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Abstract

The goal of this assignment is to study, using the virial cumulant
expansion, the Debye-Hückel theory of an electron plasma.

1. Electron plasma Debye-Hückel screening theory

A simple diluted plasma is a neutral gas of electrostatically interacting electrons
in a background of ions. The electron mass and charge are noted 𝑚 and −𝑒,
respectively; the system hamiltonian is

𝐻𝑁 = 𝐻0(𝑷) +𝑊(𝑿) =
𝑁
∑
𝑛=1

𝑝2𝑛
2𝑚 +

𝑁
∑

𝑛𝑚=1
𝑤(|𝒙𝑛 − 𝒙𝑚|) (1)

where the first term𝐻0 is the kinetic energy of 𝑁 electrons, and the second term
𝑊, the interaction energy, contains the two particles coulomb potential

𝑤(𝑟) = 𝛼
𝑟 − 𝑤0 , 𝛼 = 𝑒2

4𝜋𝜀0
(2)

where 𝑟 = |𝒙| is the distance between the two electrons, andwe added a constant
𝑤0 which takes into account the neutralizing ion background. It ensures that
the integral

∫
∞

0
4𝜋𝑟2 d𝑟𝑤(𝑟) = 0 , (3)

vanishes; we also defined the phase space coordinates 𝑿 = (𝒙1, … , 𝒙𝑁) and
𝑷 = (𝒑1, … , 𝒑𝑁).

1.1. Cumulant expansion

The partition function,

𝑍(𝑇, 𝑉, 𝑁) = 1
𝑁! ∫ℝ𝑁

d𝑷
(2𝜋ℏ)3𝑁

∫
𝑉𝑁

d𝑿e−𝐻0(𝑷)/𝑇e−𝑊(𝑿)/𝑇 (4)

where 𝑉 is the system’s volume.



1. Show that

𝑍 = 𝑍0⟨e−𝑊(𝒙)/𝑇⟩ , ⟨⋯⟩ = ∫
ℝ𝑁

d𝒑
(2𝜋ℏ)3𝑁

e−𝐻0(𝒑)/𝑇

𝑍0
(⋯) (5)

with 𝑍0 the ideal gas partition function (𝑊 = 0):

𝑍0 =
1
𝑁! (

𝑉
𝜆 )

3𝑁
, 𝜆 = √

2𝜋ℏ2
𝑚𝑇 . (6)

The brackets ⟨⋯⟩ are for themean over the non-interacting systemprobability
distribution.

The cumulant expansion of the canonical partition function is defined by the
power series,

ln𝑍 = ln𝑍0 +
∞
∑
𝑛=1

(−1)𝑛
𝑛!

⟨⟨𝑊 𝑛⟩⟩
𝑇𝑛 (7)

where the cumulant of the interaction energy ⟨⟨𝑊 𝑛⟩⟩ contains all the terms of
order 𝑛 in the expansion of the logarithm:

⟨⟨𝑊⟩⟩ = ⟨𝑊⟩ = = 𝑁(𝑁 − 1)
2𝑉 ∫

∞

0
4𝜋𝑟2 d𝑟𝑤(𝑟) (8)

is the first order term ; the second order one is,

⟨⟨𝑊 2⟩⟩ = = ⟨𝑊 2⟩ − ⟨𝑊⟩2 , (9)

or explicitly,

⟨⟨𝑊 2⟩⟩ = ∑
1234

[⟨𝑤(𝒙1 − 𝒙2)𝑤(𝒙3 − 𝒙4)⟩ − ⟨𝑤(𝒙1 − 𝒙2)⟩⟨𝑤(𝒙3 − 𝒙4)⟩] (10)

where the barred sum takes only over the connected closed paths (represented
by the diagrams), in the case of two particles it corresponds to 1 → 2 → 1 (or
for instance, 1 = 4 and 2 = 3), leading to

⟨⟨𝑊 2⟩⟩ = 𝑁(𝑁 − 1)
2 [∫

∞

0
4𝜋𝑟2d𝑟𝑉 𝑤(𝑟)2 − (∫

∞

0
4𝜋𝑟2d𝑟𝑉 𝑤(𝑟))

2

] . (11)

A typical graph contributing to the partition function is the ring,

= ⟨𝑤(12)𝑤(23) …𝑤(61)⟩

1.2. Ring graph cumulant

In the case of the coulomb interaction, because of its long range, the usual
cumulant expansion breaks down. We need to compute terms with arbitrary
powers of the density. We focus here on the ring graphs, which give, as we
will demonstrate, a physically interesting picture of the diluted plasma high
temperature plasma.

Therefore, we calculate now the contribution of these ring graphs to the log-
arithm of the partition function, neglecting the other possible graphs. This
corresponds to the diluted limit.

2



2. Compute the fourier transform of the coulombian two particles interaction
𝑤(𝒌), where 𝒌 is the wavenumber, conjugate to 𝒙. The neutrality condition
ensures 𝑤(0) = 0. Show that for 𝒌 ≠ 0,

𝑤(𝒌) = 4𝜋𝛼
𝑘2 (12)

3. Compute, using the convolution theorem, the ring graph of order 𝑛 ≥ 2:

𝑅𝑛 = ∫
𝑉𝑛

𝑛
∏
𝑖=1

d𝒙𝑖
𝑉 𝑤(𝒙1 − 𝒙2)𝑤(𝒙2 − 𝒙3) …𝑤(𝒙𝑛 − 𝒙1) . (13)

Show that the result of this integration is

𝑅𝑛 =
1

𝑉𝑛−1 ∫
d𝒌
(2𝜋)3

𝑤(𝒌)𝑛 . (14)

1.2.1. Convolutions

Consider the integral

𝐼 = ∫d𝑥1 d𝑥2 d𝑥3𝑓(𝑥1 − 𝑥2)𝑓(𝑥2 − 𝑥3)𝑓(𝑥3 − 𝑥1)

the change of variables 𝑥12 = 𝑥1 − 𝑥2, 𝑥23 = 𝑥2 − 𝑥3, gives

𝐼 = ∫d𝑥12 d𝑥23 d𝑥3𝑓(𝑥12)𝑓(𝑥23)𝑓(−𝑥12 − 𝑥23) ,

we observe that the integral do not depend on 𝑥3, then

𝐼 = 𝑉 ∫d𝑥12 d𝑥23𝑓(𝑥12)𝑓(𝑥23)𝑓(−𝑥12 − 𝑥23) ,

where 𝑉 results form the integration over 𝑥3. Now we use the fourier transform

𝑓(𝑥) = ∫ d𝑘
2𝜋e

i𝑘𝑥𝑓(𝑘)

to transform the integral into,

𝐼 = 𝑉 ∫d𝑥12 d𝑥23∫
d𝑘1
2𝜋

d𝑘2
2𝜋

d𝑘
2𝜋e

i𝑘1𝑥12ei𝑘2𝑥23e−i𝑘(𝑥12+𝑥23)𝑓(𝑘1)𝑓(𝑘2)𝑓(𝑘).

Using the fourier representation of the Dirac delta,

∫d𝑥ei𝑘𝑥 = 2𝜋𝛿(𝑘)

we easily obtain

𝐼 = 𝑉 ∫ d𝑘
2𝜋𝑓(𝑘)

3 .
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1.2.2. The logarithm of the partition function

4. Explain the formula

𝑁𝑅(𝑛) =
𝑁!

(𝑁 − 𝑛)!
× (𝑛 − 1)! × 1

2 (15)

of the number of ring graphs with 𝑛 points (the coordinates appearing in the
binary interaction factors). Use the stirling formula to show that

𝑁𝑅(𝑛) =
(𝑛 − 1)!

2 𝑁𝑛 (16)

5. The rings contribution to ln𝑍 is

ln𝑍𝑅 = ln𝑍0 +
∞
∑
𝑛=2

(−1)𝑛
𝑛! 𝑁𝑅(𝑛)

𝑅𝑛
𝑇𝑛 (17)

Replacing the previous expression (14) and (16) demonstrate the relation

ln𝑍𝑅 = ln𝑍0 +
𝑉
12𝜋𝜅

2, 𝜅 = √
4𝜋𝛼𝑛
𝑇 (18)

where 𝜅−1 is the Debye length and 𝑛 the density.
Useful formulas:

ln(1 + 𝑥) =
∞
∑
𝑛=1

(−𝑥)𝑛
𝑛

∫
∞

0
d𝑥 1

1 + 𝑥2 =
𝜋
2

6. Compute the equation of state:

𝑃 = 𝑇 𝜕
𝜕𝑉 ln𝑍𝑅 (19)

and show that,
𝑃 = 𝑃0 −

𝑇
24𝜋𝜅

3 . (20)

Discuss the pressure behavior as a function of the temperature. What hap-
pens when 𝜅𝑛1/3 > 1? (dense state limit).

1.3. Debye effective potential

The previous discussion shows that the collective effect of the coulomb interac-
tion modifies the pressure, introducing a negative correction of the order 𝜅𝑛1/3.
This is related to the long range of the coulomb potential. We ask now what is
the effective interaction of two charges, in the same approximation (related to
the ring graphs).

We define the effective potential by

𝑤(𝒙−𝒚) = 𝑤(𝒙−𝒚)+
∞
∑
𝑛=1

(−𝑁𝑇𝑉 )
𝑛
∫
𝑉𝑁

d𝒙1 …d𝒙𝑛𝑤(𝒙−𝒙1) …𝑤(𝒙𝑛 −𝒚) (21)

which leads to the screened Debye potential:

𝑤(𝒙) = 𝛼e
−𝜅|𝒙|

|𝒙| . (22)

This formula takes into account the paths form 𝒙 to 𝒚without loops; identifying
the extreme points gives the ring graph.
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7. To demonstrate this formula, show that the second order term (in 𝑤2), can
be written as,

𝑤2(𝒙 − 𝒚) = 𝑤(𝒙 − 𝒚) − 𝑁
𝑉𝑇 ∫

d𝒌
(2𝜋)3

𝑤(𝒌)2ei𝒌⋅(𝒙−𝒚) (23)

8. The generalization of (23) is straightforward:

𝑤(𝒙) = 𝑤(𝒙 − 𝒚) +
∞
∑
𝑛=1

( 𝑁𝑉𝑇)
𝑛
∫ d𝒌

(2𝜋)3
𝑤(𝒌)𝑛+1ei𝒌⋅𝒙 (24)

Compute the integral via the residue theorem to obtain the Debye potential
(22).
Hint. Use spherical coordinates d𝒌 = 2𝜋 sin(𝜃)𝑘2 d𝑘 d𝜃, and integrate the
angle 𝜃. You get the integral

𝑤(𝒙) = 𝛼
𝜋 ∫

∞

−∞
d𝑘 sin(𝑘𝑥)𝑘𝑥

∞
∑
𝑛=0

(−1)𝑛 (𝜅𝑘)
2𝑛

that, after summation of the power series, can be computed using residues.
9. (Optional question) Use the Poisson formula for the electrostatic potential,

and consider the electrons distributed according to the Boltzmann distribu-
tion in a uniform ion background, to find the Debye length and the Debye
potential.

The Debye-Hückel theory is discussed in the book by Kardar [1] (problems
section of chapter 5).
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