
2. T H E D A M P I N G P R O B L E M 

I N WAVE M E C H A N I C S 

A formula is derived for the wave-mechanical treatment of damping, and is 
used to investigate some related problems; coherence phenomena also are explained. 
An expression is obtained for spontaneous emission, and the problem of the intensity 
of spectral lines is solved in this way. 

1. C O U P L E D SYSTEMS IN W A V E M E C H A N I C S 

A system cannot be uniquely defined in wave mechanics; we always have a 
probability ensemble (statistical treatment).f If the system is coupled with 
another, there is a double uncertainty in its behaviour. 

Let the state of the first system be described by the quantities an in 

ψ = ΣαηΨη> (!) 
and for the second system let 

V ' = I & r t i - (2) 
The Schrödinger function for the two systems together is then 

Ψ= ψψ' = ΣΣαηΚψηψ'τ = ΣΣ°ητψηψ'τ, (3a) 
η r n r 

where 
<W = a A · (3b) 

If there is coupling, then cnr is a function of time and can no longer be resolved 
as in equation (3b). Thus an and br can no longer be used separately. 

For a function / of co-ordinates (and momenta) of the first system alone 
we have* 

/ = !ψ/Ψ*άτάτ' = ΣΣΣ^θη>τ ϊψ^Ψ^τ^ΣΣ««™/«*, (*a) 
J n m r J n m 

where 
^nm — Lt^nr cmr> (^") 

and 

Sum = wtfWmÜt 

L. Landau, Das Dämpfungsproblem in der Wellenmechanik, Z. PTiys. 45, 430 (1927). 
f I t has recently been shown by Heisenberg1 that the reason for this is in the nature of the 

problem; this finally resolves the model problem in wave mechanics. The relationship with 
classical mechanics is discussed by Ivanenko and Landau2. 

Φ / denotes the probability average value of /. 
8 



DAMPING PROBLEM IN WAVE MECHANICS 9 

are the matrix components of /. Thus the " s t a t e " of the system can now be 
described by the quantities ocnm. For a system defined by the quantities an 

it is well known tha t 

J n m 
(5) 

In this particular case, therefore, ocnm = a* am\ in general such a representation 
is not possible, and <xnm must then be regarded as a certain mean value of a* am. 

2. C A V I T Y R A D I A T I O N I N W A V E M E C H A N I C S 

Wave mechanics usually deals with objects having a limited number of degrees 
of freedom. The general problem of quantisation of the electromagnetic field 
(quantum electrodynamics) still presents insuperable difficulties. If the struc-
ture of the field is not involved, however, but only the properties of the radia-
tion as a whole, the problem is considerably simpler. 

If we imagine the radiation enclosed in a vessel of any shape, it is known 
to consist of independent eigen-oscillations, in general of different frequencies. 
Since each eigen-oscillation corresponds to a separate degree of freedom, such 
a system has a discrete, though infinite, series of degrees of freedom. Since 
they are independent, the eigen-oscillations can be quantised individually. 

As the co-ordinate of an eigen-oscillation we take the phase of the correspond-
ing electric (or magnetic) force for a particular point f. We have 

άψ 

ϋΓ = ω' (6) 

where φ is the phase, and ω the frequency of the eigen-oscillation multiplied 
by 2π. If we now use the energy E, equation (6) may be written 

Αφ άΕ dH 

dt ά(Ε/ω) dp 

where H = E is the Hamiltonian and 

(7) 

E 
P = — (8) 

ω 
must be regarded as the momentum corresponding to the co-ordinate <p; the 
second Hamiltonian equation gives an identity in consequence of the relation 
dE/dt = 0. 

In order now to derive Schrödinger's equation, we use the operator method. 
From 

cop - E = 0 
we have 

h dip ft δψ 
—Γω 1—; = 0 
i δφ ι dt 

t Here I follow the ideas of Dirac3. The introduction of light quanta is, however, arbitrary 
and not necessary. 
CPL l a 
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α , ^ + ^ 0 . (9) 
δφ dt 

Since φ is a cyclic co-ordinate, the permissible solutions of (9) must have the 
period 2π; the quantity E, being the energy, must be positive for every com-
bination of such solutions. Separation of the variables gives 

2π 

where r is a constant which, by the first condition, takes only integral values. 
The energy is 

Er = rha), (11) 

and r must therefore be positive f. We shall also use the quantities eiq> and e~i(p; 
in the matrices corresponding to them, all elements are zero except 

l e 1 * ^ . ! = ei0)t and | e - ^ | r _ 1 > r = e-io". (12) 

3. D A M P I N G I N A T O M I C S T R U C T U R E S 

In view of the results of section 2 the methods of ordinary perturbation theory 
are applicable here, since the damping phenomena are caused by the reaction 
of the atomic radiation field. 

The perturbation function is known to be 

η = (CE), (13) 

where C denotes the polarisation vector and E the electric force at the centre 
of the atom. The latter can be represented as a sum of electric forces correspond-
ing to the individual eigen-oscillations: 

Ε = ΣΕ: η = (0·ΣΕχ). (14) 
X X 

If we take the centre as the point which determines the phase, then 

Ex = excos(px, (15) 

with ex independent of time. The total energy of an eigen-oscillation is* 

E. = ^(El + H!)dV = J-^-^dF = J ^ e l ^ v J d F = - ^ j^dF, 
(16) 

and the space average of el is given by 

t From equation (11) Planck's radiation formula can be obtained by direct application of 
Planck statistics (see also ref. 4). 

Φ Here we average over the time. 

or 
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so that 

ex = Jsn^nXi (17) 

where nx depends only on the position of the centre and satisfies the condition 

3 = 1 . (18) 
Substitution of (17) in (15) gives 

Ex = J e r c - y - c o s ^ n , . (19) 

If now we regard Ex and cos 9^ as matrices, η and therefore Ex must be sym-
metrised : 

E. = yly-(JO'<>9- + °-l9'JE')n> (20) 

According to general perturbation theory, the coefficients cN in <p = Σ <>Ν ΨΝ 
are such tha t 

dcA Γ 4 Σ ^ % . (21) di A 

If we use radiation quantum numbers rx as well as the atomic quantum numbers 
7i(m, k, . . . ) , we have in our case from (14) and (19), and (11) and (12), 

d / \ · τ ^ f / * \ / H Ö V 

+ c(r . + i . f , m ) ^ 2 n { r ^ l ) ^ e - ^ ( v C . J , (22) 

where 
6xy = 0 for a; + y, 

= 1 for x = y. 

For simplicity we take as the initial state a " s t a t e " of the atom determined 
in the usual way (see section 1); the final formulae can be immediately applied 
to the general case. Since the previously emitted field has no effect on the 
atom, we also suppose tha t no radiation field is present at the initial instant. 
Then all the coefficients c except the c(0, n) are zero. At the next instant the 
c(dxy, n) must be brought in, since (22) shows tha t only they have a non-zero 
time derivative: 

d ,Λ . I 2πω. 

dt x xy' ' V hV 
o(dxy,n) = il—-/-e^Z^°^)(ny'Cnm), 

m 

^c{(),n) = iYJYjc{dxu,m)^^^e-^t{nu-Cnm). 

(23) 

l a * 



12 COLLECTED PAPERS OF L. D. LANDAU 

The state of the atom is described, according to (4), by the quantities 

<*nm = c* (0 ,n )c (0 ,m) + £c*(<5*y> n)c(dxy, m). (24) 

The time derivative of ocnm is 

doc. 

zr- ' isH^W-T? ^-ι"*(ηβ·€ΜΛ) 

c*(dxy, k) c(0, m ) J - ^ e - . « ( ( n 9 · (7,.) 

2πω„ 
+ c * ( i 0 , n)c(0, ft) J-^^J*,*(n9-Cmlt) 

- c*(0, ft) c(o# f , m)J-^Le-'i*>' (*>· Ckn) (25) 

If we substitute directly in (25) the initial conditions c0(dxy, n) = 0, we arrive 
at the absurd conclusion tha t docnm/dt = 0. The reason for this is evidently tha t 
the infinite frequency sums Σ a r e divergent. In order to obtain a more plau-

y 
sible result, we apply (25) not to the initial instant but to a later instant T. 
In the same approximation we have 

T 

(26) 
c(δ.„ n) = i / ^ p Σ co (0, «0 f K · Cnm) e1·*' d i , 

0 

c(0, ?i) = c0(0, w), 

and so, using the relation oc\m = c* (0, n) c0(0, m), 
T 

0 

0 

T 

0 

*K ( V < W *-i(0yT f Κ · C«.) β1-*'«!*!. (27) 

- a(0) in 

+ « 
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Since the volume V is regarded as infinite, the frequency sums can be replaced 
by integrals. The number of eigen-oscillations between ω and ω + dm is known 
to be 

ω2 

Νωάω = V—— deo. (28) 
πΔ ca 

Instead of each expression of the type (n · A)(n · B) we must put 

j(A-B) (29) 

in consequence of the averaging, having regard to (18).Equation (27)may there-
fore be written 

oo T 

docn 

dt ?? 
0 0 

T 

0 
T 

-ocZ(cmke-^T^Ck)j^at 

0 
T 

- « ^ ( ^ „ e ' ^ - j c ^ e - ^ d i j - ^ d c a . (30) 
0 

A number of considerations which will not be given here show that the double 
integrals occurring in this formula (which are divergent) must be independent 
of the upper limit T. If we raise the latter to infinity, apply the theory of the 
Fourier integral, and return to the initial instant, the result is 

docnm „ 2i f / _ d3 _ \ / _ d3 

? ? 3ÄC3 {*'*(C-*· d*3 C*«J ~ **V*W* d*3 C ; · ) 

/ 1 _^!_ Λ ( d 3 +' 
+ Mne ( ^mfc ' , 3 ^ke) ~~ ^emi ^kn' , , 3 ^ek 

dt 

or 
d « . . _ 2i f / . d» \ / J 3 

at fr 3Äc3 " V di3 " 7 V *" d<3 me 

/ d3 _ \ / d3
 + Y| 

+ <*nk[ Cme ' ~T^ Cek I ~ A e m I ^fc« ' " ^ T C e * J f ' ( 3 1 ) 

the signs + and — signify that only the part containing positive and negative 
frequencies respectively is taken. This is because the integration is only over 
positive ω. 
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Formula (31) is of fundamental importance in the theory of damping 
phenomena. The quantities an cannot be used in this problem; the "s ta te of · 
the a t o m " must be described by means of the quantities ocnm. 

If the external influences on the atom are quasi-periodic, the quantities ocnm 

change in a definite manner under the action of damping and tend (in the first 
approximation) asymptotically to definite values. The "s ta te of the a t o m " 
corresponding to such values of ocnm will be called the zero state. In some cases 
there are several such states, of which some may be metastable. 

For any quantity / with matrix fnm we obtain from (4b) 

U.0 U t n m n m dt 

ι<χΜ 

dt -Λ 

d 0 / y y d«»m 
dt dt Jnn (32) 

d0//d£ denotes the time derivative of / without allowance for damping. Substi-
tution of (31), gives, in matrix notation, 

d/ _ d0/ 2i 
dt dt 3Äc3 

r /d 3C+ 

|_V di3 

/— d 3 C-\ 

_ a»/ 2 r 
dt 3c3 [ 

where fC-Cf = —F. 

Vd3C+ 

\ dts 

-/c)-( 

/d 3 C + 

~\ dP 

• F j + ( F 

Cf 
d3C-

dts 

Cf )] 
w-)\' (33) 

For / = constant, the damping term in (33) is zero, as we should expect. 
The same is true of any function of co-ordinates only, on account of the com-
mutation relations. For an electron moment H we have 

dH 

~dT 
d 0 H 
d< 

2e / d 3 C + d3CT 
3 c3 di 3 + ■ di 3 

d 0 H 
dt 

2e d 3 C 
3c3 di3 (34) 

where e is the electron charge. This equation agrees entirely with the classical 
theory. Since linear relations always appear in wave mechanics unchanged, 
this conclusion can be used to justify (31). If / is taken as the energy ε of the 
atomic system, then 

dC 
F = 

dt 

d e 
~dT 3 c3 

d 3 C + dC 

dt3 dt + 
dC d3 C-
d i di3 (35) 
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In order to derive from this formula an expression for the energy radiated, we 
follow the classical theory; elimination of a complete derivative gives 

f άΕ 

dt 

2 T / d 2 C + d 2 C \ /d2C d 2 C - Y ] 

This formula is of importance not only in damping theory but also in the wave 
mechanics representation of the radiation intensity, which can not be derived 
from the expression for the " m e a n " field (in the sense of the comment follow-
ing equation (5)).f 

In the continuous "spec t rum" the sums in (31) must be replaced by inte-
grals. 

4. SOME PARTICULAR APPLICATIONS 

Let us now apply the above results to systems which, apart from the damp-
ing, are conservative. In such systems, as we know, for any quantity / which 
does not depend explicitly on time, 

/ „ m = / " M e i a W , (37a) 

/ = Σ Σ *«»/«». = Σ Σ ocnmrm^nmt, (37b) 
n m n m 

where ωηγη = (En — Em)jK and the fnm are independent of time. 
In order to obtain an expression for the intensity of spectral lines, we use 

formula (36): 
2 Ek < E„ Ek < Em 

n m 

or, after averaging over time, 
= En <Ek £ 

7 = Σ | « „ | 2 ^ Μ = Σ Σ T7(0»*IC»*I2KI2· (39) 
n n k **C 

Each term in this formula is to be regarded as the intensity of the radiation 
of the corresponding frequency. The characteristic properties of intensity (in-
cluding, of course, polarsation etc.) of a spectral line thus correspond entirely to 
the amplitude coefficient of the radiation field (matrix component of d2C/d£2). 
In addition, the intensity of radiation for a frequency conk is, as we should 
expect, proportional to the quantity \an\

2 or, in the usual terminology, to the 
number of atoms in the initial state (the state with the higher energy value). 

f The expression for the square of a quantity is, in wave mechanics, not equal to the square 
of the expression for tha t quanti ty; the quantities an must always appear homogeneously in the 
second degree. The results of Joos 5 are therefore unsatisfactory. 

(38) 
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In order to analyse the damping process, we use the basic formula (31): 
Ά Ek>En O m ? 
u ^n>» _ y y ^^Jcn i^hn . Qme\ ci(coke + <omn)t 

at r e 3Ac31 ) ke 

Ee>Em 2 ω
3 

— ^ kn # l(e)k# + Wmn)i 

^ t r 3Äc31 } ke 

Ek>Ee 2 ω 3 

rr 3Äc3 V ' nk 

Ek<Ee 2mS, 

- Σ Σ - ^ f (c*w·cei)ei<0e"-> (40a) 
and for m — n 

Λ „ Ek>En 2co3 

*nw 
d£ t « 3 AC3 

* · > * » 2ft)3 

+ Σ Σ —— (c^-cwe)eia,kei**e 
t e 3Äc3 V ke 

Ek>Ee 2ft)3 

~ Σ Σ —(Cne-Cek)e1<0»ktocnk 

^ k < ^ e 2f tA 
-ΣΣ Til(C^-CV"'«... (40b) 

k e 3Äc3 

If all the frequencies wnm are different f, averaging over time gives 
(Em>Ee 2ft)3 En>Ek 2 ω

3
7 Ί 

d* 

IZ1 **<** 4ft)3 , _ u ^<^« 4ω3 

The latter formula also follows from elementary arguments (ocnm corresponds 
to the quantity \an\

2). The relation 
J K J = \an\

2Anm% conm, 
where . 3 

A™=~Sf\cnmf (42) 

is the Einstein transition probability for spontaneous emission, is also in agree-
ment with this. The time spent in the wth state is given from (41b) as 

I Ek<En 

— Σ Λ*· (43) 

•f The majority of the following results are valid also for ordinary cases of eigenvalue degene-
racy (directional degeneracy, the many-body problem). 
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The state of minimum energy (the ground state of the atom) here evidently 
represents the zero state. States of higher energy which show no transitions 
to the zero state are, of course, only metastable; a further approximation in 
equation (31) gives the corresponding time for these states also. 

Equation (40a) shows tha t the quantities anm always decrease on average 
in the course of time. The reason is tha t the intensity of the radiation behaves 
quite differently according to (39) and (41b), evidently, in the increasing 
uncertainty of the phase, which causes a reduced coherence of the radiation.f 
The "dura t ion" of coherence xnm is given by equation (41a) as 

1 1 / 1 1 \ 

— = * ™ = J ( T + — } (44) 

Instead of the quantities ocnm which correspond to the unperturbed system 
and are now functions of time, we can also use quantities independent of t ime: 

/ = Σ H&nmfnm* (45) 
n m 

where odnm are the arbitrary constants. If new quantities 

7™ = * ™ ^ " ' (46) 

are introduced in order to eliminate the time from (37), then (40) becomes 

at -lftWnm + ??^r(c c ) n ° 
Ee>Em 2 CO3 

3ÄC 3 

Ek>Ee 2 ω ? 

je e one 

Ek<Ee 2a)S
1 

- ΣΣ^Γ7(^η·^)γ^. (47) 
k e She* 

Exponential solutions of this linear differential equation with constant coef-
ficients correspond to certain relations between the γ and therefore also 
certain expressions fnm for /. In the first approximation we have, with f'nm a 
constant, 

where 
l Ek<En Ek<En 2 m3 

k k 3c3 

(48) 

| This phenomenon is only partly related to the damping process; the agency which keeps 
the emission in a steady state (e.g. black-body radiation, optical excitat ion etc.) also causes a 
perturbation of coherence. 
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The quantities / ' n m are evidently linear combinations of the fnm. They can easily 
be derived from equation (46). For the zero state we evidently have 

/,0° = /00 (49) 
and 

*oo=l> (50) 
replacing the usual condition Σ ocnm = 1. 

n 
For the line width (to which the preceding remark applies also) we find 

1 
Δ ωηηι = π ληm = — (π jn + π jm), (51) 

and so we can define a "term width" AEn = njn. 
Finally, I should like to express my most sincere thanks to my friend and 

colleague D. Ivanenko for helpful discussions and many suggestions. 
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