equivalent to the renormalization group equations of 
Kosterlitz [17].

 

dK −1

dl = 4p 3y2 +O y4( )
dy
dl = (2−pK )y +O y3( )

 (1)

Remarkably, these approximate RG equations to lowest order in the vortex 
fugacity y yield an exact, inescapable prediction for an experimentally measur-
able quantity. �e �ows are shown in Figure 2. If the experimental number is 
di�erent from the theoretical prediction then, either the experiment is wrong or 

I  C>0, t<0

II C 0, 0 t 8 Πy0

III  C>0,  t 8 Πy0
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FIGURE 2. Renormalization group �ows from equation (1) for the 2D planar rotor model. 
Note that for T ≤ Tc, y(∞) = 0 and K−1(∞) = π/2.



94 The Nobel Prizes

the whole theory is wrong. To our great relief and pleasure the key experiment 
by Bishop and Reppy was done in 1978 [23].

�e theoretical prediction [24]

 

rs
R Tc

−( )
Tc

= 2m2kB
p!2 = 3.491×10−8  gm cm−2  K −1

 

has been checked experimentally [23, 25] and the data from several di�erent 
experiments [26, 27, 28, 29, 30] is presented in Figure 3. It is of interest to note 
that the experimental data were obtained and plotted before the authors were 
aware of our theoretical prediction. �is can be viewed as experimental con�r-
mation of the BKT theory. �ere has also been extensive experimental investiga-
tion into melting in 2D by the Maret group [32, 32, 33].

4. MELTING OF T WO DIMENSIONAL CRYSTALS

�ere is quantitative agreement with the theory of melting by topological defects 
due to Young, Halperin and Nelson [35, 36]. In the theory of melting of 2D 

FIGURE 3. Results of third sound and torsional oscillator experiments for the super�uid 
density discontinuity ρs(T−

c) as a function of temperature. �e solid line is the theoretical 
prediction for the static theory. Reprinted from D J Bishop and J D Reppy, Phys Rev Lett 
40 1727 (1978) with permission. Copyright American Physical Society.
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crystals, one starts with the expression for linear elasticity of a triangular lattice, 
which is the usual lattice structure in 2D.

 

F = 1
2 d2r 2m0uij

2 + lukk
2( )∫ ,

uij =
1
2

∂ui

∂rj
+
∂uj

∂ri
⎛
⎝⎜

⎞
⎠⎟
,

 

where uij is the linear elastic strain tensor and ui is the displacement �eld. �e 
strain �eld can be decomposed into a smooth part ϕij and a singular part us(r) 
due to dislocations [37]. �ese are characterized by the integral of the displace-
ment u(r) round a contour enclosing a topological defect or dislocation

 
du = a0b(r)= a0 n(r)ê1 +m(r)ê2( )

C
!∫

. 

Here, b(r) is the dimensionless Burgers vector, a0 is the crystal lattice spacing 
and n,m are integers. Within continuum elasticty theory, one can show that [36]

 
uij
s (r)= 1

2
1
2m ∈ik∈jl

∂2

∂rk ∂rl
− l
4m(l+ m)dij∇

2⎛
⎝⎜

⎞
⎠⎟
a0 bmGm(r , ′r )

′r
∑

, 

 
Gm(r , ′r )= − K0

4p ∈nm rn − ′rn( )
n=1

2

∑ ln r − ′r
a

⎛
⎝⎜

⎞
⎠⎟ +C

⎡
⎣⎢

⎤
⎦⎥ . 

From this, one obtains the energy of an set of dislocations of Burgers vec-
tors b(r) as

HD

kBT
= − K0(T )

8p drd ′r∫ b(r)⋅b( ′r )ln r − ′r
a − b(r)⋅(r − ′r )b( ′r )⋅(r − ′r )

(r − ′r )2
⎛
⎝⎜

⎞
⎠⎟

.

In our paper, we ignored the second term in this equation on the grounds that 
it is less relevant than the logarithmic term, which was an unfortunate error. �is 
was corrected by Halperin and Nelson who predicted the now famous hexatic 
�uid phase with 6-fold orientational symmetry. We assumed that dislocation 
unbinding led directly to an isotropic �uid which is now known to be wrong. 
Melting in 2D is a two stage process. At temperature Tm, the crystal melts by dis-
location unbinding to an anisotropic hexatic �uid and, at Ti > Tm, this undergoes 
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a transition where the algebraic orientational order is destroyed by disclination 
unbinding, resulting in the expected high temperature isotropic �uid [35, 36].

�e predictions from this theory are similar to those for super�uid 4He 
�lms and the corresponding universal jump is for the renormalized (measured) 
Young’s modulus

 

!KR Tm
−( )= lim

T→Tm
−

4 !mR(T ) !mR(T )+ !lR(T )( )
2 !mR(T )+ !lR(T )

=16p
 

where !mR(T )  is the renormalized value of m/kBT  One of the interesting but 
unmeasurable predictions of the dislocation theory is the X-ray structure function

 

S(q)= r(q) 2 = eiq⋅r eiq⋅(u(r )−u(0))
r
∑ ∼ q −G −2+hG (T )

hG(T )=
kBT G 2

4p
3mR(T )+ lR(T )

mR(T ) 2mR(T )+ lR(T )( )
 

�ere are no δ-function Bragg peaks in the structure function but algebraic 
peaks behaving as

 
S(q)∼ q −G −2+hG (T )

We see that this diverges at q = G for small |G| so that the expected X-ray 
structure function looks like that sketched in Figure 4. �is is one of the 

FIGURE 4. A schematic sketch of the structure function S(q) of a 2D crystal. For T ≤ Tm, 
peaks for small G diverge as |q − G|−2+ηG but for larger G are �nite cusps. For T > Tm, all 
peaks are �nite with maximum height ∼ξ+(T)2−ηG. Reprinted from [34] with permission. 
Copyright 2002 Cambridge University Press.
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characteristic predictions of the dislocation theory of melting but, unfortunately, 
it is not measurable by experiment because the accessible system size and quality 
are not yet su�cient.

One of the main measurable predictions of the dislocation theory of melting 
is the renormalized (measured) Young’s modulus for which there is remark-
able agreement between experiment and theory as shown in Figure 5. Although 
the theoretical predictions were made in the 1970s [35, 36], experimental mea-
surements [31, 32] were not done for several decades because of the di�culties 
of realizing a suitable experimental system. In general, these 2D systems are 
extremely sensitive to perturbations due to the supporting substrate and the 
theory assumes no substrate e�ects.

In our original papers, we did consider melting of a crystal by dislocations 
but we did not discuss the �uid phase described by a periodic lattice with a �ne 
concentration of free dislocations. A periodic solid has two types of order—
translational order and orientational order—describing the orientation of the 
crystal axes. �ese order parameters are the density ρ(r) and the orientational 
order parameter ψ6(r) = e6iθ(r)

 

r(r)= r0(r)+ rG(r) e
iG⋅u(r )

G
∑

y6(r)= e
6iq(r )

 

FIGURE 5. Young’s modulus KR(T) as a function of the e�ective inverse temperature Γ. �e 
solid line is the dislocation theory prediction of Halperin and Nelson and the symbols are 
the experimental points. Reprinted from Fig. (2) of J. Phys.: Condens. Matter 17 (2005) 
S3579-S3586 doi: 10.1088/0953-8984/17/45/051 with permission. Copyright 2005 IOP.
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�e topological defects are (i) dislocations which are responsible for the 
melting of the solid to an orientationally ordered hexatic �uid, and (ii) disclina-
tions (vortices) responsible for the transition to a high temperature isotropic 
�uid [35, 36].

�e theory has been worked out by Young [35] and Halperin and Nelson [36] 
with very detailed predictions which have been con�rmed by experiment [31, 32] 
and summarized in Figure 5. One of the most sensitive tests of the theory to date 
are the numerical simulations by Kapfer and Krauth [38] who performed large 
scale simulations on up to 106 particles interacting by V(r) = ∈(σ/r)n repulsive 
potentials. �ey found that melting does proceed via the KTHNY scenario with 
an intermediate hexatic �uid for long range (n < 6) potentials, which includes the 
colloid experiments with n = 3 [31, 32] and the electrons on the surface of 4He 
[39] n = 1 while for n > 6, the hexatic-isotropic transition becomes �rst order, 
which agrees with the hard disk (n = ∞) simulations. Note that these simulations 
are on larger systems than the experimental ones.
BKT theory has also been applied to superconductivity in thin �lms. In our 
original paper, we stated that true superconductivity in a 2D superconducting 
�lm could not exist because of the �nite penetration depth λ(T) which limits the 
range of the logarithmic interaction between vortices. For separations λ(T), the 
vortex-vortex interaction behaves as 1/r so that the vortices are always free at any 
T > 0 thus destroying superconductivity. Although our argument is correct, in 
many thin �lm superconductors, the penetration depth can be O(1cm) which is 
a typical system size. For the small applied currents used, this is so large that its 
e�ects are smaller than that of the �nite currents or the �nite frequencies so that 
the behavior of the system is indistinguishable from that of the λ = ∞ limit [40, 
41]. �e theory has also been applied to 2D layers of cold atoms [42, 43] with 
reasonable agreement which may be improved in the future.
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